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MEASUREMENT OF THE THERMAL-CONDUCTIVITY COEFFICIENT 
OF NANOFLUIDS BY THE HOT-WIRE METHOD

A.V. Minakov,a,b V. Ya. Rudyak,c D. V. Guzei,a   UDC 536.2,53.082
M. I. Pryazhnikov,a and A. S. Lobasova,b

In this work, the authors present results of adaptation and testing of the hot-wire method for determination for 
the thermal-conductivity coeffi cient of nanofl uids. A mathematical model of heat transfer with allowance for 
free convection has been constructed to elucidate the parameters of an experimental setup and the range of its 
applicability. The experimental procedure has been tested on measurements of the thermal conductivities of water 
and ethylene glycol. The thermal-conductivity coeffi cient of a nanofl uid has been measured at room temperature. The 
nanofl uid under study was prepared on the basis of ethylene glycol and alumina nanoparticles. The concentrations 
of the nanoparticles ranged from 0.5% to 2% by volume. Good agreement has been obtained between the measured 
values of the thermal-conductivity coeffi cient and the data of other authors.

Keywords: heat conduction, hot-wire method, free convection, nanoparticles, nanofl uid, CFD (computational fl uid 
dynamics), experiment.

Introduction. The fi rst use of a fl uid with microparticles for the purpose of heat-transfer intensifi cation has been 
known since the mid-1970s (e.g., Ahuja, 1975 [1]). However, it failed to obtain substantial results. This is due to the fact that 
large disperse particles sediment quite rapidly and cause the channel walls to erode. Fluids in which the dispersed component 
is represented by nanoparticles are free from this drawback. The idea of using nanoparticles to enhance the heat conduction 
of a carrier fl uid emerged about two decades ago. A two-phase medium whose carrier component is a regular liquid and 
whose dispersed component is represented by nanoparticles is currently referred to as a nanofl uid (this term appeared for 
the fi rst time in the work of Choi [2]). At present, one important fundamental issue is understanding mechanisms of transfer 
of heat in nanofl uids. To explain the anomalous heat conduction of nanofl uids one analyzes a few mechanisms: Brownian 
motion of nanoparticles (diffusion), the formation of a high-thermal-conductivity liquid layer on the "liquid–particle" interface, 
classifi cation of nanoparticles, thermal diffusion (transfer of nanoparticles by the action of a temperature gradient), ballistic 
transfer of thermal energy in an individual particle and between nanoparticles occurring in the case of their contact, and others. 
The issue as to the contribution of these mechanisms to the effective thermal conductivity of various nanofl uids remains open. 
Due to this, no general theory capable of predicting reliably the heat conduction of nanofl uids has been created to date. 
Therefore, a reliable experimental procedure of measurement of the thermal-conductivity coeffi cient of nanofl uids is required.

Despite the great number of works in which the heat conduction of nanofl uids and their heat transfer are studied, 
the results obtained are often erratic. This is true of, e.g., heat transfer under natural-convection conditions [3]. Although an 
enhancement of the heat transfer in the case where nanoparticles are used is noted in most works [4], there are publications 
where a decrease in the heat transfer on adding them is demonstrated [5]. In addition to experimental investigations of the 
heat conduction of nanofl uids, there are numerous theoretical works; however, a review of results of works by different 
researchers shows that it is impossible to closely predict the heat conduction of nanofl uids at present. Therefore, comprehensive 
investigations of the heat transfer of nanofl uids require a reliable procedure of measurement of the thermal-conductivity 
coeffi cient.

The present work seeks to adapt and test an experimental procedure of determination of the thermal-conductivity 
coeffi cient of nanofl uids that is based on the well-known hot-wire method [6–8]. This method is widely employed to measure 
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the thermal-conductivity coeffi cient of liquids. The central problem in this case is that the accuracy of measurements can be 
infl uenced signifi cantly by free convection. In most works, one uses the existing empirical dependences of convective heat 
transfer to evaluate the time of development of free convection. It is shown below that in many cases such evaluations cannot 
be considered reliable. However, for creation of an experimental setup and processing of experimental results, it is required 
that the range of applicability be determined. In our work, such evaluation is performed using computational-hydrodynamics 
and heat-transfer methods.

Theoretical Principles of the Hot-Wire Method. The hot-wire method for measurement of the thermal conductivity 
of gases was proposed by Schleiermacher [6] in 1888. Its detailed description can be found in [7, 8]. The modern digital hot-
wire method has been described in [9, 10]. The principle of measurement of the thermal conductivity by the hot-wire method 
[6–10] is based on the linear dependence between the growth in the wire temperature and the logarithm of the heating time. 
In the homogeneous fl uid under study, there is immersed a wire; a direct electric current is passed through the wire, and the 
heat fl ux on it is constant. For an ideal linear source, the basic process of propagation of heat around the wire is described by 
the Fourier equation
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where ΔT determines the growth in the temperature of the hot wire, a and λ are the thermal diffusivity and thermal conduc-
tivity of the fl uid, and q is the constant heat fl ux released by the hot wire per unit length.

The solution of Eq. (1) is
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When r is equal to the hot-wire radius rw, which has a very small value (as B), the above solution can additionally be 
simplifi ed. Finally, we obtain the following asymptotic solution:
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Equation (2) expresses the linear dependence between ΔT and ln t. The actual temperature distribution of the wire in 
the process of its heating is shown in Fig. 1. It is seen that there is a portion of the temperature curve on which the behavior 
of ΔT is nearly linear indeed. The presence of the intrinsic heat capacity in the wire leads to the fact that the actual distribu-
tion ΔT = f(ln t) will differ from the linear dependence on the initial portion of the curve. The deviation of this dependence 
from the linear one at the fi nal stage of heating is primarily due to the development of free convection. Thus, determining the 
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boundaries of the range of the linear dependence, we can determine the thermal conductivity of the fl uid from the slope of the 
straight line ΔT ~ ln t (H) and the linear heat-fl ux density using the following expression:

 
.

4
q
H

λ =
π

  (3)

Mathematical Model and Modeling Results. As has already been stated, the central problem with the measurement 
of the thermal-conductivity coeffi cient of the fl uid is that the measurements can be greatly infl uenced by free convection. For 
the experiment results to be interpreted correctly, one should be aware of the cases where this infl uence becomes substantial. 
Therefore, to describe and understand the essence of thermophysical processes occurring on the wire in its unsteady heating, 
we have constructed a two-dimensional mathematical model of heat transfer with allowance for free convection. In this 
model, the fl uid is considered as a homogeneous incompressible Newtonian medium whose fl ow is described by the Navier–
Stokes equations
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where ρ is the density of the fl uid, p is the pressure, v is the velocity vector, and T is the viscous-stress tensor.
The energy equation is represented in the following form:
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is the density of the fl uid at the room temperature T0, and β is the coeffi cient of thermal expansion of the fl uid.
The problem was solved in a two-dimensional formulation. In the calculations, we considered versions with a vertical 

and a horizontal arrangement of the hot wire. For the horizontal arrangement, the computational domain represented a ring 
whose inside diameter was equal to a wire diameter of 75 μm. The outside diameter of the computational domain was equal 
to 6 cm. Methodological calculations have shown that this diameter of the computational domain does not infl uence the heat 
transfer on the wire.

Fig. 1. Typical distribution of the wire temperature: solid curve, experimental values [14], dashed curve, 
asymptotic solution (2).
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On the internal boundary of the computational domain, we prescribed a fi xed heat-fl ux value equal to the experimental 
value of the heat fl ux on the wire. On the external boundary, we adopted the condition of the absence of the heat fl ux. 
Although this condition is not quite consistent with experimental conditions, it may be considered as fairly correct because of 
the short duration of the process and of the fact that the dimensions of the computational domain are many times larger than 
the diameter of the wire.

At the initial instant of time, the fl uid temperature in the computational domain was prescribed to be uniform and 
equal to 25oC. The medium was quiescent. The gravity force was directed vertically downward and was perpendicular to the 
wire. A structured computational grid containing 200 nodes along the perimeter and 100 nodes on the radius was used for 
calculation. The computational grid was heavily clustered radially in the region of the wire.

For the vertically arranged wire, we solved the problem in an axisymmetric formulation. The computational domain 
represented a rectangle of height 24 cm and width 3 cm. It has been established from methodological results that such 
dimensions of the computational domain do not infl uence the calculation results. The symmetry axis was prescribed on the 
left-hand side of the computational domain, at whose center there was made a rectangular groove of height 8 cm and width 
35 μm representing a lateral surface of the hot wire. On the walls of this groove, we prescribed a fi xed heat-fl ux density equal 
to the experimental value of the heat-fl ux density on the wire. On the remaining boundaries of the computational domain, 
we specifi ed the conditions of the absence of the heat fl ux. The gravity force was directed vertically downward and was 
coincident with the direction of the wire. Otherwise the formulation of the modeling was in complete agreement with the 
above case of a horizontal wire. A structured computational grid containing 600 nodes along the height and 200 nodes across 
the width was used for calculation. The computational grid was heavily clustered across the width in the region of the wire.

For computer-aided implementation of the above-described mathematical model, we used the developed software 
system "σFlow" [11–15]. Here we only mention the basic points of the numerical procedure. The difference analog of 
convective-diffusion equations is found using the fi nite-volume method for structured multiblock grids, with which the 
conservatism of the resulting scheme is automatically fulfi lled. The upwind scheme of second order QUICKM is used for 
approximation of convective terms of hydrodynamic equations, and the implicit scheme of second order is employed for 
nonsteady terms of hydrodynamic equations. The diffusion fl uxes and the source terms are approximated with the second 
order of accuracy. A coupling between the velocity and pressure fi elds is implemented using the SIMPLEC procedure 
on aligned grids. The Rhee–Chou approach related to the introduction of a monotonizer into the equations for a pressure 
correction is used to eliminate oscillations of the pressure fi eld. The obtained system of difference equations is solved by the 
iterative method with a multigrid solver.

The computational algorithm was tested on a two-dimensional problem on laminar convection in the space between 
two coaxial cylinders. As far as the formulation is concerned, this problem is as close as possible to the hot-wire method in 
question for the horizontally arranged wire. The problem′s geometry is presented in Fig. 2. The radius of the external cylinder 

Fig. 2. Temperature distribution in the space between cylinders: a) calculated isolines of temperature; b) 
experimental interferogram of the temperature fi eld [15].
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is equal to 46.3 mm, and the radius of the internal cylinder, to 17.8 mm. The walls of the internal cylinder have a temperature 
of 100oC, and the walls of the internal cylinder, of 54oC. The Grashof number is Gr = 49,000. For calculation, we used a 
multiblock computational grid consisting of 120 × 120 nodes. Experimental data were borrowed from [14].

Figure 2 compares calculated and experimental distributions of the temperature fi eld [15] in the space between the 
cylinders. It is seen that qualitatively the calculated and experimental data are in good agreement. A quantitative comparison 
of calculation and experiment [14] is given in Fig. 3. It is seen that quantitative agreement between calculation and experiment 
for this problem is fairly good, too.

Next, we carried out a series of calculations of the heat transfer on the hot wire in water for different linear densities 
of the heat fl ux; the heat-fl ux density was varied in the range from 1 to 20 W/m. Consideration was given to the cases of 
vertical and horizontal arrangement of the wire. Figure 4 gives the calculated isolines of temperature at different instants of 
time for the case of a horizontally arranged wire at q = 13 W/m. As is seen from the calculation results, from approximately 
the second second after the beginning of heating, the temperature isolines deviate from concentric circles characteristic of 
the heat-conduction regime. In the computational domain, there begins to form a free convective fl ow, which becomes fully 
developed approximately within 5 s after the beginning of heating. Thus, at the given density of the heat fl ux on the hot wire, 
the heat-conduction regime does not exceed 2 seconds.

Figure 5 gives analogous isolines for the vertically arranged wire. For clarity of representation, the scale of Y in Fig. 5 
is increased ten times compared to the scale of X. It is clear from the fi gures that the infl uence of free convection on the heat 
transfer begins much later than for the horizontal wire. In this case, to the heat-conduction regime there correspond isotherms 
in the form of symmetric elliptical curves. Such a regime on the vertical wire is observed for approximately as long as 7 s after 
the beginning of heating. Thereafter the elliptical curves are strongly deformed because of the infl uence of convection. On 
the wire surface, there is formed a boundary layer whose thickness increases with the wire length. Free convection becomes 
fully developed approximately within 10 s after the beginning of heating.

Quantitative data on the heat transfer on the wire are illustrated in Fig. 6a. The changes in the temperature ΔT = 
Tw – Tf, where Tw is the surface-average wire temperature and Tf is the initial temperature of the fl uid, on the wire are plotted 
versus time. For comparison with the calculation results, the plots also give the asymptotic solution (2) on which the hot-
wire method is based. As is clear from the plots, because of the rejection of nonlinear terms and the infl uence of the heat 
capacity of the wire itself, this asymptotic solution disagrees with a more exact numerical solution at the beginning of the 
process of heat conduction. This disagreement is observed for ~0.1 s after the beginning of heating; thereafter the numerical 
and asymptotic solutions virtually agree, and the ΔT = f(ln t) curves has a linear form. The calculated value of the time 
(0.1 s) of the beginning of the linear portion of the ΔT = f(ln t) curve is in good agreement with the estimates obtained from the 

formula from [8] τ > w w w

f2
r C ρ

λ δ
 ≈ 0.18 s, where Cw and ρw are the heat capacity and the density of the wire material, λf is the 

thermal conductivity of the fl uid, and δ is the permissible error in determining the thermal conductivity due to the infl uence 
of the heat capacity of the heater.

Fig. 3. Temperature distribution on the radius over (a) and under (b) the hot cylinder.
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The numerical and asymptotic solutions continue to be in agreement until a fairly intense free convective fl ow is 
formed around the wire. Depending on the orientation of the wire, this moment comes approximately within 2 s for the 
horizontal wire and 7 s for the vertical one. After this, the numerical and asymptotic solutions begin to strongly disagree. 
Thus, for our experimental parameters, the working range of the asymptotic solution used in the hot-wire method is from 0.1 
to 2.2 s for the horizontal wire and from 0.1 to 7.5 s for the vertical wire. A comparison of the numerical solutions for the 
horizontal and vertical orientations shows that the solutions in the heat-conduction regime are in complete agreement, as they 
must. Differences begin once free convection has been formed. The convection begins to infl uence the heat transfer much 
earlier for the horizontal wire. Therefore, for experiments, we selected the vertical arrangement of the wire.

As far as the estimates of the time of onset of free convection available in the literature are concerned, the data differ 
here. We were able to fi nd a few empirical correlations in the literature:
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Fig. 4. Isolines of temperature at different instants of time for the horizontal arrangement of the hot wire for 
q = 13 W/m: a) t = 1; b) 2, c) 3, and d) 4 s.
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where Ra is the Rayleigh number and L is the wire length. Computations from these formulas for the heat-fl ux density 
q = 13 W/m yield the following values of the time of onset of free convection: 5.8 s for formula (4), 2.1 s for (5), and 15.2 s 
for (6). It will be remembered that calculation at the same parameter for the vertical wire predicts a time of development of 
free convection of about 7.5 s, which is close to the estimates from formula (4).

Next we investigated the power of heat release on the wire. Figure 6b plots the temperature heads on the wire at a 
heat-fl ux density of 4.33 W/m (decreased three times). It can be noticed that the domain of existence of the heat-conduction 
regime has become much extended as far as time is concerned. For the horizontal arrangement of the wire, free convection is 
negligible compared to heat conduction for a period of to 3.5 s after the beginning of heating, and for the vertical arrangement, 
to 12 s (estimations from formula (4) yields a value of 12.3 s). This is much longer than for a heat-fl ux density of 13 W/m. 
However, at the same time, the heating of the wire surface has considerably decreased and, accordingly, the change in the 

Fig. 5. Isolines of temperature at different instants of time for the vertical arrangement of the hot wire for q 
= 13 W/m: a) t = 5; b) 8, and c) 14 s.
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electrical resistance due to the heating of the wire has decreased, too. The change in the wire′s electrical resistance is, in 
essence, the only instrumentally measurable quantity in the experiment. Therefore, the reduction in the heat-fl ux density 
tends to lower the sensitivity of the method. On this basis, we selected, during the experiments, values in the range from 12 to 
15 W/m as the optimum linear heat-fl ux densities.

Thus, by numerical modeling, we have fi nally determined all the parameters of the experimental setup: approximate 
dimensions of the wire, optimum values of the heat-fl ux density on it, and its orientation with respect to the gravity fi eld. 
We have determined ranges of applicability of the asymptotic solution used in the hot-wire method for determination of the 
thermal-conductivity coeffi cient of fl uids.

Description of the Experimental Setup and Its Testing. As has been noted above, the procedure of measurement of 
the thermal-conductivity coeffi cient is based on the nonstationary (transient) hot-wire method [6–10]. The Wheatstone bridge 
circuit for determination of the change in the electrical resistance of the hot wire is taken as the basis of the setup. The basic 
electric circuit of the setup is presented in Fig. 7. We used, in the experiment, a copper wire of length 80 mm and diameter 
75 μm. The wire was immersed in a glass vessel of diameter 5 cm containing 200 ml of the fl uid under study. The fl uid-fi lled 
vessel was heat-insulated using a foam.

The wire was one resistor of the measuring bridge Rw. Also, we used the resistors R1 = 2 kΩ and R3 = 1 Ω and the 
resistance box R2 using which the bridge is balanced. Initially, the bridge was balanced, and the output voltage on it did not 
exceed 10 μV. A low voltage of 0.1 V from a GWInstek GPC-3060D laboratory power supply was fed during a short period 
of time to balance the measuring system.

Therefore, we fed measuring voltage to the circuit and recorded the change in the voltage of disbalance of the bridge 
circuit with time. Measurements of the voltage were carried out using a GWInstek GDM-78261 precision voltmeter with a 
step of 10 ms, and measurements of the temperature of the fl uid under study, using Chromel-Copel thermocouples connected 
to a TPM138 meter.

The obtained data are processed according to the following formulas.
The initial resistance of the wire is found from the condition of balance of the bridge circuit: 1
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Fig. 6. Change in the temperature of the wire surface vs. time for the linear heat-fl ux density: a) q = 13 and 
b) 4.33 W/m.
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where Vm is the input voltage of the bridge and Vout is the voltage of the disbalanced bridge.
Taking into account the temperature dependence of the electrical resistance of the copper, we can determine the 

change in the wire temperature

w 2 w 1 w

w0 w0

1 .t tR R RT
R R
− Δ

Δ = =
α α

To determine the temperature coeffi cient of electrical resistance α, we performed in advance a special series of measurements 
of the resistance of the copper wire in use at different temperatures. It has been established by these measurements that α = 
0.000383 1/K.

The voltage drop on the wire is determined from the formula VRw = in w
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, where Lw is the wire length.

Finally, from the theory given above, the thermal-conductivity coeffi cient of the fl uid is determined as follows:
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Let us evaluate the relative error of measurement of the thermal-conductivity coeffi cient, which is made up of the 
errors of measurement of the heat-fl ux density q, the temperature coeffi cient of electrical resistance α, the initial resistance of 
the wire R0, and the slope ΔR ~ ln t — G:

2 22 2

w0
w0

.q R Gq R Gλ α
⎛ ⎞ ⎛ ⎞∂λ ∂λ ∂λ ∂λ⎛ ⎞ ⎛ ⎞δ = δ + δ + δ + δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂α ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

The relative error of measurement of the heat-fl ux density is in turn determined as
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where δVRw is the error of measurement of the voltage drop on the wire:
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Fig. 7. Electric circuit of the setup.
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δRwt is the error of measurement of the wire′s resistance:
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δLw ≈ 0.6% of the error of measurement of the wire length, and δRw0 is the error of measurement of the wire′s initial resistance:
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The error of predetermining α amounts to 1.2%. The computations show that the relative error of determination of the 
slope G by the least-squares method amounts to about 0.5%. The errors of determination of the remaining quantities are equal 
to inVδ  = 0.008%, outVδ  = 0.02%, δR3 = 0.41%, δR1 = 0.01%, and δR2 = 0.02%. Thus, the fi nal relative error of measurement 
of the thermal-conductivity coeffi cient of the fl uid δλ by this procedure amounts to about 3%.

To test the experimental procedure, we carried out a series of measurements on pure index liquids (water and ethylene 
glycol). Typical changes in the electrical resistance of the wire with time in its heating in water and ethylene glycol are given 
in Fig. 8. Using these data, we can obtain, from formula (7), the values of the thermal-conductivity coeffi cient of the liquids. 
The thermal-conductivity coeffi cient was measured fi ve times for each liquid. The fi nal values were obtained by averaging 
over these fi ve measurements. All the measurements were carried out at a room temperature of 25oC.

Fig. 8. Change in the electrical resistance of the wire in the process of its heating for a linear heat-fl ux 
density of 14 W/m.

TABLE 1. Comparison of the Measured Values of the Thermal-Conductivity Coeffi cient of Water at a Temperature of 25oC 
and the Experimental Data

Experiment number λm, W/(m·K) λref [19], W/(m·K) Deviation, %
1 0.610

0.607

0.5
2 0.608 0.2
3 0.619 2.0
4 0.612 0.8
5 0.616 1.4
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Tables 1 and 2 list the obtained results of measurements of the thermal-conductivity coeffi cient of water and ethylene 
glycol and compare them to the reference data. A fairly good agreement is seen to be obtained between the measured thermal-
conductivity coeffi cient and the literature data [19, 20]. The maximum disagreement amounts to 1.4% for water and to 3.1% 
for ethylene glycol, which is within the methodological error.

Measurement of the Thermal-Conductivity Coeffi cient of a Nanofl uid. Using this experimental procedure 
we measured the thermal-conductivity coeffi cient of a nanofl uid based on alumina nanoparticles. The carrier liquid was 
ethylene glycol. The volume concentration was varied from 0.5 to 2%. A standard two-step process was used to prepare the 
nanofl uid. On adding the necessary amount of a nanopowder to water, we placed the vessel with a nanofl uid in a UZDN-A 
ultrasonic disperser for half an hour to destroy conglomerates of nanoparticles. The alumina nanoparticles were purchased 
from Plazmoterm Company (Moscow). According to the data of an x-ray phase analysis, the specifi c surface of the powder 
was 30 m2/g, which corresponded to an average nanoparticle size of 50 nm. All the measurements were carried out at a room 
temperature of 25oC.

The time dependence of the change in the electrical resistance of the wire in its heating in the nanofl uid with different 
volume concentrations of the alumina particles is shown in Fig. 9. It is seen that the slope of the nanoparticle concentration to 

TABLE 2. Comparison of the Measured Values of the Thermal-Conductivity Coeffi cient of Ethylene Glycol at a Temperature 
of 25oC and the Experimental Data

Experiment number λm, W/(m·K) λref [20], W/(m·K) Deviation, %
1 0.260

0.254

2.3
2 0.261 2.7
3 0.251 1.2
4 0.259 1.9
5 0.262 3.1

Fig. 9. Electrical resistance of the wire in the process of its heating vs. concentration of nanoparticles in 
ethylene glycol at a linear heat-fl ux density of 14 W/m.

Fig. 10. Change in the measured thermal-conductivity coeffi cient vs. concentration of alumina nanoparticles 
in ethylene glycol at a temperature of 25oC.
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the time axis decreases. This is due to the growth in the thermal-conductivity coeffi cient of the medium with the concentration 
of the nanoparticles.

The measured effective thermal-conductivity coeffi cient is plotted versus the concentrations of the alumina 
nanoparticles in ethylene glycol in Fig. 10. The plot gives the values of the ratio of the thermal-conductivity coeffi cient 
of the nanofl uid to the thermal-conductivity coeffi cient of the basic liquid. Measurement results obtained by other authors 
[21–26] are given for comparison. As is seen from the plots, our measurements agree well with the results of most of the 
foreign experimental data. The disagreement of experimental thermal-conductivity data obtained by different authors refl ects, 
on the whole, the current status of research in the fi eld of heat transfer of nanofl uids: there is no reproducibility of results, 
and experiments often contradict one another, and this despite the fact that an alumina-based nanofl uid is the most studied 
nanofl uid. The situation is much worse for other nanofl uids.

For comparison with experiments, the plots also give the thermal-conductivity coeffi cient values obtained from the 
Maxwell correlation [27]

( )
( )

p f p f

f p f p f

2 2
,

2

λ + λ + ϕ λ − λλ
=

λ λ + λ − ϕ λ − λ

where λp and λf are the thermal-conductivity coeffi cients of the particles′ material and of the basic liquid and φ is the volume 
concentration of the nanoparticles. This formula is widely used to determine the thermal-conductivity coeffi cient of a sus-
pension of solid particles in liquids which are nanofl uids. As is seen, for a nanofl uid based on alumina and ethylene glycol, 
experimental values of the thermal-conductivity coeffi cient in the investigated range of concentration are satisfactorily de-
scribed by the Maxwell correlation. Probably, this is due to the fact that relatively large (50 nm) alumina particles were used 
for preparation of the nanofl uid.

Conclusions. As a result of the work carried out, the authors have created and tested an experimental setup making 
it possible to determine, with an acceptable degree of accuracy, the values of the thermal-conductivity coeffi cient of fl uid 
media on the basis of the hot-wire method. A two-dimensional mathematical model of heat transfer with allowance for free 
convection has been constructed to describe processes occurring on the wire in its unsteady heating. Using this model we have 
fi nally determined the parameters of the experimental setup and the ranges of correct applicability of the asymptotic solution 
used in the hot-wire method for determination of the thermal-conductivity coeffi cient of fl uids. The experimental procedure 
was tested during the measurement of the thermal-conductivity coeffi cient of water and ethylene glycol. The disagreement 
between the measurements and the reference data did not exceed ~3%. The authors have shown the applicability of the 
procedure to measurement of the thermal conductivity of nanofl uids: they measured the thermal conductivity of a nanofl uid 
based on alumina-oxide nanoparticles. The carrier liquid was ethylene glycol. The measurement results have been compared 
to the data of other authors and the Maxwell correlation. Good agreement of the results has been obtained. Noteworthy is 
another important circumstance. In analyzing experimental results obtained by the hot-wire method, some researchers voice 
concerns that nanoparticles are deposited on the wire surface in the process of measurements of the thermal-conductivity 
coeffi cient of a nanofl uid. This results in the distortion of the measurements with time. These concerns were refuted by 
us experimentally. After multiple measurements in nanofl uids with different concentrations, we carried out measurements 
again on pure fl uids. No deviations of the measured thermal-conductivity coeffi cient from the values obtained earlier were 
established. Thus, we will further use this procedure for systematic investigations of the thermal-conductivity coeffi cient of 
various nanofl uids.

This work was carried out with partial fi nancial support from the Russian Scientifi c Foundation (agreement 
No. 14-19-00312).

NOTATION

a, thermal-diffusivity coeffi cient, m2/s; Cp and Cf, specifi c heats of the particles′ material and of the basic fl uid re-
spectively, J/(kg·K); g, free-fall acceleration, m/s2; G, angle of slope of ΔR ~ ln t; Gr, Grashof number; H, angle of slope of ΔT 
~ ln t; h, enthalpy, J; L, length, m; p, pressure, Pa; q, heat-fl ux density per unit length, W/m; R, resistance, Ω; Rw0, resistance 
of the wire at the balance of the bridge, Ω; Rwt, resistance of the wire at the instant of time t, Ω; ΔR, change in the resistance, 
Ω; R1, R2, and R3, resistances of the high-impedance resistor, of the resistance box, and of the low-impedance resistor in 
the Wheatstone bridge respectively, Ω; r, radius, m; rw, radius of the wire, m; T, temperature, oC; T0, room temperature, oC; 
T, viscous-stress tensor; ΔT, change in the wire temperature, oC; Tf, initial temperature of the fl uid, oC; Tw, surface-average 
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temperature of the wire, oC; t, time, s; v, velocity vector; Vin, voltage on the wire, V; Vout, voltage of the disbalanced bridge, 
W; VRw, voltage drop on the wire, V; α, coeffi cient of temperature resistance, 1/oC; β, coeffi cient of thermal expansion of 
the fl uid, 1/m3; λ, thermal-conductivity coeffi cient, W/(m·K); λp and λf, thermal-conductivity coeffi cients of the particles′ 
material and the basic fl uid respectively, W/(m·K); ν, kinematic viscosity, m2/s; ρ, density of the fl uid, kg/m3; ρ0, density of 
the fl uid at room temperature, kg/m3; φ, volume concentration of nanoparticles, %.
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