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FREE CONVECTIVE FLOW, HEAT AND MASS TRANSFER 
IN A MICROPOLAR FLUID OVER A SHRINKING SHEET 
IN THE PRESENCE OF A HEAT SOURCE

S. R. Mishra,a J. Mohanty,b and J. K. Dasb UDC 536.5

The paper considers a free convective fl ow of a micropolar fl uid in the presence of a heat source/sink over a shrinking 
sheet. Similarity transformations are used to reduce the governing coupled nonlinear partial differential equations, 
namely, the momentum and concentration equations, as well as the nonhomogeneous heat equation, to a set of 
nonlinear ordinary differential equations. Their numerical solution is obtained by the Runge–Kutta fourth-order 
method accompanied by the shooting technique. The effects of various physical parameters characterizing the fl ow 
are studied. The validation of the present results by the earlier published ones is performed in a particular case, and 
good agreement is obtained.
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Introduction. The theory of micropolar fl uids has attracted considerable attention in the last few decades due to its 
importance in many technological applications, such as cooling of electronic devices and nuclear reactors during emergency 
shutdown, enhancing oil recovery, etc. Flows over a shrinking surface are encountered in several technological processes. 
Such situations occur in polymer processing, manufacture of glass sheets, paper and textile production, and in numerous other 
fi elds. From the engineering point of view, boundary-layer fl ows of a non-Newtonian fl uid over a stretching sheet are always 
of importance. They are widely applied in extrusion processes, wire drawing, glass fi ber and paper production, movement of 
biological fl uids, and in food processing. The heat and mass transfer analysis of boundary-layer fl ows with thermal radiation 
and chemical reaction are also important in several industrial areas. Eringen [1] developed the theory of micropolar fl uids, 
which cannot be described by the classical Navier–Stokes equations due to the micro-inertia and spin, or the microrotational 
effects. A boundary-layer fl ow of an incompressible micropolar fl uid over a semi-infi nite plate was studied by Ahmadi [2] 
who obtained a self-similar solution of the governing partial differential equations. Gorla [3] investigated a micropolar 
boundary-later stagnation-point fl ow on a moving wall.

In the last few years, the application of fl uid fl ows past a stretching surface has received wide attention of researchers 
in the fi eld of metallurgy and chemical engineering. The pioneer work was published by Crane [4] who obtained an analytical 
solution for a laminar boundary-layer fl ow past a stretching sheet. The study of a liquid fi lm on an unsteady stretching 
sheet was presented by Wang [5]. Hayat and Qasim [6] considered the effects of thermal radiation and magnetic fi eld on 
an unsteady mixed-convection fl ow of a second-grade fl uid over a vertical stretching sheet. Pal and Mondal [7] studied the 
infl uence of a nonuniform heat source/sink, variable viscosity, and the Soret effect on MHD non-Darcy mixed convective 
diffusion of species over a stretching sheet embedded in a porous medium. A magnetohydrodynamic fl ow of a power-law 
fl uid over a stretching sheet was considered by Cortell [8]. A boundary-layer stagnation-point fl ow of a Casson fl uid and heat 
transfer towards a shrinking/stretching sheet were analyzed by Bhattacharya [9]. Yacob, Ishak, and Pop [10] investigated 
melting heat transfer in a boundary-layer stagnation-point fl ow towards a stretching/shrinking sheet in a micropolar fl uid.

The physical nature of fl ows induced by a shrinking sheet is quite different from that due to a stretching one. The 
works on a shrinking sheet were generalized to include a stagnation fl ow, which is a backward one. Miklavčič and Wang 
[13] studied a viscous fl ow due to a shrinking sheet. They obtained an exact solution of the Navier–Stokes equations and 
showed that mass suction is required to maintain a fl ow over a shrinking sheet. Mohanty, Mishra, and Pattnaik [14] presented 
a numerical investigation on heat and mass transfer in a micropolar fl uid fl ow over a stretching sheet. Mishra, Dash, and 
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Pattnaik [15] investigated heat and mass transfer on MHD free-convection in a micropolar fl uid with a heat source. Rout 
et al. [16] studied the chemical reaction effect on an MHD free-convection fl ow in a micropolar fl uid. A nonperturbative 
solution for an MHD viscous fl ow due to a shrinking sheet was analyzed by Noor, Kechil, and Hashim [17]. Ishak, Lok, and 
Pop [18] investigated a stagnation-point fl ow over a shrinking sheet in a micropolar fl uid. They also extended their work 
to a non-Newtonian power-law fl uid fl ow past a shrinking sheet with suction [19]. Several researchers [20–25] studied a 
non-Newtonian fl uid fl ow past a shrinking sheet by means of different models, solving the problem both analytically and 
numerically. Bhattacharyya et al. [26] investigated the effect of thermal radiation on a micropolar fl uid fl ow and heat transfer 
over a porous shrinking sheet.

Inspired by the above studies, we consider a  steady fl ow of a micropolar fl uid and heat transfer over a porous 
shrinking sheet in the presence of a heat source and chemical reaction. The numerical solution of the problem is obtained 
by the Runge–Kutta method accompanied by the shooting technique. The validation of the present results by those from the 
earlier published works is carried out.

Formulation of the Problem. A steady two-dimensional fl ow of a micropolar fl uid with heat and mass transfer over a 
porous shrinking sheet is considered (see Fig. 1). The shrinking velocity of the sheet is Uw = –cx, where c is a shrinking constant, 
such that c > 0. The corresponding equations in the boundary-layer approximation are as follows:
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Fig. 1. Flow geometry.
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Here Tw and T∞ are the fl uid temperature near the plate and the ambient temperature assumed to be constant; vw < 0 corresponds 
to suction and vw > 0, to injection. It should be mentioned that m is a constant called the surface condition parameter, such 
that 0 ≤ m ≤ 1. The case of m = 0 corresponds to N = 0 at the surface, which presents a fl ow of concentrated particles 
where the microelements close to the wall surface are unable to rotate. This case is also known as a strong concentration 
of microelements. The value m = 0.5 corresponds to vanishing of the antisymmetric part of the stress tensor and to a weak 
concentration of microelements, whereas m = 1, to turbulent boundary-layer fl ows. 

Following [18], we assume that the spin gradient viscosity is given by

( /2) 1 ,
2

j jΔ⎛ ⎞γ = μ + κ = μ +⎜ ⎟
⎝ ⎠

where /Δ = κ μ  is the material parameter. This assumption allows us to predict the correct fl ow behavior in the limiting case, 
where the microstructure effects become negligible and the total spin N reduces to the value of the angular velocity.

Using the Rosseland approximation for radiation, we obtain 
4
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variation within the fl ow is such that T4 may be expanded into a Taylor series. After expanding and neglecting the higher-
order terms, we get 4 3 44 3 .T T T T∞ ∞= −  Now Eq. (4) reduces to
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The following stream function and similarity variables are introduced:
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 Now Eq. (1) is satisfi ed identically, and Eqs. (2), (3), (5), and (7) reduce to the 

following nonlinear coupled ordinary differential equations:
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The transformed boundary conditions are
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where 1/2
w /( )S v c= − υ  is the wall mass transfer parameter with S > 0 corresponding to mass suction and S < 0, to mass 

injection.
Numerical Method. The set of nonlinear coupled differential equations (10)–(13) subject to boundary conditions 

(14) and (15) constitutes a two-point boundary-value problem. In order to solve these equations numerically, we follow 
the most effi cient numerical shooting technique with the Runge–Kutta scheme. Following the superposition method, the 
ordinary differential equations (10)–(13) are formulated initially as a set of the fi rst-order simultaneous equations with seven 
unknowns. Thus, we set 1 ,y f=  2 ,y f ′=  3 ,y f ′′=  4 ,y h=  5 ,y h′=  6 ,y = θ  7 ,y ′= θ  8 ,y = φ  9and .y ′= φ  
Then Eqs. (10)–(13) are reduced to a system of ordinary differential equations, namely,
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The solution process is repeated with large values of ∞η  until two successive values of (0),f ′′  (0),h′′  (0),′θ  and (0)′φ  
differ only in a desired decimal digit. The last value of ∞η  is chosen as an appropriate value corresponding to the limit 
η → ∞  for that particular set of parameters. The procedure is repeated until we get the results up to a desired range of 
accuracy, namely, 610 .−

Results and Discussion. A free-convection fl ow of an incompressible micropolar fl uid over a porous shrinking 
sheet in the presence of a heat source/sink and chemical reaction has been considered. The species concentration change 
was taken into account. The governing differential equations were solved numerically, using the Runge–Kutta fourth-order 
method followed by the shooting technique. For validation of the present results, we have compared them with those from 
[24] regarding the skin friction and mass diffusion rate at the surface, and good agreement has been shown. The results are 
presented in Figs. 2–8 and in Table 1. It should be mentioned that m = 0.5 throughout the fi gures.

The velocity profi les are presented in Figs. 2–5. It is seen that they begin from negative values satisfying the boundary 
conditions and then tend to zero asymptotically. The infl uence of the wall mass suction parameter S on the velocity profi le 
is shown in Fig. 2. It is seen that the velocity magnitude decreases with increase in S. Figure 3 shows the effect of S on the 
velocity profi le both in the case of Gr Gc 0, 0= = β =  and for Gr = 1, β = 0.1. It is observed that in the absence of a 
heat source ( 0)β =  the velocity magnitude increases with Gr. In the presence of both free convection and a heat source 
(Gr 0.1 and 0.1),= β =  as the wall suction parameter increases, there is a slight increase in the velocity magnitude. It 
should be noted that our results are in good agreement with data from [24] in a particular case of Gr 0 and 0.= β =

Figures 4 and 5 illustrate the effect of the source parameter β on the velocity with the variations in the material 
parameter Δ, as well as in Gr and Gc. For the verifi cation, we compared our results with those from [24] in a particular case 
of Gr 0 and 0.= β =  From Fig. 4 it is interesting to note that at Gr = 1, β = 1 and in the absence of mass transfer (Gc = 0) 
the velocity magnitude decreases slightly with increase in .Δ  However, an increase in the thermal buoyancy parameter Gr 
and in the mass solutal buoyancy parameter Gc has the opposite effect both in the presence and in the absence of a source. It 
is seen that an increase in the heat source parameter accelerates the fl ow for η ≤ 3 and then retards it. It is also observed that 
the results presented in Figs. 4 and 5 actually coincide.

The infl uence of the variations in S, Gr, and β on the angular velocity distribution in the absence of solutal buoyancy 
is shown in Fig. 6. It is observed that the angular velocity remains negative in the boundary layer. It is interesting to note that 
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Fig. 2. Velocity profi les for Δ = 0.1, Gr = Gc = 1, 
and different S.

Fig. 3. Velocity profi les for Δ = 0.1, Gc = 0, and 
different S, Gr, and β.

Fig. 4. Velocity profi les for S = 2.15, Gc = 0, and 
different Δ, Gr, and β.

Fig. 5. Velocity profi les for S = 2.15, Gr = 0, and 
different Δ, Gc, and β.

Fig. 6. Angular velocity profi les for Δ = 0.1, 
Gc = 0, and different S, Gr, and β.

Fig. 7. Temperature profi les for Δ = 0.1, Gc = 0, 
and different S, Gr, and β.
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the point of infl exion in all the profi les is observed at η = 1.2. It is also seen that the angular velocity decreases with increase 
in β, whereas the reverse effect occurs with increase in Gr. 

The temperature profi les for different values of S, Δ, Gr, and β both in the absence and in the presence of solutal 
buoyancy are presented in Figs. 7 and 8, respectively. From Fig. 7 it is seen that the fl uid temperature decreases with increase 

Fig. 8. Temperature profi les for S = 2.15, Gc = 1, and different Δ, Gr, and β.

TABLE 1. Skin Friction Coeffi cient, Couple Stress Coeffi cient, and Nusselt Number

Parameters f ''(0) h'(0) –θ'(0) Parameters f ''(0) h'(0) –θ'(0)

S
Gr = Gc = 0, β = 0, k = 0.1,

m = 0.5, R = 1
S

Gr = Gc = 0.1, β = 0.1,

k = 0.1, m = 0.5, R = 1

2.10 1.218612 0.742453 0.674254 2.10 0.149285 –0.44082 0.22125

2.15 1.333451 0.889024 0.712144 2.15 0.120955 –0.48226 0.232077

2.20 1.428628 1.020475 0.745672 2.20 0.09332 –0.5251 0.244206

k
Gr = Gc = 0.1, β = 1,

m = 0.5, S = 2.15, R = 1
Gc

Gr = 0, β = 0, K = 0.1,

m = 0.5, S = 2.15, R = 1

0.1 2.557306 2.149861 0.408828 0 1.333451 0.889024 0.435124

0.2 2.479933 2.013727 0.641431 1 2.557306 2.149861 0.408828

0.3 2.323958 1.812462 0.44671 5 5.857327 6.559941 0.527087

m
Gr = Gc = 0, β = 0, K = 0.1,

S = 2.15, R = 1
Pr

Gr = Gc = 0, β = 0, k = 0.1,

m = 0.5, R = 1, S = 2.15

0 2.448869 –0.08894 0.388587 0.7 2.398816 2.063803 0.450311

0.5 2.557306 2.149861 0.408828 1.0 2.557306 2.149861 0.408828

1.0 2.677826 4.627294 0.44507 1.5 0.83723 1.741461 0.009823

R
Gr = Gc = 0, β = 0, k = 0.1,

m = 0.5, S = 2.15
β

Gr = Gc = 0, β = 0, k = 0.1,

m = 0.5, S = 2.15

1 2.557306 2.149861 0.408828 0 2.787661 2.426338 0.851939
4 2.476165 2.054473 0.791941 4 5.93695 6.435586 –7.633
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in the heat source parameter. The temperature is seen to decrease with increase in S. The peculiarity of the present results is 
that the presence of thermal buoyancy decreases the temperature at all points in the thermal boundary layer in the absence of 
a source (β = 0). Figure 8 shows the temperature profi les for different values of the material parameter Δ in the presence of 
solutal buoyancy. It is found that the fl uid temperature increases with Δ.

The effects of the Schmidt number and the chemical reaction parameter on the concentration profi le were also 
considered. It was shown that the presence of a heavier species and an increase in the chemical reaction parameter decrease 
the concentration, so that the solutal boundary layer becomes thinner. 

Finally, the numerical calculations for obtaining the local skin friction coeffi cient f ''(0), couple stress coeffi cient 
h'(0), and the local Nusselt number, i.e., the wall temperature gradient θ'(0), were performed. The results presented in Table 1
are found to be in good agreement with those from [24]. It is seen from the table that the skin friction, couple stress, and 
the Nusselt number increase with the suction parameter in the absence of thermal buoyancyand a heat source, whereas the 
reverse effect occurs in their presence. The increase in the material parameter decreases all the characteristics. It is also seen 
that an increase in the Prandtl number in the absence of thermal buoyancy and a heat source increases the skin friction and 
couple stress for lower value of Pr, but further they decrease. The infl uence of radiation and the heat source presence on the 
characteristics mentioned was also considered.

Thus, the dependences of the profi les of the velocity, angular velocity, and the temperature, as well as of the values 
of the skin friction, couple stress, and the Nusselt number, on the problem parameters, have been obtained.

NOTATION

c, shrinking constant; cp, specifi c heat; C, concentration; D, mass diffusivity;  f , dimensionless stream function; 
Gr, thermal Grashof number; Gc, solutal Grashof number; g, acceleration due to gravity; h, dimensionless angular velocity; 
j, microinertia per unit mass; k, absorption coeffi cient; Kc*, chemical reaction parameter; N, microrotation (angular) velocity; 
Pr, Prandtl number; Q*, heat generation/absorption parameter; qr, radiative heat fl ux; R, thermal radiation parameter; S, wall 
mass transfer parameter; Sc, Schmidt number; T, temperature; u, velocity component in the x direction; Uw, wall velocity; 
v, velocity component in the y direction; vw, suction (injection) velocity; x, coordinate along the sheet; y, normal coordinate; 
β, heat source parameter; β' and β*, volumetric coeffi cients of thermal and concentration expansion; γ, spin gradient viscosity; 
Δ, material parameter; η, similarity variable; θ, dimensionless temperature; κ vortex viscosity (gyroviscosity); κ*, thermal 
conductivity of the fl uid; μ, dynamic viscosity; ρ, fl uid density; σ, Stefan–Boltzmann constant; υ, kinematic viscosity; 
Ψ, stream function. Indices: w, at the wall; ∞, in the free stream.
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