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PLANE WAVES IN A ROTATING MONOCLINIC MAGNETOTHERMOELASTIC MEDIUM

B. Singh® and A. K. Yadav® UDC 536.21

The governing equations for a rotating monoclinic magnetothermoelastic medium are formulated in the context of
the Lord—Shulman theory and are solved to yield the velocity equation that points to the existence of three quasi-
plane waves. Some particular cases are obtained, i.e., waves in the absence of anisotropy, rotation, and thermal and
magnetic fields. A procedure for computing the angles of reflection is carried out. A numerical example is considered
to show the dependence of the speeds of various plane waves on the angle of incidence, angle of reflection, rotation
rate, and magnetic field strength.
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Introduction. The thermoelasticity theory combines the theories of elasticity and heat transfer as well as their
coupled effects. Biot [1] studied the theory of thermoelasticity where the diffusion-type heat equation predicts an infinite
speed of the thermal signal propagation. Lord and Shulman [2] presented the theory of generalized thermoelasticity where a
hyperbolic equation of heat conduction with a relaxation time ensured a finite speed of thermal signals. Using two relaxation
times, Green and Lindsay [3] developed another generalized theory of thermoelasticity. A unified treatment of both Lord—
Shulman and Green—Lindsay theories was given by Ignaczak and Ostoja-Starzewski [4]. Dhaliwal and Sherief [5] extended
the Lord—Shulman generalization of thermoelasticity to an anisotropic case.

Schoenberg and Censor [6] studied the effect of rotation on plane wave propagation in an isotropic medium and
considered the propagation of three plane waves in a rotating isotropic medium. Chandrasekharaiah and Srinatiah [7, §]
considered thermoelastic plane waves in a rotating isotropic solid. Ahmad and Khan [9] studied such waves in a rotating
isotropic material and showed the existence of four plane waves. None of these waves is dilatational or transverse in character
unless special propagation directions are considered.

Keith and Crampin [10] found three types of body waves with mutually orthogonal particle motion that can propagate
in an anisotropic elastic solid and are called quasi-P (qP), quasi-SV (qSV), and quasi-SH (qSH) waves. In general, the particle
motion is neither purely longitudinal nor transversal. Chattopadhyay and Choudhary [11] studied the reflection of qP waves
at the plane free boundary of a monoclinic half-space. Chattopadhyay, Saha, and Chakraboty [12] considered the reflection
of qSV waves at a plane free boundary of a monoclinic half-space. Singh [13] published a comment on the above two papers.
Singh and Khurana [14] studied the reflection of P and SV waves at the free surface of a monoclinic half-space. Singh [15-17]
considered the plane wave propagation in a thermoelastic medium for transvsersely isotropic as well as monoclinic cases.
Some other problems of wave propagation in the context of anisotropic thermoelasticity with various parameters were studied
by Kumar and Singh [18], Singh and Tomar [19], and Singh and Yadav [20, 21]. In the present work, the governing equations
for a homogeneous rotating monoclinic magnetothermoelastic medium will be formulated and solved, showing the existence
of three quasi-plane waves.

Formulation and Solution of the Problem. We consider a homogeneous monoclinic magnetothermoelastic medium
rotating about the x axis with the rate Q = (Q, 0, 0) at the magnetic field strength H = (#, 0, 0) and the reference temperature
Ty. The governing equations in the yz plane are
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The Maxwell equations are
oB .
cul H=J , curlE——E, divB=0, B=pH. 3)
The generalized Ohm's law in deformable continua is
J = o[E + (u x B)], 4)

where the effect of the temperature gradient on the conduction current J is neglected.
We set H=H, + h, where Hy = (0, 0, Hj). The perturbed magnetic field h is so small that the product of h, u, and their
derivatives can be neglected while linearizing the field equations. With the help of Egs. (3) and (4), Egs. (1) and (2) become
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Following Lord and Shulman [2], we write the heat conduction equation as
0’1 8’1 o &y *w & w
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We assume that the solutions for plane wave are
v:Aexp{ik(ysin9+zcos9—Vt)},
w = B exp {ik (y sin 0 + z cos 0 — 1)},
T = C exp {ik (ysin 6 + z cos B — Vt)} (8)
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and
v = Aexp{ik(ysine—zcos(%)—Vt)},

w = B exp {ik (y sin 0 — z cos 0 — V1)}

T

C exp {ik (y sin 0 — z cos 0 — V)] .
Using Egs. (8) and (9) in Egs. (5)—(7), we obtain

(Dl—Q*C)A+[D2+2igqu+iB—zsin6C:0,

o) k

(Dz—ZiQQjA+(D3—Q*Q)Bil%cosE)C:O,
(0]

sgsineAiESCcosﬁB+i%(Ds—C)C=0,

where
C=pl?,

Dy = Cyy sin? 0 + Cys cos? 0 + 2C5y4 sin O cos O + ueHg sin? 0,

Dy, = Cy sin? 0 + C3y cos® O + (Cy3 + Cy4) sin B cos O ueHg sin 6 cos O,

D3 = Cyy sin? 0 + Css cos® 0 + 2C3y4 sin O cos O + ueHg cos’ 0,

Dy

Ds = —
'CCE

, D4=Kzsin26+K3cosze,
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Here the upper sign corresponds to incident waves and the lower one, to reflected waves.
A nontrivial solution of Egs. (10)—(12) exists if

pPCE

A + AL + HC+ 43 =0,

where

A2 = Dzz - D1D3 - Q* (Dle + D3D5)
—-& (BZDI cos’ 0 + D; sin® 0 F ZBDz sin O cos 6) ,
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Ay = (D1D3 - D22) Ds .

The three roots §; = ij2 (J =1, 2, 3) of Eq. (13) correspond to the complex phase velocities V; of the three plane waves,
namely, of the P, qSV, and qT waves, respectively. We can write Vj_l = V;-“_l -1 co_lq j» Where VJ* and g; are the propagation
speeds and attenuation coefficients of the qP, qSV, and qT waves.

Particular Cases. Equation (13) reduces to the following cases for different media:

1) for Cy4 = C34 = 0, rotating orthotropic magnetothermoelastic;

2) for Cyy = C34 =0, Cy3 = C33 — 2Cyy, rotating transversely isotropic magnetothermoelastic;

3)for Cpp=Cy3=A+21, Ci13=C3=C13=% Cg=Cs5=Ce6 =, C14 = Cp4 = C34 = C5 =0, p =P3 = B,

K, = K3 = K, rotating isotropic magnetothermoelastic;

4) for Q = 0, monoclinic magnetothermoelastic;

5) for Hy = 0, rotating monoclinic thermoelastic;

6) for € = 0, D4 = 0, rotating monoclinic magnetoelastic;

7) for Hy=0, Q =0, D4 =0, ¢ =0, monoclinic elastic.

Computation of the Angles of Reflection. The reflection coefficient depends on the velocities Vi(e;), where
i=1,2,3,...,6,which are functions of the angles of incidence and reflection. For the incident qP wave, the angle of incidence
e1, and therefore V(ey), is assumed to be known. It is necessary to compute the angles of reflection ey, e5, and e¢ for a given
value of e;. Then the velocities Vy(ey), V5(es), and Vi(eg) can be computed from explicit algebraic formulas. The procedure
is given below for computing ey, e5, and eg: for given e in the case of incident gP waves, for given e, in the case of incident
qT waves, and for given ej3 in the case of incident SV waves.

Putting § = sz in Eq. (13), we obtain

3 2
o (pV2) + 4 (pV?) + dpV? + s = 0. (14)
We define the dimensionless apparent velocity V as

gt V. (15)

B P
_ |Caq 2 _ p2p 72 .
where B = ,|[——. From Eq. (15) we have pV' = = P5 Cy4V'* and then Eq. (14) results in
p
A0P26C24I76 + A1P24C4%4I74 + A2P22C44I72 + A3 =0. (16)

Dividing Eq. (16) by P2C3, and putting

— C; —_ K _ K _ _ _
Cﬁ:_ya K2:_2: K3:_39 g:i’ l”le:ue’ V:VP2B’
Caq Cas Cas Cys Cyq
we obtain
A0176 + 21174 + 22172 + 23 =0 , (17)
where
o)
Ao =4 H -7,
)
_ _ _ _ 0\’
4 =0 (D1 + Dy +§+§[32p2)+D5 Q*? —4[—) :
®
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P

We have for incident waves: qP, p = —cot ey; qT, p = —cot e;; qSV, p = —cot e3; for reflected waves: qP, p = —cot e4; qT,
p =cotes; qSV, p = —cot eg.

For a given value of p, Eq. (17) may be solved, and its three roots correspond to the qP, qT, and qSV waves. For a
given value of v, Eq. (17) is a six-degree equation in p for the incident qP, qT, and qSV waves and for the reflected ones,
where the positive and negative roots correspond to the reflected and incident waves, respectively.

Substituting the values of Dy, D,, D5, and Ds into Eq. (17), after simplification we obtain a six-degree equation
in p which can be written as

6 5 4 3 2
gop + QP+ p + 8P+ gup” +gp+g =0. (18)
The expressions for g;, where i =1, 2, 3, ..., 6, are given in the Appendix. After introducing ¢ = 1/p, Eq. (18) becomes
6 5 4 3 2
869 +85q4° + 844 + 89 +24q +g19+8g =0. (19)
For the angles of incidence for which all three reflected qP, qSV, and qT waves exist, Eq. (19) has three positive roots. The
smaller positive root, say g, corresponds to the reflected qT waves, the root gs, to the reflected qSV waves, and the larger
positive root g4, to the reflected qP waves. We have

ey =tan"'(q4), es =tan '(g5), e =tan'(ge). (20)

For an isotropic thermoelastic medium, putting in Eq. (18)

N T
Ci1=Cyp =Cx3 = = Cly =Cy =C34 =0,
_ T A+ 2
C44 =Cs55=Ce6 =1, Cp=C3=Cn3=—, Ky=Kz3=K, B=1, y= =
n n
we obtain
1.6 75 14 13 2 ' r
gop + &P +gp tgp +tg&p +gp+g =0, (21)

where the expressions for g; (i=0, 1,2, ..., 6) are given in the Appendix. Taking

(y-i—ﬁeHg):Sy, y+§+ueH§+ KQ" =r

b
'C*CE T*CE

2 2
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Fig. 1. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the
angle of incidence at Hy = 10 A/m and Q/® =0 (1), 2 (2), and 10 (3).

we rewrite Eq. (21) as
sy (p* - o) (p* - 83) (p* - 83) = 0,

where

8 +83 +83 =di? -3,
5783 + 8303 + 8387 = do V't — 24Vt = 24V% + 3,

526363 = — (d3l76 v do 7t —d 7 1).

In this case Snell’s law becomes

(22)
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Fig. 2. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the
angle of incidence at Q/w =2 and Hy =0 (1), 10 (2), and 20 A/m (3).

sin e sin e sin e
1 _ 2 _ 3 (23)
VqP Vqu VqT

Therefore, the roots p2 = 612 = cot? e3, p2 = 6% = cot? e, and p2 = 8% = cot? e, correspond to the qSV, gP, and
qT waves, respectively. The quantities g; =—tan e;, g, = —tan e;, g3 =—tan e3, ¢4 = tan ey, g5 = tan e,, and g¢ = tan e3 are the six
roots of Eq. (19). This choice will act as a guiding factor in computing the angles of reflection of the qP, qT, and qSV waves
in a rotating monoclinic magnetothermoelastic medium. For an orthotropic medium, it can be shown that g; = g3 = g5 = 0.
Therefore, Eq. (19) is reduced to a cubic equation in qz. Thus, we can choose g| = —q4, 42 = —q5, 3 = —q¢. Therefore, the
angles of reflection of the qP, qT, and qSV waves are equal to the angles of incidence of these waves. This is not true for the
monoclinic case. Following this procedure, one can compute the angles of reflection for a particular incident wave.

Numerical Results and Discussion. For numerical computations of the speeds of plane waves, we consider the
following relevant physical constants:

Cy3 =249-10° N-m2, Cyp =198-10° N-m2, Cy =667-10° N-m™2,
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Fig. 3. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the
magnetic field strength at 0 = 45° and Q/w = 0 (1), 4 (2), and 8 (3).

Cyy =78-10° N-m™2, Cyy=Cuul5, Coy=Cyl5, p=2714-10 kg -m™,

Cr=39-102T -kg'-deg™', K, =124-10>W-m ' deg',
Ky =134-10> W-m™' - deg™', B, =575-10° N-m2 -deg™',

By =5.17-10° N-m2 -deg”!, T, =296K, 15=005s, o=5Hz.

Equation (13) is solved numerically to obtain the real speeds V]* of the propagation of plane waves in a rotating monoclinic
magnetothermoelastic medium.

In Fig. 1 the speeds of the qP, qSV, and qT waves are plotted against the angle of incidence for Hy = 10 A/m
and different values of Q/w. The speed of the qP waves is 17.93 m-s' at 0 = 0° for Q/w = 0. Then it increases slowly
up to 19.6 m- s at = 90°. With increase in the rotation rate, it decreases for each angle of incidence. The speed of the
gSV waves is 1.567 m- s'at 0 =0°and 6 = 90° for Q/o = 0. It increases to a maximum value of 1.682 m-s ' at 0 = 45°,
With increase in the rotation rate, the speed of the qSV waves decreases. The speed of the qT waves is 0.2962 m-s!
at 0 = 0° for Q/w = 0. Then it first increases slightly to 0.2967 m- s ' at 0 = 4° and thereafter decreases sharply to a minimum
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Fig. 4. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the
rotation frequency at 0 = 45°, =2 Hz, and Hy =0 (1), 10 (2), and 20 A/m (3).

value 0of 0.255 m-s~" at 6 = 90°. It can be seen from Fig. 1c that the effect of rotation on the qT wave speed increases with the
rotation rate and is different from those observed in the cases of the qP and qSV waves.

Figure 2 shows the speeds of the qP, qSV, and qT waves against the angle of incidence for Q/® = 2 at different
values of Hj. It is seen that the speed of the qP wave is 12.6 m- s'ato=0°for Hy = 0. It increases slowly up to
13.9m-s ' at 6 = 90°. It is also seen that the speed increases with the magnetic field strength. The speed of the qSV waves
i50.699 m-s ' at 0 = 0° and 6 = 90° for H, = 0. It attains a maximum value of 0.740 m-s" at @ = 47°. The speed of the SV
waves also increases with the magnetic field strength, except for the values at 6 = 0° and 6 = 90°. The speed of the qT waves is
0.140 m-s " at = 0° for Hy = 0. Then, after a slight increase at 0 = 3°, it decreases slowly to a minimum value of 0.108 m- g1
at 0 = 90°. The speed of the qT waves also increases with the magnetic field strength.

In Fig. 3, the speeds of the P, qSV, and qT waves are plotted against the magnetic field strength for 6 = 45° and
different values of Q/w. It is observed that the effect of rotation increases with the magnetic field strength. The variations of
the wave speeds with the angle of reflection are almost similar to those given in Fig. 1. Because of this, these variations are
not presented graphically.

In Fig. 4, the speeds of the qP, qSV, and qT waves are plotted against the rotation rate at 0 = 45°, ® = 2 Hz, and
different values of H. It is seen that these speeds decrease sharply with increasing Q. For example, at H = 0 the speed of the
qP waves at Q =4 Hz is 13.27 m- s™!, and then it decreases to 1.81 m-s~' at Q = 20 Hz. It follows from Fig. 4 that the speeds
of all the waves are affected by the rotation rate and magnetic field strength.
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Conclusions. The solutions of the equations for the plane wave propagation in a rotating monoclinic
magnetothermoelastic medium are obtained. There exist three plane waves, namely quasi-P, quasi-SV, and quasi-T waves.
The speeds of these waves are computed for a particular material modeling a half-space. From numerical results it is observed
that the speeds of the waves are significantly affected by the presence of rotation and magnetic field.

NOTATION

B, magnetic induction; Cp, specific heat at constant strain; Cy;, elastic constants; e;;, components of the strain tensor;
E, electric field strength; e, ey, e3, angles of incidence; ey, es, ¢, angles of reflection; H, total magnetic field strength;
J, electric current density; &, wave number; K,, K3, thermal conductivities; ¢, attenuation coefficient; 7, temperature;
T}y, reference uniform temperature; z, time; u(v, w), displacement vector; V, phase velocity; Vj*, speed of wave propagation;
v, z, coordinates; 5, B3, thermal coefficients; 0, angle of propagation; A, u, Lame constants; p,, magnetic permeability;

p, density; o, electric conductivity; Ty, relaxation time; o, circular frequency; €2, rotation rate.
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