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PROPAGATION OF THE RAYLEIGH WAVE IN AN INITIALLY STRESSED
TRANSVERSELY ISOTROPIC DUAL-PHASE-LAG
MAGNETOTHERMOELASTIC HALF-SPACE

B. Singh,a S. Kumari,b and J. Singhb UDC 536.21

The basic equations for the wave on the surface of an initially stressed transversely isotropic dual-phase-lag 
thermoelastic body subjected to the action of a magnetic fi eld were solved. Particular solutions were applied to 
the thermally insulated free surface of a half-space to obtain the frequency equation for the Rayleigh wave. This 
equation was approximated for calculating the numerical values of the dimensionless velocity of the Rayleigh wave. 
The Rayleigh-wave velocity was represented graphically for the cases of coupled, Lord–Shulman, and dual-phase-
lag thermoelasticities. The infl uence of the dual-phase-lag and the initial stress of a body, the value of the magnetic 
fi eld, and the frequency of the Rayleigh wave on the velocity of this wave were determined. 

Keywords: dual-phase-lag thermoelasticity, Lord–Shulman theory, Rayleigh wave, frequency equation. 

Introduction. The classical theory of dynamic coupled thermoelasticity was developed by M. A. Biot [1]. 
H. Lord and Y. Shulman [2], as well as A. E. Green and K. A. Lindsay [3], generalized this theory to include hyperbolic fi eld 
equations defi ning heat as a wave. Unlike the Biot theory, the generalized thermoelasticity theory predicts a fi nite velocity 
of propagation of heat in a medium. J. Ignaczak and M. Ostoja-Starzewski investigated this phenomenon in detail [4]. R. 
B. Hetnarski and J. Ignaczak [5] considered generalized thermoelasticity effects. The effect of wave propagation is used 
in engineering as well as in geophysics, mineral and oil exploration, seismology, and other fi elds. Various problems on 
the plane-wave propagation, in the theory of coupled thermoelasticity and the generalized thermoelasticity theory were 
considered by H. Deresiewicz [6], A. N. Sinha and S. B. Sinha [7], M. I. A. Othman and Y. Song [8], B. Singh [9, 10], 
and many other authors. D. Y. Tzou [11–13] developed a thermoelastic model of dual-phase lag (DPL), in which the 
interactions between phonons and electrons on the microscopic level are considered as retarding sources causing a delayed 
response on the macroscopic level. The DPL model is a modifi cation of the classical thermoelastic model. In it, the Fourier 
law is replaced by the modifi ed Fourier law with two different time translations: the phase lags of a heat fl ow and of the 
temperature gradient. This model is used for investigating the microstructural effect in the process of heat transfer. Recently, 
A. E. Abouelregal [14] investigated, using the dual-phase-lag model, the propagation of the Rayleigh wave on the surface of 
an isotropic thermoelastic solid half-space.

The propagation of a wave on the surface of an initially stressed anisotropic, thermoelastic DPL half-space subjected 
to the action of a magnetic fi eld has not been investigated as yet. In the present work, the anisotropic theory of DPL 
thermoelasticity was used to investigate the propagation of a Rayleigh wave in a stressed transversely anisotropic, magnetic, 
thermoelastic solid half-space. The frequency equations for the Rayliegh waves in a thermally insulated space and in an 
isothermal one have been derived. A numerical example is considered to demonstrate the dependence of the velocity of 
propagation of the Rayleigh wave in a half-space on the frequency of this wave, the value of the magnetic fi eld acting on the 
half-space, and its initial stress in the cases of coupled, Lord–Shulman, and dual-phase-lag thermoelasticities.

Basic Equations. The basic equations for a pre-stressed, anisotropic, thermoelastic DPL body subjected to the action 
of a magnetic fi eld H are as follows [11–13, 15]:

the equation of motion

 , ,i ji j iu Fρ = σ + ρ  (1)
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the strain–stress–temperature relation

 ,ij ijkl kl ijd e Tσ = − β  (2)

the strain-displacement relation

 , ,
1 ( ),
2ij i j j ie u u= +  (3)

the energy equation

 , 0 ,i iq T S− = ρ  (4)

the modifi ed Fourier law

 ( ) ,iij j j i qK T T q qθ− + τ = + τ  (5)

the entropy–strain–temperature relation

 
0

,E
ij ij

cS T e
T

ρ
ρ = + β  (6)

the basic equations for the Maxwell electromagnetic fi eld

 e, , 0, 0 ,
t

∂
∇ ⋅ = ∇ ⋅ = −μ ∇ ⋅ = ∇ ⋅ =

∂
hh j E h E  (7)

the equation for the Maxwell stress

 e[ ( ) ] .ij i j j i ijH h H hσ = μ + − δH h  (8)

The DPL theory of thermoelasticity reduces to the coupled thermoelasticity theory in the case where 0,θτ =  0qτ = , 
and to the Lord–Shulman generalized thermoelasticity theory when qτ  is replaced by θτ  ( 0).θτ =  Let us assume that 

0= +H H h  and the perturbed magnetic fi eld h is so small that the product of h  by u  and their derivatives can be 
disregarded in the linearization of the fi eld equations. Using Eqs. (1) and (2) and disregarding the forces acting on the body, 
we obtain

 ( ) ( ) ,i ijkl kl ij j iu d eρ = − β Θ + J B  (9)

where .ijkl ijkl kl ijd c P= + δ  Substituting Eqs. (5) and (6) into Eq. (4) and disregarding the heat sources, we obtain

 ( )01 1 ,ij ij q E ij ijK c T e
t tθ

∂ ∂⎛ ⎞ ⎛ ⎞+ τ Θ = + τ ρ Θ + β⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (10)

where 0T  is the reference uniform temperature of the body, determined from the ratio 
0

1T
T

<< .

A transversely isotropic homogenous isotropic infi nite medium with an initially uniform temperature distribution is considered 
in the Cartesian coordinates system (x, y, z). The origin of the coordinate system is positioned on a plane surface, and the z axis 
is normal to this surface ( 0).z ≥  It is assumed that the surface z = 0 is free of stress and thermally insulated or isothermal. 
We shall restrict our consideration to the case where the medium is stressed along the x–z plane with a displacement vector 

1 3( , 0, )u u=u  and a constant-magnetic-fi eld vector 0 0(0, , 0).H=H  Using Eqs. (9) and (10), we obtain the following 
equations of motion and heat conduction: 

 
2 2

2 1 3
11 1,11 13 44 3,13 44 1,33 1 1 e 0 2( ) ,i

u ud u d d u d u u H
x zx

⎡ ⎤∂ ∂
+ + + − β Θ = ρ − μ +⎢ ⎥

∂ ∂∂⎢ ⎥⎣ ⎦
 (11)
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2 2

2 1 3
44 3,11 13 44 1,13 33 3,33 3 3 3 e 0 2( ) ,u ud u d d u d u u H

x z z

⎡ ⎤∂ ∂
+ + + − β Θ = ρ − μ +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
 (12)

 [ ]1 11 3 33 1 0 1,1 3 0 3, 31 1 ,q EK K c T u T u
t tθ

∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ τ Θ + Θ = + τ ρ Θ + β + β⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠
 (13)

where

11 11 11 13 13 44 44 11 33 33 33

1 11 3 33 1 11 3 33

, , , ,

, , , .

d c P d c d c P d c P

K K K K

= + = = + = +

= = β = β β = β

Solutions for Surface Waves. The functions 1 3, ,u u  and Q for thermoelastic waves propagating on the surface of a 
half-space in the x direction are determined from the relation 

 1 3 1 3{ , , } { ( ), ( ), ( )} exp [ ( )] .u u z z z k x ctΘ = φ φ ψ −ι  (14)

Substituting Eq. (14) into Eqs. (11)–(13), we obtain the following homogenous system of three equations in terms of 1 3, ,φ φ  
and ψ :

 2 2
1 1 1 2 1 3[ ( ) ] ( 1) 0 ,k a b D k a b D kζ − − + φ + ι + + φ − ι ψ =  (15)

 
2 2

2 1 1 3 1 3( 1) [ ( 1) ( ) ] 0 ,k a b D k a b D D+ + φ + ζ − + + φ − β ψ =ι  (16)

 3 2 2 2
1 3 1 3[ ( ) ] 0 ,k k D k K K D∗ ∗εζφ + βζε φ + ζ − + ψ =ι  (17)

where 2 2 2
1 0 e 0

12 2
44 441

, , ,
E

T c Hb
d dc c

β ρ μ
ε = ζ = =

ρ

*11 13 33 1 3
1 2 3 1 3

44 44 44 44 44
, , , , , .

1

q

E E

i
d d d K Ka a a K K
d d d i c d c d

∗ ∗
∗ ∗

θ

τ +
ω= = = τ = = =

− ωτ τ τ

For nontrivial solution of Eqs. (15)–(17), it is necessary that

 6 4 2 0 ,D AD BD C− + − =  (18)

where
2 2

2 1 2 1
1 1 *

3 1 3 13 3 1 3

( 1) ( ) ( 1)( ) ,
( ) ( ) ( )

K a bA k a b
a b a bK a b K

∗

∗

⎡ ⎤ζ − ζ − + + β εζ⎢ ⎥= − ζ − − + + + +
+ + +⎢ ⎥⎣ ⎦

 

2

4 1 1 1 1 1 1

3 1 3 3 1 3

2
2 1 1 1 1 2 1 2 1

3 1 3 3 1 3 3 1 3 3 1 3 3

( )( 1) ( )( ) ( 1)( )
( )

( 1) ( ) ( ) ( 1) 1) ,
( ) ( ) ( ) ( )

* *

* *

*

* * * * *

a b a b K KB k
a b K (a b )K

a b K a b a b (a b
a b K a b K a b K a b K K

⎡ ζ − − ζ − ζ − − ζ − ζ − ζ −
= + +⎢

+ +⎣

⎤+ + ζ − ζ − − β εζ εζ + + β εζ + + β εζ ⎥+ + + + −
⎥+ + + + ⎦
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6 1 1 1

3 1 3 3 1 3

( )( 1)( ) ( 1) .
( ) ( )

a b KC k
a b K a b K

∗

∗ ∗

⎡ ⎤ζ − − ζ − ζ − εζ ζ −
= − −⎢ ⎥

+ +⎢ ⎥⎣ ⎦

On the above requirement, the most general solutions of Eqs. (15)–(17) are as follows:

 
3 3

( )
1

1 1
( ) ,i im z m z k x ct

i i
i i

z A e A e e− ∗ ι −

= =

⎡ ⎤
⎢ ⎥φ = +
⎢ ⎥⎣ ⎦
∑ ∑  (19)

 
3 3

( )
3

1 1
( ) ,i im z m z k x ct

i i
i i

z B e B e e− ∗ −

= =

⎡ ⎤
⎢ ⎥φ = +
⎢ ⎥⎣ ⎦
∑ ∑ ι  (20)

 
3 3

( )

1 1
( ) ,i im z m z k x ct

i i
i i

z C e C e e− ∗ −

= =

⎡ ⎤
⎢ ⎥ψ = +
⎢ ⎥⎣ ⎦
∑ ∑ ι  (21)

where , , , , , andi i i i i iA B C A B C∗ ∗ ∗  are constants and im  are the roots of the equation

 6 4 2 0 .m Am Bm C− + − =  (22)

Equation (22) is cubic with respect to 2,m  and its roots 2 2
1 2, ,m m  and 2

3m  are related as

 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 1 2 2 3 3 1 1 2 3, , .m m m A m m m m m m B m m m C+ + = + + = =  (23)

In general, the roots ( 1, 2, 3)im i =  are complex; therefore, for the surface waves, it may be suggested without loss of 
generality that Re( ) 0.im >  We will use only the form of im  that satisfi es the following radiation condition: 

 1 3( ), ( ), ( ) 0 as .z z z zφ φ ψ → → ∞  (24)

On this condition, relations (19)–(21) reduce to the following solutions for the half-space 0:z >

 
3

( )
1

1
( ) ,im z k x ct

i
i

z A e e− −

=
φ = ∑ ι  (25)

 
3

( )
3

1
( ) ,im z k x ct

i i
i

z F A e e− −

=
φ = ∑ ι  (26)

 
3

( )

1
( ) ,im z k x ct

i i
i

z F A e e∗ − −

=
ψ = ∑ ι  (27)

where, 

 
( )

( )

2

1 1 2 12

2 2

2 1 3 12 2

1
, 1, 2, 3 ;

1 1 ( )

i

i
i

i i

ma b a b
kmF i

k m ma b a b
k k

⎡ ⎤⎛ ⎞
β ζ − − + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= − =⎢ ⎥⎧ ⎫⎪ ⎪⎢ ⎥β + + − ζ − + +⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

ι  (28)
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2

1 1 2 12

21 3
2 1 244

( ) ( 1)
, 1, 2, 3 .

( 1) 1

i

i
i i

ma b a bk kF i
K K ma bd k

∗
∗ ∗

⎡ ⎤
⎢ ⎥β ζ − − + β + + +

ε ⎢ ⎥= − =⎢ ⎥β ⎛ ⎞⎢ ⎥βε + + + − +⎜ ⎟⎜ ⎟⎢ ⎥ζ ζ⎝ ⎠⎣ ⎦

ι  (29)

Derivation of the Frequency Equation. We set the following mechanical and thermal conditions at the stressed free 
surface of the body being investigated 0:z =

for the normal component of the stress

 0 ,zz zzσ + σ =  (30)

for the tangential component of the stress,

  0,zx zxσ + σ =  (31)

for the normal component of the heat fl ow or the temperature potential

 0 ,h
z

∂Θ
+ Θ =

∂
 (32)

where 0h →  corresponds to the thermally insulated surface, h → ∞  corresponds to the isothermal surface, and

 

33 3,3 13 1,1 3 44 1,3 3,1

2
e 0 1,1 3,3

, ( ) ,

( ), 0 .

zz zx

zz zx

d u d u d u u

H u u

σ = + − β Θ σ = +

σ = −μ + σ =

 (33)

The solutions (25)–(27) satisfy the boundary conditions (30)– (32). In the fi nal analysis we obtain the following 
homogeneous system of three equations in terms of 1 2, ,A A  and 3:A

 ( )
3

33 13 3
1

0 ,i i i i
i

d m F kd F A∗ ∗ ∗

=
− + β =∑ ι  (34)

 ( )
3

1
0 ,i i i

i
m kF A

=
− =∑ ι  (35) 

 
3

1
( ) 0 ,i i i

i
F m h A∗

=
− =∑  (36)

where 2
33 33 e 0d d H∗ = − μ  and 2

13 13 e 0 .d d H∗ = − μ

The nontrivial solution of Eqs. (34)–(36) yield

 1 1 2 2 3 3( ) ( ) ( ) 0 ,m h X m h X m h X− + − + − =  (37)
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where

*
1 1 33 2 2 13 2 2 3 3 33 3 3 13 3 3 2 2

2 2 33 3 3 13 3 3 1 1 33 1 1 13 3 1 3 3

3 3 33 1 1 13 3 1 2 2 33 2 2

( )( ) ( )( ) ,

( )( ) ( )( ) ,

( )( ) (

X F d m F kd F m kF d m F kd F m kF

X F d m F kd F m kF d m F kd F m kF

X F d m F kd F m kF d m F

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

⎡ ⎤= − + β − − − + β −⎣ ⎦

⎡ ⎤= − + β − − − + β −⎣ ⎦

= − + β − −

ι ι ι ι

ι ι ι ι

ι ι 13 3 2 1 1)( ) .kd F m kF∗ ∗⎡ ⎤− + β −⎣ ⎦ι ι

Equation (37) is the required frequency equation for the Rayleigh wave in a stressed transversely isotropic, thermoelastic 
DPL half-space subjected to the action of a magnetic fi eld.

Particular Cases. Thermally insulated surface. For a thermally insulated surface, we put 0h →  in Eq. (37) and 
obtain the following frequency equation: 

 1 1 2 2 3 3 0 .m X m X m X+ + =  (38)

Isothermal surface. For an isothermal surface, we put h → ∞  in Eq. (37). In this case, Eq. (37) reduces to the 
relation 

 1 2 3 0 .X X X+ + =  (39)

Generalized thermoelasticity. In the case of Lord–Shulman generalized thermoelasticity, θτ  reduces to 0 and qτ  is 
considered only.

Coupled thermoelasticity. In the case of coupled thermoelasticity, 0.q θτ = τ =
Uncoupled thermoelasticity. In the case of uncoupled thermoelasticity, 0q θτ = τ →  and ε  = 0.
Isotropic elasticity. In the case of isotropic elasticity, 11 33 00, 0,P P H= = =  11 33 2 ,c c= = λ + μ  

13 44c , ,c= λ = μ  1 3 ,β = β = β  1 3and .K K K= =  In this case, Eq. (37) takes the form

 1 1 2 2 3 3( ) ( ) ( ) 0 ,m h X m h X m h X∗ ∗ ∗ ∗ ∗ ∗− + − + − =  (40)

where im∗  is obtained from Eq. (23) and iX ∗  is determined by .iX  Then, if we put 0, 0, and 0Kβ = = ε =  in Eq. (40), 
it is transformed into the relation

 
22 2 2

2 2 2
2 1 2

2 4 1 1 ,c c c
c c c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (41)

representing the velocity equation for the Rayleigh wave in an isotropic, elastic solid half-space. 
Numerical Results and Discussion. For the majority of materials, ε  is small at a normal temperature. For 1,ε <<  

Eq. (23) has the following approximate roots: 

 
2 2 2
1 11 e 0

1 12
44

( ) ,m d c Ha b
dk

− ρ + μ
≈ − ζ − − =  (42)

 
2 2
2 44
2 2

3 1 33 e 0

( 1) ,m d c
a bk d H
ζ − − ρ

≈ − =
+ + μ

 (43) 

 
2 2
3 1 1
2

33

( ) .Em K K c c T
Kk K

∗ ∗

∗
ζ − − ρ

≈ − =  (44)
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We numerically calculated the nondimensional velocity of propagation of the Rayleigh wave only on the thermally 
insulated surface of a half-space and approximated Eq. (38) with the use of Eqs. (42)–(44). The velocity of propagation of the 
Rayleigh wave on this surface was determined for defi nite ranges of change in its initial stress and in the value of the magnetic 
fi eld acting on the half-space. Following P. Chadwick and L. T. C. Seet ([16], we used the physical constants of a single zinc 
crystal for simulation of the half-space: c11 = 1.628·1011 N·m–2, c33 = 1.628 N·m–2, c13 = 0.508·1011 N·m–2,  c44 = 0.385·1011 
N·m–2, β1 = 5.75·106 N·m–2·deg–1, β3 = 5.17·106 N·m–2·deg–1, K1 = 1.24·102 W·m–1·deg–1, K3 = 1.34·102 W·m–1·deg–1, Cv = 
3.9·102 J·kg–1·deg–1, ρ = 7.14·103 kg·m–3, T0 = 296 K, τq = 0.005 s, τθ = 0.0005 s, P11 = P33 = P.

In the DPL case, the dimensionless velocity of propagation of the Rayleigh wave (ρc/d44) was determined in the 
frequency range 4 20Hz Hz≤ ω ≤  at P = 0.5 Pa and H = 0, 0.2, and 0.4 Oe. Comparison of the solid curve H = 0, the dashed 
curve H = 0.2 , and the dashed curve H = 0.4 , presented in Fig. 1, shows the dependence of the frequency of the velocity 
of the Rayleigh wave on its frequency at different values of the magnetic fi eld. It is seen that, at H = 0, the dimensionless 
velocity of the Rayleigh wave increases sharply with increase in its frequency. However, at higher magnetic-fi eld strengths, 
this velocity increases more slowly. 

The dimensionless velocity of propagation of the Rayleigh wave 2
44( / )c dρ  was also calculated in the range of 

change in the initial-stress parameter 0 ≤ P ≤ 0.2 Pa at ω = 5 Hz and H = 0, 0.1, and 0.2 Oe. Comparison of the solid and 
dashed curves in Fig. 2 shows the effect of the initial stress of the body being investigated on the velocity of the Rayleigh 
wave in it at different values of the magnetic fi eld. For all the values of H, the dimensionless velocity of this wave decreased 
with increase in P in the indicated range of its values.

The dimensionless velocity of the Rayleigh wave 2
44( / )c dρ  was calculated for the DPL, Lord–Shulman (LS), and 

coupled-thermoelasticity (CT) cases in the frequency range 4 Hz ≤ ω ≤ 20 Hz at P = 0.5 Pa and H = 0.4. In each case, the 
dimensionless velocity of the Rayleigh wave increased with increase in its frequency. Comparison of the solid and dashed 

Fig. 1. Dependence of the dimensionless velocity of the Rayleigh wave on its frequency 
in the DPL case at P = 0.5 Pa.

Fig. 2. Dependence of the dimensionless velocity of the Rayleigh wave on the initial 
stress of the body P in the DPL case at w = 5 Hz. 
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curves in Fig. 3 shows the effect of the dual-phase-lag on the dimensionless velocity of the Rayleigh wave. It is seen that this 
effect is enhanced with increase in the Rayleigh-wave frequency. 

Conclusions. As a result of our investigations, we determined the infl uence of the dual- phase-lag and the initial 
stress of a transversely isotropic magnetothermoelastic body as well as the frequency of the Rayleigh wave on its surface 
and the value of the magnetic fi eld acting on the body on the dimensionless velocity of propagation of the Rayleigh wave 
in it. The study of the propagation of such a wave in a pre-stressed thermoviscoelastic porous medium with account for its 
microstructure and temperature provides vital information useful for seismologists-experimenters in correcting their estimates 
of earthquakes and for many other applications because pre-stressed materials are used in geophysics, automatics, in the oil, 
aerospace, and military industries, in the study of biological tissues (lung, tendon, etc.) representing nonlinear pre-stressed 
viscoelastic composites, and for other purposes. 

NOTATION

e ,= μB H  magnetic induction vector; ,Ec  specifi c heat at a constant strain; ,ijklc  elasticity tensor; ,ije  components of the 
strain tensor; ( ) ,i iF = J B  components of the vector of the electromagnetic force directed to the body; H, magnetic fi eld; 0,H  vector 
of the constant magnetic fi eld; h, vector of the disturbed magnetic fi eld; j, density vector of the electric current; Kij, components of 
the thermal conductivity tensor; P, initial stress; Pij, components of the initial stress; ,iq  components of the heat conduction vector; 
S, entropy per unit mass; ,T  absolute temperature of the body; ,iu  components of the displacement vector; ,ijβ  thermal-expansion 
coeffi cients; ,klδ  Kronecker delta; 0,T TΘ = −  small temperature increment; e ,μ  magnetic permeability; ,ρ  mass density;

,ijσ  components of the stress tensor; ,qτ  phase-lag of heat fl ux; ,θτ  phase-lag of the temperature gradient (0 );qθ≤ τ ≤ τ  ω, 
frequency of the Rayleigh wave. Subscripts: e, electromagnetic.
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