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LAMINAR MAGNETOHYDRODYNAMIC BOUNDARY LAYER
ON A DISK IN THE PRESENCE OF EXTERNAL ROTATING FLOW
AND SUCTION

V. D. Borisevicha and E. P. Potanina,b  UDC 532.526.75:536.24

The rotation of a conducting viscous medium near a dielectric disk in a homogeneous magnetic fi eld in the presence 
of an external fl ow and a suction is considered. On the basis of the Dorodnitsyn transformation, an analytical solution 
of the system of boundary-layer and heat-conduction equations has been obtained. It is shown that the direction of 
the radial fl ow in the boundary layer of the disk can be changed by changing the ratio between the angular velocities 
of the external fl ow and the disk and the ratio between the temperatures in the external  fl ow and on the disk as well 
as by varying the hydrodynamic Prandtl number. The infl uence of the magnetic fi eld on the intensity of circulation of 
the viscous medium was investigated.
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Introduction. The effects of fl ow and heat transfer in rotating liquid and gaseous media take place in many 
technological processes, e.g., in centrifugal isotopic enrichment [1]. Considerable recent attention has been focused on the 
study of the rotation of conducting media. The intensity of the mass exchange between a solid body and such a medium can be 
controlled with the use of a magnetic fi eld [2]. A rotating conducting gas is used for the separation of the isotopes of elements 
that have no convenient gaseous compounds (plasma centrifuges) [3]. In this case, of great importance is the stability of 
rotation of a conducting medium [4]. In the last few years, the problem of rotating media has been actively discussed as 
applied to the astrophysics and the experimental investigation of the so-called magneto-rotational instability [5].

Investigations of different instabilities under laboratory conditions have shown that the interaction of a rotating 
gas with the end faces of a setup leads, due to the viscous effects, to the excitation of secondary fl ows exerting a masking 
infl uence on the loss of stability by the setup. The excitation of these fl ows can be explained by the loss of stability of the 
rotating gas fl ow because of the axial inhomogeneity of the centrifugal forces near the retarding surface. The stability of the 
boundary layer on a rotating body can be also disturbed by the suction of the medium through its porous surface [6].

In the present work, the infl uence of a magnetic fi eld and a uniform suction on a magnetohydrodynamic (MHD) fl ow 
near a rotating dielectric disk in the presence of an external fl ow rotating as a quasi-solid body is considered.

Formulation of the Problem. A dielectric disk of large radius rotating in a conducting gaseous medium with an 
angular velocity ω0 in the presence of a homogeneous axial magnetic fi eld and a fl ow rotating over the disk with an arbitrary 
angular velocity ω1 is considered. The problem on such an unbounded fl ow is solved frequently in the engineering calculations 
of rotating fl ows bounded by immovable and rotating surfaces, e.g., in the analysis of the characteristics of the boundary 
layer in the region of the nonviscous core of a fl ow in a cylinder with a retarding cover [7]. Let us assume that there takes 
place a uniform suction of the boundary layer from the surface of the disk with a rate k and that the homogeneous magnetic 
fi eld is directed along the axis of the rotating disk. Any additional assumptions are not needed for the closure of the azimuth 
currents in the medium. The problem on the closure of the radial electric current in the boundary layer is more complex. Let 
us assume that the radial current is closed through the external circuit and that the temperatures of the disk and the medium 
are independent of the radial coordinate.

Disregarding the viscous and Joule dissipation and the induced magnetic fi eld, we write the following equations for 
the magnetohydrodynamic and thermal boundary layers at the disk [8]:
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The system of equations (1)–(4) does not involve the equation of motion in the projection on the z axis, because this equation 
is used only for determining the dependence of the pressure in the boundary layer on the axial coordinate [8]. The second 
terms on the right sides of Eqs. (1) and (2) defi ne the azimuth and radial electric currents carried by the boundary layer [9]. At 
B → 0 and p

r
∂
∂

 = 0, Eqs. (1)–(5) are transformed into the system investigated in the work [10], for an ordinary nonconducting 

medium in the absence of an external rotating fl ow.

We consider a medium with a small compressibility parameter 
2 2
1

*
r

T
μω
ℜ

, where T ∗  is the characteristic temperature of 

the medium. In this case, the radial redistribution of the density of the medium can be ignored, and system (1)–(5) is solved 
at the following boundary conditions:

 0 00 , 0 , , , ,r zz v v r v k T Tϕ= = = ω = − =  (6)

 1 1, 0 , , ,rz v v r T Tϕ→ ∞ → → ω →  (7)

where T0 is the temperature of the gas on the surface of the disk and T1 is the temperature of the gas in the external fl ow.
Methods of Solving the Model Problem. By analogy with [11], we introduce the Dorodnitsyn transformation
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where ρ1 is the density of the medium in the external fl ow, independent of the radial coordinate. Then the expression for the 
transformed axial component of the fl ow velocity will take the form
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Let us transform Eqs. (1)–(4) on the assumption that

 0 0 0 1 0 0( ) , ( ) , ( ) ( ) .rv rF Z v rG Z T T T T Zϕ= = = + − θ   (10)

Since the external fl ow rotates with a constant angular velocity ω1, we assume that the distribution of the pressure in the 
boundary layer is identical to the distribution of the pressure in the main fl ow:
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This circumstance is of importance in the dynamics of movement of the fl uid near the disk, because the force that is due 
to the pressure gradient is directed to the disk axis and depends on the density of the fl uid in the external fl ow ρ1 and on 
the angular velocity ω1, while the centrifugal force is directed to the periphery of the disk and is determined by the axial 
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distributions of the density ρ(Z0) and the azimuth velocity vφ(Z0). We also assume that the dynamic-viscosity and heat-
conduction coeffi cients change in proportion to the fi rst power of the temperature (η = η1T/T1, κ = κ1T/T1, η1 and κ1 are the 
dynamic-viscosity and heat-conduction coeffi cients of the external fl ow [11]). As in [12], we assume that the conductivity of 

the gas medium is in inverse proportion to the temperature: σ = 1
1

T
T

⎛ ⎞σ ⎜ ⎟
⎝ ⎠

, where σ1 is the electric conduction of the gas at a 

large distance from the disk surface.
In view of (8)–(11), Eqs. (1)–(4) take the form allowing one to fi nd a self-similar solution of the problem
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where ν1 = η1/ρ1 is the kinematic-viscosity coeffi cient, and the prime denotes the differentiation  with respect to Z0. Thus, the 
system of partial differential equations (1)–(4) is transformed to the system of ordinary differential equations (12)–(15) that 
is identical in form to the system used for an incompressible medium. Note that we consider the "compressibility" associated 
with the change in the temperature of the medium but not with the action of the external-force fi eld.

For solving system (12)–(15), we introduce the quantity vz0 = vz1 + k1, where k1 = ρ0k/ρ1 and ρ0 is the density of the 
conducting gas on the surface of the disk. For a strong suction (vz1 << k), we have
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from (16)–(18) we obtain
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Integration of the system of equations (19)–(21) gives

 1( ) 1 exp ( Pr ) ,Z K Zθ = − −  (22)
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The function f(Z) is determined, in accordance with (22) and (23), from the differential equation
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A solution of this equation has the form
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where K0 = 
2

1 1

2 4
K K S+ + .

With the use of Eq. (23), we fi nd the moment of the viscous forces acting on one side of the disk of radius R:
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where K = 
1 0

k
ν ω

 and η0 is the dynamic viscosity of the medium at a temperature T0. In the limiting case of absence of 

magnetic fi eld (S → 0), expression (25) is identical to the dependence obtained in the work [13]. As S → 0, n → 0, and 
m → 0, the solution obtained is transformed into the known relation presented in the works [14, 15].

Discussion of the Results Obtained. We restrict our consideration to the infl uence of suction and magnetic fi eld 
on the intensity of the radial fl ow in the boundary layer near the surface of a rotating dielectric disk. According to the results 
obtained in the works [9, 14], if the change in the density of the gas along the coordinate Z is not taken into account (n = 1, 
the case of equal temperatures on the disk and in the external fl ow), the direction of the fl ow in the boundary layer at the disk 

changes sign depending on whether the parameter m = 1

0

ω
ω

 is larger or smaller than unity. At m < 1 (the disk rotates more 

rapidly than the external fl ow) the centrifugal force is larger than the radial pressure gradient and the radial fl ow is positive. 
If the disk rotates slowlier than the external fl ow does (m > 1), the force caused by the pressure gradient exceeds, in absolute 
value, the centrifugal force and the fl ow near the disk is directed to its axis. This pattern is demonstrated by the results of 
calculations by relation (24), presented in Fig. 1a where the full lines represent the profi les of the radial velocity of the fl ow 
near the disk for different values of the parameter m at n = 2 in the absence of magnetic fi eld (S = 0). The fact that the velocity 
of the radial fl ow does not turn to zero at m = 1 is explained by the change in its density along the axial coordinate at n = 2. If 
the parameter n is equal to unity, the radial fl ow is absent at m = 1. At a reverse ratio between the temperatures in the external 
fl ow and at the disk (n = 0.5), the density of the medium near the disk is smaller than the density of the external fl ow and, at 
m = 1, the radial fl ow is opposite in direction (Fig. 1b).

The results obtained point to the fact that, even at m ≠ 1, the radial fl ow can be substantially attenuated by varying 
the thermal regime. This result is of practical importance because, in this case, the infl uence of the end faces of a body on 
the rotation of the medium in the spaces bounded by solid retarding surfaces decreases. The calculation data represented by 
the dotted lines in Fig. 1 allow the conclusion that the magnetic fi eld infl uences the intensity of the radial fl ow. It is seen 
that the magnetic fi eld aids in the deceleration of the secondary fl ow, which is due to the action of the decelerating radial 
electromagnetic force [j, B]r in the MHD boundary layer. Note that the suction, along with the magnetic fi eld, decreases the 
radial fl ow in the boundary layer independently of whether the parameter n is larger or smaller than unity. This statement is 
illustrated by the results of calculations of the profi les of the radial fl ow velocity in the case where the medium rotates more 
rapidly than the disk does and the parameter Pr = 1, presented in Fig. 2. Figure 2a shows the profi les of the radial fl ow velocity 
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f(Z) for different values of the suction parameter K at S = 1. The dependences presented in Fig. 2b demonstrate the evolution 
of the profi le f(Z) with change in the parameter S at K = 1. These data not only give information on the dependence of the 
intensity of the radial fl ow on the suction and the magnetohydrodynamic effect but also show the infl uence of the temperature 
effects on the radial movement of the medium near the disk. For example, at n = 2, because of the increased density of the 
medium near the surface of the disk, the centrifugal force dominates over the force that is due to the pressure gradient, and 
the gas fl ow is directed to the periphery (Fig. 2a). In the case where n = 0.5 (the density of the medium near the disk is 
smaller than the density of the external fl ow), there takes place a directly opposite pattern (Fig. 2b). The above-indicated 
dependences have been obtained for the case where the Prandtl number is equal to unity and the thicknesses of the thermal 
and hydrodynamic boundary layers are equal. For an understanding of the reasons for one or another behavior of the fl ow 
with change in the Prandtl number, we note that the thickness of the thermal boundary layer δT is in inverse proportion to this 
number (δT ~ 1/Pr). Figure 3a shows the profi les of the radial fl ow velocity, calculated for different Prandtl numbers at m = 
0.5 (the disk rotates more rapidly than the external fl ow does) and n = 2 (the medium near the disk is more dense as compared 
to the density of the main fl ow). It is seen from the dependences obtained that a decrease in the Prandtl number leads to an 
increase in the velocity of the fl ow in the boundary layer, which is due to the widening of the zone of increased density of the 
gas near the disk. In the case where the temperature of the gas near the disk is higher than the temperature of the main fl ow 

Fig. 1. Dependence of the dimensionless radial component of the fl ow velocity f on the 
coordinate Z at S = 0: a) K = 1, n = 2, Pr = 1; b) 1, 0.5, 1.

Fig. 2. Profi les of the velocity of the radial fl ow near the disk for different values of the 
suction parameter K at m = 1.75, n = 2, Pr = 1 and S = 1 (a) and different values of the 
MHD-effect parameter S at K = 1, m = 1.5, n = 0.5, and Pr = 1 (b).
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(n = 0.5), the opposite pattern of the fl ow takes place (Fig. 3b). In this case, at Pr = 0.5, the velocity of the fl ow near the outer 
boundary of the thermal boundary layer changes its direction.

CONCLUSIONS

1) The direction of the radial fl ow in the boundary layer of a rotating dielectric disk in the presence of an external 
fl ow can be changed or (if necessary) this fl ow can be substantially decelerated by varying the thermal regime of the MHD 
fl ow rotating near the disk.

2) The axial magnetic fi eld exerts a stabilizing action on the rotating fl ow and, in so doing, decreases the intensity of 
the secondary fl ows circulating near the disk.

This work was carried out within the framework of the project "Dynamics of Gas and Plasma in a Strong Centrifugal 
Force Field" of the Ministry of Education and Science of the Russian Federation (grant No. 3.726.2014/K).

NOTATION

B, magnetic induction, T; cp, specifi c heat capacity at constant pressure, J/(kg·K); F and G, functions dependent on 

the dimensional coordinate Z0, 1/s; M, moment of the friction forces acting on one side of the disk; n = 1

0

T
T

, ratio between the 

temperatures in the external fl ow and on the disk; p, pressure, Pa; Pr = 1

1

ν
χ

, Prandtl number for the external fl ow; R , universal 

gas constant; r, radial coordinate, m; R, radius of the disk, m; S = 
2

1

1 0

Bσ
ρ ω

, parameter of the magnetohydrodynamic effect; T, 

temperature, K; vφ, vr, and vz, azimuth, radial, and axial velocities of the medium, m/s; vz1, transformed axial component of 
the fl ow velocity, m/s; z, axial coordinate measured from the disk surface, m; Z0, Dorodnitsyn variable, m; δT, thickness of 
the thermal boundary layer, m; η, dynamic-viscosity coeffi cient, Pa·s; κ, heat-conduction coeffi cient, W/(m·K); μ, molecular 
weight of the gas, kg/mole; ν, kinematic-viscosity coeffi cient, m2/s; ρ, density, kg/m3; σ, electrical-conduction coeffi cient, 
S/m; χ1 = κ/ρ1cp, thermal diffusivity of the medium, m2/s; ω0, angular velocity of rotation of the disk, rad/s.
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