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DYNAMIC STABILITY OF A CYLINDRICAL SHELL REINFORCED 
BY LONGITUDINAL RIBS AND A HOLLOW CYLINDER 
UNDER THE ACTION OF AXIAL FORCES

V. N. Bakulin,a E. N. Volkov,b  UDC 629.7.023:531.391.5
and A. Ya. Nedbaib

The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder 
under the action of axial forces changing harmonically with time was investigated with regard for the axial 
contact interaction of the shell with the ribs. A solution of the differential equations defi ning this process has been 
obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of 
the Mathieu–Hill equations of motion was used for construction of the main region of instability of the shell. As a 
result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at 
the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example 
of this solution is presented.
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Introduction. At present, the provision of dynamic stability (parametric resonance) of members of fl ying vehicles 
is a pressing problem to designers of airplanes and rockets, which is explained by the wide use of composite materials in the 
load-bearing elements of such apparatus, the high fl ight speed of them, and the complex conditions of their use.

The most typical sources of vibrations of members of fl ying vehicles are acoustic effects determined by the 
aerodynamics of an aircraft, its buffet, and the atmospheric turbulence as well as the mechanical effects that are due to the 
pulsations of the trust of the aircraft and the work of its engines and pneumatic hydraulic units. Even though the level of the 
loads formed by these actions is most often small, they, at any geometrical parameters of an aircraft and properties of the 
materials of its members, can destroy the load-bearing elements of the aircraft.

A number of works [1–4] are devoted to the problems of the dynamic stability of cylindrical shells that are used in the 
majority of aircrafts as load-bearing elements. However, the class of shells made of composite materials, which are reinforced 
by stiffening ribs, has practically not been investigated [5–9].

Formulation of the Problem. The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal 
ribs and an elastic cylinder is investigated with regard for the axial forces of the contact interaction of the shell with the ribs. 
A two-term approximation of the Mathieu–Hill equations is used in the calculations for increasing their accuracy (by 7%). 
The problem for uniformly spaced ribs is solved in the explicit form.

The most typical situation, where the indicated shell is reinforced by ribs positioned symmetrically relative to the 
vertical diameter of the shell, is considered. It is assumed that, in the subcritical state, the axial deformations of the shell and 
of the ribs are equal. The ribs and the shell are subjected to the action of the external pressure and the axial compressive force 
that has a constant and a variable components. The calculations are carried out with regard for all the interactions between 
the shell and the ribs in the plane of the ribs. The tangential and inertial forces of the shell are not taken into account. The 
action of the cylinder on the shell is estimated by the bedding coeffi cient, which is determined from the three-dimensional 
elasticity theory.

Let us introduce the dimensionless system of cylindrical coordinates in which the linear sizes are related to the radius 
of the middle surface of the shell. In this case, the movement of the shell is defi ned by the equations [10]

                  0062-0125/16/8903-0747 ©2016 Springer Science+Business Media New York 747

aInstitute of Applied Mechanics of the Russian Academy of Sciences, 7 Leningrad Ave., Moscow, 125040, 
Russia; email: vbak@yandex.ru; bMoscow Institute of Heat Engineering, 10 Birch Alley, Moscow, 127273, Russia; email: 
eugeenw1@mail.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 3, pp. 742–747, May–June, 2016. Original 
article submitted March 23, 2015.

DOI 10.1007/s10891-016-1435-3



748

 
( )

=

=

∂ ∂ ∂
+ = − − + δ β − β

∂α ∂ ∂α

⎡ ∂ ∂ ∂
+ = − + +⎢

∂α ∂α ∂⎣

⎤∂
+

⎡ ⎤
⎢ ⎥
⎣

+ ω δ β − β
⎦

⎦

⎥
∂α

∑

∑

2 2 3

11 12 10 22 13 142 2 3
1

3 4 2

21 22 10 22 14 12 133 4 2
1

2

11 0 1 2

( ) ,

cos ( ) ,

M
i i i

i
i

M
i i i

i

i
i

u u wl u l w a L a a
t

u w wl u l w a L a a a
t

wa T T t
 

 (1)

where

= − = − = = −2 2
11 11 22 12 12 13 22 12 23 21 12 22 22 33 23 , , , ,l L L L l L L L L l l l L L L

β
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂

= + − = = ν + −⎢ ⎥
∂α∂β ∂α∂α ∂β ∂ ∂α∂β ∂α⎣ ⎦

2 2 2 2 3 3

11 1 7 12 2 13 3 12 2 2 2 3, , ,L a a L a L a a
t

∂ ∂ ∂ ∂
= + = −

∂β∂α ∂β ∂α ∂β

2 2 3

22 1 4 23 4 3 52 2 2,  ,L a a L a a a

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥= + + + + + +⎜ ⎟⎜ ⎟⎢ ⎥∂α ∂α ∂β ∂β ∂⎝ ⎠⎣ ⎦

∂ ∂
+ + ω +

∂α ∂β

24 4 2 2

33 4 9 3 6 4 74 2 2 2 2

2 2

8 0 1 152 2

2 1

cos ) ,(

L a a a a a a
t

a T T t a

αβ αβ β
β β

α α

− ν
= = + ν = = = + ν

2

1 2 1 3 4 5 12

1
, , , ,

(
,3

)
12

G Eha a a a a a a
E ER

β= + ν = ρ = = =
π +

16
6 1 7 0 8 9 0 102 3

16
2 , , , , ,

(2 )
a B BEFa a a B h a a BK a

Ra M R R

αρ
= = = = = =

π
ξ

+

2
1

11 12 13 14 15 162
16

1 , , , , , ,
(2 )

I R Bp E ha a a a a a
Ra M EF E R R EFFR

α β

α

− ν
= = α β = α β

ν2 1
, ( , ) , , ) .

(
(

)
 i i i i

R
B u u w w

E h

Analytical Solution. Equation (1) is solved in the following form:
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where γ = π
α0

m , α0 = L
R

.

Expanding the delta function in a trigonometric series and substituting (2) into (1), we arrive at a system of ordinary 
differential Mathieu–Hill equations for φn and ψn (the argument t will be omitted in what follows):
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where In(x) and In(γ) are modifi ed Bessel functions of the fi rst kind of the order n, and the quantities denoted by the prime are 
derivatives with respect to the corresponding argument. Equations (3) are solved in the following form:

 

{ } ( ){ }

{ }

∞

++
= …

++

ω
ϕ ψ =

ω
+

∑ ( ) ( )
11

1,3,

( ) ( )
( 1)1

, , , , , , sin
2

, , , cos .
2

n n
n n mi mi ki k ik k

k

n n
ki k ik k

k tu w A A A A

k tB B B B
 

 (4)

Substituting the fi rst sum of (4) into (3) and equating the coeffi cients of the identical quantities ωsin
2

k t , we obtain 
a system of inhomogeneous algebraic equations. According to [1], it will suffi ce to use one term of a series; however, we 
will use two expansion terms because the use of the two-term approximation makes it possible to increase the accuracy of 
calculations by 7%. As a result, we have



750

 

=

=

=

− δ
+ = + β

π

− δ
+ + = + + β

π

− δ
+ = + β

π

+ +

∑

∑

∑

( ) ( ) 0 6
11 12 1 1 2 21 2

1

( ) ( ) ( ) 0 6
21 22 24 3 1 4 2 5 41 2 4

1

( ) ( ) 0 6
33 34 6 3 7 43 4

1

( ) ( )
42 43 442 3 4

(2 ) ( ) cos ,
2

(2 ) ( ) cos ,
2

(2 ) ( ) cos ,
2

M
n n n

i i i
i

M
n n n n

i i i i
i

M
n n n

i i i
i

n n

bc c d A d A n

bc c c d A d A d A n

A A

A A A

A A

A A

bc c d A d A n

c c Ac
=

− δ
= + + β

π ∑( ) 0 6
8 2 9 3 10 4

1

(2 ) ( ) cos ,
2

M
n n

i i i i
i

b d A d A d A n

   (5)

where

ω ω
= − = − = = − = − = + − ±

2 2
3 3 4 1

11 1 12 21 34 43 2 22 4 0 5, , ,
4 4 2

b b b Tc b c c c c b c b T b

ω ω
= = = − = + −

2 2
4 1 3 3

24 42 33 1 44 4 0 5, 9 , 9 ,
2 4 4

b T b bc c c b c b T b

= = = = = =13 14 23 31 32 41 0 ,c c c c c c

ω
= − γ = − = = − = − γ

2
2 213

1 2 3 7 9 14, ,
4

ad d d d d a

ω γ γ
= γ − γ − = = −∓

2 2 2
4 2 13 11 1 11 1

4 12 11 0 5 8, ,
4 2 2

a a T a Td a a T d d

ω ω
= − γ = γ − γ −

2 2
2 4 213 13

6 10 12 11 09 , 9 .
4 4

a ad d a a T

Solving system (5) for ( )n
jA , we obtain

 

( ) ( )

( ) ( )
=

− δ ⎡= + + + +⎣πΔ

⎤+ + + + + β =⎦

∑( ) 0 6
1 1 2 3 1 1 2 2 4 4 8 2

1

3 6 4 9 3 2 5 3 7 4 10 4

(2 )
2

cos , 1, 2, 3, 4 , 

M
n n

j j i j j j ij
i

j j i j j j i i

bA D d D d A D d D d D d A

D d D d A D d D d D d A n j
 

 (6)

where Δ and Dkj are, respectively, the determinant and complement of the matrix ckj.
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When the determinant of this system is equal to zero, a characteristic equation of critical frequencies is obtained.
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Substituting the second sum of (4) into (3), we obtain a characteristic equation of the type of (7) in which the 
unknowns A1i–A4i should be changed to B1i–B4i, respectively, and the coeffi cients c22 and d4 should be used with the signs 
"+" and "–", respectively. In the case of uniform disposition of the ribs, system (7) is solved in the following form:
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Substituting (8) into (7), we obtain a system of four algebraic equations:
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where the summation is over the quantity N taking the values
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A characteristic equation is obtained in the case where the determinant of system (9) is equal to zero. Assigning different 
integer values to m and s, we fi nd a critical frequency.

Numerical Examples. As an example, we will consider a shell reinforced by a cylinder and identical ribs spaced 
uniformly. The basic parameters of the shell, cylinder, and the ribs are as follows:
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Here, H and b are the height and width of the ribs, and R0, E0, and ν0 are the radius of the cylinder, the modulus of elasticity 
of the cylinder material, and its Poisson coeffi cient. The shell and the ribs are subjected to the action of the axial force whose 
constant component is equal to the half the calculated critical force: T0 = α β

2E E h .

Fig. 1. Instability regions of the hollow shell (1) and the shell with a cylinder (2).
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Figure 1 shows the instability regions of the shell with four ribs, reinforced by a cylinder and without it. On the 

axis of ordinates the dimensionless values of the critical frequencies of vibration of the shell (y = ω
ω0

, where ω0 is the 

eigenfrequency of the hollow shell with ribs) are plotted, and the abscissa is the dimensionless amplitude of the variable 
component of the axial force x = T1/T0.

Figure 2 shows the instability regions of the shell reinforced by a cylinder and eight ribs. In the fi rst variant of 
calculations, the basic height of the ribs H  is decreased by two times, and, in the second variant of calculations, the width 
of the ribs b  is decreased. For both variants, the total sectional area of the eight ribs is equal to that of the basic four ribs.

It is seen from the above-presented examples that the cylinder reinforcing the shell narrows the instability region 
of the shell and heightens its boundaries by 10%. In this case, a decrease in the height of the ribs by two times decreases the 
dynamic-stability limit of the shell by four times, and a decrease in the basic width of the ribs by two times decreases its 
stability limit by two times, which points to the fact that the parameters of the ribs and their locations substantially infl uence 
the value and boundaries of the instability region of the shell.

Conclusions. A methodology of calculating the dynamic stability of a composite cylindrical shell with regard for 
the reinforcing infl uence of an elastic cylinder and discretely spaced longitudinal ribs has been developed. This methodology 
allows one to avoid, even at the design stage, the main parametric resonance in the frequency range with a maximum energy 
level and to increase the reliability of the shell.

This work was carried out with fi nancial support from the Russian Foundation for Basic Research (grant 
No. 14-08-01026-a).

NOTATION

E and E0, moduli of elasticity of the material of the ribs and the material of the cylinder; Eα and Eβ, moduli of 
elasticity of the shell in the axial and circumferential directions; F, area of a rib; Gαβ, shear modulus; h, thickness of the shell; 
I, moment of inertia of a rib; L, length of the shell; m, parameter of wave formation; M, number of ribs; p, external pressure; 
R, radius of a shell; s, integer characterizing the loss in the stability of the shell; T0, constant component of the axial force; 
T1, amplitude of the variable component of the axial force; u, axial movement of the shell; w, radial movement of the shell; 
α, dimensionless coordinate along the generatrix; β, dimensionless coordinate in the circumferential direction; δ(β), delta 
function; δ0n, Kronecker symbol; ν0, Poisson coeffi cient of the material of the cylinder; να and νβ, Poisson coeffi cients of 
the shell in the axial and circumferential directions; ξ, distance from the axial line of a rib to the middle surface of the shell, 
assumed to be positive in the case where the axial line of the rib is positioned inside it; ρ0 and ρ1, densities of the materials of 
the shell and the ribs; ω, frequency of pulsations.

Fig. 2. Instability regions of the shells with ribs of decreased height (1) and decreased 
width (2).
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