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TRANSFER PROCESSES IN RHEOLOGICAL MEDIA

ON THE APPLICABILITY OF THE OSTWALD–DE WAELE MODEL 
IN SOLVING APPLIED PROBLEMS

V. M. Shapovalov    UDC 532.135+536.24

By comparing the results of calculation of power-law fl uid fl ow in a slit with the Ellis fl uid fl ow, the inaccuracy of the 
power-law model is shown as much in describing the velocity profi le as in determining the non-Newtonian fl uid fl ow 
rate. Moreover, the error of the power-law model in the description of temperature distribution in the case of dissipative 
heating of non-Newtonian fl uid over a stabilized segment is shown. The boundary condition of fi rst kind was used.
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Introduction. For describing the section of variable viscosity of non-Newtonian fl uids, de Waele (1923) and Ostwald 
(1925) suggested an empirical equation known as a power law. The Ostwald–de Waele model is widely used for describing 
fl ows of rheologically complex fl uids (melts and polymer solutions) in technological equipment during the processing of 
these fl uids. This is due to the relative simplicity of the two-parameter model and to the convenience of determining the 
rheological characteristics from the fl ow curve [1]. The main drawback of the power-law model is the error in describing the 
fl uid behavior in the vicinity of low rates of deformation (of the highest Newtonian viscosity) [2].

Usually, a researcher, when constructing, for example, a model of fl ow in a channel, gives preference to the power-
law model due to the following considerations. The highest shear rate (or shear stress) is near the channel wall. It corresponds 
to the portion of approximation of the fl ow curve. Precisely this region determines the behavior of fl ow, including the integral 
parameters. In the vicinity of the velocity maximum, the shear rate is close to zero. Under these conditions, the power-law 
model yields an overestimated effective viscosity for pseudoplastics. But the dimensions of the zone of high viscosity are 
insignifi cant, and this zone must not exert a substantial infl uence on fl ow. However, as will be shown below, the magnitude 
and the distribution of the effective viscosity in the "core" exert a substantial infl uence on the velocity profi le, also in the 
"zone of gradient fl ow."

In the present work, an attempt has been made to estimate the error of application of the power-law model in solving 
the problems of fl ow and heat transfer in a plane channel. The estimate was obtained by comparing the calculated results for 
the power-law model with the results for an Ellis fl uid. The Ellis model has been taken as a standard, since it gives a good 
description for the behavior of rheologically complex fl uids at low and mean deformation rates. The three-parameter Ellis 
model at low shear rates predicts the Newtonian behavior of a fl uid and the existence of the fi nal viscosity value.

Non-Newtonian Fluid Flow in a Plane Channel. The scheme of the fl ow and the system of Cartesian coordinates 
are presented in Fig. 1. We have two infi nite parallel plates, the distance between which is equal to 2h. The forced fl ow takes 
place only in the direction of x. The fl ow is isothermal and laminar. We ignore the friction of the fl uid against the side walls 
and assume that B >> h.

To obtain computational formulas, we will avail ourselves of the Rabinovich–Mooney method [1, 3]. We will write 
the relationship between the stress τ and shear rate γ  in the form of the equation of state:

 γ τ= ( ) .f   (1)

The fl uid fl ow rate and the velocity profi le on the assumption of the validity of the condition of fl uid adherence to the wall 
(absence of slip) are determined by the integrals [1, 3]
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Here τw = hΔp/L, τ = τwy/h, ξ = y/h, and V = 2Bhvx/Q.
Let us consider the Ostwald–de Waele fl uid fl ow:

 0τ μ γ τ = τ μ
1

0= , ( ) ( / ) .n nf   (3)

Substituting expression (3) into formulas (2) and performing integration, we obtain
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According to expression (4), the profi le of dimensionless velocity at any stress on the wall is determined by the fl ow index. 
In the Newtonian case (n = 1), we have a parabolic distribution V(ξ) = 1.5(1 – ξ2).

The Ellis fl uid fl ow. In this case, the equation of state (1) takes the form

 
αγ = τ = τ + τ( )  .f a b   (5)

Substituting expression (5) into formulas (2), we obtain
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According to (6), the dimensionless velocity profi le depends not only on the rheological constants of the Ellis model (a, b, α), 
but also on the shear stress on the wall.

For numerical analysis we will avail ourselves of the data of rheological investigations made in work [4]. 
Measurements were carried out on a plunger-type capillary viscosimeter. The rubber mixture was used based on SKI-3NT 
and SKMS-30ARKPN raw rubbers (50 mass parts each), containing technical carbon PM-15 (35 mass parts) and PGM-33 
(38 mass parts) as fi llers. The main composition also contained straw oil (18 mass parts), sulfur (1.5 mass part), and zinc 
oxide (3 mass parts). The diameters of the plunger and the cylindrical chamber of thermostating were equal to 9.52 mm, the 
diameter of the capillary was 2 mm, and the temperature of the mixture in tests was maintained equal to 120oC. The interval 
of shear stresses from 0.123 to 0.203 MPa was investigated. The expressions τw = hΔp/L and τ = τwy/h allow one to determine 
pressure and shear stress in megapascals, with the computational equations remaining unchanged.

As a result of the processing of the fl ow curve by the method of selected points, the following values of rheological 
constants for the Ellis model have been obtained: α = 17.893, a = 350.217 MPa–1·s–1, b = 2.373·1015 MPa–α·s–1. 
Correspondingly, for the Ostwald–de Waele model we obtained: n = 0.071, μ0 = 0.124 MPa·s0.071. The material is a clearly 

Fig. 1. Computational scheme.
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expressed pseudoplastic. The processing of rheological data was carried out without account for Weissenberg–Rabinovich′s 
correction, because it does not exert a qualitative infl uence on the result.

A comparison of the approximations with experimental points is illustrated with the aid of the dependence of effective 
viscosity on shear stresses (μw = τw/ γ ). Since the shear stress is measured in megapascals, the dimensionality of the viscosity 
will be MPa·s. The expressions for calculating the effective viscosity in the Ellis model (5) and in the Ostwald–de Waele 
model (3) have the form

 ( ) ( )
−−α−μ = + τ μ = μ τ μ

111
w w w 0 w 0, / .

n
na b

 
 (7)

The calculated dependences of viscosity on shear stress obtained with the aid of formulas (7) are presented in Fig. 2. 
It is seen that at high values of shear stresses both models yield closely coinciding results. However, at stresses less than 
0.16 MPa, considerable disagreement exists between the predicted viscosities. The Ellis model demonstrates a monotonically 
varying viscosity and agrees well with experimental results. At the same time, the Ostwald–de Waele model shows an 
overestimated viscosity, which, in particular, follows from the computational formula (7) (at n < 1 for τw → 0 and μw → ∞).

Figure 3 presents the results of numerical analysis of formulas (4) and (6).

Fig. 2. Viscosities on the wall for the Ellis fl uid (1) and Ostwald–de Waele fl uid (2) vs. 
the shear stress on the wall; (3), experimental points.

Fig. 3. Dimensionless velocity profi les in Ostwald–de Waele fl uid fl ow (1, n = 1; 
2, 0.071) and in Ellis fl ow (3, τw = 0.123 MPa; 4, 0.202).

Fig. 4. Flow rate characteristics of Ellis fl uid fl ow (1) and of Ostwald–de Waele fl uid 
fl ow (2).
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The diagram for the Ostwald–de Waele Newtonian fl uid (n = 1) was plotted for comparison. Curve 2 corresponds to 
the Ostwald–de Waele fl uid for the entire range of shear stresses. In the Ellis fl uid fl ow, the velocity profi le depends on the 
stress on the wall. In the range of low shear stresses, τw < 0.123 MPa (low pressure gradients), the velocity profi le is close to the 
Newtonian one (line 3), and lines 1 and 3 practically merge. The non-Newtonian effect (line 4) increases with the shear stress.

It should just be noted that the velocity profi le exerts a substantial infl uence on the intensity of the processes of heat 
and mass transfer; consequently, the Ostwald–de Waele model is unsuitable for their adequate description.

Figure 4 presents, in semilogarithmic coordinates, the calculated fl ow rate characteristics of the Ostwald–de Waele 
(4) and Ellis (6) fl uid fl ows. It is seen from the fi gure that the power-law model yields substantially underestimated values of 
the fl ow rate, especially with decrease in the shear stress. The discrepancy decreases at high shear stresses. The results obtained 
correlate well with the data on the rheological investigations presented in Fig. 2, according to which the viscosity predicted by 
the Ostwald–de Waele model increases substantially with decreasing shear stress. Analogous calculations were carried out for 
polyethylene melt fl ow in a round channel. The results agree qualitatively with the results presented in this work.

Heat Transfer Problem. During tube fl ow of polymer melts having a high viscosity there occurs intense heat release 
due to the internal friction. The intensity of heat release changes from zero in the center of the channel to a maximum value 
near the channel wall.

We will estimate the error of the power-law model in solving a relatively simple problem of heat transfer. The 
estimation is carried out by comparing the calculated results for the power-law model with the results for the Ellis fl uid. 
The scheme of fl ow and thermal loading of a non-Newtonian fl uid in a plane slit is presented in Fig. 1. The rheological 
and thermophysical constants are independent of temperature. The fl ow is steady-state and laminar. The wall temperature 
is maintained constant (boundary condition of the fi rst kind). We assume that ∂/∂x = ∂/∂z = ∂/∂t = 0. The problem amounts 
to searching for the temperature distribution in the transverse section so removed from the inlet that the temperature is 
independent of the longitudinal coordinate.

The temperature fi eld is described by the Fourier–Kirchhoff equation [1] and by the boundary conditions:
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To close problem (8)–(10), one of the following rheological models is used: the Ostwald–de Waele one (3) or the Ellis one 
(5). The relations obtained earlier, say τ = τwy/h, are taken into account.

As a result of the integration of the Fourier–Kirchhoff equation (8) subject to conditions (9) and (10), for the Ellis 
model (5) we obtain the following temperature distribution:
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Correspondingly, for the Ostwald–de Waele model (3) we obtain
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In expressions (11) and (12) the following notation has been adopted:
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The expression for the temperature in formulas (11)–(13) does not involve rheological parameters and provides the possibility 
for comparing the temperature curve of both models under identical conditions of fl ow.
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According to expressions (11) and (12), the temperature profi le has maxima at the point ξ = 0. In this case, the 
maximum temperatures for the Ellis model (11) and the Ostwald–de Waele model (12) are described by the expressions
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Here the following designations are used: θE,m = θE(ξ = 0), θO–W,m = θO–W(ξ = 0).
To carry out a numerical analysis, we will avail ourselves of the earlier obtained rheological characteristics. Figure 5 

presents the calculated temperature profi les constructed with the use of expressions (11) and (12) for the least shear stress 
(τw = 0.123 MPa) and the highest shear stress (τw = 0.203 MPa) on the wall. It is seen that in the case of the Ellis fl uid (lines 
1, 2) there is a smooth change in the temperature over the entire section. For the Ostwald–de Waele fl uid (lines 3, 4), the 
temperature distribution in the fl ow core is practically homogeneous and changes sharply near the wall over the portion 
0.8 < ξ < 1. In this case, the shape of the curve is unchangeable, since, according to expression (12), it depends only on 
the fl ow index. Moreover, in absolute value, the Ostwald–de Waele model at low stresses on the wall shows substantially 
underestimated values of temperature (curve 3).

Figure 6 presents the graph of the change of the maximum temperature in the center of the fl ow with variation of 
the shear stress on the wall. Use was made of the computational formulas (14). It is seen from the fi gure that the Ostwald–de 
Waele model yields highly underestimated values of temperature in the entire range. With decrease in the shear stresses the 
discrepancy increases, attaining three decimal orders. We also have studied the infl uence of the shear stress at the wall on 
the heat fl ux density on the wall. The graph of the dependence of the heat fl ux density on the shear stress is analogous to that 
presented in Fig. 6. The considerable discrepancy is attributed to the inaccurate description of the kinematic characteristic of 
non-Newtonian fl uid fl ow by the Ostwald–de Waele model, which was noted earlier.

Thus, the power-law model yields a large error in the prediction of the temperature fi eld and in the description of 
the change in the maximum temperature with the shear stress on the wall. The discrepancy decreases when the fl ow index 
approaches unity. It is evident that at other forms of thermal loading too, including nonstationary problems, error in the 
prediction of the velocity profi le will lead to errors in the calculation of the temperature fi eld and heat fl uxes.

The power law model can be used for tentative determination of the contour of the plastic core with subsequent 
application of the viscoelastic model, for example, of the Shvedov–Bingham one.

Fig. 5. Temperature distribution in the cross section of the channel with the Ellis fl uid 
fl ow (1, 2) and the Ostwald–de Waele fl uid fl ow (3, 4): 1, 3, τw = 0.123 MPa; 2, 4, 0.203.

Fig. 6. Maximum temperature vs. the shear stress on the wall for the Ellis fl uid (1) and 
Ostwald–de Waele fl uid (2).
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When a simple shift predominates in fl ow (for example, the operation of rolls is accompanied by great friction), 
it is possible to isolate the simple shear component of fl ow as the predominant one, responsible for the effects of viscosity 
anomaly, and apply the power law model [5–9]. However, formally an approximate solution of the problem is obtained in 
such a case.

CONCLUSIONS

1. The error of the prediction by the Ostwald–de Waele model depends on the shape of the cross section of a 
channel, magnitude of the shear tress on the wall, and on the fl ow index.

2. The error of the Ostwald–de Waele model in predicting the integral parameters of fl ow (fl ow rate, temperature) 
increases with decrease in the shear stress on the wall.

3. At the given shear stress on the channel wall, the value of the error increases with the deviation of the fl ow index 
from unity (n < 1).

4. The results obtained should be taken into account in using the Ostwald–de Waele model in heat and mass 
transfer problems (stationary and nonstationary), for which the accuracy of description of the velocity fi eld is of 
decisive importance.

NOTATION

a, b, constants of the Ellis model, MPa–1·s–1, MPa–α·s–1; B, width of the slit, m; 2h, distance between plates, m; 
L, channel width, m; n, fl ow index in Ostwald–de Waele model; Q, volume fl ow rate of fl uid, m3/s; t, time, s; T, Tw, 
temperatures of fl uid and of the channel wall, K; TE, TO–W, temperatures of the Ellis fl uid and of the Ostwald–de Waele 
fl uid, K; vx, axial velocity, m/s; V, dimensionless velocity; x, y, z, Cartesian coordinates, m; α, constant in the Ellis model, 
dimensionless quantity; γ , shear rate, s–1; Δp, pressure fall, MPa; θE, θO–W, temperatures of the Ellis and Ostwald–de Waele 
fl uid fl ows, MW/m3; θE,m, θO–W,m, maximal temperatures on the axis of the Ellis and Ostwald–de Waele fl uid fl ows, MW/m3; 
λ, coeffi cient of thermal conductivity of fl uid, MW/(m·K); μ0, a constant of the Ostwald–de Waele rheological model, MPa·sn; 
μ, effective viscosity, MPa·s; ξ, dimensionless transverse coordinate; τw, shear stress on the wall, MPa; τ, shear stress, MPa. 
Indices: w, value on the channel wall; x, along the x axis; E, for the Ellis model; O–W, for the Ostwald–de Waele model; 
m, maximum temperature.
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