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PLANE WAVES IN A ROTATING MONOCLINIC MAGNETOTHERMOELASTIC MEDIUM

B. Singha and A. K. Yadavb UDC 536.21

The governing equations for a rotating monoclinic magnetothermoelastic medium are formulated in the context of 
the Lord–Shulman theory and are solved to yield the velocity equation that points to the existence of three quasi-
plane waves. Some particular cases are obtained, i.e., waves in the absence of anisotropy, rotation, and thermal and 
magnetic fi elds. A procedure for computing the angles of refl ection is carried out. A numerical example is considered 
to show the dependence of the speeds of various plane waves on the angle of incidence, angle of refl ection, rotation 
rate, and magnetic fi eld strength.
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Introduction. The thermoelasticity theory combines the theories of elasticity and heat transfer as well as their 
coupled effects. Biot [1] studied the theory of thermoelasticity where the diffusion-type heat equation predicts an infi nite 
speed of the thermal signal propagation. Lord and Shulman [2] presented the theory of generalized thermoelasticity where a 
hyperbolic equation of heat conduction with a relaxation time ensured a fi nite speed of thermal signals. Using two relaxation 
times, Green and Lindsay [3] developed another generalized theory of thermoelasticity. A unifi ed treatment of both Lord–
Shulman and Green–Lindsay theories was given by Ignaczak and Ostoja-Starzewski [4]. Dhaliwal and Sherief [5] extended 
the Lord–Shulman generalization of thermoelasticity to an anisotropic case.

Schoenberg and Censor [6] studied the effect of rotation on plane wave propagation in an isotropic medium and 
considered the propagation of three plane waves in a rotating isotropic medium. Chandrasekharaiah and Srinatiah [7, 8] 
considered thermoelastic plane waves in a rotating isotropic solid. Ahmad and Khan [9] studied such waves in a rotating 
isotropic material and showed the existence of four plane waves. None of these waves is dilatational or transverse in character 
unless special propagation directions are considered. 

Keith and Crampin [10] found three types of body waves with mutually orthogonal particle motion that can propagate 
in an anisotropic elastic solid and are called quasi-P (qP), quasi-SV (qSV), and quasi-SH (qSH) waves. In general, the particle 
motion is neither purely longitudinal nor transversal. Chattopadhyay and Choudhary [11] studied the refl ection of qP waves 
at the plane free boundary of a monoclinic half-space. Chattopadhyay, Saha, and Chakraboty [12] considered the refl ection 
of qSV waves at a plane free boundary of a monoclinic half-space. Singh [13] published a comment on the above two papers. 
Singh and Khurana [14] studied the refl ection of P and SV waves at the free surface of a monoclinic half-space. Singh [15–17] 
considered the plane wave propagation in a thermoelastic medium for transvsersely isotropic as well as monoclinic cases. 
Some other problems of wave propagation in the context of anisotropic thermoelasticity with various parameters were studied 
by Kumar and Singh [18], Singh and Tomar [19], and Singh and Yadav [20, 21]. In the present work, the governing equations 
for a homogeneous rotating monoclinic magnetothermoelastic medium will be formulated and solved, showing the existence 
of three quasi-plane waves.

Formulation and Solution of the Problem. We consider a homogeneous monoclinic magnetothermoelastic medium 
rotating about the x axis with the rate Ω = (Ω, 0, 0) at the magnetic fi eld strength H = (H, 0, 0) and the reference temperature 
T0. The governing equations in the yz plane are
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The Maxwell equations are

 curl = curl = , div 0  .,, et
− = = μ

∂
∂BH J E B B H  (3)

The generalized Ohm's law in deformable continua is

 [ ( )] ,= σ + ×J E u B�  (4)

where the effect of the temperature gradient on the conduction current J is neglected. 
We set H = H0 + h, where H0 = (0, 0, H0). The perturbed magnetic fi eld h is so small that the product of h, u, and their 

derivatives can be neglected while linearizing the fi eld equations. With the help of Eqs. (3) and (4), Eqs. (1) and (2) become
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Following Lord and Shulman [2], we write the heat conduction equation as
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We assume that the solutions for plane wave are

( ){ }exp sin cos ,A ik y z Vtν = θ + θ −

( ){ }exp sin cos ,w B ik y z Vt= θ + θ −

 ( ){ }exp sin cosT C ik y z Vt= θ + θ −  (8)
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and
( ){ }exp sin cos ,A ik y z Vtν = θ − θ −

( ){ }exp sin cos ,w B ik y z Vt= θ − θ −

 ( ){ }exp sin cos .T C ik y z Vt= θ − θ −  (9)

Using Eqs. (8) and (9) in Eqs. (5)–(7), we obtain
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Here the upper sign corresponds to incident waves and the lower one, to refl ected waves. 
A nontrivial solution of Eqs. (10)–(12) exists if 
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( )2
3 1 3 2 5 .A D D D D= −

The three roots 2 ( 1, 2, 3)j jV jζ = ρ =  of Eq. (13) correspond to the complex phase velocities Vj of the three plane waves, 
namely, of the qP, qSV, and qT waves, respectively. We can write 1 1 1 ,j j jV V i q− ∗− −= − ω  where Vj

* and qj are the propagation 
speeds and attenuation coeffi cients of the qP, qSV, and qT waves.

Particular Cases. Equation (13) reduces to the following cases for different media:

1) for C24 = C34 = 0, rotating orthotropic magnetothermoelastic; 
2) for C24 = C34 = 0, C23 = C33 – 2C44, rotating transversely isotropic magnetothermoelastic; 
3) for C22 = C33 = λ + 2μ, C13 = C23 = C12 = λ, C44 = C55 = C66 = μ, C14 = C24 = C34 = C56 = 0, β2 = β3 = β, 

K2 = K3 = K, rotating isotropic magnetothermoelastic;
4) for Ω = 0, monoclinic magnetothermoelastic; 
5) for H0 = 0, rotating monoclinic thermoelastic;
6) for ε = 0, D4 = 0, rotating monoclinic magnetoelastic; 
7) for H0 = 0, Ω = 0, D4 = 0, ε = 0, monoclinic elastic. 

Computation of the Angles of Refl ection. The refl ection coeffi cient depends on the velocities Vi(ei), where 
i = 1, 2, 3, …, 6, which are functions of the angles of incidence and refl ection. For the incident qP wave, the angle of incidence 
e1, and therefore V1(e1), is assumed to be known. It is necessary to compute the angles of refl ection e4, e5, and e6 for a given 
value of e1. Then the velocities V4(e4), V5(e5), and V6(e6) can be computed from explicit algebraic formulas. The procedure 
is given below for computing e4, e5, and e6: for given e1 in the case of incident qP waves, for given e2 in the case of incident 
qT waves, and for given e3 in the case of incident qSV waves.

Putting 2Vζ = ρ  in Eq. (13), we obtain 
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We defi ne the dimensionless apparent velocity V  as
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 From Eq. (15) we have 2 2 2

2 44V P C Vρ =  and then Eq. (14) results in

 6 3 6 4 2 4 2 2
0 2 44 1 2 44 2 2 44 3 0 .A P C V A P C V A P C V A+ + + =  (16)

Dividing Eq. (16) by 6 3
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We have for incident waves: qP, p = –cot e1; qT, p = –cot e2; qSV, p = –cot e3; for refl ected waves: qP, p = –cot e4; qT, 
p = cot e5; qSV, p = –cot e6.

For a given value of p, Eq. (17) may be solved, and its three roots correspond to the qP, qT, and qSV waves. For a 
given value of ,V  Eq. (17) is a six-degree equation in p for the incident qP, qT, and qSV waves and for the refl ected ones, 
where the positive and negative roots correspond to the refl ected and incident waves, respectively.

Substituting the values of 1 2 3, , ,D D D  and 5D  into Eq. (17), after simplifi cation we obtain a six-degree equation 
in p which can be written as

 6 5 4 3 2
0 1 2 3 4 5 6 0 .g p g p g p g p g p g p g+ + + + + + =  (18)

The expressions for gi, where i = 1, 2, 3, …, 6, are given in the Appendix. After introducing q = 1/p, Eq. (18) becomes

 6 5 4 3 2
6 5 4 3 2 1 0 0 .g q g q g q g q g q g q g+ + + + + + =  (19)

For the angles of incidence for which all three refl ected qP, qSV, and qT waves exist, Eq. (19) has three positive roots. The 
smaller positive root, say q6, corresponds to the refl ected qT waves, the root q5, to the refl ected qSV waves, and the larger 
positive root q4, to the refl ected qP waves. We have

 1 1 1
4 4 5 5 6 6tan ( ) , tan ( ) , tan ( ) .e q e q e q− − −= = =  (20)

For an isotropic thermoelastic medium, putting in Eq. (18)
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where the expressions for ig ′  (i = 0, 1, 2, …, 6) are given in the Appendix. Taking
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we rewrite Eq. (21) as 

 ( ) ( ) ( )2 2 2 2 2 2
1 2 3 0 ,S p p pγ − δ − δ − δ =  (22)

where
2 2 2 2
1 2 3 1 3 ,d Vδ + δ + δ = −

2 2 2 2 2 2 4 4 2
1 2 2 3 3 1 2 1 12 2 3 ,d V d V d Vδ δ + δ δ + δ δ = − − +

( )2 2 2 6 4 2
1 2 3 3 2 1 1 .d V d V d Vδ δ δ = − + − +  

In this case Snell's law becomes

Fig. 1. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the 
angle of incidence at H0 = 10 A/m and Ω/ω = 0 (1), 2 (2), and 10 (3).
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 1 2 3

qP qSv qT

sin sin sin .e e e
V V V

= =  (23)

Therefore, the roots 2 2 2
1 3cot ,p e= δ =  2 2 2

2 1cot ,p e= δ =  and 2 2 2
3 2cotp e= δ =  correspond to the qSV, qP, and 

qT waves, respectively. The quantities q1 = –tan e1, q2 = –tan e2, q3 = –tan e3, q4 = tan e1, q5 = tan e2, and q6 = tan e3 are the six 
roots of Eq. (19). This choice will act as a guiding factor in computing the angles of refl ection of the qP, qT, and qSV waves 
in a rotating monoclinic magnetothermoelastic medium. For an orthotropic medium, it can be shown that q1 = q3 = q5 = 0.
Therefore, Eq. (19) is reduced to a cubic equation in q2. Thus, we can choose q1 = –q4, q2 = –q5, q3 = –q6. Therefore, the 
angles of refl ection of the qP, qT, and qSV waves are equal to the angles of incidence of these waves. This is not true for the 
monoclinic case. Following this procedure, one can compute the angles of refl ection for a particular incident wave.

Numerical Results and Discussion. For numerical computations of the speeds of plane waves, we consider the 
following relevant physical constants:

9 2 9 2 9 2
33 22 4424.9 10 N m , 19.8 10 N m , 6.67 10 N m ,C C C− − −= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

Fig. 2. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the 
angle of incidence at Ω/ω = 2 and H0 = 0 (1), 10 (2), and 20 A/m (3).
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9 2 3 3
23 34 44 24 447.8 10 N m , /5 , /5 , 2.714 10 kg m ,C C C C C− −= ⋅ ⋅ = = ρ = ⋅ ⋅

2 1 1 2 1 1
2

2 1 1 6 2 1
3 2

6 2 1
3 0 0

3.9 10 J kg deg , 1.24 10 W m deg ,

1.34 10 W m deg , 5.75 10 N m deg ,

5.17 10 N m deg , 296 K , 0.05 s , 5 Hz .

EC K

K

T

− − − −

− − − −

− −

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ β = ⋅ ⋅ ⋅

β = ⋅ ⋅ ⋅ = τ = ω =

Equation (13) is solved numerically to obtain the real speeds Vj*
 of the propagation of plane waves in a rotating monoclinic 

magnetothermoelastic medium.
In Fig. 1 the speeds of the qP, qSV, and qT waves are plotted against the angle of incidence for H0 = 10 A/m 

and different values of Ω/ω. The speed of the qP waves is 17.93 m ⋅ s–1 at θ = 0o for Ω/ω = 0. Then it increases slowly 
up to 19.6 m ⋅ s–1 at θ = 90o. With increase in the rotation rate, it decreases for each angle of incidence. The speed of the 
qSV waves is 1.567 m ⋅ s–1 at θ = 0o and θ = 90o for Ω/ω = 0. It increases to a maximum value of 1.682 m ⋅ s–1 at θ = 45o. 
With increase in the rotation rate, the speed of the qSV waves decreases. The speed of the qT waves is 0.2962 m ⋅ s–1

at θ = 0o for Ω/ω = 0. Then it fi rst increases slightly to 0.2967 m ⋅ s–1 at θ = 4o and thereafter decreases sharply to a minimum 

Fig. 3. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the 
magnetic fi eld strength at θ = 45o and Ω/ω = 0 (1), 4 (2), and 8 (3).
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value of 0.255 m ⋅ s–1 at θ = 90o. It can be seen from Fig. 1c that the effect of rotation on the qT wave speed increases with the 
rotation rate and is different from those observed in the cases of the qP and qSV waves.

Figure 2 shows the speeds of the qP, qSV, and qT waves against the angle of incidence for Ω/ω = 2 at different 
values of H0. It is seen that the speed of the qP wave is 12.6 m ⋅ s–1 at θ = 0o for H0 = 0. It increases slowly up to
13.9 m ⋅ s–1 at θ = 90o. It is also seen that the speed increases with the magnetic fi eld strength. The speed of the qSV waves 
is 0.699 m ⋅ s–1 at θ = 0o and θ = 90o for H0 = 0. It attains a maximum value of 0.740 m ⋅ s–1 at θ = 47o. The speed of the qSV 
waves also increases with the magnetic fi eld strength, except for the values at θ = 0o and θ = 90o. The speed of the qT waves is 
0.140 m ⋅ s–1 at θ = 0o for H0 = 0. Then, after a slight increase at θ = 3o, it decreases slowly to a minimum value of 0.108 m ⋅ s–1 
at θ = 90o. The speed of the qT waves also increases with the magnetic fi eld strength. 

In Fig. 3, the speeds of the qP, qSV, and qT waves are plotted against the magnetic fi eld strength for θ = 45o and 
different values of Ω/ω. It is observed that the effect of rotation increases with the magnetic fi eld strength. The variations of 
the wave speeds with the angle of refl ection are almost similar to those given in Fig. 1. Because of this, these variations are 
not presented graphically.

In Fig. 4, the speeds of the qP, qSV, and qT waves are plotted against the rotation rate at θ = 45o, ω = 2 Hz, and 
different values of H0. It is seen that these speeds decrease sharply with increasing Ω. For example, at H0 = 0 the speed of the 
qP waves at Ω = 4 Hz is 13.27 m ⋅ s–1, and then it decreases to 1.81 m ⋅ s–1 at Ω = 20 Hz. It follows from Fig. 4 that the speeds 
of all the waves are affected by the rotation rate and magnetic fi eld strength.

Fig. 4. Variations of the speed of the plane qP (a), qSV (b), and qT (c) waves against the 
rotation frequency at θ = 45o , ω = 2 Hz, and H0 = 0 (1), 10 (2), and 20 A/m (3).
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Conclusions. The solutions of the equations for the plane wave propagation in a rotating monoclinic 
magnetothermoelastic medium are obtained. There exist three plane waves, namely quasi-P, quasi-SV, and quasi-T waves. 
The speeds of these waves are computed for a particular material modeling a half-space. From numerical results it is observed 
that the speeds of the waves are signifi cantly affected by the presence of rotation and magnetic fi eld.

NOTATION

B, magnetic induction; CE, specifi c heat at constant strain; Cij, elastic constants; eij, components of the strain tensor; 
E, electric fi eld strength; e1, e2, e3, angles of incidence; e4, e5, e6, angles of refl ection; H, total magnetic fi eld strength; 
J, electric current density; k, wave number; K2, K3, thermal conductivities; q, attenuation coeffi cient; T, temperature; 
T0, reference uniform temperature; t, time; u(v, w), displacement vector; V, phase velocity; Vj*, speed of wave propagation; 
y, z, coordinates; β2, β3, thermal coeffi cients; θ, angle of propagation; λ, μ, Lame constants; μe, magnetic permeability; 
ρ, density; σ, electric conductivity; τ0, relaxation time; ω, circular frequency; Ω, rotation rate.
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