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MODELING NONSTATIONARY NONLINEAR-VISCOUS LIQUID FLOWS
THROUGH A PIPELINE

Kh. M. Gamzaev UDC 532.546:519.6

The process of nonstationary incompressible nonlinear-viscous liquid fl ow through a pipeline is considered. It is 
described by a parabolic-type one-dimensional nonlinear equation. The problem of determining the dependence of 
the pressure difference on time from the assigned volumetric fl ow rate in the given pipeline is formulated. Such a 
problem pertains to the class of inverse problems connected with the restoration of the dependence of the right-hand 
sides of parabolic equations on time. A computational algorithm for solving the problem has been suggested.
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Introduction. At the present time, pipeline transportation is the main form of conveying nonlinear-viscous fl uids. 
Usually, in designing pipelines the following parameters are specifi ed: the fl uid fl ow rate, which is the basic characteristic 
of the pipeline capacity in conformity with its function, and the location of the pipeline beginning and end. Here, among the 
particular concerns of the present work, is the determination of the pressure difference needed for the transportation of the 
specifi ed fl uid fl ow through the given pipeline. In practice, for solving such a problem, use is mainly made of the differential 
equations of stationary nonlinear-viscous fl uid fl ow through a pipeline [1–3]. However, for the pipeline transport operation 
it is important to carry out investigations on determination of the dependence of pressure difference on the fl uid fl ow rate 
for transported nonstationary nonlinear-viscous fl uid fl ows. This work presents a numerical method of determining such 
a dependence by solving an inverse problem for the equation of nonstationary nonlinear-viscous fl uid fl ow in a pipeline.

Formulation of the Problem. Let there be a horizontal rigid-walled pipeline of radius R and length l with an 
incompressible nonlinear-viscous fl uid pumped through it. The rheological equation of the fl uid has the form
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The 0z axis is assumed to lie along the pipeline axis, and the fl ow, to be directed along the pipe axis so that, of the 
three velocity components (ur, uφ, uz), only the velocity uz remains, whereas ur and uφ are equal to zero. The mathematical 
model of nonstationary nonlinear-viscous fl uid fl ow in the pipeline can then be presented in the form [3]
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It follows from the second equation of this system that uz is a function of only r and t and that the last two equations show the 

pressure P to be independent of r and φ, i.e., that ∂
∂
P
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 is a function of time. Assuming that
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from the previous system of equations we obtain the equation of nonstationary nonlinear-viscous incompressible fl uid fl ow 
in a pipeline in the form
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Let the following initial condition hold for Eq. (1):
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and the natural boundary conditions:
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It is obvious that by specifying the law of pressure variation f(t) in time and solving problem (1)–(4), we can fi nd the fl uid 
fl ow rate in the pipeline from the formula
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We assume now that the function of the change in the volumetric fl ow rate of fl uid Q(t) is known and we are to fi nd such 
a law of the change in the pressure difference f(t) that would ensure the passage of the given fl uid volume through the 
pipeline. Thus, we are confronted with the problem of determining the functions u(r, t) and f(t) that would satisfy Eq. (1) and 
conditions (2)–(5). This problem relates to the class of inverse problems associated with the regeneration of the dependence 
of the right-hand sides of parabolic equations on time [4]. However, here as an additional condition we assign the integral 
characteristic of the investigated process.

Method of Solution. We multiply both sides of Eq. (1) by r and integrate the result over [0, r] with respect to the 
variable r. Performing integration by parts and accounting for condition (3), we obtain
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Denoting
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we write the last integral relation in the form
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Taking into account (2) and (4), for Eq. (6) we will seek the following initial condition:
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and the boundary conditions:
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To numerically solve the inverse problem (6)–(10), we use the approach suggested in [5, 6]. For this purpose, we 
introduce a uniform difference grid
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with the step Δr = R/N for the variable r and the step Δt = T/M in time t. We represent the difference analog of Eq. (6) on the 
grid ωhτ in the following form:
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where j
iw  ≈ w(ri, tj). Approximating conditions (7)–(10), we obtain
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where ψi = ψ(ri), Q j+1 = Q(tj+1). We transform the resulting system of the difference equations as
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We represent the solution of problem (11)–(15) in the form
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Substituting the expressions for +1j
iw  and +
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iw  into Eq. (11), we obtain the following nonlinear equations for determining 
the coeffi cients αi and βi:

 
+

+

+ +

β + ρΔ + τΔ
α = β = = − −

− α − α

2 2 2 1
1

1 1

0.5, , 1, 2, …, 1 .
j j

i i ii i
i i

i i i i i i

b r w r r fa i N N
c b c b  

We fi nd the initial values of the coeffi cients αi and βi from the requirement of the equivalence of condition (16) at i = N – 1, 
i.e., +1j
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 Let us introduce the new variables βi , id , i = 1, 2, …, N – 1 that satisfy the equations

 +β = β +1i ii is y , += +1i i i id s d d ,β = βNN , = 0Nd . 

With account for the newly introduced variables, Eq. (17) can be represented in the form of the recurrent relation
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This equation, subject to the recurrent relation (18), can be written as
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The latter equation, with Eqs. (13) and (15) taken into account, yields an approximate value of the sought function f (t) 
at t = tj+1:

 

−+

+ = = +
−

= = +

− β α − β
π

=

α

∑ ∏

∑ ∏

11

1 1 1
1

1 1

2

NNj

n Ni
j i n i

NN

i n
i n i

Q

f

d

.    (19)

Determining +1jf  by Eq. (19), we can successively fi nd +1
1
jw , +1

2
jw , ..., +1j

Nw  from the recurrent formula (16). In going over 
to the next time layer, the computational procedure is repeated.

Thus, the proposed numerical method allows one in each time layer to successively determine the pressure difference 
and the fl uid fl ow velocity distribution in the pipeline.

Results of Numerical Calculations. To elucidate whether the proposed computational algorithm can be effi ciently 
applied in practice, numerical experiments were carried out for model problems. The schematic of a numerical experiment 
was as follows. The direct problem (6)–(9) was solved for the given functions f(t) and ψ(r). The resulting dependence Q(t) = 
2πw(R, t) was taken as that affording precise data for numerical solution of the inverse problem on the regeneration of f(t).

The fi rst series of calculations was carried out with the use of these unperturbed data. The second was carried out 
after imposing, on Q(t), some function that models the error of experimental data:

= + δσ( ) ( ) ( )Q t Q t t ,

TABLE 1. Results of Numerical Experiment

t f       t f–
f̃  at δ = 0.002

τ = 0.05 τ = 0.5 τ = 1 τ = 2

10 6.01 6.01 3.00 5.66 6.03 6.03

20 6.75 6.75 5.67 6.12 6.57 6.76

30 7.00 7.00 10.42 6.70 6.79 6.85

40 6.70 6.70 8.90 6.92 6.39 6.61

50 5.94 5.94 5.92 6.04 5.91 5.91

60 4.91 4.91 2.62 5.02 4.76 4.80

70 3.91 3.91 –2.90 4.01 3.78 4.01

80 3.21 3.21 2.45 3.34 3.32 3.05

90 3.00 3.00 4.62 3.09 3.17 3.12

100 3.35 3.35 –0.03 3.05 3.40 3.33

110 4.14 4.14 3.68 4.26 4.08 4.22

120 5.18 5.18 5.72 5.43 5.23 5.10

130 6.16 6.16 6.63 6.33 6.18 6.09
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where σ(t) denotes a random process modeled with the aid of a random-number generator.
The calculations were performed on a spatial-temporal difference grid with the steps h = 0.02; τ = 0.05; 0.5; 1; 2. 

The results of the numerical experiment carried out for the case γ = 0.8, ρ = 850 kg/m3; R = 1.2 m; k = 0.2 Pa·sγ; f (t) = 5 – 
2 sin  10t; ψ(r) = 0.02r + 0.05 with the use of unperturbed and perturbed input data are presented in Table 1. An error of the level 
δ = 0.002 was used for the perturbation of input data.

As the results of the numerical experiment show, in using unperturbed input data the sought function f(t) is regener-
ated exactly on all computational time grids (the 2nd and 3rd columns of Table 1). In the case of perturbed input data at which 
the error has a fl uctuational character, the sought function f(t) is regenerated with an error that is manifested more strongly 
on decrease in the time step (τ = 0.05). However, the results obtained at large time steps (τ = 0.5, 1, 2) point to the fact that 
an increase in the time step ensures the algorithm stability against the errors in the input data. An analysis of the results of 
numerical experiment indicates that in the proposed computational algorithm the regularization effect is realized by selecting 
the difference grid in time.

Conclusions. The problem on determining the pressure difference needed for the passage of the assigned volume of 
nonlinear-viscous fl uid through the given pipeline has been considered. To solve the problem posed, a numerical method is 
suggested based on the use of a mathematical model of the process of nonstationary incompressible nonlinear-viscous fl uid 
fl ow in a pipeline. The proposed method can be applied for investigating the fl ow of nonlinear-viscous fl uids in pipelines.

NOTATION

f(t), function describing a change of the pressure difference in time, Pa/m; f , computed values of the function f(t) 
at unperturbed data; f , computed values of the function f(t) at perturbed data; tf , precise values of the function f (t); k, con-
sistency parameter, Pa·sγ; l, pipeline length, m; P, pressure, Pa; Q(t), volumetric fl ow rate of fl uid, m3/s; R, pipe radius, m; 
r, radial coordinate, m; t, time, s; ur, uφ, uz, fl uid fl ow velocity vector components, m/s; γ, dimensionless parameter; δ, error 
level; ρ, fl uid density, kg/m3; σ(t), random process modeled with the aid of a random-number generator; τ, shear stress, Pa.
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