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HEAT TRANSFER IN PHASE TRANSFORMATIONS

EVAPORATION OF WATER DROPLETS 
IN A HIGH-TEMPERATURE GASEOUS MEDIUM

O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak UDC 536.4

A numerical solution of the problem of heat and mass transfer in evaporation of a droplet of water moving in 
a stream of high-temperature (up to 1200 K) gases is done on the basis of a system of nonlinear nonstationary partial 
differential equations describing conductive and radiative heat transfer in the droplet, as well as composite heat 
transfer at the ″liquid–gas″ interface. The values of the water evaporation rate have been determined. It is shown that 
the dependence of the evaporation rate on the droplet surface temperature has a nonlinear character. Characteristic 
relationships between the convective and radiative heat fl uxes on the droplet surface (the radiative fl ux substantially 
exceeds the convective one; on decrease in the difference between the gas and droplet surface temperatures the 
difference between the radiative and convective heat fl uxes decreases), the lifetimes (total evaporation) of droplets, 
as well as of the temperature and concentration of steam and gases in the vicinity of droplets have been determined. 
The calculated characteristics of the water droplet evaporation under conditions of high temperatures of the gas 
medium differ considerably from those obtained within the framework of the "diffusional" model of evaporation. A 
comparison of the results of numerical simulation with the experimental data obtained with the use of high-velocity 
panoramic optical methods of visualization by ″tracing particles″ is carried out.
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Introduction. Evaporation of water droplets takes place in the course of implementation of many technologies not 
only in power engineering [1–4], but also in other branches of industrial production [5–10]. Usually to each technology there 
corresponds its own temperature range [11]. The tendencies towards the development of heat power engineering presuppose 
the advisability of a future rise in the working temperatures of many power engineering units and assemblies of thermal 
power stations [1]. At present, the main laws governing the evaporation of water droplets have been established in full 
measure only at relatively moderate (arbitrarily up to 500 K) ambient temperatures.

The most commonly used mathematical model of water evaporation in a droplet state [12–14] was developed 
within the framework of the assumption on the "diffusional" mechanism of evaporation. It is assumed [12–14] that the phase 
transformation rate on the "water–high-temperature gas medium" interface is determined by the intensity of the process of 
vapor diffusion in the layer of gases heated to high temperatures and adjacent to the droplet surface. There is also a model 
of evaporation [15, 16] formulated for the droplets of liquids (including water) in which the phase transformation rate is 
determined by the interface temperature ("kinetic" regime of vaporization). Of interest is an analysis of the possibilities of 
each of these models in describing the processes of water evaporation in a droplet state at high (especially at about 1000 K) 
temperatures of the surrounding gas medium.

The goal of the present work is to investigate the processes of heat and mass transfer in evaporation of water droplets 
moving in a high-temperature gaseous medium.

Formulation of the Problem. We solved the problem of heat and mass transfer for a water droplet moving through 
a gaseous medium with a known temperature Tf that substantially exceeds the initial liquid temperature T0. Depending on 
the physical model of evaporation used ("diffusional" or "kinetic") and means of heating (radiant, convective or conductive), 
the boundary-value conditions of the problem and energy equations for the droplet were varied. The formulations used in 
[17, 18] were taken as the basic ones.
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The problem was solved in a cylindrical coordinate system (Fig. 1). We considered a droplet in the form of a cylinder 
elongated in the direction of motion (as in [17, 18]). Experiments in [19–22] showed (Fig. 2) that water droplets that move 
through gas media with moderate velocities (less than 5 m/s) continuously and cyclically change their shape (the time during 
which the droplet has the form of a sphere or ellipsoid does not exceed 15% of the time of each deformation cycle). It seems 
expedient to use, in modeling, a less laborious formulation (as compared with those for spheres and ellipsoids) with a droplet 
of constant shape. The best of the possible variants seems to be a cylinder (Fig. 1a) whose symmetry axis coincides with the 
direction of the vector of droplet motion. It is always possible to select such dimensions of the cylinder at which its surface 
area will be equal to the surface area of the droplet.

Fig. 1. Schematic of the solution domain of the problem of heat and mass transfer 
of a droplet in the form of a cylindrical disk (a), sphere (b), and ellipsoid (c): 1) high-
temperature gases; 2) water droplet.

Fig. 2. Typical images of water droplets (a–c) in the experiments in [19–22].
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The system of nonlinear nonstationary partial differential equations has the form (0 < t < td):

the Poisson equation for a mixture of gases and  steam
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the vorticity equation for a vapor–gas mixture
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the energy equations for a mixture of steam, gases, and for a liquid droplet (with account for the absorption of the 
radiant heat fl ux energy)
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the equation of steam diffusion
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the equation of vapor–gas (binary) mixture balance

 γ + γ =f w 1 .   (9)

The initial conditions (t = 0) are

 

= < < < < = γ = γ = ψ = ω =

< < < < < < < < < < < <

0 1 1 2 f f w

L 1 1 L 1 2 L 2 L

at 0 , ; , 1 ,   0,    0 , 0

at 0 , 0 ; , ; 0 , .     

T T r R Z z Z T T

r R z Z R r R Z z Z r R Z z Z
  (10)



144

The boundary conditions at 0 < t < td are
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It should be noted that at the "liquid droplet–high-temperature gaseous medium" interface, account is made of radiant 
heat transfer, phase change energy absorption, and expenditure of the gas energy on heating the droplet.

In assessing the boundary conditions for the vorticity equation (2), the Woods formula [23] was used:
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where i, j are the numbers of steps over the coordinates r and z; hr and hz are the steps over the coordinates r and z, m.
The components of the vapor–gas mixture velocity vector u and w were determined by the formulas [23]
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The rate of water evaporation was calculated from the expression [16]
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The velocity of blowing (fl owoff) of vapors from the droplet surface was calculated (as in [17, 18]) by the formula

 = ρe e 3/ .V W  
According to the notions expressed in [24–33] and generalized in [11], the equation of droplet motion in the conditions 

of vaporization with account for the action of the forces of resistance, gravity, and others has the following form:
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where Vd(0) = V0.
The dimensionless resistance coeffi cient cχ, which generally depends on the surface confi guration of the body and its 

position relative to the fl ow motion, as well as on a group of other factors, was determined according to the theory outlined 
in [27–33]. Thus, the resistance coeffi cient cχ vs. the Reynolds number Re dependence, which characterizes the infl uence 
of the velocity of droplet motion Vd and of the size Rd on the resistance force, when used to approximate the Shiller–Neuman 
and Oseen correlation curves for the possible range of Re numbers in the system considered (Fig. 1), has the form [11]

 −
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To determine the resistance coeffi cient with account for the droplet nonsphericity, its nonstationary motion, 
evaporation, and for the convective fl ows inside of the droplet immersed in a gas fl ow, the following expression [11] 
was used:
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The geometric coeffi cient kg characterizes the deviation of the shape of the droplet immersed in a gas fl ow from 
a sphere [29]. The ratio 1/(B + 1) represents a coeffi cient that describes the infl uence of the process of droplet evaporation 
on the resistance force (B = C2(T3s – T2s)/Qe +qi/We, where qi is the heat fl ux to the droplet, W/m2) [30]. The expression 
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 is a coeffi cient that accounts for the possible convective fl ows inside of the droplet [31]. 

The expression (A + 1)1.2±0.03 characterizes the accelerated motion of the droplet (A = 2
d

d
V
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 is a dimensionless complex 
that describes the relative acceleration [32]).

Methods of Solution. The system of nonlinear nonstationary partial differential equations (1)–(17) was solved 
by the fi nite-difference method [33], the difference analogs of the initial differential equations were solved by the methods 
of locally one-dimensional and variable directions, and the nonlinear equations, by the method of iterations. The pivot method 
with the use of an implicit four-point difference scheme was employed for solving the one-dimensional difference equations [33].

The adequacy of the model (1)–(17) and of the results of numerical simulation was estimated while checking
the conservativeness of the employed difference schemes (the algorithm is analogous to that used in [12]]).

Results and Discussion. Numerical investigations were carried out at typical values of the parameters: initial 
temperatures of the water droplet T0 = 300 K and of gases Tf = 500–1200 K; heat of water evaporation Qe = 2.26 MJ/kg; 
dimensions of the solution domain RL = 10 mm and ZL = 10 m; molar mass of water M = 18 kg/kmole; dimensionless 
coeffi cient of evaporation β = 0.1; reduced emissivity of the droplet ε = 0.85; absorption coeffi cient of water χ = 0.7; initial 
dimensions of the droplet Rd = 0.025–0.25 mm and Zd = 0.1–1 mm, rate of motion V0 = 0.5 m/s. The thermophysical 
characteristics of water, steam, gases, as well as the vapor–gas mixture corresponded to the formulations made in [17, 18].

Using the results of the numerical simulation, we calculated the temperatures and concentrations of the gases and 
vapors in the small vicinity of liquid droplets, the rates of evaporation, as well as the lifetimes of droplets. Thus, for example, 
Fig. 3 presets the isotherms and lines of constant concentrations of steam for one of the typical variants of the heating 
conditions considered. It is seen that the temperature gradients are at their maximum near the front boundary of the droplet 
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(Fig. 3a). Near the side surface the temperature of the gases decreases substantially relative to the front "water–external 
medium" interface. The temperature of the gases in the droplet wake is still smaller. Such a character of its distribution in the 
vicinity of the "cold" (relative to the environment) droplet is due not so much to the motion of the latter as to the endothermal 
phase transformations. The rates of droplet evaporation are maximal on the front and side surfaces. Due to the motion of the 
droplet, the injected vapors are shifted to the droplet wake and displace the high-temperature gases. The temperature of the 
droplet wake decreases, and therefore the rates of evaporation on the rear boundary of the droplet are minimal.

Table 1 lists the established values of the rates of water evaporation in the considered conditions depending on the 
surface temperature of droplets Te. The nonlinear character of the dependence We = f(Te) should be noted. It has also been 
established that due to the signifi cantly differing conditions of heat and mass transfer near the front, side, and rear boundaries 
of the droplet (Fig. 3), the temperatures Te differ rather substantially (by 25–45 K). As a consequence, the rates of evaporation 
on these boundaries at identical values of the gas temperatures may change multiple times (Table 1). Moreover, as a result 
of numerical simulation, it has been revealed that the rates of droplet evaporation vary in time because of the heating of the 
droplet and reduction of its size.

Fig. 3. Isotherms of the temperature T (a) and concentration of steam γw (b) at t = 0.1 s, 
Rd = 0.25 mm, Zd = 1 mm: 1) high-temperature gases; 2) water droplet.

TABLE 1. Dependence of the Evaporation Rate of Water Droplets on Their Surface Temperature

Te, K 300 310 320 330 340 350 360 370
We, kg/(m2·s) 0.005 0.009 0.025 0.042 0.078 0.136 0.204 0.261
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It is of interest to analyze the studied process (Fig. 1) under conditions of convective-conductive heat exchange at 
the "liquid–gas" interface [14]. There is a group of correlational expressions for heat transfer coeffi cients on the surface of 
an evaporating droplet [12, 14, 34, 35]. The most common are Ranz–Marshall′s relations [12], in particular, the expression

 = + 1/2 1/3
1 1Nu 2 0.6Re Pr .   (18)

For the considered, rather typical conditions of the process realization, the maximum possible value of the Nusselt 
number in accordance with expression (18) is 25. The maximum values of the heat transfer coeffi cient α reach in this case 
100. The values of the water evaporation rate within the framework of model [14] can be found from the expression

 χ = αw e e f e/  ( – ) ,Q S T T   (19)

where χw is the mass fl ow, kg/s, and Se is the evaporation area, m2. In Eq. (19) the ratio χw/Se represents the evaporation 
rate We. At Tf = 1100 K, Te = 300, Qe = 2.26·106 J/kg and at the heat transfer coeffi cient α = 100 W/(m2·K), the evaporation 
rate is We = 0.045 kg/(m2·s).

It is important to point out that the well-known refi nements [34, 35] of the expression for the Nusselt number (18) that 
characterize the conditions of intensive blowing of vapors from the droplet surface in the form of Nu = (2 + 0.6 1 2 1 3

1 1Re Pr )/
(1 + b) at b = 1/Ku (Ku is the Kutateladze number) for the considered conditions of heat and mass transfer process realization 
lead to an insignifi cant ( less than 5%) change in We relative to the above-given maximum value.

Within the framework of the model (1)–(17) ("kinetic" according to [15, 16]), several times larger values of 
We were established in identical conditions (Table 1). This seems to be due to the more intense regime of heat transfer 
realizable in vaporization at high temperatures of gases. Correspondingly, the application of the expressions of the form 
Nu = 2 + f (Re, Pr) does not allow one to describe, in full measure, the conditions of heat supply to the interface. The 
established high concentrations of steam in the vicinity of droplets (Fig. 3b) also illustrate the absence of conditions for the 
realization of the "diffusional" regime of evaporation.

Figure 4 presents the temperature distributions in an evaporating water droplet at different instants of time. It is 
seen that the water temperature (and also the surface temperature Te) increases signifi cantly with time due to its heating. 
An analysis of Fig. 4 and Table 1 shows that the process of heat transfer in a droplet exerts a great infl uence on the liquid 
evaporation rate We = f (Te). The change in the temperature inside the droplet and on its surface (Fig. 4) is not taken into 
account in Eqs. (18) and (19) — the droplet is assumed to be nonconducting.

Fig. 4. Temperature distribution in a water droplet at the initial dimensions of the droplet 
Rd = 0.25 mm and Zd = 1 mm and at the temperature of gases at different instants of time.
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The numerical investigations carried out made it possible to establish that the radiant heat fl ux to the droplet surface 
q1 substantially exceeds the convective fl ux qc. Thus, for example, at a temperature of gases of about 1100 K, q1 exceeds qc by 
more than seven times. On decrease in the difference between the temperatures of gases and droplet surface, the differences 
between q1 and qc decrease. At the same time, at a gas temperature of about 500 K, the relation q1/qc > 1 holds. These 
results allow the conclusion on the determining role of radiative heat transfer on the droplet surface at high environmental 
temperatures. Correspondingly, a conclusion can be drawn on the limitations in using the convective models of heat transfer 
under the conditions of evaporation of liquid droplets [12, 14, 34, 35].

Figure 5 presents the dependences of the rates of water evaporation on the front boundary of the droplet at a fi xed 
moment on the temperature of the external gaseous medium. These dependences were obtained with the use of three models: 
1) "diffusional" regime of evaporation and convective-conductive heat transfer on the droplet surface; 2) "kinetic" regime 
of evaporative, radiative, and conductive heat transfer on the "liquid–gas" interface; 3) a model analogous to that under 
point 2 but accounting for the radiative and conductive heat transfer in a droplet. Substantial differences in the rates of water 
evaporation in the three different interpretations of heat transfer conditions are seen. Moreover, the deviations increase 
nonlinearly with increase in the gas medium temperature (for the reasons indicated above).

To estimate the validity of the results of numerical simulation, the conservativeness of the difference schemes used 
was checked as well as the integral characteristics of water evaporation were compared with the experimental data of [19–22] 
(high-speed cross-correlating cameras and optical methods of "tracing particles" visualization were used). The experiments 
in [19–22] were carried out with water droplets (the initial dimensions were from 0.5 mm to 5 mm) that moved through 
combustion products with a temperature of 1100 ± 30 K (a cylindrical channel of length 1 m). Using the results of measurement 
of the mass and size of droplets at the inlet and outlet of the high-temperature channel, the authors of [19–22] established that 
the mean rate of water evaporation was about 0.241–0.278 kg/(m2·s) (Fig. 5). The numerical investigations carried out have 
shown that the temperatures of the droplet surfaces Te at Tf ≈ 1100 K may be equal to 350–370 K (with increase in the time of 
their motion in a gaseous medium, the temperature Te increases nonlinearly). According to Table 1, the rate of evaporation at 
such temperatures of the droplet surfaces varies from 0.136 to 0.261 kg/(m2·s). A conclusion can be drawn on the satisfactory 
correspondence of the results of mathematical simulation within the scope of the "kinetic" model of evaporation [15, 16] to 
the experimental data of [19–22]. At low temperatures of the gaseous medium (about 300 K) a good correlation between the 
results of experiments of [14] and the "kinetic" and diffusional" models of evaporation can be noted (Fig. 5).

Fig. 5. Rate of water droplet evaporation (Rd = 0.25 mm, Zd = 1 mm) on its front surface 
at t = 0.25 s vs. the external gas medium temperature: 1) "diffusional" regime of 
evaporation and convective-conductive heat transfer on the droplet surface; 2) "kinetic" 
regime of evaporation, radiative and conductive heat transfer on the "liquid–gas" 
interface; 3) "kinetic" regime of vaporization, combined heat transfer on the "liquid–gas" 
interface, radiative and conductive heat transfer in the droplet; 4) experimental values of 
[19–22]; 5) experimental values of [14]
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It seems advisable to use the terms "kinetic" and "diffusional" regimes of evaporation to emphasize the established 
physical characteristic feature of phase transformations at the "liquid droplet–high-temperature gases" interface. It is possible 
to draw an analogy, for example, with the theory of heat shielding [36], when oxidation of carbon-containing materials is 
realized in two regimes: "kinetic" (the oxidation rate is determined by the surface temperature) and "diffusional" (the process 
of oxidation is limited by diffusion.) It is shown in the present work that during evaporation of droplets at high temperatures 
the regime is implemented that can be called "kinetic" (the rate of evaporation depends exponentially on temperature, see 
Table 1). In the "kinetic" regime of evaporation the outfl ow of vapors from the vaporization surface at its temperatures of 
about 340 K and above occurs with velocities Ve equal to tens of centimeters per second.

A comparison of the characteristic times of the "diffusional" (tdif ≈ (2Rd)2/D3) and "kinetic" (tkin ≈ 2Rd/Ve) processes 
of water evaporation shows that tdif >> tkin. For example, when the droplet is of size Rd = 1 mm, we obtain tdif ≈ 2 s and
tkin ≈ 0.001 s. It may be justifi ably concluded that at droplet surface temperatures of above 340 K the "diffusional" regime of 
evaporation is improbable.

The numerical investigations made it possible to establish the dependence of the time of full evaporation of water 
droplets td on their dimensions and the temperature of gases. For example, at the initial values of Rd = 0.1 mm, Zd = 0.4 mm, 
and Tf = 500 K, the time td was equal to 1.7 s. When the initial temperature of gases increased up to 1200 K, the value of 
td reached 0.441 s. After the increase of the initial dimensions to Rd = 1 mm and Zd = 4 mm and at a constant temperature 
of gases, the value of td increased up to 4.124 s. For the initial conditions Rd = 1 mm, Zd = 4 mm, and Tf = 500 K, the time 
of complete evaporation of droplets was equal to about 17 s.

The nonlinear character of the functions td = f (Tf) and td = f (Zd) has been established, which is due to the 
corresponding dependence of the rate of evaporation We on the droplet surface temperature (Table 1) in the case of the 
kinetic" regime of vaporization [15, 16]. Emphasis should also be laid on the practically comparable effect of the size 
of liquid droplets and of the temperature of gases on the characteristic of high-temperature evaporation, i.e., on the lifetimes 
of droplets. The established feature characterizes the nonuniform heating of droplets and the determining effect of this 
process on the times of complete evaporation.

The results of the performed numerical simulation in the system "water droplet–high-temperature gases" can be used 
in developing a large group of heat power engineering technologies (in a wide range of temperatures). They can be applied 
for prognostic estimation of the needed parameters of heat transfer agents [3, 4], polydisperse gas– and vapor–liquid fi re-
extinguishing droplet fl ows [6], as well as high-temperature gas–droplet mixtures for treating the surfaces of structures and 
materials [10].

Conclusions. An analysis of the results of the theoretical investigations carried out allows the conclusion that the 
"diffusional" models of phase transformations [11–14] in the system "liquid droplet–gaseous medium" correspond well to the 
results of experimental investigations only in limited temperature ranges. This is due to the different regimes of evaporation 
at relatively moderate (arbitrarily up to 500 K) and high (above 500 K) temperatures. In particular, it has been established 
that the characteristics of evaporation of water droplets obtained with the use of the approach that presupposes the realization 
of the "diffusional" regime of vaporization differ substantially from the experimental values obtained at high temperatures 
(at about 1000 K). At such temperatures, it is worthwhile to use the "kinetic" model of evaporation [15, 16]. In this case, it is 
necessary to account for the conductive and radiative heat transfer in a droplet, as well as the combined heat transfer at the 
"liquid–gas" interface.

This work was carried out with fi nancial support from the Russian Foundation for Basic Research (grant 
No. 14-39-00003).

NOTATION

A, dimensionless complex characterizing the relative acceleration of droplets; a, thermal diffusivity, m2/s; B, Spalding 
number; C, specifi c heat, J/(kg·K); D, diffusion coeffi cient, m2/s; g, free fall acceleration, m/s2; H, radiation fl ux density, 
W/m2; kg, dimensionless geometric coeffi cient accounting for the nonsphericity of droplets; kβ, dimensionless empirical 
constant; M, molar mass, kg/mole; P, pressure of steam near the evaporation boundary, N/m2; Pn, pressure of saturated 
steam, N/m2; Qe, heat of water evaporation, J/kg; RL, ZL, dimensions of the solution domain, m; R, universal gas constant, 
J/(mole·K); r, z, coordinates of a cylindrical system, m; T, temperature, K; T2s, T3s, temperature of water and steam at the 
"liquid–gas" interface, K; Te, temperature of the droplet surface, K; t, time, s; td, lifetime of droplet, time of its complete 
evaporation, s; u, w, velocity components of gases and steam, m/s; Ve, velocity of the fl owoff of vapors from the droplet 
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surface, m/s; We, vaporization rate, kg/(m2·s); β, dimensionless coeffi cient of evaporation (condensation); γf, dimensionless 
concentration of gases; γw, dimensionless concentration of steam; ε, reduced emissivity; λ, thermal conductivity, W/(m·K); 
μ, dynamic viscosity, kg/(m·s); ν kinematic viscosity, m2/s; ρ, density, kg/m3; σ, Stefan–Boltzmann constant, W/(m4·K4); 
φ, coeffi cient of thermal expansion, K–1; χ, dimensionless coeffi cient of radiation absorption; ψ, stream function, m3/s; 
ω, vorticity function, s–1. Indices: 1, mixture of gases and stream; 2, water droplet; 3, steam; g, geometric; e, evaporation; 
L, location; s, at the "liquid–gas" interface (surface); d, droplet; f, concentration of high-temperature gases (furnace).
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