
 
Journal of Engineering Physics and Thermophysics, Vol. 92, No. 1, January, 2019

AN INVERSE PROBLEM OF ACOUSTIC FLOW

Kh. M. Gamzaev      UDC 534.222:519.6

A one-dimensional mathematical model is suggested for nonstationary incompressible fl ow in a cylindrical tube under 
the action of a sonic wave propagating in it. Within the framework of this model, a problem of determining the acoustic 
energy density at the beginning of the tube from the given volumetric fl ow rate of the fl uid in the tube is posed. This 
problem relates to the class of inverse problems associated with the restoration of the dependence of the right-hand 
sides of parabolic equations on time. A computational algorithm is proposed for solving the problem posed.
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 Introduction. It is well known that propagation of intense sonic waves, and especially of ultrasonic ones, in liquid 
and gaseous media frequently leads to the appearance of nonperiodic motions of a medium called acoustic fl ows. The reason 
for the occurrence of acoustic fl ows in liquid and gaseous media stems from the irreversible losses of energy and momentum 
of an acoustic wave in them. The impulse transported by the acoustic wave is transferred to the medium when the wave 
is absorbed in it and causes its motion [1–5]. Acoustic fl ows attract interest as they are of great importance in various 
technological processes associated with the effect of intense sonic and ultrasonic waves on a medium.

It is obvious that the hydrodynamic characteristics of acoustic fl ow caused by a sonic wave are determined by 
the acoustic characteristics of the wave. Numerous theoretical and experimental works are devoted to the study of the 
hydrodynamic characteristics of different types of acoustic fl ows causes by a sonic wave with given characteristics. Stationary 
acoustic fl ow of radial structure in a cylindrical tube with rigid walls was investigated analytically in [6]. In [4, 7, 8], stationary 
and nonstationary acoustic fl ows in cylindrical tubes were investigated by analytical methods on the basis of one-dimensional 
mathematical models. In [9, 10], methods of numerical simulation were used to study acoustic fl ows in various media.

It should be mentioned, however, that for practical application of acoustic fl ows in different areas, especially for 
pumping-over fl uids, of great importance is determination of the parameters of an acoustic wave that caused the fl uid fl ow with 
a given hydrodynamic characteristic. In the present work, the problem of determining the acoustic wave characteristics from 
the given fl uid fl ow in a cylindrical tube is presented as an inverse problem for a one-dimensional equation of nonstationary 
acoustic fl ow of incompressible viscous fl uid.

Formulation of the Problem. We consider nonstationary fl ow of a viscous incompressible fl uid in a cylindrical tube 
of radius R with rigid walls. The fl ow is induced by the radiation pressure gradient produced in the fl uid by an ultrasonic 
beam. The ultrasonic beam fi lls the tube completely and is oriented along its axis, with the ends of the tube being permeable 
for the fl uid. It is assumed that the 0z axis is directed along the tube axis, and the fl uid propagates along this axis so that only 
one of the three components of the fl ow velocity (ur, uφ, and uz) remains: uz ≠ 0, whereas ur = 0 and uφ = 0. The fl uid fl ow is 
assumed to be axisymmetric. The complete system of differential equations describing this fl ow has the form [11]
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It is seen from the second and third equations of system (1) that uz is a function of only r and t and that the last two equations 
yield the independence of the pressure P of r and φ, i.e., uz = uz(r, t) and P = P(z, t). From system (1) we come then to the 
following equation of nonstationary viscous incompressible fl uid fl ow in a tube:
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We assume that the radiation pressure P(z, t) in the given sonic beam is equal to the acoustic energy density E(z, t) [5]: 
P(z, t) = E(z, t). If we take into account that the following relation is valid for the acoustic energy density:
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then for the radiation pressure gradient we have
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Assuming then that u(r, t) = uz(r, t) and E0(t) = E(0, t), we represent Eq. (2) in the form
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Let the following initial condition be valid for Eq. (3):

 0 0 ,tu = =
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as well as the natural boundary condition of the boundedness of the solution at r = 0, which is equivalent to the condition
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and the no-slip condition holds on the tube wall:
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It is obvious that in assigning the law of the change in the acoustic energy density at the beginning of the tube in time 
E0(t), by solving problem (3)–(6) we may fi nd the fl ow velocity distribution over the tube cross section and the law of change 
in the volumetric fl uid fl ow rate in the tube in time:
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We assume now that the law of variation of Q(t) is known and it is necessary to fi nd such a law of the change of E0(t) which 
could ensure the assigned fl uid fl ow in the tube. Thus, the problem resides in determining the functions u(r, t) and E0(t) that 
would satisfy Eq. (3) and conditions (4)–(7). The posed problem relates to the class of inverse problems associated with 
the restoration of the dependence of the right-hand sides of parabolic equations on time [12]. The statements and numerical 
methods of solving inverse problems on the restoration of the dependence of the right-hand sides of parabolic and hyperbolic 
equations on time are considered in [13]. It should be noted that in the problem posed, condition (7) is not the classical local 
condition for Eq. (3).

Method for Solving the Problem. Let us reduce problem (3)–(7) to a problem with local conditions [14]. We 
multiply both sides of Eq. (3) by r and integrate the result on the segment [0, r] over the variable r. Performing the integration 
by parts with account for condition (5), we obtain
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we write the last integral relation in the form
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In this case, the initial and boundary conditions for Eq. (9) will be determined by the equations
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and integral relation (7) takes the form
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We discretize Eq. (9) in time t. For this purpose we introduce a uniform difference grid in the domain [0 ≤ t ≤ T ] 
relative to the variable t:
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 in Eq. (9) at tj, j = 1, m , by the backward difference:
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We introduce the notation wj(r) ≈ w(r, tj) and, using it, we write Eq. (9) and conditions (10)–(13) as
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where Q j = Q(tj), 0
jE  ≈ E0(tj), j = 1, 2, …, m. Solution of problem (14)–(18) on each time layer j = 1, 2, …, m can be presented 

in the form [12]
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where θj(r) and φ(r) are unknown functions. Substituting Eq. (19) into Eq. (14), we obtain
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From this we obtain the following boundary-value problems for the unknown functions θ j(r) and φ(r):
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Substitution of (19) into the additional condition (18) yields
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Thus, to solve problem (14)–(18) for determining the functions w j(r) and 0
jE , j = 1, 2, …, m, it is necessary fi rst to 

determine the function φ(r) from the solution of problem (21) and after this, from the solution of problem (20) to determine 
the function θ j(r), the value of 0

jE  from formula (22), and fi nally the function w j(r) from formula (19) successively for each 
time layer j = 1, 2, …, m. For numerical solution of problems (20) and (21) the method of fi nite differences can be used. We 
introduce the difference grid which is uniform in the variable r in the region [0 ≤ r ≤ R]:
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. Using the integral method, it is possible to present the discrete analogs of problems (20) and (21) on the 

difference grid hω  in the form

 

1
1 1 1

2

1
0

2
, 1, 2, 3, …, 1 ,

0 , 0 ,

j j j j jj j
i ii i i i i

i

jj
nj n

w i n
t r rr

r

−
+ − −

−

θ − θ + θ θ − θθ − ν
= ν − = −

Δ ΔΔ

θ − θ
θ = =

Δ

 (23)

 

21 1 1
2

1
0

2 , 1, 2, 3, …, 1 ,

0 , 0 , 1, 2, …, ,

i i i i i i
i

i

n n

r i n
t r rr

j m
r

+ − −

−

ϕ ϕ − ϕ + ϕ ν ϕ − ϕ α
= ν − + = −

Δ Δ ρΔ

ϕ − ϕ
ϕ = = =

Δ

 (24)

where j
iw  ≈ w j(ri), 

1j
i
−θ ≈ θ j(ri), and φi ≈ φ(ri). The difference problems (23) and (24) represent a linear system of algebraic 

equations with a tridiagonal matrix in which the approximate values of the sought functions θ j(r) and φ(r) in the internal 
nodes of the difference grid act as unknowns, i.e., j

iθ  and φi, i = 1, 1n − . To solve the difference problems (23) and (24), the 
Thomas algorithm can be used (matching method) [12].

Results of Numerical Calculations. Based on the proposed computational algorithm, numerical experiments were 
carried out for model problems by the followings scheme. The density of the acoustic energy at the beginning of the tube E0(t) 
was assigned, and the solution of direct problem (9)–(12) was found. Next, using the formula Q(t) = 2 r Rw =π , the volumetric 
liquid fl ow rate in the tube was determined, and the dependence found was used to restore E0(t).

The fi rst series of calculations was performed with the use of nonperturbed data. The results of the numerical 
experiment carried out for R = 0.02 m, ν = 10–6 m2/s, α = 5·10–5 m–1, ρ = 1000 kg/m3, E0(t) = 100 – 20 sin 3t J/m3, Δt = 0.05, 
2, and 10 s, and Δt = 0.001 m are presented in Table 1. The results of the numerical experiment show that with the use of 
nonperturbed input data the sought function E0(t) is restored on all computational grids in time (3rd, 4th, and 5th columns of 
the table). The exact and calculated values of the function E0(t) at the nonperturbed data coincide absolutely.

The second series of calculations was performed with the following perturbations being imposed on Q(tj):

( ) ( ) ( )(2 1) ,j j j jQ t Q t Q tδ = + δ σ −
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where σj is a random variable on the segment [0, 1] modeled with the aid of a random-number generator and δ is the 
maximum relative perturbation. The results of the numerical experiment carried out for Δt = 0.5, 1, and 5 min and δ = 0.05 
are presented in Table 2.

TABLE 1. Results of Numerical Experiment

t, s
0 ,tE  J/m3 0 ,E  J/m3

Δt = 0.05 s Δt = 2 s Δt = 10 s
10 119.76 119.76 119.76 119.76
20 106.10 106.10 106.10 106.10
30 82.12 82.12 82.12 82.12
40 88.39 88.39 88.39 88.39
50 114.30 114.30 114.30 114.30
60 116.02 116.02 116.02 116.02
70 90.65 90.65 90.65 90.65
80 81.09 81.09 81.09 81.09
90 103.52 103.52 103.52 103.52
100 120.00 120.00 120.00 120.00
110 102.65 102.65 102.65 102.65
120 80.82 80.82 80.82 80.82
130 91.44 91.44 91.44 91.44
140 116.54 116.54 116.54 116.54
150 113.67 113.67 113.67 113.67
160 87.68 87.68 87.68 87.68
170 82.53 82.53 82.53 82.53
180 106.93 106.93 106.93 106.93
190 119.61 119.61 119.61 119.61
200 99.12 99.12 99.12 99.12

TABLE 2. Results of Numerical Experiment

t, s 0 ,tE  J/m3 0 ,E  J/m3

Δt = 0.5 min Δt = 1 min Δt = 5 min
10 119.76 109.03 119.44 114.28
20 106.10 85.49 99.84 101.72
30 82.12 72.87 74.46 84.43
40 88.39 97.39 75.42 85.02
50 114.30 119.99 116.09 113.56
60 116.02 115.03 110.60 116.44
70 90.65 93.39 82.57 95.34
80 81.09 85.73 87.04 79.97
90 103.52 125.18 112.67 100.93
100 120.00 113.14 124.25 117.10
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In using perturbed input data in which the error is of fl uctuational character, the sought function E0(t) was restored 
with defi nite uncertainty. The errors in the input data manifested themselves to a greater degree on decrease in the time step 
(at Δt = 0.5 min the maximum error with which the solution was obtained was equal to 24%). However, with increase of the 
time step the accuracy of calculations increased (at Δt = 5 min the maximum error of fi nding the solution was equal to 6%).

An analysis of the result of numerical experiment indicate that due to the use of computational grids, rough in time, it 
is possible to reduce the infl uence of the error of input data on the accuracy of restoration of the function E0(t). In the proposed 
computational algorithm, the effect of regularization was attained by selecting a difference time grid.

Based on the proposed numerical method, the densities of the acoustic energy were also determined form the given 
liquid fl ow for different tubes. The results of numerical calculations carried out for ν = 10–6 m2/s, ρ = 1000 kg/m3, and 
α = 5·10–5 m–1 are presented in Table 3. It follows from this table that with increase in the tube radius the density of the 
acoustic energy needed for the formation of the given fl ow of liquid decreases.

Thus, the proposed numerical method allows one to use an explicit formula for determining the sonic energy density 
needed for providing the assigned acoustic liquid fl ow in a tube.

Conclusions. The problem of determining the acoustic energy density at the beginning of the tube that provides the 
fl ow of liquid at an assigned fl ow rate is considered. The proposed method of simulation can fi nd application in the case of 
acoustic effect on oil pools.

NOTATION

E(z, t), density of acoustic energy, J/m3; E0(t), density of acoustic energy at the beginning of the tube, J/m3; 
0
tE , precise values of function E0(t); 0E , calculated values of function E0(t) at nonperturbed data; 0E , calculated values of 

function E0(t) at perturbed data; P, radiation pressure, Pa; Q(t), volumetric liquid fl ow rate, m3/s; r, radial coordinate, m; 
R, tube radius, m; t, time, s; α, coeffi cient of energy absorption, m–1; δ, maximum relative perturbation; ν, kinematic viscosity 
of liquid, m2/s; ρ, liquid density, kg/m3.
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