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ON ONE METHOD OF SOLVING NONSTATIONARY
BOUNDARY-VALUE PROBLEMS

I. V. Kudinov, V. A. Kudinov, E. V. Kotova,   UDC 536.2 (075)
and A. V. Eremin

An exact analytical solution of the problem on the heat conduction in an infi nite plate with the fi rst-kind symmetric 
boundary conditions has been obtained using the integral method of heat balance with an additional desired function 
and additional boundary conditions. The solution of the partial differential equation was reduced to the integration of 
the ordinary differential equation for the additional desired function. It is shown that the fulfi llment of the differential 
equation at the boundary points of the computational region is equivalent to its fulfi llment within this region. In the 
approach proposed there is no need to integrate the indicated equation with respect to the space variable because of 
the fulfi llment of the integral condition of heat balance, which allows this approach to be applied to the solution of 
problems that are diffi cult to solve with the use of classical exact analytical methods.

Keywords: nonstationary heat conduction, integral method of heat balance, additional desired function, additional 
boundary conditions.

Introduction. The advantage of the methods based on the construction of the heat-balance integral is that they 
make it possible to obtain approximate analytical solutions simple in form. The main limitation of these methods is their low 
accuracy [1–12]. In them, the velocity of propagation of heat is assumed to be fi nite despite the fact that they are realized with 
the use of the parabolic heat-conduction equation suggesting that this velocity is infi nite. In this case, the heat-conduction 
process in a plate is divided into two time stages, at the fi rst of which the front of a temperature disturbance moves from the 
surface of the plate to its center. Here, the depth of the heated layer is taken as an additional desired function. At the second 
stage, the temperature of the plate changes across the whole its width, and an additional temperature function characterizing 
the change in the temperature at the center of the plate with time is introduced into consideration. Investigations of solutions 
of the boundary-value problems on heat conduction in a plate [1, 10–12] has shown that, with increase in the number of 
approximations n, the calculated time Fo1 of movement of a temperature-disturbance front to the center of the plate at 
the fi rst stage of the heat-conduction process decreases and, in the limit, tends to zero: Fo1 → 0 at n → ∞. Consequently, 
the solution of such a problem approximately defi nes the process of heat transfer with an infi nite velocity. In this way, the 
contradiction associated with the supposition that the velocity of heat propagation is fi nite is cleared. As the number of 
approximations increases, at the fi rst stage of the heat-conduction process, the time range in which the velocity of heat 
propagation is determined decreases, and this time increases at the second stage. Therefore, in the case where a large number 
of approximations is used in solving the problem on the heat conduction in a plate, only the temperatures for small values of 
the time and space variables can be determined from the solutions for the fi rst stage. In this case, the role of the second stage 
in determining the temperature state of the plate increases.

In the present work, an approach is proposed to the analytical solution of problems on nonstationary heat conduction, 
which allows one to avoid the consideration of the fi rst stage of the heat-conduction process in the integral method of 
heat balance. In accordance with this approach, the solution of the problem on nonstationary heat conduction in a plate is 
represented in the form of a trigonometric (algebraic) polynomial whose unknown coeffi cients are determined using an 
additional desired function prescribed at the center of the plate and additional boundary conditions, the fulfi llment of which 
by the desired solution is equivalent to the fulfi llment of the differential equation at the boundary points of the computational 
region. Note that the methods of solving heat-conduction problems, based on the fulfi llment of heat-conduction equation at 
the boundary points, were used in works [13–15].
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Mathematical Formulation of the Problem and Method of Its Solution. We consider the main provisions of the 
method proposed by the example of solving the boundary-value problem on heat conduction in an infi nite plate with the 
symmetric fi rst-kind boundary conditions (Fig. 1)

 

2

2
( , Fo) ( , Fo) , Fo 0 , 0 1 ,
Fo

∂Θ ξ ∂ Θ ξ
= > < ξ <

∂ ∂ξ
 (1)

 ( , 0) 0 ,Θ ξ =  (2)

 (0, Fo) 0 ,∂Θ
=

∂ξ
 (3)

 (1, Fo) 1 .Θ =  (4)

Let us introduce the desired function

 (Fo) (0, Fo) ,q = Θ   (5)

defi ning the change in the temperature at the center of the plate with time. The temperature at the point ξ = 0 begins to change 
as soon as the fi rst-kind boundary conditions are applied to the surface of the plate because the velocity of heat propagation 
is infi nite. Since the temperature at the center of the plate is a desired quantity of problem (1)–(4), the introduction of the 
function q(Fo) does not change this problem and only makes the process of obtaining its solution simplier. The solution of 
problem (1)–(5) is sought in the form

 1
( , Fo) 1 ( ) ( ) , 1, ,

n

k k
k=

b q k nΘ ξ = + ϕ ξ =∑
 

 (6)

where bk(q) (k = 1, n ) are unknown coeffi cients and φk(ξ) = cos (rπξ /2) (r = 2k – 1) are coordinate functions. Relation (6) 
satisfi es the boundary conditions (3) and (4). The coeffi cients bk(q) (k = 1, n ) are determined from relation (5) with the use 
of additional boundary conditions set at the points ξ = 0 and ξ = 1.

To obtain additional boundary conditions as applied to the point ξ = 0, we differentiate relation (5) and the boundary 
condition (3) with respect to the variable Fo:

 

(0, Fo) (Fo) ,
Fo Fo

dq∂Θ
=

∂ ∂
 (7)

Fig. 1. Scheme of heat exchange in the plate.
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 (0, Fo) 0 .
Fo

∂ ∂Θ⎛ ⎞ =⎜ ⎟∂ξ ∂⎝ ⎠
 (8)

Comparing relation (7) with Eq. (1), we obtain the fi rst additional boundary condition

 

2

2
(0, Fo) (Fo) .

Fo
dq

d
∂ Θ

=
∂ξ  

 (9)

In view of Eq. (1), relation (8) is brought to the form of the additional boundary condition

 
3 3(0, Fo)/ 0 .∂ Θ ∂ξ =   (10)

Differentiating relations (9) and (10) with respect to the variable Fo and using Eq. (1), we fi nd the additional boundary 
conditions

 

4 2

4 2
(0, Fo) (Fo) ,

Fo
d q

d
∂ Θ

=
∂ξ

 (11)

 
5

5
(0, Fo) 0 .∂ Θ

=
∂ξ

 (12)

Differentiating relations (11) and (12) with respect to the variable Fo and using Eq. (1), we obtain the additional boundary 
conditions

 

6 3

6 3
(0, Fo) (Fo) ,

Fo
q

d
∂ Θ ∂

=
∂ξ

 (13)

 
7

7
(0, Fo) 0 .∂ Θ

=
∂ξ

 (14)

Analysis of relations (9)–(14) shows that the following general formulas can be written for the additional boundary conditions 
at the point ξ = 0:

 
2 2(0, Fo)/ (Fo)/ Fo , 1, 2, 3, ,i i i iq i∂ Θ ∂ξ = ∂ ∂ = …  (15)

 (0, Fo)/ 0 , 3, 5, 7, .i i i∂ Θ ∂ξ = = …  (16)

Because of the use of the trigonometric coordinate functions in solution (6), this solution satisfi es conditions (16), which is 
equivalent to the fulfi llment of Eq. (1) at the point ξ = 0 (via the equality of its left and right sides to zero in the limiting case).

Now we fi nd additional boundary conditions as applied to the point ξ = 1. Differentiating the boundary condition 
(4) with respect to the variable Fo and comparing the relation obtained with Eq. (1), we obtain the fi rst additional boundary 
condition

 
2 2(1, Fo)/ 0 .∂ Θ ∂ξ =   (17)

Differentiation of relation (17) with respect to the variable Fo gives, in view of Eq. (1), the second additional boundary 
condition

 
4 4(1, Fo)/ 0 .∂ Θ ∂ξ =   (18)

In a similar way, differentiating the previous additional boundary condition with respect to the variable Fo and using Eq. 
(1), one can fi nd any number of additional boundary conditions at the point ξ = 1. The general formula for them has the 
form

 (1, Fo)/ 0 , 2, 4, 6, .i i i∂ Θ ∂ξ = = …   (19)
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Note that, in view of the accepted system of coordinate functions, solution (6) satisfi es conditions (19) in any approximation, 
which is equivalent to the fulfi llment of Eq. (1) at the point ξ = 1. Thus, of all the additional boundary conditions of the form 
(15), (16), and (19), only conditions (15) remain unfulfi lled by solution (6). In what follows conditions (15) in combination 
with condition (5) will be used for determining the unknown coeffi cients bk(Fo) (k = 1, n ) in relation (6). The direct 
fulfi llment of the additional boundary conditions, obtained by formulas (16) and (19), in solution (6) is due to the linearity of 
the differential equation (1) and, as a consequence, the simplicity of the additional boundary conditions obtained on its basis. 
For any other more complex boundary-value problems, e.g., problems with nonlinear differential operators, the additional 
boundary conditions will be more complex, and, in the cases where these conditions are not fulfi lled by the desired solution 
a priori, they should be fulfi lled through the determination of the unknown coeffi cients of the solution.

To obtain the solution of problem (1)–(4) in the fi rst approximation, we substitute one term of series (6) into (5) and, as 
a result, obtain an algebraic linear equation for the unknown coeffi cient b1(q). Solution of this equation gives b1(q) = q(Fo) – 1.
Relation (6) with the determined coeffi cient b1(q) takes the form

 ( , Fo) 1 ( (Fo) 1) cos ( /2) .qΘ ξ = + − πξ   (20)

To determine the unknown function q(Fo) involved in relation (20), we require the fulfi llment of the heat-balance integral 
(Eq. (1) averaged over the thickness of the plate) of the form

 

1 1 2

2
0 0

( , Fo) ( , Fo) .
Fo

d d∂Θ ξ ∂ Θ ξ
ξ = ξ

∂ ∂ξ∫ ∫
 

 (21)

Substituting (20) into (21) and integrating the expression obtained, we fi nd

 
2(Fo)/ Fo ( (Fo) 1)/4 .dq d q= −π −   (22)

Integration of Eq. (22) gives

 
2

1(Fo) 1 exp ( Fo/4) ,q C= + −π   (23)

where C1 is an integration constant determined from the initial condition q(0) = 0. From (23) we fi nd C1 = –1.
Substituting (23) into (20) and using the determined value of the integration constant, we obtain the solution of 

problem (1)–(4) in the fi rst approximation

 
2( , Fo) 1 exp ( Fo/4) cos ( /2) .Θ ξ = − −π πξ   (24)

Relation (24) exactly satisfi es the boundary conditions (3) and (4) and the heat-balance integral (21). Note that, due to the 
use of the additional boundary conditions, the solution of the problem obtained even in the fi rst approximation exactly 
satisfi es the initial differential equation (1). In this case, only the initial condition (2) is fulfi lled approximately (in the fi rst 
approximation). Consequently, by increasing the number of terms in series (6) one can refi ne the fulfi llment of the initial 
condition of the boundary-value problem. In the subsequent approximations, the unknown coeffi cients of the solution will be 
determined from the condition (5) and the additional boundary conditions (15). In particular, in the second approximation, 
substituting two terms of (6) into (5) and (15) at i = 1, we obtain a system of two linear algebraic equations for the coeffi cients 
b1(q) and b2(q). On determination of these coeffi cients, relation (6) takes the form

 
2 2 2( , Fo) 1 [(4 9 ( 1)) cos ( /2) (4 ( 1)) cos (3 /2)]/(8 ) ,q q q q′ ′Θ ξ = + + π − πξ + + π − πξ π   (25)

where q = q(Fo) and q′ = dq(Fo)/dFo. Substitution of (25) into (21) gives

 
3

4 10 3 3 0 ,
3 4 43

q q qπ π′′ ′+ + − =
ππ  

 (26)

where q″ = d2q(Fo)/dFo2. The initial condition for Eq. (26) has the form

 (0) 0 .q =   (27)
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Integration of Eq. (26) gives

 
2 2

1 2(Fo) exp ( Fo/4) exp ( 9 Fo/4) 1 ,q C C= − −π − − π +   (28)

where C1 and C2 are integration constants determined from the initial condition (27). Substituting (28) into (27), we fi nd

 1 2 1 .C C+ =   (29)

Since the coeffi cients C1 and C2 have not yet been determined, we represent relation (29) as the expansion of unity in a 
Fourier series in terms of cosines in the range 0 ≤ ξ ≤ 1:

 1 2cos ( /2) cos (3 /2) 1 .C Cπξ + πξ =   (30)

Relation (30), as well as relation (29), represents a residual of the initial condition (27). To fi nd the expansion coeffi cients C1 
and C2, we require that the residual be orthogonal to the coordinate functions cos ( jπξ/2) ( j = 1, 3):

 

1

1 2
0

[ cos ( /2) cos (3 /2)] cos ( /2) cos ( /2) , 1, 3 .C C j d j jπξ + πξ πξ ξ = πξ =∫
 

 (31)

Because of the orthogonality of the cosines in (31), this relation is brought to a system of two linear algebraic equations in 
which the unknown coeffi cients C1 and C2 are separated (each equation involves only one of these coeffi cients). Solving these 
equations, we fi nd C1 = 4/π and C2 = –4/3π. On substitution of (28) into (25), the solution of problem (1)–(4) in the second 
approximation with the determined integration constants C1 and C2 takes the form

 

2

1
( , Fo) 1 exp ( Fo) cos ( /2) ,k k

k
C r

=
Θ ξ = + ν πξ∑

 
 (32)

where Ck = 4(–1)k+1/(rπ), νk = r2π2/4, r = 2k – 1, and k = 1, 2. Solution (32) exactly satisfi es Eq. (1) and the boundary 
conditions (3)–(4), and it approximately satisfi es (in the second approximation) the initial condition (2). Analysis of the 
results of calculations by formula (2) allows the conclusion that the discrepancy between the solution obtained and the exact 
analytical solution of the problem (1)–(4) [16, 17] in the range of change in the Fourier number 0.1 ≤ Fo < ∞ decreased from 
8% (in the fi rst approximation) to 3% (in the second approximation).

Before proceeding to fi nding the solutions of the problem in the subsequent approximations, we consider one more 
method of determining the integration constants C1 and C2. Substitution of (28) into (25) gives

 
2 2

1 2( , Fo) 1 exp ( Fo/4) cos ( /2) exp ( 9 Fo/4) cos (3 /2) .C CΘ ξ = − −π πξ − − π πξ   (33)

Constructing the residual of the initial condition (2) and requiring that it be orthogonal to the coordinate functions cos (πξ /2) 
and cos (3πξ /2), we obtain relation (31). Thus, determining the integration constants through the fulfi llment of the initial 
conditions for the functions q(0) = 0 and Θ(ξ, 0) = 0,  we arrive at the identical results. The unknown coeffi cients of the 
third approximation bk(q) (k = 1, 2, 3) are obtained from relation (5) with two additional boundary conditions determined 
by the general formula (15) at i = 1, 2. In this case, we obtain the third-order ordinary differential equation for the unknown 
function q(Fo)

 
5 3

4 7 259 15 15 .
60 16 1615 3

q q q qπ π′′′ ′′ ′+ + + =
ππ π  

 (34)

Integration of this equation gives

 

2 2 2

1 2 3
9 25(Fo) exp Fo exp Fo exp Fo 1 ,

4 4 4
q C C C

⎛ ⎞ ⎛ ⎞ ⎛ ⎞π π π
= − − − − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠  
 (35)

where C1, C2, and C3 are integration constants determined from the initial condition (27). Substituting (35) into (27), we 
obtain
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 1 2 3 1 .C C C+ + =   (36)

Let us represent (36) in the form of the expansion of unity in a Fourier series in terms of cosines in the range 0 ≤ ξ ≤ 1:

 1 2 3cos ( /2) cos (3 /2) cos (5 /2) 1C C Cπξ + πξ + πξ =   (37)

and require that the residual of the initial condition (37) be orthogonal to the coordinate functions cos ( jπξ /2) ( j = 1, 3, 5):

 

1

1 2 3
0

[ cos ( /2) cos (3 /2) cos (5 /2)

1] cos ( /2) cos ( /2) , 1, 3, 5 .

C C C

j d j j

πξ + πξ + πξ

− πξ ξ = πξ =

∫

 
 (38)

Because of the orthogonality of the cosines in (38), this relation is brought to the individual three algebraic equations for C1, 
C2, and C3, from the solution of which we fi nd C1 = 4/π, C2 = –4/3π, and C3 = 4/5π. The coeffi cients Ck and the eigenvalues 
νk (the coeffi cients under the sign of the exponents in relation (35)) can be determined from the general formulas

 
1 2 24( 1) /( ) , /4 ,k

k kC r r+= − π ν = π   (39)

where r = 2k – 1 and k = 1, 2, 3. In view of (35) and (39), relation (33) representing the solution of problem (1)–(4) in the 
third approximation takes the form

 1
( , Fo) 1 exp ( Fo) cos ( /2) , 2 1 , 3 .

n

k k
k

C r r k n
=

Θ ξ = + ν πξ = − =∑
 

 (40)

Investigation of the solutions of the problem for the subsequent approximations allows the conclusion that they are defi ned 
by relation (40) at all the values of k = 1, ∞  in which the coeffi cients Ck and the eigenvalues νk determined by the general 
formulas (39) are identical to those determined by the exact formulas. Consequently, formula (40) at n → ∞ is identical to the 
exact analytical solution of problem (1)–(4) [16].

Thus, using the additional boundary conditions, we have obtained the exact analytical solution of the boundary-
value problem (1)–(4) on condition that Eq. (1) is fulfi lled only at the boundaries of the computational region ξ = 0 and 
ξ = 1. The fulfi llment of Eq. (1) averaged over the coordinate ξ (the integral of heat balance (21)) makes it possible to obviate 
its integration with respect to the spatial coordinate and reduce the solution of the problem to the integration of the ordinary 
differential equation only with respect of the time variable.

Application of the Method. As a concrete example of the application of the above-described method to the solution 
of more complex problems, we refer to the problem on the heat conduction in an infi nite plate with variable physical 
properties (a heat-conduction coeffi cient changing by the exponential law depending on the space coordinate) in the following 
mathematical formulation:

 

( , ) ( , )( ) , 0 , 0 ,T x T xc x x
x x

∂ τ ∂ ∂ τ⎡ ⎤ρ = λ τ > < < δ⎢ ⎥∂τ ∂ ∂⎣ ⎦
 (41)

 0 w( , 0) , (0, )/ 0 , ( , ) ,T x T T x T T= ∂ τ ∂ = δ τ =  (42)

where λ(x) = λ0 exp (–mx), m is a coeffi cient, and λ0 is the heat-conduction coeffi cient at x = 0. With the use of the accepted 
designations, problem (41)–(42) takes the form

 

( , Fo) ( , Fo)e , Fo 0 , 0 1 ,
Fo

−νξ⎡ ⎤∂Θ ξ ∂ ∂Θ ξ
= > < ξ <⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦

 (43)

 ( , 0) 0 ,Θ ξ =  (44)
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 (0, Fo) 0 ,∂Θ
=

∂ξ
 (45)

 (1, Fo) 1 ,Θ =  (46)

where ν = mδ.
As above, we introduce an additional desired function in the form of (5) into consideration. The solution of problem 

(43)–(46) with the use of (5) is sought in the form

 0
( , Fo) ( ) ( ) , 0, ,

n

k k
k=

b q k nΘ ξ = ϕ ξ =∑
 

 (47)

where φk(ξ) = ξk (k = 0, n ) are algebraic coordinate functions. Note that we use the algebraic functions because the additional 
boundary conditions are diffi cult to apply to the problem being considered and, therefore, cannot be fulfi lled a priori through 
the use of trigonometric functions. Algebraic coordinate functions are more preferable in this case because they produce 
chain systems of algebraic linear equations for the unknown coeffi cients bk(q), which allows one to fi nd their solutions with 
practically any number of approximations.

To obtain a solution of problem (43)–(46), we substitute three terms of series (47) into (5), (45), and (46). As a 
result, we will have three linear algebraic equations for the unknown coeffi cients bk(q) (k = 0, 1, 2). On determination of the 
coeffi cients bk(q), relation (47) takes the form

 
2( , Fo) (Fo) (1 (Fo)) .q qΘ ξ = + − ξ   (48)

The integral of heat balance for Eq. (43) is written in the form

 

1 1

0 0

( , Fo) ( , Fo)e .
Fo

d d−νξ⎡ ⎤∂Θ ξ ∂ ∂Θ ξ
ξ = ξ⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦

∫ ∫
 

 (49)

Substitution of (48) into (49) gives

 3(1 (Fo)) exp ( ) 0 ,q q′ − − −ν =   (50)

where q′ = dq(Fo)/dFo. Integrating Eq. (50), we obtain

 
3Fo exp ( )

1(Fo) 1 e ,q C − −ν= +   (51)

where C1 is an integration constant. Substitution of (51) into (48) gives

 
3Fo exp ( )

1( , Fo) 1 e ( ) ,C − −νΘ ξ = + ψ ξ   (52)

where ψ(ξ) = 1 – ξ2. To determine the integration constant, we construct the residual of the initial condition (44) and require 
the orthogonality of this residual to the function ψ(ξ) representing, in essence, an eigenfunction:

 

1
2 2

1
0

[1 (1 ) ] (1 ) 0 .C d+ − ξ − ξ ξ =∫
 

 (53)

Integrating (53), we fi nd C1 = –3/2. Relation (52) with the determined value of the integration constant C1 represents the 
solution of problem (43)–(46) in the fi rst approximation. This solution exactly satisfi ed the boundary conditions (45)–(46) 
and the heat-balance integral (49) (the averaged Eq. (43)), and it approximately satisfi es (in the fi rst approximation) Eq. (43) 
and the initial condition (44).

To increase the accuracy of the solution of the problem, it is necessary to increase the number of terms in series 
(47) whose unknown coeffi cients are determined from the main boundary conditions (45) and (46), relation (5), and certain 
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additional boundary conditions by the above-described method. In particular, for solving problem (43)–(46) in the second 
approximation, these conditions have the form

 

2 3

2 3
(0, Fo) (0, Fo)2 0 ,∂ Θ ∂ Θ

ν − =
∂ξ ∂ξ

 (54)

 
2

2
(0, Fo) (Fo) ,

Fo
dq

d
∂ Θ

=
∂ξ

 (55)

 
2

2
(1, Fo) (1, Fo) 0 .∂ Θ ∂Θ

− ν =
∂ξ∂ξ

 (56)

Substituting six terms of series (47) into relations (5), (45), (46), and (54)–(56), we have a chain system of six 
algebraic linear equations for bk(q) (k = 0, 1, 2, …, 5). On determination of the coeffi cients bk(q) (k = 0, 1, 2, …, 5) in (47), 
this relation takes the form

 
2 3 4 5

1 2 3 4 5 3( , Fo) /2 /3 ( (1 ) ) / ( (1 ) ) /( /2) ,q q q q q q q′ ′ ′ ′Θ ξ = + ξ + ν ξ + μ − + μ ξ μ + μ − + μ ξ μ   (57)

where μ1 = 30(ν – 4), μ2 = 54 + ν(19 – 4ν), μ3 = 6(ν – 8), μ4 = 12(ν – 3), and μ5 = 15 + ν(3 – ν). Substituting (57) into the 
heat-balance integral (49) and integrating the relation obtained with respect to the unknown function q(Fo), we obtain the 
second-order  ordinary differential equation

 1 2 1 0 ,r q r q q′′ ′+ + − =   (58)

where q′ = dq(Fo)/dFo, q″ = d2q(Fo)/dFo2, r1 = eν(6ν – ν2 + 66)/3600, and r2 = –(2νeν – 18eν – 2ν – 9)/60. Integration of 
Eq. (58) gives

 1 1 2 2(Fo) 1 exp ( Fo) exp ( Fo) ,q C z C z= + +   (59)

where z1,2 = ( )2
2 2 14r r r− ± − /(2r1), and C1 and C2 are integration constants. Substituting (59) into (57), we fi nd

 
1 2Fo Fo

1 1 2 2( , Fo) 1 ( )e ( )e ,z zC CΘ ξ = + ψ ξ + ψ ξ   (60)

where
2 3 4 5

1, 2, 3, 4,( ) 1 ,k k k k kR R R Rψ ξ = + ξ + ξ + ξ − ξ

1, 2, 3, 2 1 3/2 , /3 , ( )/ ,k k k k k kR z R z R z= = ν = μ − μ μ

4, 5 4 32( )/ , 1, 2 .k kR z k= μ − μ μ =

Substituting (60) into the initial condition (44) and requiring the orthogonality of the residual obtained to the functions ψ1(ξ) 
and ψ2(ξ), we obtain a system of two algebraic linear equations for the integration constants C1 and C2:

 

1

1 1 2 2
0

[(1 ( ) ( )] ( ) 0 , 1, 2 .jC C d j+ ψ ξ + ψ ξ ψ ξ ξ = =∫
 

 (61)

Solving the system of equations (61), we fi nd

 

1 2

1 2 3
( 1, 2) ,

( )
k

k
a z aC k
z z a

−
= =

−  
 (62)

where
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2 3 4
1

2 3
2

2 3 4
3

618,084 157,848 8304 2508 179 ,

4,254,480 44,640 178,200 10,920 ,

(30,501,684 7,409,208 515,664 121,548 8869 )/42 .

a

a

a

= + ν − ν − ν + ν

= − ν − ν + ν

= + ν − ν − ν + ν

If ν = 0, relations (59) and (60) are brought to the form

 
2.47097Fo 22.0745Fo(Fo) 1 1.2572e 0.4061e ,q − −= − +  (63)

 
2 4 5 2.47097Fo

2 4 5 22.0745Fo

( , Fo) 1 ( 1.2572 1.5533 0.35183 0.055767 )e

(0.40612 4.4823 9.0703 4.9941 )e .

−

−

Θ ξ = + − + ξ − ξ + ξ

+ − ξ + ξ − ξ
 (64)

Note that the coeffi cients under the sign of the exponents in relations (63) and (64) differ insignifi cantly from the exact 
eigenvalues z1 = 2.4674 and z2 = 22.2066 of the Sturm–Liouville problem. The coeffi cients Ck (k = 1, 2), with which the 
exponents of relations (63) are prefi xed, differ insignifi cantly from the coeffi cients of the classical exact analytical solution, 
obtained from the fulfi llment of the initial condition of the boundary-value problem, whose exact values are C1 = 1.2732 and 
C2 = 0.4241. Comparison of the results of calculations by formula (64) at ν = 0 with the classical exact analytical solution 
of problem (43)–(46) [18] shows that, in the range of 0.1 ≤ Fo < ∞, the discrepancy between them does not exceed 1%. The 
solutions for other approximations can be found analogously. In fi nding these solutions, no signifi cant diffi culties appear, and 
only the volume of computational work increases because of the complexity of the problem being solved, which is, per se, 
nonlinear (it is characterized by the second-kind nonlinearity due to the dependence of the physical properties of the plate on 
the space variable).

The results of calculations of the temperature of the plate by formula (60) at ν = 0.01, the results of calculations 
of this temperature in the fi rst approximation in [18], and the results of analogous calculations by the method of fi nite 
differences are compared in Fig. 2. Analysis of these data allows the conclusion that, in the range 0.05 ≤ Fo < ∞, the results 
of calculations by formula (60) are practically identical to the results of calculations by the numerical method (the step 
method). In Fig. 2, the results of calculations of the temperature of the plate by formula (47) in the third (k = 0, 8 ) and fourth 
(k = 0, 11 ) approximations are also presented. Analysis of these data shows that the accuracy of solving the problem being 

Fig. 2. Temperature distribution in the plate at ν = 0.01 calculated by formula (3.278) from 
[18] (1) and by formula (47) in the second (2), third (3), and fourth (4) approximations: 
5) numerical solution.
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considered with the use of additional boundary conditions determined by the above-described method increases substantially 
with increase in the number of terms in series (47), which is evidence of the convergence of this method.

Conclusions. An exact analytical solution of the problem on the heat conduction in an infi nite plate with the 
symmetric fi rst-kind boundary conditions has been obtained using the integral method of heat balance with an additional 
desired function and additional boundary conditions. The use of the additional desired function is caused by the need for 
taking into account the fact that the velocity of heat propagation is infi nite in accordance with the parabolic heat-conduction 
equation. With this function, the solution of the partial differential equation can be reduced to the integration of the ordinary 
differential equation. Using the method proposed, we also obtained a high-accuracy approximate analytical solution of the 
problem on the heat conduction in an infi nite plate with an exponential dependence of the heat-conduction coeffi cient on the 
space variable in the simple form of the product of the experimental time function and the exponential coordinate, dependent 
on only the space variable. It was shown that the accuracy of solving the problem substantially increases with increase in the 
number of approximations used, which is evidence of the convergence of the method proposed in the case where it is used for 
solving boundary-value problems defi ned by complex differential operators.

The construction of additional boundary conditions is based on the use of the differential equation and the main 
boundary conditions of the boundary-value problem. They are found in such a form that their fulfi llment in relation to the 
desired solution is equivalent to the fulfi llment of the differential equation at the boundary points of the computational region. 
It was shown that the fulfi llment of this equation at the boundary points provides its fulfi llment throughout the range of 
change in the time and space variables.

Since the process of obtaining an analytical solution of a boundary-value problem including a partial differential 
equation is reduced to the integration of the ordinary differential equation, the method proposed can be used for solving 
problems defi ned by equations with complex differential operators, e.g., nonlinear problems and problems with variable 
physical properties (which were solved in the present work), problems with time-dependent initial conditions and boundary 
conditions, problems with heat sources, and others.
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of the Russian Federation within the framework of the basic part of the state task of the Samara State Technical University 
(Project No. 1.5551.2017/8.9).

NOTATION

a, thermal diffusivity; c, heat capacity; Fo = aτ/δ2, Fourier number; T, temperature; ΔT = Tw – T0; T0, initial 
temperature; Tw, temperature of the wall at x = δ; x, coordinate; δ, thickness of the plate; Θ = (T – T0)/ΔT, dimensionless 
temperature; λ, heat-conduction coeffi cient; ξ = x/δ, dimensionless coordinate; ρ, density; τ, time. Subscript: w, wall.
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