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HEAT TRANSFER AND FLOW OF A CASSON FLUID DUE TO A STRETCHING
CYLINDER WITH THE SORET AND DUFOUR EFFECTS

A. Mahdy UDC 536.24 

Numerical solutions of the problem on fl ow and heat transfer of a non-Newtonian fl uid outside a stretching permeable 
cylinder are obtained with regard to suction or blowing and the Soret and Dufour effects. The Casson fl uid model 
is used to characterize the non-Newtonian fl uid behavior. The governing partial differential equations are reduced 
to a system of nonlinear ordinary differential equations by employing similarity transformations, and the obtained 
equations are solved numerically by using the shooting technique. The main purpose of the study is to investigate 
the effect of the governing parameters, namely, the Casson, Soret, and Dufour parameters, the suction/injection 
parameter, and the Prandtl and Reynolds numbers, on the velocity and temperature profi les, as well as on the skin 
friction coeffi cient and temperature gradient at the surface. 

Keywords: stretching cylinder, Casson fl uid, suction/injection, Soret and Dufour effects.

Introduction. Transport of heat, mass, and momentum in laminar boundary layers on moving (stretching or 
inextensible) surfaces is a very important process in many engineering applications. Different aspects of fl ows over shrinking 
surfaces have been much investigated. The fl uid fl ow over a stretching cylinder has attracted the interest of many researchers. 
It should be mentioned that a boundary-layer fl ow due to a stretching or shrinking surface is a relevant type of fl ows appearing 
in many industrial and engineering processes, for example, in polymer and metallurgy industries, such as manufacture and 
extraction of polymer and rubber sheets, melt spinning, hot rolling, paper production, wire drawing, glass fi ber production, etc. 
In these situations, the quality of the fi nal product depends to a great extent on the rate of cooling in the stretching/shrinking 
process [1]. Wang [2] investigated a steady fl ow of an incompressible viscous fl uid outside a stretching hollow cylinder in an 
ambient fl uid at rest. This problem was then extended in [3] by including the suction and injection effects. It was reported that 
injection reduces the skin friction, as well as the heat transfer rate at the surface, while suction acts in the opposite manner. 
Wang and Ng [4] obtained a similarity solution for the fl ow due to a stretching cylinder with a partial slip condition at the 
surface. They found that the slip effect signifi cantly decreases the magnitude of the fl uid velocity and shear stress. Wang [5] 
solved the problem of a natural convection on a vertical stretching cylinder and obtained an exact similarity solution of the 
Navier–Stokes equations. Ishak, Nazar, and Pop [6] numerically solved the problem of a magnetohydrodynamic fl ow and 
heat transfer over a stretching cylinder. They observed that the heat transfer rate at the surface decreases with increase in the 
value of the magnetic parameter, while the magnitude of the skin friction coeffi cient increases with this parameter and the 
Reynolds number.

Furthermore, it has been observed that an energy fl ux can be generated not only by a temperature gradient, but also 
by a concentration gradient. The energy fl ux caused by a concentration gradient is termed the diffusion-thermo (Dufour) 
effect. On the other hand, a mass fl ux can be created by a temperature gradient; this is thermodiffusion, i.e., the Soret effect 
which might become signifi cant when large density differences exist in a fl ow. Mahdy [7] studied the Soret and Dufour 
effects in mixed convection of a non-Newtonian fl uid in porous media. Srinivas, Muthuraj, and Sakina [8] investigated the 
infl uence of heat and mass transfer in a peristaltic fl ow of a viscous fl uid in a vertical asymmetric channel with a slip on 
the wall. Alam et al. [9] theoretically studied the problem of a steady two-dimensional free convection and mass transfer 
fl ow past a continuously moving semi-infi nite vertical porous plate in a porous medium, including the Soret and Dufour 
effects. Bég and Tripathi [10] considered peristaltic pumping with double-diffusive convection in nanofl uids. A peristaltic 
motion with the Soret and Dufour effects was discussed by Hayat, Abbasi, and Obaidat [11]. Mahdy [12] examined the 
combined effect of spatially stationary surface waves and of the presence of fl uid inertia on free convection along a heated 
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vertical wavy surface embedded in a porous medium saturated by an electrically conducting fl uid subjected to the diffusion-
thermo (Dufour), thermodiffusion (Soret), and magnetic fi eld effects. Adrian [13] numerically investigated the heat and mass 
transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subjected 
to a magnetic fi eld by taking into account the Dufour and Soret effects. The effect of melting and/or thermodiffusion on 
convective transport in a non-Darcy porous medium saturated by a non-Newtonian fl uid was presented by Kairi and Murthy 
[14] and Srinivasacharya and RamReddy [15].

On the other hand, interest in the time-independent fl ow of non-Newtonian fl uids with a defi nite yield value through 
tubes has grown because of their applications in polymer processing industries. The most popular among these fl uids is a 
Casson one [16]. We can defi ne a Casson fl uid as a shear-thinning liquid which is assumed to have an infi nite viscosity at 
zero rate of shear, the yield stress below which no fl ow occurs, and a zero viscosity at an infi nite rate of shear. The Casson 
model is a well-known rheological model for describing the behavior of non-Newtonian fl uids with an yield stress [17]. The 
model was developed for viscous suspensions of cylindrical particles [18]. Regardless of the types of suspensions, some 
fl uids are particularly well described by this model because of their nonlinear yield-stress-pseudoplastic nature. Examples of 
such fl uids are blood [19], chocolate [20], and xanthan gum solutions [21]. The Casson model fi ts the fl ow data better than 
the more general Herschel–Bulkley model [22, 23] with a power-law dependence for the yield stress [24, 25]. For chocolate 
and blood, the Casson model is the preferred rheological model. This model seems to fi t the nonlinear behavior of yield-
stress-pseudoplastic fl uids rather well, and its popularity grew since its introduction in 1959. It is relatively simple to use 
and it is closely related to the Bingham model [24, 25], which is very widely used to describe fl ows of slurries, suspensions, 
sludge, and other rheologically complex fl uids [26]. Eldabe and Salwa [27] studied a Casson fl uid fl ow between two rotating 
cylinders. Boyd, Buick, and Green [28] used the Casson fl uid model as applied to the steady and oscillatory blood fl ow. In 
recent years, a boundary-layer fl ow of a Casson fl uid over bodies of different geometries was considered by many authors. 
Nadeem, Haq, and Lee [29] investigated an MHD fl ow of a Casson fl uid over an exponentially shrinking sheet. Kumari et 
al. [30] analyzed peristaltic pumping of an MHD Casson fl uid in an inclined channel. Sreenadh, Pallavi, and Satyanarayana 
[31] studied a Casson fl uid fl ow through an inclined tube of a nonuniform cross section with multiple stenoses. Mukhopadhyay 
et al. [32] considered an unsteady two-dimensional fl ow of a non-Newtonian fl uid over a stretching surface with a prescribed 
surface temperature. The details of a steady fully-developed laminar fl ow of Casson fl uids were described in [33]. In view of 
the non-Newtonian nature of blood in capillaries and fi ltration/absorption property of the walls, Oka [34] studied blood fl ow 
in capillaries with permeable walls, using the Casson fl uid model. 

Having in mind the above studies on the boundary-layer fl ow due to a stretching cylinder, we shall investigate two-
dimensional fl ows of a Casson fl uid. In addition, the Soret and Dufour effects will be considered together with suction or 
injection. The Soret effect is connected with the occurrence of a diffusion fl ux because of a temperature gradient, whereas the 
Dufour effect, with a heat fl ux due to a concentration gradient. The fl uid fl ow is induced by a stretching cylinder.

Formulation of the Problem. Let us consider the non-Newtonian Casson fl uid steady two-dimensional laminar fl ow 
caused by a stretching tube of radius a in the axial direction in a fl uid at rest as shown in Fig. 1, where the z axis is directed 
along the tube axis and the r axis, in the radial direction. It is assumed that the tube surface is kept at a constant temperature 
Tw, the ambient fl uid temperature is T∞, and Tw > T∞. Viscous dissipation is neglected as it is assumed to be small. The 
rheological equation of state for an isotropic incompressible fl ow of a Casson fl uid is [27, 35]
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where τij = eijeij, π is the product of the components of the deformation rate tensor with itself, and πc is a critical value of this 
product based on the non-Newtonian model. If a shear stress smaller than the yield stress is applied to the fl uid, the latter 
behaves like a solid, whereas if the shear stress is greater than the yield stress, it starts to move. Considering the balance 
laws of mass, linear momentum, and energy, with the help of the Boussinesq approximation for the body force term in the 
momentum equation we can write the equations governing this fl ow in the form
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The corresponding boundary conditions are 
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Here b is a positive constant. It should be noted that γ is constant with γ > 0 and γ < 0 corresponding to mass suction and 
mass injection (blowing), respectively. In order to get a similarity solution of the problem, we introduce the following 
nondimensional variables:
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Substituting Eq. (7) into Eqs. (2), (4), and (5), we obtain the following ordinary differential equations, which are 
locally similar:
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Fig. 1. Schematic model of the problem.
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The Prandtl, Reynolds, and Schmidt numbers, as well as the Soret and Dufour parameters, are defi ned as
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The boundary conditions (6) turn into
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where the prime denotes ordinary differentiation with respect to the similarity variable.
The exact solution of Eq. (8) at Re = 1 is given as
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The pressure can be determined by integrating Eq. (3) in the form
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Results and Discussion. The boundary-layer fl ow and heat and mass transfer of a non-Newtonian Casson fl uid 
occurring due to a stretching cylinder in the presence of the Soret and Dufour effects, as well as suction/injection ones, 
are considered. The set of coupled equations (8)–(10) is highly nonlinear and cannot be solved analytically. Together with 
boundary conditions (11), they form a two-point boundary-value problem which can be solved by using the routine bvpc45 in 
MATLAB by converting it into an initial value problem. In this case we choose a fi nite value of η corresponding to η → ∞, 
say ηf. Care has been taken in choosing ηf for a given set of parameters because a fi xed value of ηf for all calculations may 
lead to inaccurate results. The obtained results account for the roles of several nondimensional parameters, namely, the 
Reynolds number, Casson parameter, Prandtl number, Schmidt number, and the Soret and Dufour parameters. The case where 
the Casson parameter is zero has been also considered, and the results were compared with the previously published results. 
Tables 1 and 2 present the numerical values of the skin friction coeffi cient (–f ''(1)) and the temperature gradient (–θ'(1)) along 
with the results reported in [2, 3], and excellent agreement is seen.

Figure 2 illustrates the effect of the Casson parameter β on the nondimensional velocity (f ' ), temperature (θ), 
concentration (φ), and the stream function (f ) distributions for a steady case with mass suction and injection. The increasing 
values of the Casson parameter, i.e., the decreasing values of the yield stress (the fl uid behaves as a Newtonian one as the 
Casson parameter becomes large), suppress the velocity. An increase in β reduces the transport rate, so that the boundary-
layer thickness decreases. It is observed that f '(η) and the associated boundary-layer thickness are decreasing functions of 
β. An increase in β leads to increasing temperature and concentration for a steady motion (Fig. 2b and c). Thickening of the 
thermal boundary layer occurs due to the increase in the elasticity stress parameter. It can also be seen from Fig. 2a that the 
momentum boundary-layer thickness decreases as β increases, which induces an increase in the absolute value of the velocity 
gradient at the surface.

Figure 3 shows the infl uence of the Soret and Dufour parameters on the temperature and concentration distributions. 
It is seen that as the Soret parameter increases and the Dufour parameter decreases, both the temperature and concentration 
decrease. Moreover, an increase in Sr tends to decrease the absolute value of θ'(1) and to increase φ'(1).

The velocity distribution for various values of the Reynolds number is given in Fig. 4, and the velocity, temperature, 
and concentration gradient distributions at the tube surface, in Fig. 5. It is worth mentioning that the Reynolds number 
characterizes the relative signifi cance of the inertia effect compared to the viscous one. It is observed that both the stream 
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TABLE 1. Values of –f ''(1) for Various Reynolds Numbers

Re
γ = 0 γ = –0.5 γ = 0.5

[2] [3] Present [3] Present [3] Present

0.5
1.0
2.0
5.0
10.0

0.88220
1.17776
1.59390
2.41745
3.34445

0.8827
1.1781
1.5941
2.4175
3.3445

0.88691
1.17953
1.59434
2.4175
3.34447

0.7719
0.9623
1.1810
1.4811
1.6776

0.77555
0.96339
1.18115
1.48111
1.67756

1.0084
1.4400
2.1468
3.9308
6.6222

1.01309
1.44160
2.1471
3.93088
6.62227

TABLE 2. Values of –θ'(1) for Various Prandtl Numbers

Pr
γ = 0 γ = –0.5 γ = 0.5

[2] [3] Present [3] Present [3] Present

0.7
2.0
7.0
10.0

1.568
3.035
6.160
10.77

1.5683
3.0360
6.1592
7.4668

1.56878
3.03596
6.15813
7.46477

0.2573
0.063

0
0

0.25823
0.06315

0
0

4.1961
11.1517
36.6120
51.7048

4.19617
11.15149
36.61141
51.70485

Fig. 2. Velocity (a), temperature (b), concentration (c), and stream function (d) distributions at Sr = 1.2, 
Re = 5, Pr = 7, Df = 0.36, and Sc = 1.6 for various values of the Casson parameter.
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Fig. 4. Velocity distribution at Sr = 1.2, β = 1.8, Pr = 7, Df = 0.36, and Sc =1.6 for various values of the 
Reynolds number.

function and velocity decrease as the Reynolds number increases. The velocity approaches zero at some large distance from 
the tube surface. It is seen from Fig. 4 that the velocity boundary-layer thickness decreases as Re increases, which implies an 
increasing velocity gradient, i.e., an increasing magnitude of the skin friction coeffi cient (Table 1). The same behavior can be 
observed for the temperature and concentration gradients that increase with Re (Figs. 5b and c). 

The Prandtl number is the ratio of the momentum diffusivity to thermal diffusivity. It is shown that the temperature 
and thermal boundary-layer thickness decrease with increasing Pr. The temperature gradient at the tube surface is negative for 
all values of Pr, as seen from numerical results, which means that heat is always transferred from the tube surface to the ambient 
fl uid. Fluids with lower Prandtl numbers possess higher thermal conductivities (and thicker thermal boundary layers), so that in 
this situation heat can diffuse from the tube surface faster than in fl uids with higher Pr (and thinner boundary layers). 

The Schmidt number is an important parameter in heat and mass transfer processes as it characterizes the ratio of the 
thicknesses of the viscous and concentration boundary layers. The effect of the Schmidt number on the species concentration 
is similar to the Prandtl number effect on the temperature. That is, an increase in the value of Sc signifi cantly decreases the 
species concentration and boundary-layer thickness with a slight increase in the fl uid temperature. This decrease in the solute 
concentration causes a reduction in the solutal buoyancy effect, resulting in a lesser induced fl ow along the tube surface. The 
effect of the Soret number on the heat and mass transfer rate at the tube surface is illustrated by Fig. 6. It is seen that the heat 
transfer rate decreases, while the mass transfer rate increases, with increasing Soret number. It is also shown that the heat 
transfer rate increases with the Dufour number.

In addition, Figs. 2–6 show the role of the suction/blowing parameter γ. With increase in this parameter, the fl uid 
velocity, temperature, and concentration are found to decrease. The decrease in the fl uid velocity in the boundary layer in 

Fig. 3. Temperature (a) and concentration (b) distributions at β = 1.8, Re = 5, Pr = 7, and Sc = 1.6 for various 
values of the Dufour and Soret parameters.
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turn decreases the wall shear stress. An increase in γ causes thinning of the boundary layer. However, the temperature and 
concentration are found to decrease with increasing γ. This causes a decrease in the heat and mass transfer rate.

Conclusions. A steady two-dimensional fl ow of a non-Newtonian Casson fl uid occurring due to a stretching 
cylindrical tube has been investigated. Similarity solutions were obtained for a linearly stretching tube with a constant surface 
temperature. The effects of the Reynolds, Prandtl, and Schmidt numbers and of the Casson, Soret, and Dufour parameters on 
the fl ow and heat transfer characteristics were examined. It is shown that an increase in the value of the Casson parameter β 
suppresses the velocity, whereas the temperature increases with β. As the Soret parameter increases and the Dufour parameter 
decreases, both the temperature and concentration decrease.

Fig. 5. Velocity (a), temperature (b), and concentration (c) gradients vs. the Casson parameter at Sr = 1.2, 
Pr = 7, Df = 0.36, and Sc = 1.6 for various values of the Reynolds number.

Fig. 6. Temperature (a) and concentration (b) gradients vs. the Casson parameter at Re = 5, Pr = 7, Df = 0.36, 
and Sc = 1.6 for various values of the Soret parameter.
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NOTATION

a, radius of a cylinder; b, positive constant; C, concentration; cp, specifi c heat at constant pressure; cs, concentration 
susceptibility; D, mass diffusivity; Df, Dufour parameter; eij, component of the deformation rate rensor; f, nondimensional 
stream function; k, thermal diffusion ratio; P, pressure; Py, component of the yield stress tensor; Pr, Prandtl number; Re, 
Reynolds number; Sc, Schmidt number; Sr, Soret parameter; T, temperature; u, w, velocity components; U, velocity of a 
stretching tube; z, r, coordinates; α, thermal diffusivity; β, Casson parameter; γ, suction or injection parameter; η, similarity 
variable; θ, nondimensional temperature; μB, plastic dynamic viscosity of a non-Newtonian fl uid; ν, kinematic viscosity; ρ, 
density; τij, component of the stress tensor; φ, nondimensional concentration; ψ, stream function. Indices: f, fi nite; m, mean; 
w, conditions at the cylinder surface; ∞, conditions in the free stream.
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