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INFLUENCE OF DISSIPATION ON HEAT TRANSFER DURING FLOW
OF A NON-NEWTONIAN FLUID IN A POROUS CHANNEL

A. V. Baranov and S. A. Yunitskii UDC 532.135:536.242:678:065

A study is made of fl ow and heat transfer during the motion of a non-Newtonian (power-law) fl uid in a plane 
channel fi lled with porous material. The Brinkman equation is used as the equation of state, and a one-temperature 
model, in representing the energy equation. Account us taken of dissipative heat releases. The problem is solved for 
temperature boundary conditions of the fi rst kind. The authors show the infl uence of dissipation on the development 
of the temperature profi le, and also on the distributions of the local Nusselt number and the mass-mean temperature 
along the channel.
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Introduction. In recent years, a considerable number of works have appeared in the world literature on convective 
heat transfer during the fl uid fl ow in channels fully or partially fi lled with porous material. This is due to the wide use of such 
forms of fl ow in highly diverse technological processes [1, 2]. We can primarily note the works on modeling viscous-fl uid 
fl ow though a channel partially fi lled with porous material [3–8]. In the region of the fl owing fl uid, fl ow was described by 
the Navier–Stokes equation, whereas in the porous layer use was usually made of the Brinkman equation or the Forchheimer 
law. Both symmetric and nonsymmetric boundary conditions of the second kind (assigned heat fl ux) were set on channel 
walls in [3–5]. One wall could be adiabatic. Calculations were mainly reduced to computing the Nusselt number. A model of 
convective heat transfer was proposed in [6], in accordance with which the temperature on the liquid–porous layer boundary 
is determined from the condition of equality of heat fl uxes, and the velocity on this boundary, from the condition of equality 
of shear stresses. In [7], a numerical study has been made of laminar forced convection in pipe fl ow. Consideration was given 
to three cases of partial fi lling of the pipe with porous material. The Navier–Stokes equation was used to describe fl uid fl ow 
in the free region, and the Forchheimer law was adopted in the porous medium. The solution of the thermal problem was 
based on a model with one equation of state, which assumed a local heat equilibrium between liquid and solid phases. The 
infl uence of the Darcy number in a wide range on the velocity profi les, the local and average Nusselt numbers, and also on 
the pressure difference was studied. The effi ciency of free-convective heat transfer in a heated pipe was assessed in [8] for 
two situations: the porous medium in the pipe′s central zone and the pipe whose wall is coated with a porous-medium layer. 
The applicability of the assumption of local heat equilibrium was investigated. Conditions were determined where on fi lling 
the pipe′s central zone with porous medium, the heat-transfer effi ciency is higher than that in the case of the walls coated with 
a porous-medium layer.

Recent years have also seen a great number of works in which consideration is given to heat transfer during the 
fl uid fl ow through a channel fully fi lled with porous material [9–25]. First we should note publications in which the problem 
is solved without account taken of energy dissipation [9–14]. Thus, in [9, 10], heat transfer during the fl ow of a power-
law fl uid in a plane channel has been considered on the basis of the Brinkman–Forchheimer model with thermal boundary 
conditions of the fi rst [10] and second kind [9]. In the solution, use was made of the classical Kármán–Pohlhausen integral 
method for the velocity profi le. Calculations were mainly reduced to computing local Nusselt numbers. However, work [9] 
also gives the infl uence of various parameters (index of fl ow, the Darcy number, etc.) on the velocity profi le. In [11], such a 
problem has been solved on the basis of the Brinkman model now for a Newtonian fl uid. Consideration was given to thermal 
boundary conditions of the fi rst kind for a plane channel and for a circular channel alike. A classical methodology was used, 
which is applied in solving the Grätz problem. The authors placed primary emphasis on calculations of the local and average 
Nusselt numbers, and also on the infl uence of various parameters on them. Khashan et al. [12] investigated the acceptability 
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of the assumption of local thermal equilibrium in forced convective fl ow of a power-law fl uid. Based on numerous calculations, 
they established the bounds within which the local-thermal-equilibrium assumption is acceptable. The role of the Péclet and 
Biot numbers, of the index of fl uid fl ow, and of other parameters in this respect was noted. In [13], a study has been made 
of fully developed forced convection during the fl uid fl ow in rectangular channels. The Brinkman equation was used as the 
equation of motion. The solution obtained in Fourier series made it possible to obtain temperature and velocity profi les. Use 
was made of thermal boundary conditions of the fi rst kind. Cekmer et al. [14] modeled, on the basis of the Brinkman equation, 
steady-state fully developed convective heat transfer during the fl ow of a Newtonian fl uid in a plane channel with asymmetric 
boundary conditions of the second kind. Numerical calculations of the Nusselt numbers on the upper and lower channel walls 
were given at different Darcy numbers. The relation of the heat fl uxes on the upper and lower walls when the Nusselt number 
undergoes a discontinuity and changes sign was shown.

The next step in the development of the theory of heat transfer in porous channels was entering the term refl ecting 
dissipative heat releases into a mathematical model [15–25]. It has been shown in [15–17] that depending on different 
theoretical assumptions, the dissipative function in the energy equation can be written variously. Three different forms of 
representation of the dissipative term were given, but it was noted that, at small Darcy numbers, all the three models yielded 
identical results. For more signifi cant Darcy numbers, it is necessary to use experimental data to establish which of the 
models is better suited to concrete fl ow conditions. Thus, in [15, 16], fl ow and heat transfer in a plane channel are considered 
on the basis of the Brinkman equation. In [15], use is made of only thermal boundary conditions of the fi rst kind, but the 
axial thermal conductivity is taken account of in the energy equation. In [16], consideration is given to thermal boundary 
conditions of the fi rst kind and the second kind alike. In both works, calculations were done and expressions have been 
obtained on the distribution of the local Nusselt number along the channel′s dimensionless length at different values of 
the Darcy, Péclet, and Brinkman numbers. The obvious infl uence of the dissipation effect on heat-transfer characteristics 
has been refl ected. An analogous problem, but for a rectangular passage, has been solved with boundary conditions of the 
fi rst and second kind in [18]. The energy equation was solved by the extended weighted residuals method with the use of 
Green′s functions. Calculations of the heat-transfer coeffi cients have shown that a fully developed thermal regime of fl ow 
can be impractical for very narrow channels with boundary conditions of the second kind. In [19], the problem on convective 
heat transfer in a circular tube with boundary conditions of the second kind has been solved by the method of separation 
of variables. In computing the eigenfunctions, ordinary differential equations were numerically solved by the Runge–Kutta 
method. Results of the temperature-profi le calculations have shown that account taken of the energy dissipation makes an 
appreciable contribution to the solution even at small values of the Brinkman number. The changes in the wall temperature 
and in the Nusselt number along the tube have also been shown. Unlike the above-given works [15–19] on studying heat 
transfer with account of dissipation for Newtonian fl uids, work [20] considers fl ow of a power-law fl uid in a plane channel 
with thermal boundary conditions of the second kind. The solution is reduced to numerical integration of a system of ordinary 
differential equations by the Runge–Kutta method. Fascinating calculations of transverse temperature and velocity profi les 
are given. The infl uence of the energy dissipation on stability loss in fl ow through a plane porous channel with asymmetric 
thermal boundary conditions is the focus of [21]. The temperature of the upper boundary is constant and the lower boundary 
is heat-insulated. The fl ow is described by the Brinkman equation. Furthermore, it is shown that the results obtained within 
the framework of the Brinkman model in the limiting case of the Darcy parameter tending to infi nity (free fl uid) differ from 
the results of solution of the relevant problem within the framework of the Navier–Stokes model. In particular, the fi rst model 
yield overstated values of temperature throughout the layer thickness except boundary points. Coelho et al. [22] have given 
the analytical solution for dissipative fully developed hydrodynamic and thermal fl ow on a very viscous Newtonian fl uid in 
an annulus. Use was made of the form of representation of the dissipative term, which is compatible with the limiting case of 
fl ow of a pure (free) fl uid at infi nitely large Darcy number.

All the works ([15–22]) taking account of dissipative heat releases were based on the so-called one-temperature 
model using one energy equation and assuming local thermal equilibrium. In this case the internal heat transfer between the 
fl uid and the solid skeleton is rather fast. In [23–25], in describing heat transfer in porous channels, use is made of a model 
including two energy equations: one describes the temperature fi eld in fl uid, and the other (heat-conduction equation), the 
temperature distribution inside the solid phase. Such models are used in the cases where the low heat transmission on the 
boundary of the liquid and solid phases leads to a noticeable difference of the temperatures in these phases. Clearly, this leads 
to a signifi cant complication of the model and cumbersome computations.

As can be seen from the above-given brief literature review, all the published works, in practice, are devoted to heat 
transfer in porous channels during the fl ow of Newtonian fl uids. In [20], consideration has been given to power-law-fl uid 



1005

fl ow in a plane channel with thermal boundary conditions of the second kind. The fl ow was considered as fully stabilized 
thermally, the initial thermal portion was absent, and the temperature profi les, accordingly, were independent of the axial 
coordinate. Taking into account all the aforesaid, in the present work, we have made an attempt to fi ll the exiting gap in 
the fi eld of simulation of fl ow of a power-law fl uid in a porous channel with account of energy dissipation with boundary 
conditions of the fi rst kind.

The important role of the temperature dependence of viscosity is worthy of separate note. However, all the published 
works, in practice, are devoted to heat transfer in porous channels at the fl uid′s constant physical properties, including 
viscosity. But the fact that it is precisely the temperature dependence of viscosity that is the most substantial for all kinds of 
fl uids is a matter of common knowledge. The number of works on nonisothermal (i.e., with a varying viscosity) fl uid fl ow in 
porous channels is obviously insuffi cient. One example of such publications, which are few in number, can be [26] where the 
analytical solution has been obtained to the steady-state problem of forced convection in a rectangular duct with boundary 
conditions of the second kind. Viscosity was considered to be inversely proportional to temperature. However, the Darcy 
equation was used as the equation of motion, and the pressure gradient was assumed constant. Of course, all this renders the 
mathematical model rather far from reality. Therefore, taking into consideration the aforesaid, we will make account of the 
temperature dependence of viscosity the focus of our next publication.

Mathematical Model. In formulating a mathematical model, we make a number of universally adopted assumptions, 
which were already used earlier in describing free-fl uid fl ow in channels [27–29]. The fl uid viscosity is considered fairly high, 
so that the fl ow is implemented at low values of the Reynolds number (Re ≤ 0.01). As a result, the hydrodynamic initial portion 
is absent, in practice, and the velocity profi le at the channel inlet may be assumed developed. Furthermore, this enables us to 
disregard inertial terms in the equation of motion. Consideration is given to fl uids with a low thermal conductivity. In this case, 
during the fl ow in the channel the condition for the Péclet number Pe ≥ 100 is satisfi ed, which makes it possible to disregard the 
transfer of heat by heat conduction along the channel axis compared to the transfer by convection. The fl ow is implemented with 
boundary conditions of the fi rst kind when the temperature of the channel wall Tw is considered constant. It is assumed that the 
temperature of the fl uid at the channel inlet is distributed uniformly over the cross section and is equal to T0 (Fig. 1).

As the equation of motion, we use the modifi ed Brinkman equation [10, 20]
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The mathematical model of transfer of energy is based on the so-called one-temperature model when one energy equation 
is used [9–22]. This approach assumes local heat equilibrium between the liquid and solid phases. Consequently, the energy 
equation is of the form
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The effective value of the thermal conductivity of a heterogeneous composite medium λ can be computed by different 
methods [11, 30]. In the present work, use is made of the following expression [31]:
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Fig. 1. Diagram of fl ow in the plane channel.
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The function Φ(x, y) refl ects dissipative heat releases and may be written in various forms [17]. It has been noted 
in [15, 16] that at small values of the Darcy number all forms of representation yield an identical result. In the present work, 
the dissipative term is written in a form compatible with the limiting case of fl ow of a pure (free) fl uid at infi nitely large Darcy 
numbers:
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The continuity equation, under the assumption of one-dimensionality of the fl ow, degenerate into the equation of a constant 
fl ow rate
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Hydrodynamic and thermal boundary conditions are written in the following manner:
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On passage to dimensionless variables, the fundamental equations (1), (2), and (5) will take the form
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The values of the medium′s mass-mean temperature in dimensional and dimensionless form are determined in the following 
manner:
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Knowing the distribution of the mass-mean temperature, it is easy to fi nd the local Nusselt number referred to the local 
temperature difference:
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The problem was solved numerically by the fi nite-difference method using iterations and the marching method.
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Discussion of Results. Figure 2 shows the infl uence of the Brinkman number on the development of the temperature 
distribution along the channel. It can be seen that taking account of dissipation is fundamental in character and totally changes 
the entire temperature fi eld in the channel. Also, this substantially alters the distribution of the mass-mean temperature 
(Fig. 3) and of the Nusselt number (Fig. 4) along the channel. However, it should be noted that account taken of the temperature 
dependence of viscosity must compensate to a degree for the infl uence of dissipation. Clearly, the dissipative heating will 
cause the viscosity to decline, and this in turn will reduce dissipative heat releases. As has already been noted above, this 
formulation of the problem will be analyzed in the next publication.

Fig. 2. Transformation of the temperature profi le along the channel: 1) X = 3, 2) 9, and 
3) 19; solid line, Br = 0, dot-dash line, Br = –0.3.

Fig. 3. Infl uence of dissipation on the distribution of the mass-mean temperature along 
the channel: 1) Br = 0 and 2) Br = –0.3.

Fig. 4. Infl uence of dissipation on the distribution of the local Nusselt number along the 
channel: 1) Br = 0 and 2) Br = –0.3.
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Conclusions. Thus, in the present work, we have formulated and solved the problem on fl ow and heat transfer of a 
non-Newtonian fl uid in a plane channel with boundary conditions of the fi rst kind. The mathematical model is based on the 
modifi ed Brinkman equation and the one-temperature energy equation. Consideration has been given to the initial thermal 
portion when the inlet temperature of the fl uid and the temperature of channel walls are not coincident. In this case we have 
an active development of the temperature profi les along the channel. The calculations show the substantial infl uence of 
dissipation on the entire process of heat transfer in the channel.

NOTATION

a, thermal diffusivity; Da, Br, and Pe, Darcy, Brinkman, and Péclet numbers, respectively; h, half-height of the plane 
channel; k, permeability coeffi cient of the porous material; n, index of fl ow; p, pressure; T, temperature; Tw, temperature of 
channel walls; T0, initial temperature of the fl uid at the channel inlet; u, fl ow velocity; u, average fl ow velocity in the channel; 
x, y, longitudinal and transverse coordinates; αm, local heat-transfer coeffi cient; λ and λb, thermal conductivity of the fl uid 
and of the solid skeleton of the porous material respectively; ρ and cp, density and heat capacity of the fl uid respectively; η, 
consistency of the fl uid; ε, porosity; ς = λ /λb.
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