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HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES

EXCITATION OF SHOCK WAVES IN THE PASSAGE OF DETONATION 
THROUGH THE REGION OF MIXING OF REACTING AND INERT GASES

E. S. Prokhorov UDC 534.222.2

A nonstationary problem on the excitation of a plane shock wave as a result of the passage of detonation through 
the region of mixing of a reacting and an inert gases has been formulated and solved numerically. The formulation 
of this problem is based on the approximate model defi ning, with a high accuracy, the change in the molar mass and 
specifi c internal energy of the combustion products of hydrocarbons caused by a shift of them from their chemical-
equilibrium position. A situation in which, in the region of mixing of the reacting and inert gases, their concentrations 
change linearly was considered. The infl uence of the width of the mixing region on the intensity of the excited shock 
waves and the law of their attenuation was investigated.
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Introduction. If any space is fi lled partially with a reacting gas or, more precisely, a combustible gas mixture, and 
the remainder of this space is occupied by an inert gas, e.g., by air, a detonation of the reacting gas will give rise to a shock 
wave in the inert gas. The excitation of shock waves by a gas detonation is of interest in connection with the problems of 
explosion safety as well as to the development and modernization of different technological facilities in which detonation–
combustion products are used as an actuating medium. Such facilities fi nd application in engineering for the propulsion in 
engines and the force (destructive) action on objects, the intensifi cation of combustion of a fuel, and the acceleration and 
heating of condensed particles [1–3].

Laws of attenuation, in air, of plane shock waves arising as a result of the formation of a Chapman–Jouguet wave 
in the explosion of a reacting gas [4] were investigated numerically in [5, 6]. A Chapman–Jouguet detonation wave with an 
instantaneous chemical reaction at its front is characterized by that the front of this wave moves with a constant velocity DCJ 
and, in the case where such a wave propagates from a rigid wall and the motion of the detonation products is one-dimensional, 
it can be defi ned by a self-similar solution [7]. Note that the velocity of the Chapman–Jouguet wave front DCJ is the most 
important and signifi cant characteristic of any explosive, including gaseous ones. In [8], the problem on the excitation of shock 
waves by an overcompressed gas detonation formed as a result of the passage of a Chapman–Jouguet detonation wave from 
a wide pipe through a reducer to a narrow pipe was considered, and the overcompressed gas detonation was calculated by the 
algorithm proposed in [9]. It was shown that shock waves excited by an overcompressed gas detonation can have a higher 
intensity compared to the intensity of the shock waves excited by a Chapman–Jouguet detonation because the velocity of 
propagation of the front of an overcompressed gas detonation D as well as the pressure and dynamic head of the combustion 
products formed as a result of this detonation are larger than those in the case of Chapman–Jouguet detonation [10]. The main 
characteristic of the overcompressed gas detonation waves is the degree of their overcompression α = D/DCJ (α ≥ 1).

In the mathematical formulation of the problems considered in [5, 6, 8], the possible mixing of a reacting and 
an inert gases was disregarded, i.e., it was assumed that, at the contact boundary between them, their concentrations and, 
consequently, the thermodynamic properties of the gaseous medium change abruptly. Because of this, the initial parameters 
of the nonstationary shock wave formed as a result of the refraction of a detonation wave at the contact boundary between the 
indicated gases were determined from the solution of the problem on the breakdown of an arbitrary gasdynamic discontinuity 
between the detonation products and the undisturbed inert gas [11, 12]. Thus, it was always assumed that a detonation wave 
is instantly transformed to a shock wave. This simplifi cation in the simulation of the formation of a shock wave in a gaseous 
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medium in a pipe is correct from the physical standpoint only in the case where a reacting and an inert gases in this medium 
are separated by a thin membrane which is removed at the instant a detonation is initiated. Such a situation was considered 
in [13] where numerical simulation of the indicated process was conducted in parallel with its experimental investigation. The 
calculation data on the change in the velocity of a shock wave, formed in an inert gas in a pipe with a membrane, depending on 
the distance between it and the membrane, were compared with the results of measurement of this velocity. This comparison 
has shown that the numerical solution is in fairly good qualitative and quantitative agreement with the experiment. Clearly 
these results cannot be extrapolated to the case where the region of mixing of a reacting and an inert gases in a pipe has 
fi nite sizes comparable with the sizes of the pipe. In this case, a detonation wave will propagate in the gaseous medium in 
the pipe during a defi nite period of time, which points to the fact that in the region of mixing of the reacting and inert gases 
there is a gradient of their concentrations and, therefore, the transformation of a detonation wave to a shock wave cannot 
be instantaneous. In our opinion, to defi ne this process adequately, it is well to use the quasionedimensional approach to the 
simulation of the propagation of a detonation wave in a medium with a variable chemical composition, proposed in [14].

In the present work, the indicated approach has been further developed and applied to the substantiation of the 
behavior of both detonation and shock waves in a gaseous medium. With it the problem on the excitation of a shock wave 
by a gas detonation in the case where the concentrations of a reacting and an inert gases in the region of their mixing change 
linearly was solved numerically, i.e., the result of the partial diffusion mixing of these gases was simulated.

On the Analogy between the Behavior of Detonation and Shock Waves. The passage of detonation through the 
region of mixing of two reacting gases with a gradient of their concentrations was investigated numerically in [14]. It was 
established that, if the parameters of the detonation products downstream of a Chapman–Jouguet detonation wave in the 
fi rst reacting gas are superior to the analogous parameters of the second reacting gas, as a result of the passage of detonation 
through the region of mixing of these gases, overcompressed gas detonation waves can be excited. In this case, the velocity 
of the front of an overcompressed detonation wave D can even decrease but it will exceed the local velocity of the Chapman–
Jouguet detonation wave front DCJ characteristic of the chemical composition of the medium in the indicated region of the 
space. This allows the preliminary conclusion that, in the region of mixing of a reacting and an inert gases, a detonation wave 
should propagate in the overcompressed regime.

There is much in common between the overcompressed gas detonation waves with an instantaneous chemical 
reaction at their front, as a result of which an energy in the form of heat Q is released, and shock waves. In the case of this 
reaction, an equilibrium fl ow of detonation products is realized downstream of the detonation front. Overcompressed and 
shock waves are nonstationary as a rule, because the relative gas fl ow downstream of their front is subsonic. According 
to [15], the attenuation of these waves can be defi ned in one and the same context with the use of relations identical in 
their general form. If an inert gas contains polyatomic molecules, they downstream of the front of intense shock waves can 
dissociate into atoms with absorption of heat as does, e.g., oxygen in air, i.e., in a shock-compressed gas there can also take 
place chemical reactions that, unlike the reaction of transformation of a reacting gas to detonation products, are reversible. 
The thermal effect Q of the chemical reaction at the front of a shock wave is zero or negative. Because of this, the notion of 
inert gas is rather conditional. Detailed equilibrium calculations [16] have shown that the thermal effect Q at the detonation 
front is substantially dependent on the velocity of its movement D. For example, the Chapman–Jouguet detonation provides 
the largest Q. At α = 1.5–1.7, the thermal effect decreases almost to zero and, as the velocity of movement of the detonation 
front further increases, Q becomes even negative. In this case, the differences between an overcompressed and a shock wave 
in a shock-compressed gas almost disappear if the thermodynamic properties of this gas are defi ned the model proposed 
in [17] and applied to the detonation product in [14].

Prior to the formulation of a concrete problem on the transformation of a detonation wave to a shock wave at the 
diffused boundary between a reacting and an inert gases, we make the following assumption. An attenuated overcompressed 
wave propagates in the Chapman–Jouguet detonation regime with a front velocity DCJ, and, when a shock wave formed 
decays, it degenerates to an acoustic wave with a front moving with a velocity equal to the velocity of sound c0 in an 
undisturbed medium. With this assumption it may be suggested that a weak shock wave is a detonation wave with a zero 
thermal effect at its front, and the velocity of sound c0 can be used for it as an analog of the front velocity DCJ. Since the 
intensity of a shock wave is determined by the Mach number of the relative gas fl ow upstream of the chock front M = D/c0, 
for uniformity, the degree of overcompression of detonation waves will be calculated by the formula
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When using this formula, it is necessary to remember that the sound velocities in a reacting and an inert gases are different 
in value.

Formulation of the Problem. The half of a space with a rigid wall, coincident with its symmetry plane, to the 
right of this wall is considered. The origin of the coordinate system used is coincident with the rigid wall, and the x axis is 
perpendicular to it. The indicated half-space in the initial state has a pressure p0 and a temperature T0, and it is fi lled with 
immovable gases (u0 = 0): a reacting gas A and an inert gas B. The reacting gas occupies the region 0 < x < lA adjacent to the 
rigid wall, and the inert gas occupies the region x > lB (lB ≥ lA). The gases A and B are mixed in the region lA ≤ x ≤ lB. Thus, 
the characteristic width of the mixing region is Δl = lB – lA.

As in [14], the chemical composition of the indicated gases is characterized by the concentrations of the atoms of 
oxygen On , carbon Cn  ( Cn  ≤ On ), hydrogen Hn , nitrogen Nn , and other monoatomic inert gases Z ( Zn ) in them. However, 
calculations are performed more conveniently with the use of the relative concentrations of these atoms

 
,

1
111 ∑=

s
sss nnn   (2)

where s1 = {C, H, O, N, Z} and the subscript 1 points to the fact that a substance s is monoatomic. Clearly, when the chemical 
composition of a gaseous substance changes (with distance away from the rigid wall), not only ns1 but also other initial 
parameters of the gas, such as the molar mass μ0, the density ρ0, the specifi c (per unit mass) internal energy U0, and the sound 
velocity c0, become dependent on the coordinate x. A set of these initial parameters (at constant values of p0 and T0) is quite 
suffi cient for calculating, with the use of the approximate model for analysis of equilibrium fl ows of chemically reactive gases 
[17], not only the local velocity of the Chapman–Jouguet detonation front DCJ for any coordinate x but also the corresponding 
values of the pressure pCJ, density ρCJ, mass fl ow rate uCJ, molar mass μCJ, temperature TCJ, and equilibrium sound velocity 
cCJ of the combustion products at the detonation front with an error smaller than 1%. Therefore, we will assume that the 
dependence DCJ = DCJ(x) is known.

The model [17] defi ning the equilibrium state of detonation products is based on the two relations. The fi rst of them 
is the equation for the total internal energy of the combustion products

 th ch ( , ) ,U U U U T= + = μ   (3)

including, in addition to the thermodynamic part of the specifi c internal energy of the gas Uth, its potential chemical energy 
Uch. The second relation is the equation for the shift of the gas from its chemical-equilibrium position

 ( , , ) const ,F Tμ ρ =   (4)

relating the molar mass μ, temperature T, and density ρ of the detonation products. Using the equation for the ideal-gas state 
p/ρ = RT/μ in combination with (4), we bring expression (3) to the form

 ( , ) ,U U p= ρ  
which makes it possible to determine the equilibrium velocity of sound in the gas from the relation

 
2 2( / )/ , ( / ) , ( / ) .p p pc p U U U U p U Uρ ρ ρ= ρ − = ∂ ∂ = ∂ ∂ρ   (5)

This relation is easily obtained from the energy equation in the form used in the formulation of the fi rst law of thermodynamics. 
Note that relations (3)–(5) can be also used for the defi nition of the thermodynamic properties of a gas compressed by a strong 
shock wave with dissociation of molecules downstream of its front. If the chemical reactions in such a gas are disregarded, 
instead of Eq. (4), the natural relation μ = μ0 can be used.

In accordance with [17], to correctly defi ne the thermal effect of a chemical reaction Q = U0,ch – Uch(p, ρ) in a gaseous  
medium, it is necessary to coordinate the origins of calculating the specifi c internal energy of the gas U and its internal energy 
in the initial state U0 = U0,th + U0,ch. Note that U0 ≠ U(p, ρ) because of the irreversibility of the chemical reaction arising in 
a gaseous  medium as a result of its detonation. In view of this representation of the physicochemical parameters of a chock-
compressed gas and the products of its detonation, the transformation of a detonation wave in this gas to a shock wave can 
proceed in the following way. Let, at the instant of time t = 0, near the right wall there arises a self-sustained detonation wave 
propagating in the gas A with a constant velocity (DCJ)A. In the region of mixing of the gases A and B, as a result of the 
change in the parameters of the gas mixture upstream of the detonation front, the front velocity becomes variable: D = D(x). 
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It is assumed that the detonation wave can be a Chapman–Jouguet wave (α = 1) or an overcompressed wave (α > 1). The 
local degree of overcompression α of such a wave is determined from relation (1) with the use of the known dependence 
DCJ = DCJ(x) considered above. When the wave front passes from the region of mixing of the gases A and B to the region 
occupied by only the gas B, the concentration of the gas A decreases to zero. This automatically leads to a decrease in the 
thermal effect Q to a minimum value characteristic of the gas B. As a result, the differences between the front of detonation 
and the shock front disappear. Since both these fronts represent surfaces of a strong gasdynamic discontinuity, propagating 
with one and the same velocity, their thermal effects are equal. Then only the gas B begins to pass through the detonation 
front to the region with detonation products and, in so doing, gradually forms a "plug" of the shock-compressed inert gas 
between the front and the detonation products. We can say that, beginning from this time on, a detonation wave is formed, 
and it propagates in the gas B. This wave decays with time because of the decrease in the piston action of the detonation 
products.

Thus, the character of a wave (detonation or shock) formed in a gaseous medium is determined by the type of 
the gas (reacting or inert) passing through its front. The gas in the region of mixing of the gases A and B also represents 
a chemically reactive medium but with smaller (compared to the gas A) values of the front velocity DCJ and the thermal 
effect for the Chapman–Jouguet detonation regime, and QCJ > 0 in this case. Since the behaviors of detonation and shock 
waves are analogous, it may be assumed that QCJ = 0 for the gas B. In the subsequent discussion we will use the following 
terminology. As long as the coordinate of the front of a wave is smaller than lB, it will be the front of a detonation wave, 
otherwise we will have the front of a shock wave. If no addition concretization is required, we will simply talk about the 
wave front.

The behavior of the continuous medium downstream of the wave front will be defi ned by the system of one-
dimensional gasdynamic equations

 ( ) 0 ,t xuρ + ρ =  

 
2( ) ( ) 0 ,t xu p uρ + + ρ =   (6)

 
2 2[ ( /2)] [ ( /2 / )] 0 ,t xU u u U u pρ + + ρ + + ρ =  

to which it is necessary to add the equations for the change in the concentrations of atoms of the chemical elements in the 
process of movement of the medium (an analog of the continuity equation for the density of the medium)

 1 1( ) ( ) 0 , 1 {C, H, O, N, Z}s t s xn n u s+ = =   (7)

with the following boundary conditions. At the left boundary of the computational region (at the rigid wall), the impermeability 
conditions are set (the mass velocity of the gas u = 0). At the moving right boundary of the computational region, the relations 
defi ning the laws of the mass, momentum, and energy conservation at the wave front

 0( ) ,D u Dρ − = ρ  

 
2 2

0 0( ) ,p D u p D+ ρ − = + ρ   (8)

 2 2
0 0 0( , ) / ( ) /2 / /2ρ + ρ + − = + ρ +U p p D u U p D  

are true. At the right boundary of the computational region, relations (8) for a self-sustained detonation wave are supplemented 
by the Chapman–Jouguet condition for the equilibrium velocity of sound

 CJ CJ CJ ,D u c− =   (9)

and these relations for a nonstationary overcompressed wave are supplemented by the relation for the characteristic c+ at the 
wave front [9] following from the system of equations (6)

 

1 1( ) 0 .u p u pu c
t c t x c x

⎛ ⎞∂ ∂ ∂ ∂
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  (10)
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Therefore, the initial distribution of the parameters of detonation products can be represented in the form of a simple (Riemann) 
wave defi ned by the two ordinary differential equations and the ratio between the self-similar variable x/t, the mass velocity 
u, and the sound velocity c

 , / , / ,dp cdu d cdu u c x t= ρ ρ = ρ + =   (11)

on condition that the gasdynamic parameters of the detonation products at the detonation front correspond to the Chapman–
Jouguet state. In order that this solution be valid, it is necessary that the chemical composition of the initial reacting gas be 
constant in the small neighborhood of the rigid wall. Since the initial pressure p0 and temperature T0 are independent of the 
coordinate x, the total concentration of the molecules n  = An  + Bn  at all the points of the half-space x > 0 is constant:

 0 0/ const .n p RT= =   (12)

It was assumed in the formulation of the problem that, in the region of mixing of the chemical substances, the 
concentrations of the gases A and B change linearly. Let us denote the mole fraction of the gas A in the gas mixture by 
ε = ε(x), where ε = 1 at x ≤ lA and ε = 0 at x ≥ lB. In this case, the initial parameters of the region of mixing of the gases A and 
B can be determined in view of (12) as

 

0 0 A 0 B 0 0 A 0 B

0 0 0 A 0 0 B 0

1 1 A 1 B
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μ = ε μ + − ε μ ρ = ε ρ + − ε ρ

= ε μ + − ε μ μ

= ε + − ε =

  (13)

where ε = (lB – x)/Δl is a linear function of x, i.e., the concentration gradient of the chemical compound is inversely related 
to the width of the mixing region (~1/Δl).

Results of Calculations. We used a stoichiometric mixture of acetylene with oxygen C2H2 + 2.5O2 for the gas A 
and an air with a chemical composition 0.21O2 + 0.78N2 + 0.01Ar for the gas B. The gases A and B with an initial pressure 
p0 = 101,325 Pa (1 atm) and an initial temperature T0 = 298.15 K had the following parameters: C A( )n  = 23.36 mole/m3, 

C B( )n  = 0, H A( )n  = 23.36 mole/m3, H B( )n  = 0, O A( )n  = 58.39 mole/m3, O B( )n  = 17.17 mole/m3, N A( )n  = 0, 
N B( )n  = 63.76 mole/m3, Ar A( )n  = 0, Ar B( )n  = 0.2861 mole/m3, (μ0)A = 30.29 g/mole, (μ0)B = 28.97 g/mole, 

(ρ0)A = 1.238 kg/m3, (ρ0)B = 1.184 kg/m3, (c0)A = 329.8 m/s, (c0)B = 346.1 m/s, (U0)A = –6.534 MJ/kg, (U0)B = –3.365 MJ/kg.
Problem (1)–(3) was solved numerically by the method of breakdown of a gasdynamic discontinuity on moving 

meshes (by the Godunov scheme) [11] with separation of the right boundary (the wave front). Before a detonation wave 
reached the region of mixing of the gases A and B, the parameters of the gas mixture at the wave front were constant and 
corresponded to the parameters of the gas A in the case of Chapman–Jouguet detonation: (DCJ)A = 2424 m/s, (MCJ)A = 7.350, 
(uCJ)A = 1111 m/s, (cCJ)A = 1313 m/s, (pCJ)A = 33.91 atm, (ρCJ)A = 2.286 kg/m3, (μCJ)A = 23.32 g/mole, (TCJ)A = 4215 K, and 
(QCJ)A = 4.142 MJ/kg. The distribution of the detonation products downstream of the front of the indicated detonation wave 
corresponded to the solution obtained in [14]. This distribution can be approximated analytically in the following way [18]:

 CJ A

2 / 1 , at 0.5 / 1
,

0 , at 0 / 0.5( )
x x x xu

x xu
∗ ∗

∗

− < ≤⎧
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where x∗  is a coordinate of the wave front.
For increasing the accuracy of calculations by the above-described scheme, the velocity of the front of an 

overcompressed wave at the boundary of the computational region was determined not from the solution of the problem on 
the breakdown of a gasdynamic discontinuity but, as in [12], by the Riemann invariant for the characteristic c+ at the wave 
front. We turned to the calculation of the wave-front velocity by relations (8) and (10) at the instant the following condition 
began to fulfi ll for the detonation products in the neighborhood of the wave front [9]:

 CJ ,u c D+ >  
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where DCJ is a local velocity of the Chapman–Jouguet detonation front calculated in advance by relations (8) and (9), 
otherwise it was assumed that D = DCJ.

Since the gases A and B have different values of the initial parameters ρ0 and U0, in order that the mass and 
energy balance be retained in the system being considered in the case of change in Δl, it is necessary that the condition
 l = (lA – lB)/2 = const be fulfi lled. Therefore, before the initiation of detonation, the volume of the gas A in the half-space will 
be always constant. In this case, the increase in Δl can be interpreted from the practical standpoint as an increase in the width 
of the region of diffusion spreading of the boundary between the two contacting gases [19], and the coordinate of the left 
boundary of the region of mixing of these gases lA = l – Δl/2 will be shifted to the rigid wall. Since lA ≥ 0 in the formulation of 
the problem being considered, the width of the mixing region is limited from above: Δl ≤ 2l, where l is a characteristic spatial 
scale of the problem. Therefore, on condition that Δl/l = const, the dependences of all the parameters of the problem on the 
dimensionless coordinate x/l, calculated for different values of l, will be coincident. It follows herefrom that the solution of 
the problem in this formulation possesses a similarity and is determined by the single dimensionless parameter Δl/l. In view 
of (13), this parameter allows one to estimate the mass fraction of the gas A found in the mixing region before the initiation 
of detonation: δ = 0.5Δl/l·100%. 

Figure 1 demonstrates the dynamics of change in the velocity of the front of a detonation wave D in the mixture of the 
gases A and B in a pipe in the process of its transformation into a shock wave at different values of the mixing region. Here, 
the results of calculations performed for the case where Δl = 0 and the wave front changes abruptly at the contact boundary 
between the reacting and inert gases are also presented. The abrupt change in the front velocity D (curve 1) from (DCJ)A to 

0D  = 1658 m/s was determined from the solution of the problem on the breakdown of a gasdynamic discontinuity. Note that 
0D  limits of the velocities of the shock waves excited in the case where the width of the mixing region is fi nite from above, 

i.e., this value of the front velocity is limiting. Curves 2–5 also have sharp infl ections at the point x = lB (lB = l + Δl/2) where 
the detonation front is transformed to the shock front. At this instant of time, the velocity of the shock front is maximum. We 
denote it by D  (D ≤ 0D ). In this case, the coordinates of the infl ection point of the curves in Fig. 1 can be defi ned as lB/l, D .
To this point corresponds a shock wave propagating in the gas B with a Mach number M  = D /(c0)B. We call the reader′s 
attention to the similarity of the slopes of all the curves corresponding to the decay of the shock waves passing through the 
mixing zone. At x > lB the law of decreasing the velocity of the shock front can be approximated by the dependence

 (ln ) (ln ) 1/2 .d D d x = −   (14)

This result conforms with the conclusions of the point-explosion theory for adiabatic plane gas fl ows [20]. If we 
draw a line through the points of infl ection of curves 2–5, this line will cross curve 1. A refi nement of the results obtained 
has shown that this intersection takes place at x/l = 1.15 and corresponds to the calculated dependence D = D(x/l) at 
Δl/l = 0.3. In accordance with (14), at x/l > lB/l = 1.15, the graph of this dependence is almost coincident (with an accuracy 
as high as 1%) with curve 1. This statement is also true for the other curves D = D(x/l) calculated for smaller values of 
Δl/l, even though their infl ection points are positioned lower than curve 1. In this case, D  differs insignifi cantly from D0. 

Fig. 1. Velocity of the wave front D depending on its position in the pipe, calculated for 
Δl/l = 0 (1), 0.1 (2), 0.4 (3), 0.6 (4), and 0.8 (5).
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For example, for curve 2, this difference comprises only 3%. It is seen that curve 2, as also curve 1, includes a small 
horizontal portion showing that the wave propagates with a constant velocity. This allows the conclusion important for 
practice that, only on the basis of experimental data on the velocity of the front of a shock wave in the region of a pipe 
x/l > 1.15, it is impossible to answer the question: Was the boundary between the reacting and inert gases diffused 
before the initiation of detonation at values of the ratio Δl/l as large as 0.3, which can be called a critical value? Thus, at 
Δl/l < 0.3 (δ < 15%) the infl uence of the mixing of the gases on the dynamics of a shock wave excited in air can be 
disregarded. Another distinctive feature of the process being considered is the intersection of all the curves in the vicinity 
of one point with a dimensionless coordinate x/l = 1; in this case, the velocity of the wave front D in the region lA < x < l 
in the mixing zone changes almost linearly. This can be explained by the fact that, in the indicated region, the degree of 
overcompression of the wave α is almost equal to unity, i.e., the wave front moves with a velocity equal to the local velocity 
of the Chapman–Jouguet detonation front DCJ. Note that, in accordance with (13), before the initiation of detonation in the 
gas mixture, its chemical composition and other parameters at the cross section of the pipe with a coordinate x = l remain 
the same in all the cases considered in the calculations.

The dependence presented in Fig. 2 shows how the degree of overcompression α and the Mach number of a detonation 
wave change in the process of its passage through the mixing region. At x/l = 1, the velocity of the wave front exceeds DCJ 
only by 2%, and α = 1.06 at x/l = 1.1. The degree of overcompression of the wave begins to markedly respond to the change in 
the chemical composition of the gas only at the end of the mixing region where it reaches its maximum possible value α = M .
For obviousness, a horizontal dotted line ( M  = 4.485) is drawn through this point. The quantity M  is a minimum possible 
Mach number for the detonation front and, at the same time, a maximum Mach number for the shock front. In the case of 
propagation of a shock wave in the gas B, in accordance with (1), the values of M and α are equal. Therefore, the intensity of 
this wave can be characterized by only the parameter M, with which one can calculate all the other gasdynamic parameters 
of the mixture at the wave front [4].

The infl uence of the dimensionless width of the mixing zone Δl/l, representing the solution of the problem, on the 
Mach number M  can be estimated by the dependence presented in Fig. 3. It is seen that the maximum Mach number for 
a shock wave in the gas B is limited: 2M  < M  < 0M , where the value of 0M  = 4.791 was determined from the solution 
of the problem on the breakdown of a gasdynamic discontinuity at Δl/l = 0, and the value of 2M  = 3.973 was determined, 
in view of condition (1), at Δl/l = 2. It follows herefrom that, when the parameter Δl/l is varied, the intensity of the shock 
wave changes approximately by 20% ( 0M / 2M  = 1.206). The curve in Fig. 3 approaches the point 0M  on the y axis almost 
in touch. In the case where the width of the mixing zone is small (Δl/l → 0), it is necessary to use a difference mesh with 
small nodes. Therefore, a minimum value of the ratio Δl/l equal to 0.01 was used in the calculations of the mixing zone with 
a spatial resolution. At Δl/l = 0.01, the maximum Mach number for a shock wave excited by a detonation in the inert gas 
differed from 0M  by less than 1%. This tendency is also characteristic of the case where the chemical composition of the 
reacting gas is varied. In Fig. 4, the results of calculations, in which a methane–oxygen mixture CH4 + 2O2 was used for the 
gas A, are presented for comparison. In accident-related explosions, e.g., in mines, air can be an oxidizer.

Fig. 2. Dependences of the Mach number M and the degree of overcompression α of 
a detonation wave on the dimensionless coordinate of the wave front x/l at a width of the 
mixing zone Δl/l = 0.4.
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Note that, in addition to the explosion-safety problems, the results obtained can be used for solving a number of 
applied problems, e.g., problems associated with detonation spraying. The point is that modern detonation facilities can work 
in the case where their channel is partially fi lled with an explosive and the rest is fi lled with an inert gas or air. In this case, 
a powder for deposition is introduced as a rule into the region of contact of the reacting and inert gases [3]. Therefore, the 
more accurate is the defi nition of the gas dynamics of the fl ow in the region of mixing of the reacting and inert gases, the 
more accurate will be the calculation of the velocity and temperature of the particles to be thrown determining the quality of 
the detonation coating.

Conclusions. Computational experiments simulating the transformation of a detonation wave to a shock wave at 
a diffused contact boundary between a reacting gas (a stoichiometric mixture of acetylene with oxygen) and an inert gas 
(air) have been conducted. The infl uence of the width of the region of mixing of the contacting gases on the intensity of the 
shock waves excited in it and on the law of their attenuation was investigated. The solution obtained possesses a similarity 
and is determined by a single parameter (the dimensionless width of the mixing region) which, in fact, is equivalent to the 
mass fraction of the reacting gas that has managed to mix with the inert gas before the initiation of detonation. When this 
parameter is varied within the range from 0 to 2, the maximum Mach number of a shock wave in the inert gas decreases 
by approximately 20%. It was established that the law of decreasing the velocity of the wave front can be approximately 
defi ned by the dependence corresponding to the conclusions of the point-explosion theory for adiabatic plane waves.

NOTATION

c, velocity of sound, m/s; D, velocity of the detonation front, m/s; l, coordinate of the contact boundary between the 
gases, m; Δl, width of the mixing region, m; M, Mach number; n , concentration of atoms, mole/m3; n, relative concentration 
of atoms; p, pressure, atm; Q, thermal effect of a chemical reaction, J/kg; R, gas constant, J/(mole·K); t, time, s; T, temperature, 
K; u, mass velocity, m/s; U, specifi c internal energy of a gas (per unit mass), J/kg; Uth, thermodynamic part of the internal 
energy of a gas, J/kg; Uch, potential chemical energy of a gas, J/kg; x, current coordinate, m; x∗ , coordinate of the front 
of a detonation wave, m; α, degree of overcompression of a wave; μ, molar mass, kg/mole; ρ, density, kg/m3. Subscripts: 
CJ, indication of the Chapman–Jouguet state; ch, chemical; th, thermodynamic; 0, value of a gasdynamic parameters of the 
mixture in the initial state upstream of the wave front.
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