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INTERACTION OF SOLID PARTICLES WITH VORTEX STRUCTURES
AND CONCENTRATION DISTRIBUTION OF SUCH PARTICLES 
IN A COMBINED VORTEX

K. N. Volkov, V. N. Emel′yanov, and I. V. Teterina UDC 532.529

The interaction of solid particles with vortex structures was investigated, and the scattering of such particles by a 
combined vortex was numerically simulated using the Euler–Lagrange approach. The concentration distributions 
of particles in the region of a gas fl ow occupied by a vortex at different instants of time have been obtained. The 
dependence of the time for which these particles escape from the central zone of the vortex on their size was 
determined. The results obtained can be used for increasing the effi ciency of measurement of the parameters of the 
disperse phase in a fl uid fl ow by optical methods.
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Introduction. Vorticity is an important property of liquid and gas fl ows, providing the basis for a wide variety of 
their forms, and it is used for qualitative defi nition of different effects in fl uid mechanics, such as turbulence and the formation 
and separation of a boundary layer [1, 2]. The addition of solid particles to a fl uid fl ow makes its pattern more complex 
depending on the properties of the inclusions, in particular, their inertia and concentration. Because of the variety of these 
properties, different fl ow regimes are realized.

The concentration of disperse particles in a fl uid fl ow is one of the main physical parameters determining the 
characteristics of movement of the disperse phase in this fl ow and its infl uence on the movement of the carrying medium. 
In the case where the inertia of the disperse particles in a fl uid fl ow is infi nitely small, the velocity fi elds of the disperse and 
carrying phases coincide, and, when the initial load of the fl ow with these particles is homogeneous, the concentration of 
the disperse phase remains uniform throughout the fl ow fi eld. A small but fi nite inertia of the disperse particles in a fl uid 
fl ow changes their density distribution, with the result that there appear local concentration inhomogeneities of the disperse 
phase near the kinematic peculiarities of the velocity fi eld of the carrying phase (critical points, discontinuities, local vorticity 
zones).

In investigations of liquid and gas fl ows, optical measurement methods, based on the introduction of particles into 
such a fl ow and their probing by a monochromatic radiation for determining the fl ow velocity by optical signals, have a 
special place. The method of particle image velocimetry (PIV) involves the digital processing of a two-exposure image of 
tracing particles, which makes it possible to determine not only the velocity of movement of a particle but also its path [4]. 
In this method, the measurement of the velocity of a particle is based on the recording of its movement in a sectional plane 
for a defi nite time. The particles found in a measurement plane are irradiated twice, and particle images are recorded by a 
digital camera. The subsequent processing of these images makes it possible to calculate the displacement of particles for 
the time between the fl ashes of a light source. As a light source, a pulsed solid-state laser generating pulses of small duration 
(4–10 ns) with a fairly high energy is usually used. The main convenience of the PIV method is that it makes it possible to 
perform contactless measurements and determine instantaneous distributions of particle velocities in a wide range including 
supersonic velocities. The method of laser Doppler anemometry (LDA) makes it possible to determine the velocity of 
movement of particles and their sizes and concentration [5] on the basis of measurement of the Doppler shift of the frequency 
of the radiation scattered by them, which is a linear function of their velocity. The advantages of this method over the other 
optical measurement methods is its contactlessness, the wide range of velocities that can be measured (10–6–106 m/s), and 
the high spatial resolution (as high as 10–11 cm3), time resolution 10–7–10–9 s), and accuracy (0.2–3.0%). A condition of 
applicability of the LDA method for diagnostics of two-phase fl ows is the occurrence of a fairly large number of particles 
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scattering radiation in a measurement region because the intensity of the radiation scattering by a small number of particles 
can be insuffi cient for recording the Doppler shift of its frequency [6].

In a dispersion-medium fl ow there can arise regions free of particles as a result of the fragmentation of its phase 
volume as well as regions with crossing paths of particles because of the formation of "gathers" and "folds" with a markedly 
increased concentration of the disperse phase at their boundaries. By a fold is meant a fl ow region, to one point of which the 
paths of different particles come so that a part of the fl ow space becomes covered with several layers of the medium. In the case 
where the volume concentration of the particles in such a fl ow is low, the collisions between them can be disregarded because 
real particles will come to the indicated space point at different instants of time [7]. Therefore, of interest is investigation of 
the concentration fi eld of the inertial particles near peculiar elements of dispersed gas fl ows [8–10].

The conditions for the appearance of caustics as a result of the interaction of particles with vortex structures of 
different confi gurations were investigated in [11, 12]. It was established that a caustic is formed in the process of interaction 
of a particle with a point vortex in a fl uid fl ow in the case where, at the initial instant of time, the particles in the fl ow are 
found within the circle of radius r ~ 0.5(Γτp)1/2. In this case, the Stokes number, determined as Stk = Γτp/r2 is of the order of 
unity. Another limiting case with respect to the concentration distribution of the disperse phase in a fl uid fl ow is the formation 
of fl ow regions free of particles. A theoretical investigation of the movement of small particles in a combined vortex has 
been performed in [13]. The scattering of solid particles with a diameter of about 1 μm in the process of their interaction 
with a combined vortex was considered in [14]. On the basis of numerical calculations, the time for which particles escape 
from the vortex has been determined. In [15], the movement of discrete inclusions (solid particles, droplets, bubbles) in 
fl ows with a concentrated vorticity was simulated, the force factors in the equation of motion of a probe particle were 
estimated, the results of numerical simulations of the movement of discrete inclusions in the clearance between rotating 
concentric cylinders and in a vortex fl ow formed as a result of the rotation of a liquid with a constant angular velocity over 
an immovable base were compared, and the coordinates of the equilibrium points of a probe particle in a vortex fl ow were 
determined. In [16, 17], problems on the selection of the inertia parameters of particles-tracers (their density and sizes) 
necessary for the visualization and optical diagnostics of vortex fl ows were considered, an expression for determining the 
time of dynamic relaxation of the particles tracing the gas fl ows in vortices of different intensities has been obtained, and an 
example of deciding on the characteristics of particles used for visualization of a swirl and a cascade of laboratory air vortices 
is presented.

For increasing the accuracy and reliability of measuring the characteristics of two-phase fl ows with a concentrated 
vorticity by optical methods, it is necessary to estimate the time for which the particles found in the fl ow region occupied by 
a vortex escape from it and to fi nd the dependence of the concentration distribution of particles in a fl ow on their sizes. The 
selection of the optimum parameters of particles-tracers is a complex problem. On the one hand, such particles should be 
fairly large to refl ect radiation with an intensity necessary for its recording by a digital camera, and on the other they should 
possess a low inertia to trace the fl ow lines without slip. The difference between the velocities of the particles-tracers in a fl uid 
fl ow and the velocity of the carrying medium in this fl ow is responsible for an important component of the error in measuring 
the velocity of a fl uid fl ow by optical methods.

In the present work, the scattering of monodisperse particles by vortex structures was numerically simulated, and the 
dependence of the time for which the particles in the central region of a vortex escape from it on their sizes was determined.

Mathematical Model. A gas fl ow with solid particles is considered. In the case where the infl uence of the particles 
on this fl ow is not taken into account, the computational procedure is split into the calculation of the gas fl ow and the 
subsequent calculation of the paths of particles and their concentration in the known gasdynamic fi eld.

Main relations. As characteristic scales, we used the radius R of a vortex for the variables with the dimension of 
length and the velocity U of the gas in the vortex core for the variables with the dimension of velocity. In the limiting cases 
of forced and free vortices, the distribution of the tangential velocity of the gas fl ow in a vortex was defi ned by the relation
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It was assumed that the vorticity of the gas in a forced vortex has a defi nite value, and the vorticity of the gas in a free vortex 
is equal to zero:
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A combined vortex comprises an internal core rotating as a solid body with a constant vorticity Ω and an external 
region in which the vorticity of the gas tends to zero. At the point r = 1 of such a vortex, the distribution of the gas-fl ow 
velocity defi ned by Eq. (1) is nondifferentiable. A smooth distribution of this velocity was constructed using the interpolation 
formula
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obeying the ultimate relations (1). The vorticity of the gas in a vortex was determined by the relation
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The distributions of the velocity and vorticity of the gas fl ow in a combined vortex, determined by relations (1)–(4), are 
presented in Fig. 1. It is seen from this fi gure that, the smaller the radius of a vortex, the smaller the differences between 
the velocity profi les defi ned by relations (1), (2), (3) and (4). In the case where the conditions within a combined vortex are 
isentropic:
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the distribution of the density of the gas in it is determined by the relation
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which is valid in the limiting cases
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where ρmin is the density of the gas at the center of the vortex:
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At Δρ/ρ∞ << 1, the distribution of the gas density in the vortex is determined by the formula

Fig. 1. Distributions of the velocity of the gas fl ow (a) and its vorticity (b) in a combined 
vortex, calculated by Eqs. (1) and (2) (dotted lines) and Eqs. (3) and (4) (full lines).
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where a∞ is the velocity of sound at infi nity. The distribution of the gas density in a combined vortex, defi ned by relation 
(5), is shown in Fig. 2. The density of the gas at the center of the vortex is lower than the density of the gas at its periphery.

Movement of a particle. In the trajectory method, the equations of motion of an impurity in a fl uid fl ow are written in 
Lagrange variables and are integrated along the trajectories of individual particles in the known gasdynamic fi eld calculated 
in advance. The translational motion of a probe spherical particle in a gas fl ow is defi ned by the equation
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The drag coeffi cient of the particle is determined from the expression
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where the function fD accounts for the inertia of the particle [3]. The Reynolds number of the relative movement of the 
particle and the gas is calculated by the formula
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The equation of motion (6) is supplemented with the relation for the radius-vector of the inertia center of the particle
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In the general case, the movement of a particle in a gas fl ow can be defi ned by the Maxey–Riley equation with account of a 
number of additional forces acting on the particle [18]. The possibility of using this equation for investigating gasdynamic 
systems of different classes was considered in [19]. Estimates of different forces acting on a particle in a fl uid fl ow with a 
concentrated vorticity are given in [15]. The infl uence of the temperature of a particle on its movement in a fl uid fl ow was 
taken into account through the introduction of a correction to the drag coeffi cient of the particle. In many fl ow regimes, this 
correction is small and is not used. The concentration distribution of solid particles in a gas fl ow is determined from the 
solution of the continuity equation for the disperse phase written in Lagrange variables [3]. Equations (6) and (7) defi ning 
the movement of a particle in a gas fl ow are integrated along the particle path, and they call for the defi nition of the initial 

Fig. 2. Distribution of the gas density in a combined vortex.



145

conditions, i.e., the coordinates and velocity of the particle at the instant of time t = 0. A characteristic parameter of the 
problem is the Stokes number representing the ratio between the relaxation time of a particle and the characteristic time scale: 

Stk = 
2

p p2
9

r U
R

ρ

μ
, where ρp is the density of the particle material. Assuming that ρp = 103 kg/m3, dp = 1 μm, R = 0.1 m, and 

U = 10 m/s, we obtain Stk = 10–3.
The Cauchy problem is solved using methods allowing one to separate its rapidly and slowly decaying components 

[3]. The difference schemes developed are based on the linearization of the initial system of equations by freezing individual 
terms or parts of equations, their approximation in the form of simplifi ed functional dependences, and the subsequent 
analytical integration of an approximate equation in each time step.

Results of Calculations. The equations of motion of a particle in a combined vortex in a gas fl ow were integrated 
over its known velocity fi eld in this vortex.

Velocity distribution. The distributions of the velocity components of a particle in a combined vortex are shown 
in Fig. 3. In this case, the distributions of the circumferential velocities of the particle and the gas are almost coincident 
(Fig. 3a), and the distribution of the radial velocity of the particle is practically independent of its size (Fig. 3b). The velocity 
distributions obtained are in fairly good agreement with those obtained in [13].

The distribution of the velocities of a particle in the regions of a combined vortex r ~ O(Stk), O(1), and O(Stk–1) [13] 
were analyzed. Since Stk = O(10–3), the results obtained for the outer region r ~ O(Stk) are of no interest. According to the 
asymptotic analysis performed in [3], the velocity distribution of a particle in the intermediate region is defi ned as
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where δ is the ratio between the densities of the gas and dispersed phases (δ = ρ/ρp). The radial and circumferential velocities 
of the particle, projected onto the cylindrical coordinate axes, are determined from the relations
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The orders of the summands in these relations allow the conclusion that the gravitational forces weakly infl uence the movement 
of the particle, as compared to the centrifugal forces. The order of the summands defi ning the gravity effect is O(10–5). The 
error of the asymptotic analysis performed is of the order of O(10–4). In this case, the distributions of the circumferential 

Fig. 3. Distributions of the circumferential (a) and radial (b) velocities of a particle in a 
combined vortex.
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velocities of the particle and the gas are almost identical (vθ = uθ). Unlike the gas, the radial velocity of the particle is nonzero 
and depends on its inertia. In the inner region of the vortex where r ~ O(Stk–1), the distributions of the velocity components 
of the particle are determined by the relations

[ ] 5/ 23( , ) Stk 1 4 ( ) (Stk ) ,
2r rv r r g⎛ ⎞θ = δ − − − θ + Ο⎜ ⎟
⎝ ⎠
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The gravitation effects in the inner region of the vortex play a more important role compared to those in its intermediate 
region. The gravitational forces mainly infl uence the distribution of the radial velocity of the particle, with the result that it 
begins to execute a periodic motion with a small amplitude. In this case, vr/vθ ~ O(10–2) and, therefore, the shift of the particle 
in the radial direction is of the order of Δr ~ O(10–5).

The displacement of the particles-tracers in a complex vortex in the radial direction results in that they do not trace 
the lines of fl ow in it. The quantitative measure of the deviation of these particles from the fl ow lines is the angle of rotation 
of their velocity vector appearing due to the movement of the particles in the radial direction. The lines of the gas fl ow in 
a combined vortex have the form of concentric circles. Small particles move along these fl ow lines and, in so doing, gain 
a velocity in the radial direction, with the result that their path becomes spiral. The time change in the radial coordinate of 
a particle in a combined vortex is presented in the logarithmic scale in Fig. 4. At the initial instant of time, the particle is 
found in the neighborhood of the vortex center (rp0 = Stk), which prevents the appearance of a singularity in it. Trajectory 
calculations of probe particles made it possible to determine the time for which a particle escapes the boundaries of a vortex. 
The infl uence of the initial position of a particle in a vortex on the time it takes for the particle to reach a defi nite radial 
coordinate is demonstrated in Fig. 5. For example, at U = 25 m/s, a particle of diameter 1.5 μm (Stk = 3.5·10–3) escapes from 
the core of a vortex of radius R = 0.05 m (the region r < R) for 0.3 s.

Concentration distribution. Let us determine the concentration distribution of the particles in the cylindrical region 
of radius r and height l of a combined vortex. The spatial and time distributions of the concentration of small particles 
C = dN/(2πrdrl) was determined from the solution of the continuity equation written in the axisymmetric form without regard 
for the diffusion transfer of these particles:
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It was assumed that, at the initial instant of time, the particles are distributed uniformly in the indicated space: C = 1 at t = 0, 
and that the concentration of the particles at the axis of the vortex has a defi nite value. Assuming that Z = 2πrlC, from (8) we 
obtain the equation

Fig. 4. Time dependence of the radial coordinate of a particle in a combined vortex.
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As the boundary condition for this equation, the condition of symmetry at the vortex axis ∂Z/∂r = 0 is used. Equation (9) was 
solved by the fi nite difference method. Its discretization with respect to the time was performed by the Euler scheme of the 
fi rst order of accuracy, and the discretization of his equation with respect to the radial coordinate was performed using the 
centered fi nite-difference formulas of the second order of accuracy. Numerical simulation of the concentration distribution of 
particles in the region [–2, +2]2 of the vortex was performed, and the distributions of particles in both the core of the vortex 
and outside it were determined.

Figure 6 shows the concentration distributions of particles of different sizes with Stokes numbers differing by an 
order of magnitude in a vortex of radius R = 0.05 m in which the velocity of the gas fl ow is equal to U = 25 m/s and the ratio 
between the densities of the gas and disperse phases is δ = 10–3. While the concentration of the small particles at the center 
of the vortex decreases fairly slowly (Fig. 6a), large particles escape the central region of the vortex for a comparatively 
short time (Fig. 6b). The concentration distribution of large particles along the radius of the vortex is nonmonotonous, and it 

Fig. 5. Infl uence of the radial position of a particle in a combined vortex on the time for 
which the particle reaches the coordinates r = 0.25 (1), 0.5 (2), 1 (3), and 2 (4).

Fig. 6. Concentration distribution of particles with dp = 0.5 (a) and 1.5 μm (b) along the 
radial coordinate of a combined vortex at different instants of time: t = 0.1 (1), 0.4 (2), 
0.6 (3), 0.8 (4), and 1.0 (5).
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reaches a maximum in the peripheral region of the vortex. With time this maximum shifts in the direction from the center of 
the vortex.

The instantaneous concentration distributions of monodisperse particles with dp = 1 μm in a vortex in which their 
total number is equal to 105 are shown in Fig. 7 where the full line defi nes the vortex core. At the initial instant of time, 
the concentration distribution of particles in the vortex is homogeneous (Fig. 7a). Then particles are thrown out of the core 
of the vortex to its peripheral regions under the action of the centrifugal forces and are accumulated at the boundary of the 
computational region (Fig. 7b). At the fi nal instant of time, the vortex core is almost free of particles (Fig. 7c).

Conclusions. When nonstationary vortex fl ows arising spontaneously and changing with space and time are 
investigated experimentally, the selection of the sizes of particles-tracers takes on great signifi cance because of the centrifugal 
inertial force acting on the particles in one direction in a vortex (from its rotation center). The results obtained allow one to 
select the sizes of tracing particles providing a reliable measurement of their concentration in the region of a fl ow occupied 
by a vortex. The large particles in the core of a vortex escape from it for a fairly short time, which makes the measurement 
of their parameters by the PIV method diffi cult. The measurement of the parameters of small particles by optical methods 
is ineffi cient because of the scattering of light by them (the scattering cross section of a particle is proportional to 2

pd ). At 
πdp/λ << 1, the Rayleigh scattering of light by a particle takes place.

A numerical simulation of the scattering of monodisperse particles in a gas fl ow by a combined vortex in it has 
been performed. The dependence of the time for which these particles escape the central region of the vortex on their size 
and the change in the concentration distribution of particles in the fl ow region occupied by the vortex with time have been 
determined. The results obtained can be used for increasing the effi ciency of measurements of the parameters of the disperse 
phase in a gas fl ow by the PIV and LDA methods.

NOTATION

C, concentration, m–3; CD, drag coeffi cient; d, diameter, m; fD, correction function; g, free fall acceleration, m/s; 
l, length, m; mp, mass of a particle, kg; p, pressure, Pa; rp, radius of a particle, m; r, radius-vector, m; R, radius of a vortex, 
m; Re, Reynolds number; r and θ, cylindrical coordinates; Sm, area of the midsection of a particle, m2; Stk, Stokes number; 
t, time, s; u, velocity of a gas, m/s; U, velocity of the gas in the core of a vortex, m/s; v, velocity of a particle, m/s; x, y, and z, 
Cartesian coordinates, m; Z, normalized concentration of particles; γ, ratio between the specifi c heat capacities of the gas at a 
constant pressure and a constant volume; Γ, circulation of the gas-fl ow velocity, m2/s; λ, wavelength, m; μ, dynamic viscosity, 
kg/(m·s); ν, kinematic viscosity, m2/s; ρ, density of the gas, kg/m3; τp, time of the dynamic relaxation of a particle, s; τf, time 
for which a particle escapes the core of a vortex, s; ω, vorticity, 1/s. Subscripts: f, fi nal; p, particle; 0, initial instant of time.
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