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ANALYTICAL ESTIMATION OF VELOCITY AND TEMPERATURE FIELDS
IN A CIRCULAR PIPE ON THE BASIS OF STOCHASTIC EQUATIONS
AND EQUIVALENCE OF MEASURES

A.V. Dmitrenko UDC 537.3

A stream of nonisothermal Newtonian liquid in a circular smooth pipe is considered on the basis of systems of 
stochastic equations and of the physical law of equivalence of measures between laminar and turbulent motions. 
Analytical expressions were previously obtained for isothermal fl ows for the fi rst and second critical Reynolds 
numbers, critical point, indices of velocity profi les, second-order correlation moments, correlation functions, and 
spectral functions depending on the parameters of initial turbulence. Analytical expressions, obtained with the use 
of the earlier derived formulas for the critical Reynolds numbers and the critical points, are presented for the indices 
of velocity and temperature profi les as functions of the initial turbulence parameters as well as of the Eckert and 
Prandtl numbers.

Keywords: equivalence of measures, stochastic equations, turbulence.

Introduction. Investigations [1–23] were devoted to the search for equations and invariants that could determine the 
start of transition from a deterministic motion to a turbulent one. An analysis of these works shows that the theory of measure 
in A. N. Kolmogorov′s and A. Ya. Khinchin′s works was used for the development of the statistical theory of developed 
turbulence represented as a stationary random process for which a theoretical-probabilistic measure and, correspondingly, a 
multidimensional probability density, allowing one to determine statistical and theoretical-probabilistic average quantities, are 
determinable. The statistical theory was further developed in the works of A. M. Obukhov and W. Heisenberg on turbulence 
generation [18, 24–29], but no critical numbers have been determined. Note that the well-known Orr–Sommerfeld equation 
provides a possibility of numerical integration with subsequent determination of the critical numbers. However, as follows 
from the literature, we failed to obtain solutions, e.g., analytical dependences for the velocity fi eld, in the case of the further 
development of turbulence. J. Taylor′s attempt at establishing the dependence of the critical Reynolds numbers on the initial 
turbulence parameters ended only with deviation of a semiempirical formula for a circular cylinder without any other results 
for other fl ow parameters. As a whole, the advances in the statistical theory resulted in the development of such numerical 
methods as the RANS (initially suggested by A. A. Fridman and L. V. Keller in 1925) and LES [24–29].

The development of the theory of strange attractors and construction of dynamic systems are based on the results 
of the theory of measure obtained in the works of A. N. Kolmogorov and Ya. G. Sinai in deriving the entropy formula (the 
Kolmogorov–Sinai entropy). This led to the application of the theory of measure in obtaining a generalized expression for 
the entropy of a dynamic system. It should be noted that sometimes the A. Renyi entropy is applied as a generalization of 
K. Shannon′s information entropy [8–16]. Entropy relations are applied in determining the correlation dimension of the 
attractor and of the number of the degrees of freedom of a system. However, the theory of attractors studies the temporal, 
other than spatial, development of instability at a specifi c arbitrarily chosen point. No analytical dependences for estimating 
critical numbers and subsequently determining the turbulence process fi elds have been obtained. Attempts to explain and 
calculate turbulent fl ows on the basis of the theory of solutions, in particular the Korteweg–de Vries equation, or only on the 
fractality hypothesis, have not led to the expected results, for example, to the determination of critical numbers [8–16].

Yu. L. Klimontovich′s works [14], based on the analysis of M. A. Leontovich′s and M. Sato′s equations, are related 
to the application of his theorem and qualitative description of transition to turbulence based on the analysis and comparison 
of entropy in a laminar and turbulent states without the possibility of determining the critical parameters. A special place is 
occupied by L. D. Landau′s qualitative theory that determines the occurrence of turbulence by an infi nite number of duplication 
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of the frequencies of the perturbation already present in the fl ow. However, the Reynolds number in Landau′s theory is the 
"controlling" parameter and its critical value is not determined. The latest experimental investigations of the process of 
transition show that at the very beginning the process develops by a scheme close to Landau′s scenario (a sequential, possibly 
fractal, increase in frequencies — a sequence of bifurcations — occurs several times) followed by a "catastrophic" increase in 
the number of frequencies and formation of a continuous spectrum. The research is made, however, in a selected rather than 
determined region (point) of space. Meanwhile it is diffi cult not to accept the validity of O. Reynolds′ opinion expressed by 
him more than a century ago that developed turbulence is formed in a fl ow as a result of energy transfer from the main motion 
into random fl uctuations. It is important to note an experimentally confi rmed fact that random fl uctuations are always present 
in a fl ow (initial turbulence) and the lower this degree of initial turbulence, the higher the values of the Reynolds number at 
which this transition takes place. These well-known facts have not been explained theoretically up to now to the extent when, 
using a single theoretical formulation of the problem, it is possible to calculate a majority of turbulence parameters of interest 
for the practice and theory. The development of the DNS numerical methods has led to the necessity of "stochastization" of 
the Navier–Stokes equation or to its transformation to a form of the type of P. Langevin′s equation [8–13] by supplementing 
its right-hand side with a free term that determines perturbation, albeit without corresponding terms in the continuity and 
energy equations [16, 23–30].

Thus, a real experimentally confi rmed pattern of fl ow is determined by a fl ux of a continuous medium with fl uctuations 
available in it, and therefore the start of transition to turbulence can be determined as the start of the interaction of these 
fl uctuations with the main fl ow.

In [17–20], it was shown, for an isothermal fl ow, that the basic parameters of turbulence can be calculated 
theoretically on the basis of a system of stochastic equations and equations for the law of the equivalence of measures between 
a deterministic and a random motions. Note that the stochastic equations, derived in [17–19], on their right-hand side include 
free terms of gradient and nongradient structures. For this purpose, the following space-time domains were determined in 
[17–23]: 1) the start of turbulence generation; 2) turbulence generation; 3) diffusion; 4) turbulence dissipation. With the use of 
the law of the equivalence of measures, each of the domains has its own system of stochastic equations within the framework 
of the general system of stochastic equations for mass, momentum, and energy. For a nonisothermal medium in domain 1, 
analytical expressions were presented in [21–23] for calculating the critical point and Reynolds number depending on the 
initial turbulence of fl ow in a pipe and on a fl at plate. In the present paper, analytical formulas for the indices of velocity and 
temperature profi les as functions of the parameters of initial turbulence and the Eckert and Prandtl numbers were obtained for 
domain 2 on the basis of the stochastic system of equations for energy, momentum, and mass.

System of Equations. The general system of stochastic conservation equations for isothermal and nonisothermal 
media was obtained in [17–23]. It includes:

equation of mass (continuity)

 

col,st st st

cor

( )
;

d d
d d
ρ ρ ρ

= − −
τ τ τ  

(1)

momentum equation
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energy equation
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Here and subsequently, τ, ρ, U, E, T, and τi,j are the time, density, velocity vector, energy, and temperature, the stress tensor 

τi,j = P + σi,j, σi,j = ji

j i

uu
x x

⎛ ⎞∂∂
μ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
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3ij
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l

l

u
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∂
∂

, the subscripts i, j, l = 1, 2, 3, and the parameters ν, μ, and ξ are 

the kinematic, dynamic, and second viscosities. The quantities ui, uj, ul, xi, xj, and xl are the velocities and coordinates 
corresponding to i, j, and l; δij = 1 at i = j; δij = 0 at i ≠ j; P is the liquid or gas pressure; λ is the thermal conductivity; cp and 
cv are the specifi c heats at constant pressure and volume.

In [17–20], for the transfer of the substantial quantity Φ (mass (density ρ), momentum (ρU), energy (E)) of the 
deterministic (laminar) motion into a random (turbulent) one, for domain 1 of the start of turbulence generation, the pair 
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(N, M) = (1, 0), with the equivalence of measures being written as (dΦcol,st)1,0 = –R1,0(Φst) and 
col,st

1, 0

d
d
Φ⎛ ⎞

⎜ ⎟τ⎝ ⎠
 = st

1,0
cor

R
⎛ ⎞Φ

− ⎜ ⎟τ⎝ ⎠
.

Applying the correlator DN,M(rc, mci, τc) = D1,1(rc, mci, τc) obtained in [17–20], the equivalence relation for the pair 

(N, M) = (1, 1) was defi ned as (dΦcol,st)1,1 = –R1,1(dΦst), 
col,st

1,1

d
d
Φ⎛ ⎞

⎜ ⎟τ⎝ ⎠
 = st

1,1
dR
d
Φ⎛ ⎞− ⎜ ⎟τ⎝ ⎠

, where R1,0 and R1,1 are fractal 

coeffi cients, Φcol,st is part of the fi eld of Φ, namely, its deterministic component (subscript col,st) the stochastic component 
of the measure of which is zero; Φst is part of Φ, namely, the proper stochastic component (subscript st). The relations of the 
equivalence for momentum and mass (density) have been determined in the same way. For example, to obtain new analytical 
relations, the fractal coeffi cients R1,0 and R1,1 are taken equal to unity, and the indices "cr" or "c" relate to the critical point,
r (xcr, τcr) or τc. The critical point is the space-time point of the start of interaction between the deterministic and random 
fi elds. It was shown in [17–20] that for the pair (N, M) = (1, 1) for domain 2 of turbulence generation, rc1(xc + Δx0 + Δx1, 
τc + Δτ0 + Δτ1), we have the following system:
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(4)

The subscript (col,st2) relates to the pair (N, M) = (1, 1) and the subscript (col,st1), to the pair (N, M) = (1, 0).
Determination of Velocity and Temperature Profi les in a Pipe. As is known, experimental investigations of 

the averaged characteristics of developed turbulence have shown that the velocity and temperature profi les have the affi ne 
similarity. Thus, for example, equations are obtained for the classical fl ow in a pipe. In the case of fl ow with constant 

physical properties, equations for laminar motion have the form u1= 
2
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 and for turbulent fl ow, 

accordingly, 
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. Here T0 and Tw are the temperatures 

on the pipe axis and on the wall; R, U0, and u1 are the pipe radius and velocities on the axis and along x1; x1 and x2 are the 
longitudinal and transverse coordinates. Analogously to [17–20] and in accord with system (4), we may write
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(5)

To determine the velocity and temperature profi les, similar to [17–20], for the deterministic (laminar) pipe fl ow and initial 
times 0

cor1UPτ  and 0
cor1Tτ  we write
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Correspondingly for turbulent pipe fl ow and fi nite times 1
cor1UPτ and 1

cor1Tτ , to determine the velocity and temperature profi les, 
we write
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We then obtain
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We determine now the right-hand sides of Eqs. (5) and (8):
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Applying the theorem of the mean, we write the following equation:
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According to [17–20], the expression for the velocity fi eld has the form
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The temperature fi eld is represented as
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The fi nal expression takes the form
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Substituting the last expression and relations (10), (11) into (8), we obtain
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Equation (13) includes the indices of the velocity (n) and temperature (nT) profi les. The index n can be determined 
with the use of the equation of motion in the stochastic system of equations (4):
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For the times of the beginning, 0
cor1UPτ , and end, 1

cor1UPτ , of the interaction of fi elds we write
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As a result, with account for [18, 19], the expression for the index of the velocity profi le has the form
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According to [22, 23], the equality for the critical point has the form
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where L = LUP = LU is the scale of turbulence; the subscripts UP and U relate to the velocity fi eld; the subscript T relates to the 
temperature fi eld; Ly is the scale of turbulence determined along the coordinate x2 = y; Lx is the scale of turbulence determined 

along the coordinate x1 = x. Here x1 and x2 are the coordinates directed along the wall and normally to it; Ec = 
2
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is the Eckert number; LT = 
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analytical equations (13), (19), and (20), i.e., the exponents n and nT can be determined. Just as in [21–23], according to the 
experimental conditions in [24–28] with Ec = –(0.1–0.010), Pr = 0.72, and Rest = 10–30, from (19) and (20) we have that 
n ~ 7 and from (13) that nT ~ 8.

An Example of Calculations of the Indices of Profi les n and nT. The profi les 
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 are applicable to fl ows with constant physical properties. In this case, n and nT can be estimated 

in the following order:
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2) The index n of the velocity profi le is estimated according to (19) from the conditions Rest ≈ 20–30 [23–29];

0.54 2/
2

st
2 st

1 1Re .
2 Re

nR x
n x R

⎛ ⎞ ⎛ ⎞ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

The left-hand side 
2 4

21
2 R

nx
n

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 2 7 41 0.105
14

−  = 0.072 2 7 40.105 −  = 0.072 4319  = 0.072·65.7 ≈ 4.7, 

which lies within the indicated limits stRe  ≈ 4.4–5.4 of the right-hand side of the equation, i.e., n ≈ 7.
3) The index nT is estimated by formula (13) with account for the values n = 7, x2/R = 0.105, Ec = –0.01, and Pr = 

0.72 determined in the fi rst items and for the conditions [23–29] Rest ≈ 30, TT = |Tst|/(T0 – Tw) = 5·(10–5–10–3), Tu = 
2

st
2
0

( )iu
U

 

= 10–3–10–2. We then obtain

( )

2/ 4 1/ 4
2 0 w 2

2 2 2
2

st
0 w 22

2 1 1 T1 2Pr2 2 EcTuRe
T1 1 26 12 EcTuPr 2

n nT
T

T
T pTU

U
T

p

n x n T T x F
R Rn n U c

T T
U c

− −⎛ ⎞⎛ ⎞ ⎛ ⎞− − −⎛ ⎞ ⎛ ⎞⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ =
⎛ ⎞− +⎜ ⎟+
⎜ ⎟
⎝ ⎠

.

The right-hand side of the transformed equation (13) is equal to

 ( ) ( ) ( ) ( )
21/ 4 2/ 4

2 2 st 22

2

T1 2
1 Pr Ec 1 2 7EcTu/ / Re 6 24 / .

T2 Pr Ec 492 1 2
EcTu

T

n nT
U

TT

F
n x R x R x R

n
−

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )4 2 70.105 ( 0.0036) 30 351/501 ( 3422) 4329
49

( 0.000122)0.0036( 71874 440) 0.000122 0.0036 714344 0.032 ,

⎡ − ⎤⎛ ⎞− ⋅ − − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

≈ − − + = ⋅ ⋅ ≈
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the left-hand side, to

1/87 0.105 0.0546 0.758 0.04 .
128

= ⋅ ≈

As we see, there is agreement between the values of the left-hand and right-hand sides of the equation, i.e., nT ≈ 8, and the 
estimate given shows good agreement with experimental data for the indices of the profi les n and nT.

Conclusions. The calculated estimates showed that the values of the indices of velocity and temperature profi les 
for a pipe n and nT agree with the experimental data of [24–29]. Therefore the total spectrum of the indices n and nT can be 
obtained with the use of the analytical formulas and initial data presented in the paper for the initial turbulence. The results 
of calculations obtained agree with the classical experimental data regarding the fact that the values of n and nT increase with 
the Reynolds number in a pipe in a turbulent regime. Analytical formulas show in this case that even in a nonisothermal fl ow 
with constant properties the temperature and velocity fi elds exert their infl uence on the fl ow not only depending on the Ec, 
Pr, and M numbers, but also depending on the initial turbulence of the fl ow. In the case of high temperature, high velocity, 
and heterogeneous fl ows, the essence of the process does not change, but the effects are more complex [24, 30, 31, 34–38]. 
Thus, for the process of nonisothermal liquid fl ow, based on the analytical dependences derived, satisfactory agreements are 
obtained between theoretical estimates and experimental data for both the critical Reynolds numbers [21–23] and the indices 
n and nT of the velocity and temperature profi les depending on the initial turbulence. The results obtained show that as for 
isothermal, so also for nonisothermal fl ows, the reason for the process of transition from a deterministic state into a turbulent 
one is the physical law of the equivalence of measures between them.
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