
 
Journal of Engineering Physics and Thermophysics, Vol. 89, No. 3, May, 2016

RHEOLOGICAL MODEL FOR DESCRIBING VISCOMETRIC FLOWS 
OF MELTS OF BRANCHED POLYMERS

D. A. Merzlikina, G. V. Pyshnograi,  UDC 532.135
R. Pivokonskii, and P. Filip

The present paper considers the problem of constructing a rheological constitutive relation for melts of branched 
polymers with the use of a modifi ed Vinogradov–Pokrovskii rheological model generalized to the case of several 
noninteracting models, each of which corresponds to the account in the stress tensor of the contribution of a particular 
polymer fraction and is characterized by its own relaxation time and viscosity. Since the number of model parameters 
markedly increases thereby, simple dependences of its parameters on the mode number are proposed. On the basis 
of the obtained model, the nonlinear nonstationary effects at simple shear and uniaxial tensor have been considered.
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Introduction. Experimental investigations of various polymer fl uids point to their linear viscoelastic behavior. 
To investigate such effects, a large number of models describing the rheological behavior of polymer fl uids at both 
qualitative and quantitative levels were proposed. It should be noted thereby that two radically different classes of models 
exist: models of the fi rst class use the phenomenological approach, and in models of the second class the microscopic 
approach is used. In the phenomenological approach, the dynamics of macroscopic bodies is constructed on the basis 
of the general laws determined experimentally. This class of models includes the Maxwell, Oldroyd [1], and Prokunin–
Leonov [2] phenomenological models. The other class of models is based on the mesoscopic approach. In such models, 
the macromolecular dynamics is described on the basis of model notions and, consequently, takes into account, in some 
approximation, both the structure of the polymer molecule and the processes of intermolecular interaction. Such models 
often use the one-molecule approximation in which instead of the whole aggregate of macromolecules, one chosen 
macromolecule moving in some "effective" medium is considered. In some of the models of this class the macromolecule 
is represented as a series of beads and springs (elastic force) connecting them. For example, one of the fi rst of such 
models is the Kargin–Slonimskii–Rauz model. Thus, the mesoscopic approach, as opposed to the phenomenological one, 
makes it possible to follow the relationship between the micro- and macroscopic characteristics of polymer systems 
and, consequently, explain various phenomena in polymer melts, for example, the diffusion, viscoelasticity, and other 
phenomena. However, this approach requires the introduction of additional mesoscopic parameters, which should also 
be determined experimentally. Among the above models are also the Doi–Edwards [3], De Gennes [4], and Curtiss–Bird 
[5] models. In these models, each macromolecule is considered as a fl exible chain moving inside some tube formed by 
other macromolecules; and at short observation times the molecule can move only along the tube. However, the initial 
Doi–Edwards model did not take into account the elongation of each segment of the polymer chain. It was later modifi ed 
to take into account such elongation. The generalized model of "reptations" was described in [5], where the dynamics of 
the macromolecular chain was considered at two different levels — at the level of the macromolecule proper and at the 
level at which the tube model is discussed.

Another model [7] obtained from the theory of "reptations" was developed for describing the dynamics of branched 
polymers and is a rheological model in differential form. It is based on the dynamics of not beads connected in series, but 
of beads at the end of whose chain several beads are connected. This is the so-called "pom-pom" model. The disadvantage 
of the above model is the zero values of the second normal stress difference at simple shear. It was modifi ed subsequently 
[8] and named the extended pom-pom model. These models consist of four differential equations containing an additional 
parameter that permits obtaining nonzero values of the second normal stress differences in shear fl ow.
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At present, different variants of the model of "reptations" are used most often to interpret experimental data in 
investigating the viscoelastic properties of solutions and melts. However, predictions of the theory do not always agree 
quantitatively with experiment, although their predictions are correct in general. In some works attempts were made to 
improve the quantitative agreement between the theory and experiments, which led to a theory of "dual reptations" where 
local entanglements are taken into account. The presence of long branches in the macromolecular chain leads to additional 
diffi culties in using the "reptation" model, since in this case "reptations" become impossible, which requires modifying the 
model. Some works were specially devoted to the investigation of macromolecular chains with long lateral branches. For 
example, in [9], it was shown that the presence of long lateral branches in the macromolecule leads to the appearance of signs 
of the viscoelastic behavior, which is especially important in processes connected with the extension of polymer melts.

In the case of working with the Kargin–Slonimskii–Rauz model or the "beads–springs" model, the generalization is 
constructed by including in consideration the "internal viscosity," which permits describing the independence of the modulus 
value on the plateau of the molecular weight of the polymer. If only the slowest relaxation process in the polymer chain is 
considered thereby, one can go over to the Vinogradov–Pokrovskii model and, taking into account the induced anisotropy, to 
the modifi ed Vinogradov–Pokrovskii model. This model, in spite of its simplicity, is adequate for viscoelastic fl ows of real 
polymer fl uids. It describes such effects observed in practice as the fi rst and the second normal stress difference, the increase 
in viscosity by tension, its going to a stationary value, and other phenomena. Moreover, a good agreement between theoretical 
and experimental dependences in a wide range of strain rates was noted.

The differential-vector RHL model [10] is also based on the microstructure approach. In this model, the 
macromolecular dynamics is described by one vector connecting the beginning and the end of the polymer chain. This vector 
can elongate with increasing length of the macromolecule, as well change its orientation under the action of the external fl ow. 
The RHL model is rather simple; however, its good agreement with experimental data was noted. This model actually made 
it possible to consider the orientation of the chain and its elongation separately with the nonlinear elasticity parameter of the 
coiled macromolecule, since it is based on the assumption that the orientation relaxation time is longer than the relaxation 
time of elongation.

At present, as before, much consideration is being given to the development of new models. For example, the authors 
of [11] made an attempt to solve the problem of describing the linear viscoelasticity of long-chain branched polymers.
In spite of the large number of works devoted to the description of the dynamics of polymer media, of all the above-mentioned 
models, the most widely used ones are the Prokunin–Leonov model [2] and the "pom-pom" model [12] and its modifi cations [13]. 
Therefore, hereinafter we shall compare our results with the predictions of these models.

One more problem in the rheology of polymer fl uids is the problem of taking into account the relaxation spectrum. 
The multimode character of the dynamics of polymer fl uids or plurality of relaxation processes shows up already in the case 
of investigating fl ows of diluted solutions of fl exible-chain monodisperse polymers [14–16]. This is mainly due to the chain 
character of the structure of polymer molecules. The dependences of the relaxation time on the model number obtained 
thereby are decaying, inversely proportional to the squared mode number or "Rauz-like" in nature. An increase in the polymer 
concentration in the system leads to the appearance of entanglements of macromolecules, their dynamics becomes more 
complex thereby, and between parts of the macromolecule "long-scale" interactions arise. This leads to additional terms in the 
stress tensor of the polymer system or to the account of new relaxation processes with "superslow" relaxation times [17–20]. 
The rheological relations obtained in the above works describe with good accuracy the relations of linear viscoelasticity, 
and the frequency dependences of the shear modulus and the loss modulus. Another important problem in the dynamics of 
polymer fl uids is the description of nonlinear, gradient effects.

Apparently, in the case of describing the dynamics of a polydisperse sample or in the case where the macromolecule 
has a branched structure, plurality of relaxation processes plays an increasingly important role. The characteristics of the 
relaxation process (the relaxation time of the process and its weight in the stress tensor) no longer have the "Rauz-like" form 
and require generalization. In spite of this, it is necessary to use, as the basis for describing the dynamics of concentrated 
polymer systems, a fairly reliable rheological model obtained with the use of the mesoscopic approach. In this approach, model 
notions, for example, a "beads–springs" model, are used to describe the rather slow thermal motions of the macromolecule. 
Besides the Rauz parameters (drag coeffi cient of beads, equilibrium size of the coiled macromolecule), it is necessary to 
introduce into the model parameters taking into account the presence of entanglements in the polymer system. For such a 
model, we use in the present work the modifi ed Vinogradov–Pokrovskii model [21–25]. The specifi c feature of this model 
is that it takes into account the tensor character of the drag coeffi cient of beads connected with the induced anisotropy of the 
shear fl ow. Such anisotropy is determined by the sizes and form of the coiled macromolecule and this leads to the appearance 
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of corresponding coeffi cients in the dynamic equations. The generalization of this model to the multimode case was proposed 
in [26, 27] and has the form
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Here σik is the stress tensor of the polymer system, νik is the velocity gradient tensor, γik is the symmetrized velocity gradient 
tensor, α is the ordinal mode number, n is the number of relaxation modes or processes taken into account, ikaα  is the 
dimensionless tensor of additional stresses corresponding to the contribution with number α, ijaα  is the trace of the tensor 
of additional stresses, ηα is the coeffi cient of shear viscosity of mode with number α, τα is the relaxation time of mode with 
number α, and κα = κα( ijaα ) and βα = βα( ijaα ) are parameters of the induced anisotropy determined by the expressions
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In [17, 28], the constitutive equations were formulated initially in the multimode approximation and then simplifi ed. 
In working with expressions (2), it was fi rst assumed that the values of induced anisotropy parameters do not depend or 
depend weakly on the mode number; however, comparison with experiments showed that this assumption was incorrect; 
consequently, it was necessary to return to the multimode approximation. There is hope that the use of many relaxation modes 
for describing will lead to a better description of the available experimental results.

Since the infl uence of induced anisotropy parameters is different for each specifi c mode, it makes sense to consider 
each mode separately, which is refl ected in writing expressions (2). To fi nd κα, we used the relation κα = 1.2βα taken from [15].

Thus, the system of equations (1), (2) was determined with accuracy up to the parameters ηα, τα, fα, and pα that are 
to be determined from the experiment. The number of these parameters is rather large, especially at a large number of modes; 
therefore, it makes sense to consider the procedure of their determination in more detail.

Determination of Parameters of the Multimode Rheological Model. Obviously, the determining factor in choosing 
the rheological model is comparison with experimental data. Preference should be given thereby to such data that will be 
obtained for different samples and for which the values of some rheological characteristics will be close and the values of other 
characteristics will differ. Such a comparison made for two samples of branched polymers is given in [27, 29]. The constitutive 
relations were identifi ed by the experimental data obtained in [27], where the rheology of two melts of the strongly branched 
low-density polyethylene used to obtain fi lms (LDPE Bralen RB0323, Slovnaft, Slovakia and LDPE Escorene LD165BW1, 
Exxon, USA) was investigated. Experiments were performed at a temperature of 200oC. In [27], the elasticity modulus G′ and 
the loss modulus G″ were measured by different methods, and the stresses, the transition and steady states of shear viscosity, 
and the coeffi cients of the fi rst normal stress difference were determined. To obtain data at stationary shear and coeffi cients of 
the fi rst normal stress difference at high rates of shear, an RH7 (Rosand Precision) capillary rheometer was used. The values 
of the fi rst normal stress difference were obtained with the use of the method based on the determination of the outlet stress 
on the slit matrix. The viscosity at uniaxial tension was measured with the use of an ARES 2000 rheometer equipped with a 
universal SER-type testing platform (model SER-HV-A01, Xpansion Instruments). The experiment is described in detail in [29].

Let us fi rst determine the parameters ηα and τα having viscosity and time dimensions, respectively. Solving the 
second equation of system (1) with accuracy up to fi rst-order terms for velocity vectors, we obtain
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This equation coincides with the Maxwell equation and we can obtain with its help the relations of linear viscoelasticity. 
From (1) and the last relation follow the formulas for calculating the elasticity and loss moduli, which can be obtained fairly 
easily [12]:
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These relations agree with the results of calculations by other rheological models [28, 29], and the procedure of determining 
the parameters ηα and τα based on the minimization with the help of the least square technique is fairly reliable. The dynamic 
modulus components calculated by expressions (3) can be compared with experimental ones. Note that calculations were 
performed for ten modes, and the values of the model parameters chosen from the condition of the best agreement between 
experimental and calculated data are given in Table 1. The parameter ηα was determined by the formula ηα = gατα. This 
expression differs from the formula used in [26] by the coeffi cient 1/3 resulting from the setting up error. It should be noted 
that the values of gα and τα were determined in [28]. Note that the combination of the parameters gα and τα or ηα and τα is 
called the relaxation spectrum [28, 29].

To choose values of the anisotropy parameters, in [26] the contributions of each of the modes α were investigated, 
and the fα and pα values were determined on each portion of the stationary viscosity curve at uniaxial tension. It is clear that 
such a procedure cannot be called successful, since the model parameters were determined on the basis of intuitive relations. 
It was obtained thereby that both fα and pα are nonmonotonic functions of the mode number α. First these parameters increased 
with increasing α and then decreased, and their maxima fall at the middle of the range of change of the mode number: α = 5. 
Therefore, in the present paper we shall use for these parameters the expressions

 
2 2

0 0
, .

1 ( ) 1 ( )
B Pf pα α= =

+ α − α + α − α
  (4)

In the latter relation, mode number α0 corresponds to the numerical-mean value of the molecular mass Mn. It might be 
expected that the form and sizes of the coiled macromolecule corresponding to Mn will have the strongest effect on the 
polymer fl uid dynamics. Those fractions whose molecular mass differs considerably from Mn should have an insignifi cant 
infl uence on the nonlinear viscoelastic properties of such a medium. This means that at α → ∞ the parameters fα and pα will 
be infi nitely small. Naturally, in reality this limiting transition is unrealizable; nevertheless, for a mode number difference 
equal to 5, their infl uence weakens 25 times.

Viscoelastic Functions at Simple Shear and Uniaxial Tension. Let us consider the infl uence of the parameters 
B and P introduced into expression (4) on the form of the dependence of the stationary shear viscosity on the rate of shear. 
Numerical calculations of nonstationary viscometric functions at simple shear and uniaxial tension by model (1), (2), (4) 
were carried out by the Runge–Kutta method, and their stationary values were obtained by the settling method. Details of the 
calculations performed for the single-mode model are given in [20]. Therefore, we present only the fi nal results.

From Fig. 1 it is seen that the curve of the stationary viscosity as a function of the extension rate is nonmonotonic 
and has one or several infl ection points. As the parameter B increases, the maximum value on this curve decreases. At P = 0 
the nonmonotonic character of the curve changes for the monotonic character. Thus, it is seen that selecting the parameters 
B and P permits describing fairly accurately the dependence of the stationary viscosity on the extension rate. Now let us see 

TABLE 1. Values of the Linear Viscoelasticity Parameters

No. gα, Pa τα, s ηα, Pa ⋅ s gα, Pa τα, s ηα, Pa ⋅ s

LDPE Bralen RB0323 LDPE Escorene LD165BW1

1 121  440 0.00134 162.7 109  430 0.00154 168.5

2 35  292 0.0052 183.5 37  350 0.00633 236.4

3 33  443 0.0202 673.9 32  409 0.026 843.3

4 19  480 0.078 1520 15  250 0.107 1630

5 11  923 0.302 3604 11  080 0.439 14  710

6 5763.6 1.171 6749 4836 1.802 8704

7 2574.6 4.54 11  680 1986.65 7.404 14  710

8 800.9 17.57 14  070 494.7 30.4 15  046

9 213.4 68.07 14  530 110.16 125 13  760

10 34.69 263.7 9146 33.38 513 17  126
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if we can describe, with the help of the parameters B and P found for the stationary viscosity extension, the nonstationary 
effects at simple shear and uniaxial tension. Figure 2 shows the gradient dependences of viscosity at shear and tension. From 
this fi gure it is seen that model (2) describes with fair accuracy the shear viscosity anomaly and the nonuniform dependence 
of the elongation viscosity and that for this model the Cox–Merz rule holds [10].

Figure 3 shows the time dependences of viscosity setting, the coeffi cient of the fi rst normal stress difference at 
simple shear, and the viscosity at uniaxial tension of the Slovnaft and Exxon melts, as well as the nonstationary dependences 
of viscosity settling at uniaxial tension. From Fig. 3a, b, c, and d it is seen that at low rates of shear the measured values 
go monotonically to the steady state, and at high rates of shear the measured dependences go through the maximum. It 
should be noted that model (1) describes fairly well the initial portion of the considered dependences. At the same time, in 
experiments, destruction of samples at high extension rates is observed. Since this phenomenon was not taken into account 
in model (1), at large times the behavior of the model and of the experimental sample differs considerably. This disadvantage 
is also present in other rheological models [28, 29]. Note that all calculations were performed at certain values of parameters 
different for different samples. In particular, for Escorene they had values of B = 0.5, P = 0.002, and α0 = 6.5, and for 
Bralen B = 0.65, P = 0.002, and α0 = 5. Thus, instead of the intuitive procedure of determining the parameters of the 
rheological model used in [26], here a more reliable procedure based on expressions (4) is proposed. It should also be noted 
that in [29] comparison was made between the obtained experimental data and calculations performed by other rheological 
models: the modifi ed Prokunin–Leonov model [2], the pom-pom model [12], and the expanded pom-pom model [13]. 

Fig. 1. Infl uence of the parameters B (a) and P (b) on the dependence of the stationary 
viscosity of the melt on its extension rates: a) P = 0.001; b) B = 0.2.

Fig. 2. Comparison of the gradient dependences of stationary viscosities of the Slovnaft (a) 
and Exxon (b) melts at tension (1, 2) and simple shear (3, 4) at a temperature of 200oC: 
1, 3) calculation; 2, 4) experiment [28]; 5) oscillation experiment (Cox–Merz rule).
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The results of the comparison of the experimental data with the calculations by other models show that model (1) provides 
an accuracy of predictions not worse than the expanded pom-pom model and better results than the models of [2] and [12], 
as well as much better results as compared to the one-mode approximation [21, 26].

Fig. 3. Comparison of the time dependences of settling of the shear viscosity (a, b),
the coeffi cient of the fi rst normal stress difference (c, d), and viscosity at uniaxial tension (e, f )
of the Slovnaft (a, c, e) and Exxon (b, d, e) melts at various rates of shear (a, b, c, d), and 
extension rates (e, f ): a–d) 1) ε = 2.3 s–1; 2) 1; 3) 0.316; 4) 0.1; 5) 0.0316; e, f ) 1) ε = 0.1 s–1;
2) 0.316; 3) 1; 4) 3.16; 5) 10; 6) 20; 7) 0.1; 8) 0.316; 9) 1.
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Conclusions. A comparison between the results of calculations and the corresponding experimental data has shown 
that although the proposed multimode model was obtained as a development of theoretical notions about the dynamics of 
linear polymer chains, it permits describing with fair accuracy the stationary and nonstationary dependences of the viscometric 
functions of melts of branched polymers on the velocity gradients. It might be expected thereby that the obtained model will 
turn out to be also suitable for concentrated solutions and melts of linear polymers. This model can also be used to describe 
more complex fl ows of polymer fl uid media

The authors wish to express deep gratitude to Professor V. N. Pokrovskii for his interest in this work and many 
helpful remarks. The work was supported by the Russian Foundation for Basic Research (grant No. 15-4-04003).

NOTATION

G ′ and G″, elasticity and loss moduli; Mn, mean numerical value of the molecular mass; p, hydrostatic pressure; 
t, time, s; ε, extension rate or rate of shear; η, shear-viscosity coeffi cient; λ, viscosity coeffi cient at uniaxial tension; 
ω, oscillation frequency.
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