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DYNAMIC STABILITY OF A CYLINDRICAL SHELL REINFORCED
BY LONGITUDINAL RIBS AND A HOLLOW CYLINDER
UNDER THE ACTION OF AXIAL FORCES

V. N. Bakulin,? E. N. Volkov,b UDC 629.7.023:531.391.5
and A. Ya. Nedbai”

The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder
under the action of axial forces changing harmonically with time was investigated with regard for the axial
contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been
obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of
the Mathieu—Hill equations of motion was used for construction of the main region of instability of the shell. As a
result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at
the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example
of this solution is presented.
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Introduction. At present, the provision of dynamic stability (parametric resonance) of members of flying vehicles
is a pressing problem to designers of airplanes and rockets, which is explained by the wide use of composite materials in the
load-bearing elements of such apparatus, the high flight speed of them, and the complex conditions of their use.

The most typical sources of vibrations of members of flying vehicles are acoustic effects determined by the
aerodynamics of an aircraft, its buffet, and the atmospheric turbulence as well as the mechanical effects that are due to the
pulsations of the trust of the aircraft and the work of its engines and pneumatic hydraulic units. Even though the level of the
loads formed by these actions is most often small, they, at any geometrical parameters of an aircraft and properties of the
materials of its members, can destroy the load-bearing elements of the aircraft.

A number of works [ 1-4] are devoted to the problems of the dynamic stability of cylindrical shells that are used in the
majority of aircrafts as load-bearing elements. However, the class of shells made of composite materials, which are reinforced
by stiffening ribs, has practically not been investigated [5-9].

Formulation of the Problem. The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal
ribs and an elastic cylinder is investigated with regard for the axial forces of the contact interaction of the shell with the ribs.
A two-term approximation of the Mathieu—Hill equations is used in the calculations for increasing their accuracy (by 7%).
The problem for uniformly spaced ribs is solved in the explicit form.

The most typical situation, where the indicated shell is reinforced by ribs positioned symmetrically relative to the
vertical diameter of the shell, is considered. It is assumed that, in the subcritical state, the axial deformations of the shell and
of the ribs are equal. The ribs and the shell are subjected to the action of the external pressure and the axial compressive force
that has a constant and a variable components. The calculations are carried out with regard for all the interactions between
the shell and the ribs in the plane of the ribs. The tangential and inertial forces of the shell are not taken into account. The
action of the cylinder on the shell is estimated by the bedding coefficient, which is determined from the three-dimensional
elasticity theory.

Let us introduce the dimensionless system of cylindrical coordinates in which the linear sizes are related to the radius
of the middle surface of the shell. In this case, the movement of the shell is defined by the equations [10]
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Analytical Solution. Equation (1) is solved in the following form:
u = cos Yoy @,(1) cos nfp, w = sin yo Y y,(t) cos nf, )

n=0 n=0

mm L
wherey= —, ap= —

Qo
Expanding the delta function in a trigonometric series and substituting (2) into (1), we arrive at a system of ordinary

differential Mathieu—Hill equations for ¢,, and v, (the argument 7 will be omitted in what follows):
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indices J, it is necessary to change the modified Bessel function of the first kind to the modified Bessel function of the second
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where /,(x) and 7,(y) are modified Bessel functions of the first kind of the order 7, and the quantities denoted by the prime are
derivatives with respect to the corresponding argument. Equations (3) are solved in the following form:
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Substituting the first sum of (4) into (3) and equating the coefficients of the identical quantities sin ——, we obtain
a system of inhomogeneous algebraic equations. According to [1], it will suffice to use one term of a series; however, we

will use two expansion terms because the use of the two-term approximation makes it possible to increase the accuracy of
calculations by 7%. As a result, we have
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Solving system (5) for AE") , we obtain

M
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+ (Ds;dg + Dyjdy) Ay + (Dyyds + Dsy;dy + Dyjdyg) A4,.] cos nB; , j=12734,

where A and Dy; are, respectively, the determinant and complement of the matrix c;.

o0

Since, at the locations of the ribs, the relation 4y; = Z A;”) cos nf; is true, substituting (6) into this expression, we

obtain a system of 4M algebraic equations: n=0

M o
1 2 — 3¢,)b,
Ajk = 2_1-[ leo % [(Dljdl + Dzjd3) Ali + (Dljdz + D2jd4 + D4jd8) A2i

+ (D3jd6 + D4jd9) A + (Dzjds + D3;d; + D4jd10) A4i] cos nf; cos nPy , 7
j=12,34 k=12,..,M.

When the determinant of this system is equal to zero, a characteristic equation of critical frequencies is obtained.
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Fig. 1. Instability regions of the hollow shell (1) and the shell with a cylinder (2).

Substituting the second sum of (4) into (3), we obtain a characteristic equation of the type of (7) in which the
unknowns A41,—A4; should be changed to B|,—By;, respectively, and the coefficients ¢y, and d4 should be used with the signs

"+" and "-", respectively. In the case of uniform disposition of the ribs, system (7) is solved in the following form:
2nks M
Ay = A; cos , 0<s < —. 8
Jk J M 3 (®)

Substituting (8) into (7), we obtain a system of four algebraic equations:

2M = [(Dljdl + Dyjds) A + (Dyydy + Dyydy + Dyyds) 4y
TN A (9)
+ (Dyjds + Dyjdy) 45 + (Dyyds + Dyydy + Dy ) A4] —4 =0, /=123.4,

where the summation is over the quantity N taking the values
N=rM+s, r=2012..;
N=wM-s, r=123 ...

A characteristic equation is obtained in the case where the determinant of system (9) is equal to zero. Assigning different
integer values to m and s, we find a critical frequency.

Numerical Examples. As an example, we will consider a shell reinforced by a cylinder and identical ribs spaced
uniformly. The basic parameters of the shell, cylinder, and the ribs are as follows:

E
Lo, 2 _oois. H_o0s. L2003, ZEoniso10°, S-—0032, Lo,
R R R R E, R E,
G
o _gq, ek _gs5000, 28 125100, v, =015, vg =023, vy =049.
R E, E,

Here, H and b are the height and width of the ribs, and R, Ej, and v are the radius of the cylinder, the modulus of elasticity
of the cylinder material, and its Poisson coefficient. The shell and the ribs are subjected to the action of the axial force whose
constant component is equal to the half the calculated critical force: Ty = |/E, Eg h?.
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Fig. 2. Instability regions of the shells with ribs of decreased height (1) and decreased
width (2).

Figure 1 shows the instability regions of the shell with four ribs, reinforced by a cylinder and without it. On the

axis of ordinates the dimensionless values of the critical frequencies of vibration of the shell (y = o)ﬁ’ where @ is the
eigenfrequency of the hollow shell with ribs) are plotted, and the abscissa is the dimensionless amplit?lde of the variable
component of the axial force x = T}/Tj.

Figure 2 shows the instability regions of the shell reinforced by a cylinder and eight ribs. In the first variant of
calculations, the basic height of the ribs H is decreased by two times, and, in the second variant of calculations, the width
of the ribs b is decreased. For both variants, the total sectional area of the eight ribs is equal to that of the basic four ribs.

It is seen from the above-presented examples that the cylinder reinforcing the shell narrows the instability region
of the shell and heightens its boundaries by 10%. In this case, a decrease in the height of the ribs by two times decreases the
dynamic-stability limit of the shell by four times, and a decrease in the basic width of the ribs by two times decreases its
stability limit by two times, which points to the fact that the parameters of the ribs and their locations substantially influence
the value and boundaries of the instability region of the shell.

Conclusions. A methodology of calculating the dynamic stability of a composite cylindrical shell with regard for
the reinforcing influence of an elastic cylinder and discretely spaced longitudinal ribs has been developed. This methodology
allows one to avoid, even at the design stage, the main parametric resonance in the frequency range with a maximum energy
level and to increase the reliability of the shell.

This work was carried out with financial support from the Russian Foundation for Basic Research (grant
No. 14-08-01026-a).

NOTATION

E and Ey, moduli of elasticity of the material of the ribs and the material of the cylinder; E,, and Eg, moduli of
elasticity of the shell in the axial and circumferential directions; F, area of a rib; G, shear modulus; A, thickness of the shell;
I, moment of inertia of a rib; L, length of the shell; m, parameter of wave formation; M, number of ribs; p, external pressure;
R, radius of a shell; s, integer characterizing the loss in the stability of the shell; 7)), constant component of the axial force;
T, amplitude of the variable component of the axial force; u, axial movement of the shell; w, radial movement of the shell;
o, dimensionless coordinate along the generatrix; 3, dimensionless coordinate in the circumferential direction; d(p), delta
function; 8,, Kronecker symbol; vy, Poisson coefficient of the material of the cylinder; v, and vg, Poisson coefficients of
the shell in the axial and circumferential directions; &, distance from the axial line of a rib to the middle surface of the shell,
assumed to be positive in the case where the axial line of the rib is positioned inside it; py and py, densities of the materials of
the shell and the ribs; o, frequency of pulsations.
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