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GENERALIZED SOLUTION OF THE MIXED HEAT-CONDUCTION
PROBLEM BY THE WEIGHTED TEMPERATURE METHOD

V. A. Kot UDC 536.2.001

On the basis of the weighted temperature method, an algorithm of generalized solution of boundary-value problems
on the heat conduction in bodies canonical in shape with boundary conditions of general form has been constructed.
1t is shown that this problem is equivalent, in the limit, to the infinite system of identities including n-fold integral
operators for the temperature function, initial and boundary conditions, and internal heat source as well as an
additional boundary function (the temperature at one of the boundary points or its derivative with respect to the
coordinate of this point). High approximation accuracy of the approach proposed is demonstrated by the example
of solving a number of boundary-value problems on nonstationary heat conduction with nonsymmetric and mixed
boundary conditions.

Keywords: boundary-value problem, nonstationary heat conduction, analytical methods, approximation, weighted
temperature method.

Introduction. The present work is a logical continuation of the works [1-4] in which, on the basis of introduction of
n-fold integral operators, a boundary function, and boundary characteristics, mathematically equivalent sequences of integral
identical equalities including a complete set of initial data on the structure of the differential heat-conduction equation, the
properties of this equation, and its initial and boundary conditions have been constructed. We propose to solve the mixed
heat-conduction problem by the weighted temperature method (WTM), in accordance with which a solution is constructed
on the basis of systems of linear algebraic equations following from the integral identities including a weighted temperature
(temperature function). The WTM is a highly efficient method because it involves preliminary determination of the boundary
function representing the temperature at a boundary point of the computational region or its derivative with respect to the
coordinate of this point. It is shown that the WTM is much simplier in obtaining an approximate solution with a better
approximation as compared to the Kantorovich, Galerkin, and Tsoi methods and the method of additional boundary conditions
[5-10]. Therefore, of interest is the use of the weighted temperature method for obtaining a generalized approximate solution
of the mixed problem on the heat conduction in the nonsymmetric region y € [R;, R,] with boundary conditions of general
form. Without question this problem deserves attention [10-14].

1. Mathematical Formulation of the Problem. We consider a one-dimensional boundary-value problem on the
nonstationary heat conduction in the nonsymmetric region y € [R], R,] with variable internal heat sources, an inhomogeneous
initial condition, and boundary conditions of general form. The general formulation of this problem for a plate (m = 0), a
hollow cylinder (m = 1), and a hollow sphere (m = 2) has, respectively, the form

ep L= 2 O 5 L)L 5, )R Ry x (0,0), m=0,1,2, (11)
ot y" Oy oy
_ 0T == S s/ —— s = P _
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where T(¥, 0) = ®(¥) is the initial temperature distribution in a body, ¥ is the coordinate of a point in the computational

region, y = R, and ¥ = R, are the surfaces (shells) bounding the segment [ R, R, ], 7 is the dimensional time, A, ¢, and
p are the heat-conduction coefficient, the specific heat capacity, and the density of the body, respectively, and Q(y, 7) is the
specific density of the volume heat sources in the body.

. o . . . o y 7 R? T-T"
_ We introduce the following dimensionless variables into consideration: y = %, t=—, 1= —,T= AT
» T K

R R
R = ?1 ,and Ry = ?2 , where k =M\/(cp) is the thermal diffusivity, AT is the temperature scale, 7' * is the reference temperature,

R is the length scale, and t is the time scale. In this case, problem (1.1)—(1.3) takes the form

or 1 o ( ,or
oy

o y_’" o —] +0(, 1), (1.4)

oT or
|:a’1 _+B1T:| :yl(t)a |:(X.2—+BzT:| :y2(t)3 a‘12+612 * 09 (X‘%+B% * 0’ > 09 (15)
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T(y,0) = ©(y), (1.6)
R 5 o -T" G .7 no-pr
where O(y, ) = —— , 1), 0(0)= ———, a;=—, Bi=B;, ()= ———— (j=1,2).
o, 1 AT Oy, 1), D(y) AT j= % Bi= B, v AT V] )
2. Generalized Identical Equalities. The first term on the right of Eq. (1.4) represents the differential operator
1 0( , © 1
" oy ) vy
for which the scalar-product rule is true: (u, Lv) = (Lu, v). In this case, the operator L adheres to the Green formula:
o ou)|”
(u, Lv) — (Lu, v) = | " |u 0o L, 2.2)
0y ),

where (u, v) is the scalar product of the functions u = u(y) and v = v(y) in the segment y € [R;, Rp]. We introduce, into
consideration, the integral operators
Ry
L) =(O. k)= [ OK8y, VneZ, . 2.3)

Ry

In this case, the following integrals will be functionals with respect to 7= T(y, t), ® = ®(y), and Q = O(y, ?):

Ry Ry
CilTE(TsKn):ITICnay’ q)nE((DsICn):J‘q)Knays
Ry Ry
2.4)
Ry
0,=(0.K)= [ qKoy, vnez,,
Ry

where IC, = IC,(y) are any (unknown) weighting functions (kernels). Let us write Eq. (1.4) in operator form (D, = 6/0¢):

pT="L1r4+0. 2.5)
y
Sequences of integral relations formal in form. Let us apply the operator £, to Eq. (2.5):

L,(DT) = L, [Lm LTJ +L,(0) - (2.6)
Y
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Using the Green formula (2.2) and introducing the function M, = M, (y) = K,/y™ into consideration, we obtain the
following relation for the first term on the right of Eq. (2.6):

L, (Lm LT] = [Lm LT, IC,,J = [LT, K;J = [T, L (%D +P, =(T,LM,)+ P, , (2.7)
y y y y
where
K, or a (K \]"® or am, |
P, = yM(:lj__ymT_[ ;’l] ={y’”(Mn———” ji| ) (2.8)
y") "), a  dy R

In view of Egs. (2.4), (2.6), and (2.7) and the Leibnitz theorem, instead of Eq. (2.5), we write
Dy(L,T) = (T, LM,) + O, + F, , (2.9)
and arrive at the following sequence of integral relations:
{D,(L,,T) =(T, LM,))+Q, + P,,}n , VnelZ,. (2.10)

In (2.10), unknowns are the temperature function 7(y, #) and the quantities 7(R;, ¢) and 0T(R;, £)/dy (j = 1, 2) involved in the
function P,,. The functions M, , Vn € Z (the kernels K, = y™ M, ) and their values at the boundary points M, (R;) and
d M, (R;)/dy (j=1,2) are also unknown.

We now formulate the intermediate problem on determination of the boundary conditions for the functions M, at
which, in (2.10), the temperature 7(R;, ) and its derivative 0T(R;, £)/0y (j =1 v 2) at one of the boundary points are eliminated.
We first rewrite expression (2.8) for the function P,;:

Ry Ry Ry
By= |y [, Eop M AM M T ) e g 1 o
oy dy dy dM,ldy ) oy R dy
1

Ry R

where Q, = M 8—T+TandQn(Rj): oM a—T+T ,j=1,2.
dM,/dy ) oy dM,/dy ) oy .y

Let us represent the boundary conditions (1.5) in the form

{&B—T+T} _LO @ 0. (2.12)
B, oy Y=R J

Comparing (2.11) and (2.12), we arrive at the boundary conditions for the function M, :

M, % o dMn+BjMn =0, j=12. (2.13)
oM, /0y V=R dy

Bf y:Rj

In the case where (2.12) is fulfilled, in view of (2.11)—(2.13) we write

. (t
{(_LJ‘?_TJFT} :{&G—T+T} _ Lo i=12. (2.14)
dM,/dy ) oy v, B, oy ver, P

Then we will use the homogeneous boundary conditions for the function M, at which, in Egs. (2.10), the temperature
T(R;, ) at the boundary point y = R; (j = 1 v 2) and its derivative with respect to the coordinate of this point 0T'(R;, £)/0y are
eliminated. In this case, the following three variants are possible:
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Doy IR g Ry =0,y MR g g Ry =0, (2.15.1)
dy dy
dM,(R;) dM,(R)) j=1L1=2
At A AN )= N RV AL PR O e Rl 2152
m) {a, MR = 0. My (R) = 0y SEBE) o (LS00, (2.15.2)
dMn(Rj) ]
) M,(R) =0, =00 =0, j=1v2, (2.15.3)

Variant I. Using (2.11) and (2.15.1), we represent P, in two alternative forms:

R m m
Pn — _ym dMn Q — R; dMn(Rl) ,Yl(t)_RL dMn(RZ)
Ry Bl

& i 5, iy 120 By # 0,B, # 0), (2.16.1)

P = REM(R) 2D roary 1O SR B) gy KRy oy 20,05 2 0). (2162)
(0%} o (%)) [¢5]

In view of (2.16.1) and (2.16.2), from (2.10) we obtain, respectively, the sequences

{Dt(c,,T) =(T,LM,)+ 0, + R dM,(R) 10 R dM(Ry) yZ(t)} , YneZ,, (2171)
Py P dy .
{Dt(EnT) = (1, LMy + 0, + TaB2) oy KaR) yl(t)} , VnelZ,. (2.17.2)
(0% (0] n

Variant II. In the case where expression (2.15.2) is true and the condition M, (R,) = 0 or the condition
dM,(R))/dy = 0 is fulfilled, for the function P, defined by (2.11) atj =1 and / = 1 we obtain, respectively, the expressions

R" d MWV (R w dMV (R
MOR) =0 1, =2 S g0 - gy S 1y 2.18.1)
1
) m U]
gm0 o p = SR 0 - MR SR (2.182)
y 1 'y

In a similar manner we find the function P, forj=1and /= 1:

(2) (2)
MP®RY=0 - pO = gy PR 1O pw AMIR) 7y (2.19.1)
dy B2 d
(2) 2)
dM,”(R) _ 0 - PO __gy dM,”(Ry) v2(0) R MO (ry) ST aT(Rl) (2.19.2)

dy dy B2

Generalization of (2.18.1)—(2.19.2) gives

_ 0 _ ;" dM,(R;) om dM(R) j=11=2
M,R)=0 — PY =(-1) [BJ- d—yyj(t) R d—yT(R,) e BECED

dM,(R) _ D _ o | RS dM(R;) OT(R)) ( 1,l=2j
dy 0 - P (-1 [Bj 5 v, + R"M,(R) ——= % TTaoi) (2.21)
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In the long run, for the cases where the condition M, (R;) = 0 or the condition d M, (R;)/dy = 0 is fulfilled, from (2.10)
we obtain, respectively, the sequences

D, (L,T) = (T, LMY) + 0,

: ) =11=2
R} d M (R)) » dMY(R Vne, |l 222
+ (_1)1 - y J Yj(t) _ Rl 2 ( 1) T(Rl) + ] _ 2’ | = ( )
j y 'y

Dy(L,T) = (T, LM + O

R™ (D(R.

+ (_l)l [ J de’l ( j)
dy

j=

I l_: (2.23)

|
\:—‘
~
|
[V}
N

v () + RIPMPD (R) ——
Oy

6T(R1)J Vnel, (

J

Variant III. Using (2.15.3) and a substitution following from the boundary conditions (1.5), we write the following
expressions for the function P,

_vu@ o 0T

| oT
R B, B, oy

e

, = _Vl(’)_ﬁﬂ (l=1v2). (2.24)
o a, &
R R ! /

In this case,

MR = 0 P - Rr|- dM;(Rz) yz_(t)+[% d/\/l;(Rz) +M”(R2)j 8T(R2)}
dM(R) _ ol - P S N CEL)
dy Pn =R£” Mn(RZ) Yz(l)_( n( 2)+B_2MH(R2)) T(Rz):|
) dy o)
M,(Ry) = 0 P, =Rl —dM;(RI) N (ﬂ —d/vj;(Rl) + M,,(Rl)j _aT(Rl)}
dM,(Ry) _ of = 'y B ;1 X y oy (2.26)
z B, = R |-M,(R) 1O +( M) +EM,,(R1>] T(Ro}
o dy oy
In view of (2.25) and (2.26), we write the function P, in the general form:
Mn(Rj) =0 Pn _ (_l)lle (ﬁ d-/\/j;(Rl) + Mn(Rl)j 6T(Rl) _ dMn(R]) 'Yl(t):|
dM,R) _ b ﬁsz 2 oy dy B, 227
dy P, = (DR |~ (% i M,,(R,)J T(R) + M,(R)) Y’—(t)}
'y o oy

On the basis of (2.10) and (2.27), we obtain, respectively, the dependences

Dt(‘C)zT):(T,LMrEj))+Qn ]:1 ] =2
d e B
+ (-D'Rp H% —Af;y(R’) ¥ M,,(R;)] 62(51) - dAf;’y(Rl) Yéﬂ e (j e J e

n

Di(L,T) = (T, LM) + 0,7 T
+ (_l)lle |:_ (d./\/f;y(Rl) + Bl Mn(Rl)] T(Rl) " Mn(Rz) 'Y_(t):| VneZ, (ﬁj . (229)

Pr l
oy ay

n

It should be noted that the equations forming sequences (2.22), (2.23), (2.28), and (2.29) involve only one unknown
(not counting the weighting functions M,EJ ) ): T(R)) or 6T(R))/0y (I = 1v 2), and Egs. (2.17.1) and (2.17.2) include the
function T(R)) or the function 8T(R;)/0y which are already involved in the term (7, LM, ). We will call them, in accordance
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with the mathematical definition of the boundary points of the computational region, the boundary functions and represent
them in the following form:

T (R, 1)

, or(t) =T(R), 1) (I=1v2). (2.30)
ox

o (1) =

Integral equalities of the first order (n = 1). The equation with n = 1 of sequence (2.10) has the form
D,(LT) = (T, LM)+ QO + B . (2.31)

Eliminating the differentiation operation LM; in (2.31) and assuming that

(T, LM;) =0, (2.32)
we obtain
D,(LT)=0 + 8. (2.33)
From (2.32) the homogeneous differential equation
£l )

follows. To obtain a nontrivial solution of Eq. (2.34), we formulate two boundary conditions for the segment y € [R|, R;],
one of which will be inhomogeneous. As a homogeneous boundary condition determined by the boundary function, we will
use one of relations (2.13). In this case, we will have two variants in which a nontrivial solution of the differential equation
(2.33) is obtained with conservation of the boundary function:

dM dM
D(=L1=2) - (al ! +B1M‘j =0, [(xz y ! +Blej %0, (2.35.1)
y=R Y y=Ry
dM, d M,
(j=21=1) > |o y + B M, =0, |o y + By M, =0 .(2.35.2)
Y y=R Y y=R;
They in the general form are as follows:
dM dM =11=
[aj d1+Ble] =0, (ocl d'+[3,/\/llj =0, ]_2’1_1 (2.36)
Y y=R; Y y=R ST
Integration of Eq. (2.34) with one of the homogeneous boundary conditions (2.36) gives
: tdy a1
M = ¢ j_y__’_ , j=1v2, (2.37)
1 m m
R, Y B Rj
where C is an integration constant. We can assume that C = 1. In this case,
A T - Cdy o "
MP = [ Lk =y [ v, (2.38)
R; Y B, R R; B Rj
It follows from (2.38) that C = 1 corresponds to the relation
d M (R
AT (R) _ L (l=12). (2.39)

dy R
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Thus, at the boundary conditions (2.35.1) and (2.35.2), we have two variants of solving the differential equation (2.34):

dm\)
(03] 4 + B]M(ll) =0 y
D{(j=11=2) — ” V=R, - MV = j d—i—ﬂim, (2.40.1)
dMP(R) 1 B BR
dy Ry’
dMP
[az dy + BoMy? =0 Yo 1
R A N R
R y 2
AMIR) 1 ko 2 (2402)
dy R/"
Expanding the right side of Eq. (2.31), in view of (2.11) we obtain
n AM(Ry) n AMi(Ry)
DULT) = O + B = O + R ———= O(Ry) - RS ———= Oy(R,)
dy dy
(2.41)

d M, (R d M, (R
_ 0 - RY MR) | M 6T+T LR MR) | M oT T .
dy dMydy ) oy | dy dMildy ) oy |
=Ry =K

In the case where relations (2.14), (2.40.1), and (2.40.2) are fulfilled, Eq. (2.41) is divided into two equations corresponding
to (2.40.1) and (2.40.2):

1

M dMD (R
1) DLOT) = 0O + Ry {Mf” or dM T} R 1 (R y(0)
y=Ry

Oy dy dy B
(2.42.1)
= 00+ Ry MO (R TEED gy gy 11O
1
AMP (Ry) v, (¢ dMP
2 DLPT) = o - Ry T2 O | SO 0T
dy B fy oy V=R,
(2.42.2)
o, OT(Ry, t t
= 1(2) -R Mﬁz)(Rl) % +T(Ry, t) - 72(0) )
2

where L7 = (1, K"), £PT = (T, £P), K = y"MP,and £F = y" M. Each of Egs. (2.42.1) and (2.42.2)
involves two unknown functions: T(R, r) and 0T(R; 7)/dy in (2.42.1) and T(R; 7) and OT(R; 7)/0y in (2.42.2). Let us reduce
Eqgs. (2.42.1) and (2.42.2) to the form where only one boundary function is present. To do this, it will suffice to use one of
substitution (2.25). For the boundary function @,(7) (/ = 1, 2) we have the relations

Jj=1 W - @ 1@ M , %2 m oy (1) B2 ) OT(R,y, 1)
1)<1:2> - D(L'T) B, B, + 0 +BZ (1+R2M1 (Ry) Otzj—ay , (2.43.1)

7=1 S LOR P10 NP RN Py pIC) &jaT(Rl,t)
2)<1=2> - D(LYT) 5 B, + Of 3 [ + R MY (R) o P (243.2)

or, in the general form, the relation
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. . . i=1,1=2
D, ([,(IJ)T) — Ql(./) + y;?)_(lt) _ Yf))_it) + p[(]])(Pq(t) (ﬁj , (2.44)

where p, = (Do, /B; + R M(lj )(R))). For the boundary function ¢7(7), we obtain the relations

D <—j - 21> > D = B0 REM (k) 204 0

= 1 23}
(2.45.1)
- (1 + R M (R,) 5—2] T(Ry, 1),
%%}
j =2 m t t
2) JZ2) D,(LPT) = -R" M (Ry) n@ 10 + 0
Z =1 oy Bz
(2.45.2)
+ (1 + R MP(Ry) ﬁj T(R, 1),
oy
or, in the general form, the relation
DTy = 0 + -1y | RO (R) T g 0) [’—j , (2.46)
Bj a; J = 2,] =
where pr=1+ R" MY (R)B, /o, .
Integration of Egs. (2.44) and (2.46) gives
’ 1 1 ’ =10 =2
LOT = [ gt + — [ 10y dt = — [ v2(0) dt + p [ @ (0t + C (’_—_J : (2.47)
0 Bl 0 BZ 0 0 ] - 27 Z _1

t t m y 4(1) t t .
‘ 1 R" M (R;) j=L1=2
£ =j 0,dt + (-1) _j v, (0 dt +—1j v, () dt — pzj or@dr |+ C|"———— |- 24
0 Bio a 0 0 J=at=
Using the initial condition (1.6), we obtain the following relation for the integration constant C:
C = LYT(,0) = LYD(y) = (@, KY) = (j =1,2). (2.49)

In this case, instead of (2.47) and (2.48), we finally write

t t t t
) 1 1 S (j=1L1=2
£t = j O,dt + — j v (6) dt — — j v, (t) dt + py j ¢, ()dt + O [’_—_] (2.50)
0 Bl 0 BZ 0 0 J = 271 =1
t t m oy (1) t
i 1 R M (Ry)
LT = [ i + (=)' | — [y, (o) de + ———= [ y,(0) dt
0 BJ 0 o 0

(2.51)
t
h(j=L1=2
_ Hdt +q>(]) ]’— .
ngw() J | [J.ZZ’ZZJ

Integral relations of the order n = 2, 3, ... . We now turn to Egs. (2.17.1) and (2.17.2) with n = 2, 3, ... and construct
a recursion equation in the form
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LMY = K9 (n=2,3,..) (2.52)

or in the form

d d./\/l(nj)
ym

= =MD " (n=23.). 2.53
dy dy \] n—ly ( ) ( )

The solution of Eq. (2.53) represents the sum of the general solution of the homogeneous equation and a partial solution of
the inhomogeneous equation. Since the general solution of the system of equations

) , dM. (R,
d [ mﬂj:/@” a.%wﬂw(lg):om:z, 3,..) (2.54)

- Y “1»
dy dy " !
is coincident with the solution for M; with an accuracy to a constant multiplier, we have

y y
MY = j d—i jlc,ff_'{ dy+CMP | j=1v2, (n=23.). (2.55)

Rj Rj

Hence we obtain a recursion formula for the weighted function IC,gj ) n=2,3,...):
v
KD =y [ (KD dy+ kP n=2.3 ... (2.56)
Ry VR

It will suffice to put C =1 in (2.56). The constant C can be also determined from other considerations.
Variant . Substitution of (2.56) into the boundary condition

d M) .

o, +p, MY 0" 0 (I=1v2) (2.57)

R
gives
-1 R
i o) oy o . B 0 0 Jj=11=2
C=ED | —+BM(R) I —r Kl = f KLdy | dy | “———F— S 121 (2.58)
Rl Ry Rl y R: .] - > -

J

Thus, we have equations with n =1 of sequences (2.17.1) and (2.17.2). Then, because of the equivalence of these sequences,
we will dwell on one of them, e.g., (2.17.1).
In accordance with (2.56) (C = 1), the derivatives d M,(,J (R ;,1)/dy take the form

2,3,..). (2.59)

dM(R, %) B
M R) L dMER) L g L 12
dy RY dy R ;i R

In this case, (2.17.1) is divided into two sequences:

D(LYT) = (T, LMP) + 0 + (-1)! (yf © _op 1 (’)j , Vnel, [Ll:zj . (2.60)
B, B, j=21=1

Ry
where (of,l) =1+ J. M,S’, )1 y™dy. Integration of Eq. (2.60) with account of the equality (7, K,) = 0 and the recursion formula

R;

(2.52) gives
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LoT =j(T /C(”])dt+jQ,5”dt+( 1y [IYJ_(” mj 1) t}rAU) Vnel, . (2.61)
0

j l
0 / n

Determining the integration constants 4 = (£,T(x, t = 0) and £) = (@, K/) = @ we obtain

t
_ ‘ . i =1,1=2
LOT = [ (LD de+ WP @) . Vnel, (%J (2.62)
! j=21=1
where
t t (t) t
W@ = [ 0 dr+ (1) {f L a0 [ Yé_(l) dt] FOf) (1=12.). (2.63)
0 o Pij 0o Pl

Expanding sequence (2.62), we have
LT = (1)

t

L,T = j (LiT) dt + Wy (1)

(2.64)

LT = j (LaT) dt + Ws()
0

Substituting the right side of the first equation of (2.64) into the integrand of the second equation of (2.64), instead of (£,T),

we obtain the identical equality
t

LT = j Wi(t) dt + Wy(t) . (2.65)
0

In the same way, substituting the right side of Eq. (2.65) into the integrand of the third equation of (2.64), instead of (£,7),
we obtain

LT = I(I Wi(t) dit + Wz(t)] dt + Wy(t) = j dtj Wi(2) dz+jW2(t) dt + Ws(t) . (2.66)
0\ o 0 0 0

Making analogous manipulations, we arrive at the general identity

t t t t t t t

L,T = jj wi(6)dt" ™ + jj Wo()dt" ™ +...+ j dtj W, ,(t)dt® + j W, (t)dt + W,(t) . (2.67)
0 0 0 0 0 0 0

n—1 n—2

t
Then, using (2.64)—(2.67) and introducing the integral operator £ I ) dt® into consideration, we obtain the
00

I
o'—. ~

sequence

{ Z n— 1W(t)} 2 n e Z+ . (268)

n
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Variant II. Depending on the boundary function selected, one of sequences (2.22) or (2.23) can be used but only at
n>2. Let us find Mf,f ) defined by (2.55). To do this, it will suffice to determine the integration constant C with the use of
one of the homogenous boundary conditions: /\/lf?j ) (R;)) =0or aj\/lf,j ) (R;))/oy =0. At MS,j )(R)) =0, from (2.22) we obtain
the sequence

D,(L,T) = (T, LM) + 0,

c ; ez, [LZb1=2 (2.69)
; n e —_, .
+ (D=0 - | C+ [KDdy | or U=2i=1
B, X
R TR
! o 1 d dy vy
where C = — J' @7 j —- Krff )1 dy | . Integration of the equations involved in (2.69) with account of

R; ym B] ij R; Y R;

(2.52), the equality (7, K, ) =0, and the initial condition (1.6) gives

t t
L,T = j (T, K9) dt+jQ,,dt L
, p oy, . Vnez,|lZ2tT <) (2.70)
C 2 . j=21=1
+ (=1 B—jyj(t)dr— C+ [KY) dy| [ oryde |+ @) ’
/ 0

J 0 R;
n

By analogy with variant I, we introduce the designation

t t R t
W) = [ 0 dt + (-1 Bgfyj(t)dt— C+ [KDdy| [ or@dt [+ 0P (n=1,2,..). @2.71)
0 J o R; 0

J

Then, onthe basis of (2.70) and (2.71), we arrive at the sequence of identities of the form of (2.68), including the integral boundary
t t

characteristics Y7(¢) = _[dt I or()dt (n=1, 2, ...). On the other hand, at the boundary condition 6./\/l£,j ) (R))/oy =0,
0 0

we have the sequence

Ry
. . ) 1 . f=1,1=2
Dy(L,T) = (T, LMY + 0 + (=) | WP, (1) 5 [y dyy o) | v e Z+(—j. — J, (2.72)
J R, et T

n

R R R
; o ; d j . . ; o .
where w(/) = —L J.IC,E{ \dy - R" I —i: J. K%, dy. In this case, for the function M' we obtain, in accordance with
B] Rj R‘/' y y
R
(2.55),C= - JK;{)I dy . Integration of (2.72) gives
R;

J
¢ t g
LT = [ (@ KR di+ [ 0Pdr + (' | wi[ @y ()di
0 0 0
(2.73)
| Ry t
- — [ dy[v,@dt |+ @)} Vnez,,
J R 0

n
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R Ry R R
- A W fa; o d : . o
where w/) = (-1)’ —J.IC,S{)I dy i) +| =L IIC,E{)] dy - R,’"_[ —’)n/ IK,S{)I dy | ¢, |. Introducing the designation
R; B, B &, R, Vo
t t { R ¢
W = [ o dt + (<1 wf,”f(pq(r)dt—ﬁ— [KD dyf vt |+ of (2.74)
0 0 I R; 0

and performing operations similar to (2.69)—(2.71), we obtain the same (in the formal sense) sequence of identical equalities
t t

(2.68) including (in an explicit form) the integral boundary characteristics Y7 (1) = .[dt .[ 0,(0dt (n=1,2,...).
0 0

n
Variant I1I. Let us consider the system of equations

dm\) . dM,(R;
i ym :IC(j_), Mn(R,):()’ J:O (n =2, 3,_..), (275)
n—1 J
dy dy dy

whose solution has the form

y d y

MY = [ kDdy, j=1v2m=23 ). 2.76)
Ry VR

For this variant we have two sequences of Egs. (2.28) and (2.29) with n > 2. In view of (2.75), instead of (2.28) and (2.29),
we obtain, respectively, the following equations withj=1,/=2vj=2,/=1:

Dt(‘ch) = En—lT + Qn

R R Ry

o ), R ‘ t j =23, .. 277

+ 1 9,0 —f/c,g-1>1+y_fm [Kdy dy - 1® [Pyl =230, 2.77)
R; Rj LR

n

Dy(L,T) = L,,T + Q;(aj)
R

Ry R 1 R

R" ¢ d - : R : n=23.). (278

@ 02 [ [ kDay - 0p) [ [k + PLEC [y fay [ ¢ o BT
Uor VR R; GV R

Integration of Egs. (2.77) and (2.78) gives

t

t t t
LIT = j (LD Tydt + j Q,dt + (-1 [mgﬂ j ¢, () dt — p j v, (t) dt + (Df,j)]} (n=23.), (279
0 0 0 0 n

t t t t
LT = [ Eh)de +] 0,dt + (-1 [—m&” [ or@de+ pif vz(t)dtJ O (=23, (2:80)
0 0 0 0

n

where
Ry m R R
h o oy ) Rl ) h 1 J
mflj) - f B_ Icnj—l + m J.]an—ldy dy ’ pi(lj) ~a J‘K:rsi)ldy >
R\ P! YR 'R,
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R m R m Ri R
of = | |k + LB Ficiayay. p =55 [ [iciay.
R; % yT g, ar g, VR
Introducing the following designation into the equations of sequence (2.79):
t t t
Wy>=jgw+cﬂ’myj%gijyﬁwayh+®w (2.81)
0 0 0

and then performing the operations analogous to those for (2.69)—(2.71), we arrive at the sequence of identical equalities identical

t t

formally to (2.68). Note that the equalities of this sequence involve the integral characteristics Y7 (¢) = jdt J. v, (2) dt
0

t t g

and the boundary integral characteristics F,'(t) = Idt j @, (?) dt. Note that we will arrive at the sequgnce formally
0 0
U

identical to (2.68) in the same way on the basis of Eqgs. (2n.80) with the use of the designation

t

t t
Wi = [ Qudi+ (D' |~ [ or @ty dr + p¥[ y,(t) dt | + @ . (282)
0 0 0

The identities obtained in this case form the sequence identical formally to (2.68), and they involve the integral characteristics
t t

Y7 (¢) and the boundary integral characteristics F7 () = J dr ... I or (1) dt.
0 0

Thus, it has been established that the boundary-value nproblem for the generalized equation of heat conduction with
boundary conditions of general form corresponds to the sequence of integral identities involving n-fold integral operators
for the temperature function, initial and boundary conditions, and internal heat sources as well as a boundary function
(temperature of heat flow) introduced additionally for a boundary point of the computational region.

3. General Algorithm for Solving the Problem on Nonstationary Heat Conduction by the Weighted Temperature
Method. Generalized solution of the mixed heat-conduction problem includes the following operations. The desired solution
of this problem is represented in the form of the polynomial

N

T(x,t) = a;(t)x . (3.1)

Jj=0

In view of the boundary conditions of the boundary-value problem and expression (3.1) we may write two equations for
polynomial coefficients. Substitution of (3.1) into the definition of the boundary function () (¢7(?) or @4(?)) gives one more
additional equation. The remaining N — 2 equations are constructed on the basis of polynomial (3.1) and N — 2 linear algebraic
equations for one of the corresponding sequences (infinite systems) of identities. Substitution of (3.1) with the coefficients
found into the heat-balance integral

LN
d : or(,t) oT(0,t
el Zaj(t)x] dx: (5 )_ ( ) ) (32)
dt s ox 0x
gives the constitutive integro-differential equation
F (o', (F @3 00 =g, ro3d) = 0. 3-3)

Introduction, into consideration, of the function
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v(t) = Fy-o(0) (34

transforms Eq. (3.3) into the ordinary differential equation of the (N — 1) order

F (V(f)’ V0, V'), V() ooy VIV T O3ZE, (SN, T (O3S, (Y ()= ) (3.5

with the zero initial conditions
v(0) = v'(0) = v'(0) = ... = v®¥2(©0) = 0. (3.6)

Solution of the Cauchy problem (3.5), (3.6) gives the function

V@) = f (‘{Yl O30 Y5O0 (YT OWe, YT (O3 ) (3.7

Performing the subsequent (N — 2) fold differentiation of the function v(#), we obtain the boundary function

N-2

o) = (). (3.8)

Substitution of the boundary function ¢(¢) into the polynomial coefficients involved in (3.1) leads to the desired temperature
function 7'(x, ).

4. Examples of Solving the Problem with Nonsymmetrical Boundary Conditions. We dwell on test problems on
the nonstationary heat conduction in a lengthy plate (m = 0). The problem on such conduction in a spherical body (m = 2)
will not be considered because it is reduced through the substitution T'(y, ¢) = U(y, )/y to the Cartesian coordinate system.
The boundary-value problem on the nonstationary heat conduction in a cylindrical space (m = 1) deserves, in our opinion,
a separate consideration. We consider the first and third boundary-value problems on the nonstationary heat conduction in a
lengthy plate using the algorithm for generalized solving such problems described in Par. 3.

The first boundary-value problem. Let us write mathematical formulation of the problem on the nonstationary heat
conduction in a lengthy plate in the dimensionless form:

2
or = or , 4.1
ot ox?

T(0> t) = YI(t) ] T(la ZL) = YZ(t) s (42)
T(x,0)=0. (4.3)
Here,x=X/R,t=1/t,t= Rz/K, and R is the thickness of the plate. The exact solution of this problem has the form
N 2 sin (nmv)
T(x, 1) = (1= %)y, (1) + xy2(6) = D B — (1) = (=D)"y2(0)
n=1
4.4)
t
+ n°n? sin (nmx) exp (—nznzt)j(yl(t) — (=D"y, (1)) exp (n’n’t) dt |.
0
The approximate solution of problem (4.1)—(4.3) is defined by the polynomial
N-2
T(x, 1) = (1= x)7,(0) + xy2(0) + x(1 = x) Y a;(0)x’ . 4.5)
j=0
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The polynomial coefficients are determined using the integral identities (2.68), (2.79), and (2.81) on the assumption that
a; = ap = 0. In the case where internal heat sources are absent in the plate and the initial condition is homogeneous, these
identical equalities take the form

2k -1)! Y2k 2k -1)!
“ (2k - 2i) ! T2t Z(2k 2 +1)!

i=1

j T(x, )™ dx = Yf (1) - z Fokrist(t), keZ,,  (46)

t t t t t t

where Y (1) = [dt .. j n@ dt, Y30 = [de L [ dt, Py (0) = [de . [ o dt, o) = oqt) =
0 0 0 0 0
k 2k-2i 2k=2i+1
In this variant of solution of the problem, the derivative 0T(1, r)/0x characterizing the heat flow at the point x = 1 was used as

oT(1, t)
ox

a boundary function. One of the equations for the coefficients a;(#), /= 0, N — 2, will be written using the definition of the
boundary function ¢(¢) = 67(1, #)/0x. Substitution of (4.5) into it gives the equation

N-=-2

2. a;(0) =120 =11 (0) — 9() . 4.7

Jj=0

The remaining N — 2 equations follow from (4.6). Substitution of polynomial (4.5) into them gives the system of linear
algebraic equations

N-2
1 a (t) 2k . —2i
! / c=vio- Z( S0
2 S pia (2] + 3k + 2k “ (2k — 2)
(4.8)
i N-2
t t 2k - 1)!
- @ 1O _Z¥Bk—2i+l(ﬂ :
2k(1+2k) 1+2k = (2k-2i+1)!
k=1
Solving this system, we find the coefficients a,(¢),j = 0, N — 2. Then we may use the heat-balance integral
4 j T(x, 1) dx = o(f) - M (4.9)
ox
or the equality (4.6) of the (N — 1) order that, in view of (4.2), (4.3), and (4.6), takes the form
-2 N-1
(t —3) .
1 40 R AR () [ g oL LIS S
253 P +(2j+3)(N -1 +2(N -1 i 2N -2-2)!
(4.10)
N-1
t t 2N -3)!
_ ZYI() _ YZ() Z ( ) ‘BN 9ie ](t)
22N2-3N+1) 2N-1 & @N-2i-1)!

From (4.9) or (4.10) we can obtain a constitutive equation for the boundary function ¢(¢). Let us consider two particular
examples.
Example 1. We assume that y;(¢) = sin (2nf) and y,(¢) = 0 and represent the temperature profile in the form of the
fifth-degree polynomial
3
T(x,t) = (1—-x)sin 2nt + x(1 — x) z a; (1) x/ . (4.11)
Jj=0

We will determine the three coefficients a;(), j = 1, 3, for one of the above described variants (Par. 2). In particular, on the
basis of (4.6), we write the system of equations
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1 ) )

[T, oxdx = F() + sim (m)” |
T

0

! 3
[T 0) (x +"—J dx = L F() + B+
! 6 6

sin (nf)”  sin (2mt) — 2mt
T 4r?

>

(4.12)

3 5
X

1
X 47 7
T, 0) | x+—+——|dx = — F(t) +— FKt) + Kt
‘([(x )[x 6 IZOJ X 20 1) p 2 (1) 3(2)

N sin (mr)? _sin (2mt) — 2mt | cos Qnt) + 2n°t* -1

T 4n? 8n’

Substitution of (4.11) into this system gives three linear algebraic equations. We will construct the fourth equation on the basis
of the equality @(¢) = 07(1, t)/Ox, from which it follows that

3
Zaj(t) = ¢(t) + sin (2mt) . (4.13)
j=0

Solving system (4.12), (4.13), we find the polynomial coefficients (not presented for brevity). The unknown boundary function
¢(?) is determined on the basis of the heat-balance integral (4.9). As a result, we arrive at the integro-differential equation

3,118,500 — 127245

TC3

©'(t) + 6039(t) + 91,3505 (£) + 3,371,760.F, (£) + 24,948,000%; () =

(4.14)

7560(825¢ — 52)¢ 3,118,500 — 72457* + 51t
- - 3 cos (2mt) +
T T Y

210%* - 196,560
2

sin (27t) .

Introducing the function v = F5(¢) into consideration, instead of (4.14), we obtain the Cauchy problem in the form of the
fourth-order differential equation

3,118,500 — 127245

7'53

v 1+ 603v3 + 91,3500 + 3,371,760V + 24,948,000y =

(4.15)

7560(825¢ — 52)¢ 3,118,500 — 72457 + 57t
- - 3 cos (2mt) +
T TT T

2 —
210 2196,560 sin (2m)

with the obvious initial conditions v(0) = v'(0) = v"(0) = v(3)(0) = 0. Solution of (4.15) gives the function v. Since v" = ¢ is
an identical equality, from (4.15) we obtain

@ = v" = 0.68725 cos (27r) — 0.46492 sin (27r) — 0.90553¢ 7468
(4.16)

+0.29626¢ > — 0.17667¢ % + 0.09870¢ 01 .

Determination of the boundary function ¢ involved in the polynomial coefficients completes, in essence, the solution of
the problem. The complete solution of the problem is not presented for brevity. Figure 1 shows the temperature profiles
corresponding to (4.11) and (4.16). It is seen from this figure that the approximate and exact solutions are completely
coincident.

Third boundary-value problem. 1t is assumed that a medium with a temperature y,(¢) flows over one side of the
lengthy plate having a heat-transfer coefficient 4#; and a medium with a temperature y,(¢) flows over the opposite side of the
plate having a heat-transfer coefficient /,. The problem on the nonstationary heat conduction in this plate is defined by the
heat-conduction equation (4.1) with the initial condition (4.3) and the boundary conditions
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Fig. 1. Temperature distribution in a lengthy plate at different instants of time at y;(¢) = sin (2x¢)
and y,(?) = 0: full lines) exact solution; dotted lines) solution by the WTM at N = 5.

or

o + BlzT =1 = Blz 'Yz(t) .

. . oT
- Bi;T| _, = -Bi; 1,(1), ™

x=0 x=1

To pass to the boundary conditions of the form of (1.5), we write

1 or

=y (), ——
Bi, ox 4%

+T| 1 or
x=0 x=0 Blz ox

+ T|x:1 = Yz(t) .

x=1

(4.17)

(4.18)

Hence we have oy = —Bil_1 Bir=Loy= —Bi;1 , and B, = 1. Then we can use the infinite systems of identities obtained in

Par. 2.

Example 2. Assuming that Bi; = 2, T}(¢) = #/2, Bi, = 1.5, and T»(1) = £3/3, we obtain oy = —1/2, B; = 1, y; =

ay=-2/3,B,=1,andy, = /3. The temperature field in the plate is defined by the polynomial

5

T(x,t) =Y a;(t)x’ .

j=0
Two equations are obtained from the boundary conditions
5
2a0() ~a(0) =1, Y (2j +a;() =1
j=0

The third equation is constructed on the basis of the equality ¢(¢) = 0T(1, £)/0x, from which it follows that
5
X Ja;(®) = o) .
j=1

The remaining three equations are obtained from the infinite system of identities (4.6):

1 7
J-T(x t)(x—i— jdx:—]—'(t)+——3,

1 2 3 3 4
x X 13 13 t t

Tx, )| —+—|dx=—=FO) +— FH{t)———-—,

g( )(4 6} 10+ RO
1 4 5 3 4 5

X X t t t
T )| 2=+ 2| dx = ]-'t+ ]-'t+ Srp-L -t
g( )(48 120] g0 71 0 O " T4 1m0
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Fig. 2. Temperature distributions in the plate under the conditions of nonsymmetric
convective heat exchange at y,(f) = #/2, Bi; = 2, y,(f) = £/3, Bi, = 1.5, and ¢ = 0.05 (1),
0.1(2),0.2(3),0.3(4),1(5),2(6),3(7),and 5 (8): full lines) exact solution; dotted lines)
solution by the WTM.

Equations (4.20)—(4.22) form a closed system for a;(?), j = l,_5 Then we find the function ¢(#), involved in a(?), using the
heat-balance integral (4.9). Substitution of polynomial (4.19) into it gives the equation

78,8540'(r) + 14,350,938¢(¢) + 689,851,260 (1) + 8,809,426,080F, (£) + 18,810,792,000; (¢)
(4.23)

= 114,296 + 5,017,890¢> + 113,511,720¢° + 52,650,360¢* + 48,232,8007° — 91 .

As noted above, a possible variant of solving this equation is introduction, into consideration, of the function v(¢) = F5(¢)
transforming Eq. (4.23) into the third-order ordinary differential equation. Hence we write

78,854v Y (1) + 14,350,938v (1) + 689,851,260v"(¢) + 8,809,426,080v'(¢) + 18,810,792,000v(¢)
(4.24)

= 114,296¢ + 5,017,890¢> + 113,511,7207> + 52,650,360¢* + 48,232,800#° — 91 .

Solution of Eq. (4.24) with the zero boundary conditions v(0) = v'(0) = v"(0) = v(3)(0) = 0 and subsequent threefold
differentiation of the function v(¢) give

o(7) = 0.0609467 — 0.0769231¢ + 0.153846¢> — 0.0691e >0%863
(4.25)

+ 0-009076_157581t _ 0.0012626_50240t + 0.00030576_1133377t .

Figure 2 shows the kinetics of change in the temperature field within the plate with nonsymmetric conditions of heat
exchange. It is seen from this figure that the approximate and exact solutions are in good agreement.

5. Examples of Solving the Problem with Mixed Boundary Conditions. Problems on nonstationary heat conduction
with mixed boundary conditions occupy an important place in the analytical theory of heat conduction [10—13]. As an example
of approximate solving such problems on the basis of the weighted temperature method, we will solve the problem on the
nonstationary heat conduction in a lengthy plate in the case where one of the surfaces of the plate exchanges heat with the
environment by the Newton law (the third-kind boundary condition) and its other surface has a constant temperature (the
first-kind boundary condition) or is subjected to the action of a heat flow (the second-kind boundary condition). To obtain
approximate solutions, we will use the general algorithm described in Par. 3 and represent the boundary conditions (1.5) at
a; # 0 and B; # 0 in the form

orQO, 1 _ By (YE_(’) o ”J ST By (Yz_@ 1 t)j. 5.1)

ox oy 1 ox (0%} BZ
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Then, passing to the traditional third-kind boundary conditions, we obtain B1/a; = Bij (o < 0), Bo/ay = Biy, v1(0)/B1 = T1(2),
and y,(2)/By = T»(t), where Ty(f) and T»(f) are the temperatures of the media on the side of the surfaces x = 0 and x = 1,
respectively. On the basis of identities (4.6), we write the first three equations for the boundary conditions (5.1):

! @) 0
J.T(x’ )j) (ﬂ_x) dx = YI—(ZL)_YI—(I)_F[ﬁ_%_IJ ]‘](Z‘),
0 B B2 B B B

} Tx ) [% - fj = (l ﬁj o o e
0 1

3) 2 2 B B B By
oo, o o, 1 o 0y
“L_=2 __|A L _Z2 1| KO, 5.2
+(Blﬁz+zsl 2%, 6) IW(BI B ] 0 ey

} T(x, 1) [ﬁ - ij EAp [1 _ ﬁ] Yo | ( 1o j 0o 20 1V
0 By 5 4 B 6B, 2 B B, B, B,

+l(w+ﬂ_ﬂ_ij]:l(t)+[m+ﬂ_ﬂ_l]E(t)+[ﬂ_%_1jg(,)’
6 \Bpo 4B 4p, 20 BB 2B 2B 6 B P

t t t t t

t
where Y! (1) = jdt j v1.(0) dt, YP () = jdr j v,(t) dt, F (1) = jdr j o(t) dt (n=1,2, ...). Then we direct
0 0 0 0 0 0

n n n
our attention to concrete problems and their solution on the basis of the weighted temperature method.
Example 3. Let us set the boundary conditions

7(0,¢) =1, % +BiT(,¢) =0. (5.3)
X

The exact solution of the problem has the form [15]

C1+Bi(1-x) _2°° (n,” + Bi) sin (u,x)

T(x, 1) .
1+ Bi = n,(Bi + Bi + p?)

exp (—unt) (5.4)

where L, are roots of the characteristic equation p,, cot p, + Bi=0.
In accordance with the weighted function method and the algorithm presented in Par. 3, we define the desired
temperature profile by the power polynomial (N = 5)

5
T(x,0) =1+ a;(Hx . (5.5)
Jj=1

For determining the polynomial coefficients a(f), we have the second boundary condition (5.3), three Egs. (5.2), and the
relation 0T (1, £)/0x = @(¢). Let us assume that Bi = 1. In this case, in view of (5.1), the identical equalities (5.2) take the form

1
jT(x, Hxdx =t +2F(t),
0

1 3 2
[T Zdr=2+2 Ry +250) (5.6)
) 6 23

1 5
[7(x.0) = dx
) 120

i+if(t)+3f(t)+2f(t)
6 20" 372 N
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Fig. 3. Temperature distributions in the plate under the conditions of nonsymmetric
convective heat exchange at Bi; = 2, y|(f) = #/2, Bi, = 3/2, and y,(¢) = 5/3 at the instant
oftime r=0.02 (1), 0.05 (2), 0.1 (3),0.2 (4), 0.5 (5), and 0.8 (6): full lines) exact solution;
dotted lines) solution by the WTM.
Substitution of (5.5) into (5.6) leads to the system of linear algebraic equations (Aa; = B)
2 3 4 5 6 -1
L2 3 4 s {0 (1)
t—1
11T e — 250
? T i— ? Z )= 212 (6D
— —  —  —  — | ——— 4+ 2RO+ 250
30 36 42 48 54 4(t) 2 "4 T3 02RO
I B B e R 2
840 960 1080 1200 1320 S 70t 20 1O+ 5 20 +250)

The solution of (5.7) has the form a = A'B. Substituting the coefficients a;(?) (j = l,_S) determined from (5.7) into (4.19)
and then into the heat-balance integral (4.9), we obtain the integro-differential equation

29¢'(¢) + 9528¢() + 752,220F (t) + 15,059,520F, (1) + 49,896,000.F; (¢)
(5.8)
= 210 — 14,4907 + 393,120 — 4,158,000¢> .

Introduction of the function v= F5(¢) into (5.8) transforms this equation into the fourth-order ordinary differential equation:

299 (1) + 9528v (1) + 752,2201"(r) + 15,059,520V (¢) + 49,896,0001(¢)
(5.9)
= 210 — 14,4907 + 393,120¢* — 4,158,000¢°

with the initial conditions v(0) = v'(0) = v"(0) = v(3)(0) = 0. Solution of (5.9) with subsequent threefold differentiation of the
function v gives the solution

o(t) = 0.7396e 11385 _ 0369624050 4+ 0.2103¢ %% — 0.08032¢ **1%" — 0.5 . (5.10)

Substitution of (5.10) into the polynomial coefficients involved in (5.5) gives the final solution of the problem (not presented
for brevity). Results of solving the problem are presented in Fig. 3. Here, the temperature dependences corresponding to
the exact solution (5.4) are also shown. It is seen from this figure that the approximate and exact temperature profiles are
practically completely coincident.
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Fig. 4. Temperature distributions in the plate at the boundary conditions of the first kind
(x = 0) and third kind at the instants of time # = 0.075 (1), 0.1 (2), 0.2 (3), 0.5 (4), 1 (5),
and oo (6): full lines) exact solution; dotted lines) solution by the WTM.

Example 4. We now find a solution of the problem at the boundary conditions

_0T(0, 1) _ oT (1, t)
Oox

+ BiT(l,¢t) = 0. (5.11)
Ox

L,

The exact solution has the form [16]

2 -2
y + B €08 (139) oy (2 (5.12)

1 2 (
T(x, ) =1-x+—-2>
Bi 5 ui(Bi+Bi’ + ;)

where L, are roots of the equation p tan p = Bi.
The desired approximate solution is represented in the form of the polynomial

5

T(x,0) =), a;()x . (5.13)

Jj=0

In accordance with (5.2), for the problem being considered we have the system of identities

1 1 P

2
[T 0 dx =1+ F), jT(x,t)x?det—
0 0

3
+=F@) + FK(),
7 +5 i+ R0

(5.1‘)
0 ’ 24 6 24 ! 2 2 3 '

On the basis of the boundary conditions (5.11), the condition 07(1, #)/0x = ¢(f), and the three equations (5.14), we obtain the
system of algebraic equations in matrix form

O 1 0 0 0 0 »
NN [0 0
1 5 5 Z g g al(t) t+-7:l(t)
TR R R R A 23 . (5.15)
L4+ 1 ® —+ = A@) + FK()
6 8 10 12 14 16 ||® . 2 2
1 11 1 1 1 ||aa(®) 2 s 3
— —— — — —las()) |t AO+ S RO+ FHO
120 144 168 192 216 240 6 24 (t%
o 1 2 3 4 5 o
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Determining the polynomial coefficients from (5.15) and using the heat-balance integral (4.9), we obtain the equation

% o'(t) + % o) + 17,073 F(¢) + 155,400, (1) + 105,840F,(1) = 1 — 63¢ + 1680:> —17,640£> . (5.16)

Then we will perform the substitution () = F5(¢) , which transforms Eq. (5.16) into an ordinary differential equation of
fourth order:

% v (@) + % v (1) + 17,073V"(7) + 155,400V'(7) + 105,840v(r) = 1 — 63¢ + 1680¢> — 17,6407 . (5.17)

For the initial conditions, we write the obvious equalities v(0) = v'(0) = v"(0) = v(3)(0) = 0. Solution of the Cauchy problem
with subsequent threefold differentiation give the boundary function

o) = 1.1191e” ™" — 0151477 4 0.0463¢ 12 — 0.0141e "% — 1 | (5.18)

Determination of the boundary function @(¢) completes the solution of the problem. The complete solution of the problem is
not given for brevity. Figure 4 presents the exact temperature profile and the approximate temperature profiles calculated by
(5.13) and (5.18) for different instants of time. It is seen from this figure that the exact and approximate solutions are in very
good agreement.

Conclusions. A radically new scheme of approximate solving boundary-value problems on heat conduction has been
developed. In accordance with the approach proposed, the heat-conduction equation is transformed into the infinite system
of identities involving the integral operators for the temperature function, initial and boundary conditions, and internal heat
sources as well as an additional boundary function in the form of the temperature or the heat flow at a boundary point of the
computational region. The solution of the problem on the basis of the weighted temperature method is represented in the form
of power polynomials, and it is maximally adopted for engineering calculations. It was shown by the example of solving a
number of problems on nonstationary heat conduction with nonsymmetrical and mixed boundary condition that this method
is highly efficient, highly accurate, and, at the same time, simple enough.
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