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MATHEMATICAL SIMULATION OF THE STRUCTURAL PROPERTIES 
OF PACKED AND FLUIDIZED BEDS

S. S. Fedorov, M. V. Gubinskii, and S. N. Foris′ UDC 539.215:536.24

Based on the algorithm of successive fi lling a given volume with single spheres, a mathematical model of random 
packing of a limited volume of a bed in the fi eld of body forces has been developed. This model can be applied to 
electrothermal packed- and fl uidized-bed furnaces and will make it possible to investigate the thermal and electrical 
conductivity of such beds. A check of the adequacy of the model showed its correspondence to the well-known 
experimental and calculated results, as well as the stability of the solutions obtained with its aid.

Keywords: random packing of particles, bed conductivity, packing density, voidage, coordination number, elementary 
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Introduction. Heat and mass transfer in bed apparatuses is determined in many respects by the properties of the 
granular structure of a bed and by the granulometric composition of the material, as well as by the packing density and 
coordination number. The infl uence of the packing is especially appreciable in electrothermal dense- and fl uidized-bed 
furnaces in which the intensity and distribution of the Joule heat sources are directly determined by the conditions of the 
contact interaction of elements [1–5].

The processes associated with high-temperature processing of a carbon-containing material in electrothermal furnaces 
have a complex physical character. The most probable mechanisms underlying the release of heat are the electrocontact and 
electrospark heating in the bulk of the bed as a result of the interaction of bed particles with one another. To estimate the 
electrical conductivity of granular structures, the approach of [6] can be used that accounts for the size and roughness of 
particles, number of contacts, and the mechanical load:
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where η = (0.001–1)·10–2 is the relative area of an actual contact depending on the shape and size of the microroughness, 
strength characteristics, and on the magnitude of outer load. The use of Eqs. (1)–(5) presupposes knowledge of the structural 
properties of granular systems: voidage and coordination number. One of the main methods of studying these systems is 
simulation. The practical implementation of such mathematical models allows one to pass to considering structures with 
specifi c geometric parameters. In this case, the elements (grains) themselves with known coordinates form a kind of a skeleton 
where each connection line corresponds to one unique contact.
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Thus, the solution of the geometric problem of identifying the skeleton structure of a bed together with simulation 
of the conductivity of the individual contacts [4] and of the skeleton as a whole allows one to investigate the processes of 
heat and mass transfer in electrothermal packed- and fl uidized-bed furnaces. The present work is aimed at simulating the 
geometric characteristic features of the packing of a granular bed structure in the context of studying the bed conductivity.

The solutions of the problems of close packing of particles have found a wide application in science and technology. 
Such solutions are used for studying the contact conductivity of granular systems [6]; in modeling the molecular and atomic 
structure of a substance [7, 8]; in nanotechnologies [9] and the theory of information coding [10]; in optimizing the space 
occupation [11]; in studying the properties of grounds [12], fi ltering charges and powder materials [13–15], as well as 
the processes of physical adsorption [16] and fi ltration combustion [17]. Interest in the indicated problems has increased 
considerably in recent years in view of the development of the modern means of modeling and visualization [18–38].

An analysis of works [6–38] shows that despite the commonness of the problems listed above, each individual case 
has its own specifi c features that determine the validity of one or another assumption. For example, it is advisable to consider 
the packing of a bed in an industrial furnace as a random charge of a material and to calculate it with account for the acting 
body forces (gravitation and inertia), the inhomogeneity of the granulometric composition, shape of the material, and for 
the limited volume of the working space. This brings up a number of accompanying questions about the dimensions of the 
elementary volume that has the characteristics of the bed core, the dimensions and infl uence of the near-wall region, density 
fl uctuation, and about the coordination number of packing.

The reported results of experimental and theoretical investigations of structural properties of packings are ambiguous 
[13, 15, 18, 21, 24–30, 37]. Most of the results lead to the conclusion that the density of a random packing φ ranges from 
0.54 to 0.65. As to the coordination number N, there is no uniformity of opinion. In the works of R. I. Ayukaev, V. A. Kivran, 
and I. É. Naats [26–28], from the results of the mathematical simulation of a charge of monodisperse spheres the expected 
value of the coordination number was determined to be N = 8 by the method of successive fi lling of a volume. On going to 
a two-component mixture with the ratio of the diameters of spheres 1:2, this index approaches N = 11. Analogous results 
were obtained by T. P. Bondareva for single spheres in [21]. However, the latter author used an algorithm of layer-by-layer 
fi lling of the volume without account for the infl uence of its boundaries, with the coordination number being found from 
the generalized exponential distribution law. In the work of Sai S. Tulluri [35], the maximum of the probability density of 
the coordination number obtained for a random packing of spheres by the Monte Carlo method amounted to N = 6.7. The 
results given in [21, 25–28] agree well with the experiments in which the free space in the bed was fi lled with acetic acid 
and paraffi n to mark the contacts [38]. At the same time, despite the correlation between experimental and calculated data, 
notion should be made of the discrepancy between them for the probability of the distribution of the coordination numbers. 
The experimental values for the coordination numbers of identical spheres differ substantially from the theoretical values: 
N = 5.9 ± 0.3 obtained by Z. Yaremko [24]. As a model liquid in the experiments in [24] a solution of gelatin was used. It is 
interesting that in the vicinity of each sphere of diameter d there were on the average 10.8 ± 0.6 neighbors at a distance of 
the order of 0.05d.

With allowance for the foregoing, attention should be paid to the conclusion drawn by some researchers on the 
relationship between the structure of random packing and the algorithm of the formation of this packing [18, 24], which 
may provide an explanation for the disagreement between experimental and predicted data. Analyzing the function N(φ) for 
regular face-centered, body-centered, simple cubic, and diamond packings (N = 12, 8, 6, 4), M. N. Magomedov isolated a 
region of uncertain values of φ corresponding, in his opinion, to random systems [18]. As a result, he suggested an interval 
characteristic for a random atomic structure of a substance: N = 5.84–6.32, φ = 0.454–0.573. However, in all probability, this 
estimate cannot be extended to the granular structures of furnaces, since at N = 4–5 the bed is not stable [14]. At the same 
time, the conclusions made by the authors in [18] are confi rmed by a number of theoretical works [29, 30, 37, 38].

Thus, the results of investigations of the structural properties of a granular bed need refi nement. The aim of the 
present work is to develop a mathematical model of a random packing of particles of a material of homogeneous fractional 
composition under conditions of the acting directed body force and to determine the main characteristics of the bed: packing 
density, coordination number, dimensions of the elementary volume, and of the near-wall region.

Techniques. As the basic method of simulation we used the algorithm of successive fi lling of a cubic volume (scene) 
[21, 23, 27, 37] of size 1 ×1 × 1 by single spheres of different diameters (Fig. 1). The forces of mechanical interaction were not 
taken into account, and the problem of fi nding a stable position of a sphere in a dimple was reduced to the search for optimum 
coordinates of its center at which a shift in the direction of the gravity vector Fg becomes impossible (Δn → 0). The criterion 
of the optimum solution is the fulfi llment of the following conditions:
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residence of the ith sphere within the scene

 ≤ ≤ − ≤ ≤ − ≥1 , 1 , ,i i i i i i i ir x r r y r z r   (6)

nonintersection of spheres

 − + − + − ≥ +2 2 2 2( ) ( ) ( ) ( ) ,i j i j i j i jx x y y z z r r   (7)

the presence of no fewer than three supporting contacts, each of which satisfi es one of the equalities

 − + − + − ≥ +2 2 2 2( ) ( ) ( ) ( ) ,i j i j i j i jx x y y z z r r  

 = = − = = −∪ ∪1 , 1 .i i i i i i i ix r x r y r y r   (8)

The equilibrium position of a sphere in a dimple is determined by the equality of the acting gravity forces and 
reactions of the support ΣF = 0 [37, 40]. Therefore, it is essential that the vector of the gravity forces from the center of mass 
of the sphere be able get into the triangle of area SABD, SBCD or SACD formed by the projection of three supporting contacts 
onto the X 0Y plane (Fig. 2). In a numerical experiment, in the course of fi lling the volume, the initial coordinates x and y 
beyond the scene (z > 1) were given for each new sphere in a random way, as well as the diameter according to the initial 
granulometric composition. After this, the sphere was lowered with the step Δn = r/4 down to the bed surface. Further search 
for the dimple was made by the Monte Carlo method and involved investigation of the given vicinity of radius r by successive 
subdivision of the step Δn with account for the limitations (6) and (7). At Δn = 0 the presence of the supporting contacts (8) 
was checked as well as the fulfi llment of the equilibrium condition (Fig. 2). The spheres were considered contacting at the 
distance between their centers equal to Δ = ri + rj with an error δ ≤ 1%. In the case of a negative result of the checking, the 
value of the step Δn = r/4 was recovered for the current position of the sphere.

The given algorithm was realized in the Visual Basic language. The relative mean diameter of spheres d was taken 
equal to 0.025. This corresponds to successive deployment of up to 40 rows of elements along the wall, thus minimizing the 
infl uence of the near-wall effects in the formation of the bed core structure [13, 28, 33, 39]. The number of spheres was of the 
order of 64 thousand. The packings were visualized by the AutoCAD and CadTools means (Fig. 3).

Results of Discussion. As a result of 20 numerical experiments the conclusion was drawn that for a disordered bed 
of 64 thousand of identical spheres formed in the fi eld of the acting body force in a limited volume, the voidage ε is equal to 
0.406–0.408 (φ = 0.592–0.594) and the coordination number is N = 6.11–6.14. As is seen, the mathematical model satisfi es the 
convergence and stability criteria of solutions. It should be noted that with higher demands on the error of packing (δ ≤ 0.1%), 
the value of ε asymptotically approaches 0.4, with the average value of N remaining the same. Visual inspection of individual 
fragments of the bed (Fig. 3) has revealed no discrepancy with the described algorithm and with the used restrictions. Thus, 
the results obtained agree to the greatest extent with the experimental and calculated data of works [18, 24, 25].

Fig. 1. Region of fi lling with granular packing.

Fig. 2. Condition of equilibrium position of a sphere in a dimple: A, B, C, D, projections 
of supporting contacts and of the sphere center of mass onto the X0Y plane.
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An analysis of packings has shown that the distribution of the coordination numbers for the entire array of spheres 
obeys the normal Gauss law (Fig. 4). The number of contacts takes the values from 3 to 9, with the lower limit of the indicated 
range corresponding to the spheres located on the bed surface. The probability maximum f (N ) = 0.46 is observed for the 
contact number N = 6. In individual packings there are spheres with N = 10 and 11, but this is rather an exception from the 
general tendency. According to the results of investigations of the vicinity of spheres at distances of 1.05d, 1.1d, and 1.25d, 
the number of neighbors came to 6.8, 7.7, and 10.0, respectively. Thus, the coordination number determined in the numerical 
experiment for a disordered single bed N = 6.11–6.14 turned out to be far from the value 8. Moreover, the predicted distance 
between neighbors (curves 1–3) differ substantially from the expert estimate [24]. The reasons may be both the absence of 
exact measurements of this index in experiments [24] and some of the assumptions of the model (curves 1–3) that do not 
account for the specifi c features of the dynamics and statics in the course of fi lling: the presence of friction forces, elastic 
interactions, rolling of spheres, etc.

An important stage in the analysis of the model of the bed is the interpretation of results. For a random packing, 
use is often made of the so-called radial function of random fi lling g(R) that in essence is the dependence of the integral 
density of packing on the radius of a sphere as the center of which a certain base reference point is selected  [26]. However, 
in modeling the conductivity in application to electrothermal furnaces it is convenient to consider rectangular elementary 
volumes, which facilitates the determination of such parameters as the thermal conductivity coeffi cient or specifi c electrical 
resistance of the bed.

At the fi rst stage we investigated the transparency εf of the square sections of the bed at the mark z = 0.45 parallel to 
the X 0Y plane. The sizes of the sections varied from 1.5d to 20d. The transparency was calculated as a fraction of the space 
free of the material and simultaneously the average number of contacts was determined for spheres in the given section. 
As is seen from Fig. 5, already at (8–9)d the transparency of the bed core coincides with its voidage (curves 1–3). Near 
the wall regions the values of εf differ (curves 4–6), but the general picture of the interconnection remains the same. As to 
the coordination number, it takes characteristic values of the bed core at the size of the area equal to about 10d and the bed 
boundaries, to about 12d.

Fig. 3. Visualization of a disordered bed of identical-diameter spheres in the fi eld of 
directed body force: a) a fragment of a bed of 10 thousand spheres; b) a fragment of the 
bed surface; c) skeleton of the bed core (6 × 6 × 6)d.
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Thus, with a certain extent of assumption the elemental area of section 12 × 12d can be considered to be representative 
of the properties of random packings. This is also confi rmed by the changes in the values of εf and N when the elemental area 
(12 × 12)d moves in the direction of the 0Y axis (Fig. 6) from the side wall and deep in the bed. Moreover, the behavior of the 
function εf(y) in the wall region correlates with the familiar experimental and calculated data of [13, 15, 28]. The fl uctuation 
of the transparency and of the coordination number inside the bed (Fig. 6) are within ±8% and ±2.5%, whereas at a distance 
of 1.5d from the wall the unit area already acquires the characteristics of the core.

The bed is characterized better by such an integral volumetric index as voidage. With passage from the elemental 
plane square section to a cubical segment (Fig. 7) it is seen that the fragments (cubes) of size more than (6 × 6 × 6)d(216d3) 
possess all the properties of the core. Taking into account the fact that a plane area of size (10 × 10)d (Fig. 5, curve 1–3) 
indirectly characterizes a certain vicinity ±d in the 0Y direction of volume (10 × 10 × 2)d = 200d3, a conclusion can be drawn 
about the coincidences of the results presented in Figs. 5 and 6. Thus, as a unit bed of monodisperse spheres a volume of about 
200d3 should be used in modeling the conductivity. This conclusion allows one to substantially reduce the boundaries of the 
region of simulation of the contact conductivity of granular structures.

Fig. 4. Probability density of the distribution of neighbors in the vicinity of spheres 
of radius 1d ( ∗N = N ) (1), 1.05d (2), 1.10d (3), and 1.25d (4).

Fig. 5. Transparency of εf (a) and coordination number N (b) of a monodisperse bed of 
spheres depending on the size of the elemental area D: 1) r = 20d; 2) 10d; 3) 5d; 4) 1d; 
5) 0.5d; 6) 0.25d.



632

An analysis of the conductivity of an electrothermal bubbling bed was carried out on the basis of a two-phase model 
[39, 41]. In this case, the system consists of gas bubbles and of a conventionally "dense" emulsion phase that plays the role 
of the electric energy conductor. Using the data obtained in simulation for the voidage and coordination number, as well as 
relations (1)–(5), we determined the values of the specifi c electrical resistance of a bubbling bed of graphite (Table 1) that give 
satisfactory agreement with experimental data. In such a case, the value of the roughness hr = 1.5·10–3 mm and the relative 
radius of the spot of the actual contact y1 = 2.5·10–3 mm are adopted in accordance with the recommendations given in [4].

Fig. 6. Fluctuations of transparency of εf (a) and of coordination number N (b) of 
a monodisperse bed of spheres at D = (12 × 12)d; 1) bed core; 2) vicinity of a wall.

Fig. 7. Voidage ε (1) and coordination number N (2) vs. the linear dimension of 
an elementary volume.

TABLE 1. Infl uence of the Diameter of Graphite Particles on the Specifi c Electrical Resistance of a Bubbling Bed at t = 20oC

Particle diameter, mm
Ω, Ω·cm

Calculation Experiment [42]

0.105 34 33

0.195 27 27

0.375 23 24

0.850 21 23
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CONCLUSIONS

1. The characteristics of random packings change in wide ranges: φ = 0.45–0.65 and N = 6–8. The lack of agreement 
between the experimental and calculated data, well-known from the literature, is due to the differences in the methods 
of granular structure formation, physical specifi c features of the pertinent problems, as well as to the subjective factors 
associated with the errors occurring in measurements and modeling.

2. For a given cubical volume 1 × 1× 1 fi lled with 64 thousand spheres of relative diameter 0.05, the coordination 
number N comes to 6.11–6.14 and the voidage ε, to about 0.40.

3. For the analysis of the properties of a packing, the use of a unit square section and cubical volume is substantiated, 
which makes it possible to narrow the region of investigation of the skeleton structure in mathematical simulation of 
the problems of bed conductivity. It has been established on their basis that the elementary volume that refl ects the integral 
characteristics of the bed (voidage and coordination number) is of the order of about 200d3. The size of the elemental area 
is (12 × 12)d. The depth of the wall region within which the properties of the packing differ from the properties of the bed 
core is equal to about 1.5d.

NOTATION

d, diameter of a spherical particle, m; D, size of an elemental area, units of d; Fg, vector of gravity force, H; 
ΣF, resulting vector of forces acting on a sphere, N; f (N ), probability distribution function of the coordination number; g(R), 
radial function of random fi lling; G, specifi c electrical conductivity of material, S/m; G0, specifi c electrical conductivity of 
the bed, S/m; hr, roughness of the material surface, mm; K, proportionality factor taking into account the elastic properties of 
granular system; L, linear dimension of the elementary volume, units of d; N, coordination number (the number of contacts of 
a particle with neighboring particles); ∗N , number of neighboring spheres; Δn, relative displacement of a sphere in packing; 
P, load of a bed, Pa; r, relative radius of a sphere; S, displacement of the area, units of d; x, y, z, relative coordinates of 
a sphere; y1, relative radius of the actual spot of a contact with account for the surface roughness; y4, relative radius of the 
averaged element of the bed; Δ, distance between the centers of spherical particles in relative units; δ, error of calculations, %; 
εf, transparency (the ratio of the area of a gap to the total area of the bed section); ε, voidage (ratio of the total volume free of 
particles to the bed volume); Λ, relative electrical conductivity of a bubbling bed; φ, density of the packing of particles (ratio 
of the total volume of particles to the volume of the bed); Ω, specifi c electrical resistance, Ω·cm. Indices: r, roughness; f, free; 
g, gravitation; i, j, numbers of a current sphere and of a set of packed spheres.
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