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HEAT EXCHANGE BETWEEN A LIQUID FLOWING IN A TUBE 
AND AN EXTERNAL FLOW AROUND IT WITH INTENSE STIRRING

A. I. Moshinskii UDC 66.040.2:533.6.011.6

A mathematical model of heat exchange between a tube (a coil) with a liquid fl owing inside it and an external fl ow 
around it is considered. Limiting equations of the process with intense stirring are derived. Some solutions of the 
proposed equations are obtained that can be used in modeling the processes occurring in heat exchangers.
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Introduction. It is usually assumed [1, 2] that in double-tube type heat exchangers there occurs an ideal displacement 
of a moving heat-transfer agent along the longitudinal coordinate (along the heat exchanger). However, if a heat exchanger 
contains a vessel where a heat-transfer agent is stirred intensely (for example, by means of a stirrer) and in this vessel there is 
a tube (a coil) in which a second heat-transfer agent fl ows, then, despite a certain similarity of the situations, one has to correct 
the theory. In principle, a unifi ed approach to the description of the processes occurring in the vessel-coil apparatus and in a 
double-tube type heat exchanger is possible if one assumes that there is intensive stirring along the longitudinal coordinate 
in the intertube space.

In the present work, basic equations are derived for describing the operation of a double-tube type heat exchanger 
with intense longitudinal stirring in the intertube space. These equations are also suitable for the analysis of heat transfer in 
a vessel-coil apparatus. The selected technique for the derivation of these equations was attributable to the simpler analysis 
in the one-dimensional (with respect to coordinate) case. The direct derivation of corresponding equations in a vessel-coil 
apparatus requires an analysis of three-dimensional (with respect to coordinates) equations, which leads to the necessity of 
using a more complex mathematical technique. This does not entail fundamental diffi culties, but calculations become more 
complicated. An example of this kind of three-dimensional analysis in a mathematically similar problem (an analogous 
algorithm of investigation) was considered in [3].

Formulation of the Problem. It should be noted that the following standard assumptions [1, 2] were made in our 
model: 1) one of the liquids fl ows inside a straight tube with another liquid fl owing around it; 2) the liquid fl ow is considered 
as unidirectional (occurring along the x axis); 3) the stirring is full and is arranged in the direction perpendicular to the 
direction of fl ow motion, and therefore the velocity and temperature in any plane perpendicular to the x axis is averaged; 
4) the stirring of the heat-transfer agent and heat transfer to the tube wall in the direction of the motion of media is not 
accounted for in the in-tube space but is taken into account in the intertube space; 5) the specifi c heats and densities of the 
liquid and wall in the region of the temperatures considered are taken to be constant; 6) the heat transfer coeffi cients are 
regarded as constant over the entire heat-exchanger surface; 7) heat losses into the environment are neglected; 8) the cross 
section and shape of the fl ow in the tube are taken to be invariable.

In view of the foregoing, the equation of heat transfer in the in-tube space is taken in its traditional form [2, 4]:

 
( )T T T T T .T TS C G C KP T

t x
∂ ∂

ρ + = θ −
∂ ∂  

 (1)

At the same time, in the intertube space the longitudinal stirring is taken into account:
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  (2)
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The quantities G, C, S, and ρ have the subscripts T or θ depending on whether they relate to the in-tube or intertube space. We 
assume that the thickness of the tube wall can be neglected just as its infl uence on the process of heat transfer (the equation 
of heat conduction in the wall is not used). Supplementary conditions for Eq. (1) have the form

 ( ) ( )0 0 0 0, .x x t tT T t T T x= == =   (3)

They correspond to the assignment of temperature at the inlet to the in-tube space of the heat-exchanger and of the initial 
distribution of temperature in it. Supplementary conditions for Eq. (2) are

 
( ) ( )0 0 +

0
, , 0 ,t

x x L
x S G C t

x x= θ θ θ
= =

∂θ ∂θ
θ = θ λ = θ − θ =⎡ ⎤⎣ ⎦∂ ∂

  (4)

where the second condition represents the energy balance at the inlet into the intertube space of the heat exchanger (θ+(t) is 
the temperature of the incoming fl ow), and the third condition represents the traditional Danckwerts condition.

Simplifi cation of Problem (1)–(4) in the Case of Intense Stirring. Of main interest in the present work is the 
limiting case of intense stirring since it is this case that is implemented (or is desired to be implemented) in vessel-coil 
apparatuses. For asymptotic consideration of the problem, it is expedient to write it in dimensionless coordinates. The 
previous experience of derivation of the equations for the regime of ideal stirring [5–7] and a further analysis of the problem 
prompt the introduction of the following dimensionless variables and similarity parameters:

 

2
T T

T T T
, , , , Pe , , , x KPt KPL KPL LG C S KPLz A B W S L

L S C G C G C S C G W
θ θ

θ
θ θ θ θ θ θ θ θ

ρ
= τ = = = = ε = =

ρ λ ρ
  (5)

where W determines the volume of the intertube space. In the variables of Eq. (5) Eqs. (1) and (2) are written as

 
( ) ,T T B T

z
∂ ∂

ε + = θ −
∂τ ∂

 (6)

 ( )
2

2Pe .A A T
z z

∂θ ∂θ ∂ θ⎡ ⎤+ + θ − =⎢ ⎥∂τ ∂ ∂⎣ ⎦
 (7)

The regime of intense (ideal) stirring is realized as a limiting variant of problem (6), (7) with corresponding supplementary 
conditions for Pe → 0 [5–7]. To carry out a limiting analysis of Eq. (7), we also write out the dimensionless supplementary 
conditions for it:

 
( )

0 1
Pe , 0 .

z zz z+
= =

∂θ ∂θ
= θ − θ =

∂ ∂
  (8)

The initial conditions for Eqs. (6) and (7) retain their form also after the substitution of variables with dimensionless τ and z.
We will seek the solution of problem (6)–(8), (3) subject to initial condition (4) for the function θ in the form of the 

perturbation method series [8, 9]:

 
2 2

0 1 2 0 1 2 Pe  Pe ,  Pe  Pe . g g g T G G Gθ = + + + … = + + + …   (9)

Here we limit ourselves to the basic approximation g0, G0. In such a case an analysis of Eq. (7) is actually suffi cient. 
Substituting expansion (9) into Eqs. (7) and (8), and grouping terms of the same order in the Pe number, we obtain the 
following problem in the basic approximation:

2 2
0 0 0;1/ 0 ; / | 0 ,zg z g z =∂ ∂ = ∂ ∂ =

whence we fi nd that the function g0 depends only on τ. We use this fact in the problem of a fi rst approximation in the Pe 
number:
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After integrating Eq. (10) with respect to z over (0, 1) and taking the boundary conditions into account, we obtain the 
following expression:

 

0 0
0 0 ,dg gg G

d A
+θ −

+ − =
τ

  (11)

where the angular brackets designate the average value of some quantity:

 
( )

1

0

, ... .f f z dz= ∫   (12)

In this equation, certain parameters can be put in lieu of the three periods. If required (insuffi ciently intense stirring, or a not 
very small Pe as in the present case), correction equations for the basic approximation can be obtained, i.e., equations for the 
functions g1 and G1, etc., in expansion (9) by the method described in [3, 5–7].

If the function g0 (9) depends only on time, the question remains open as to how one should use the initial condition 
(4) present in the initial formulation of the problem. The thing is that the time scale ρθSθCθ/KP selected in (5) is large enough. 
It cannot be used for describing the initial stage of the process, i.e., the specifi c features of stirring within the framework of 
the diffusional model (7). The problem turns out to be singularly perturbed for Pe → 0 [8, 9], and for its investigation it is 
necessary to construct another supplementing expansion (9) with a smaller (than in (5)), time scale. It is interesting to note 
that traditionally (for example, in [1]) the equation of type (11) are called the equation of the model of ideal stirring: they do 
not describe large time scale, but intense, stirring.

Let us introduce the "compressed" time ζ = τ/Pe and substitute it into Eq. (7). Next, instead of (9) we determine the 
"internal" expansion:

 
2

0 1 2Pe Pe ...g g gθ = + + +   (13)

for Eq. (7), designing the terms of the internal expansion by overbars. In the basic internal expansion, realizable at Pe → 0, 
in the "internal" equation we obtain the problem
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z
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∂ζ ∂∂
  (14)

The solution of (14) can be easily found by the standard methods of mathematical physics, for example, with the aid of 
the Fourier method [10]. It is just problem (14) that describes the details of stirring, i.e., the reduction of the solution to a 
uniformly distributed temperature over the vessel′ space within the framework of the adopted diffusional model.

For the purposes of this work, i.e., the matching of expansion (13) with the solution of the external problem, which 
is of basic interest for practice, it will be suffi cient to determine the average value of the function 0g . Applying the averaging 
procedure (12) to Eq. (14) and taking into account the supplementary conditions, we have

 
( ) ( )

0
0 00 , const .

d g
A g z

d
= ⇒ = ζ = θ

ζ
  (15)

According to the principle of limiting matching in the case of its applicability [8, 9], the following limiting equality must hold 
subject to (15):

 
( ) ( ) ( )0 0 0 0 0

0 0
0 lim lim lim .g g g g

τ→ τ→ ζ→∞
= τ = τ = = θ   (16)

Relation (16) is actually the initial condition for Eq. (11). The fact that, as a result, the initial condition for the "external" 
problem has been derived simply by averaging the initial condition agrees naturally with the intuitive viewpoint. The 
prediction of an analog of condition (16) for the highest approximations of expansion (9) just becomes nontrivial [3, 5–7].

Example of Calculation of the Vessel-Coil Apparatus on the Basis of Model (6), (11). Now we will be concerned 
with problem (6), (3), (16), and (11) in the limiting case A → ∞, i.e.,

 
.d T

d
θ

= − θ
τ

  (17)
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Within the framework of the basic approximation adopted here, limiting ourselves only to the zero-order terms with 
respect to the Re number and for the brevity of notation, we can replace the functions g0 and G0, respectively, by the functions 
θ and T from Eq. (11) and (6), precisely which is done in Eq. (17). Equation (6), after substitution of expansion (9) into it, 
will essentially be the equation of the basic approximation in the Pe number. The analysis performed herein shows that the 
function θ in this equation depends now only on the dimensionless time τ.

It is worthwhile to simplify Eq. (11) because we consider a noncontinuous-fl ow apparatus, i.e., Gθ = 0 ⇒  A → ∞. 
Note that for A → ∞ the large value of A is multiplied by the small Pe in the asymptotic analysis of Eq. (7). Actually, for 
correct deviation of Eq. (17) it is necessary that PeA = KPL3/Wλ << 1. We see that the latter expression does not contain the 
quantity Gθ that would tend to zero (it is involved in A and Pe separately), so that we can derive the limiting equation (17) 
anew, and so the situation will even be simpler.

For the nonessential simplifi cation we will assume that Tt0 = const (x) and Tx0 = const (t) in the supplementary 
conditions (3). It should be noted that in the simplifi ed variant (ε = 0 in Eq. (6)) the problem was investigated in [11] and, in 
essence, was described earlier in [12]. In the latter works the absence of the "nonstationary" terms was considered as self-ev-
ident. This seems to be due to the fact that a case like this is often encountered in practice. Moreover, the formulas obtained 
were confi rmed experimentally. Considering the foregoing, it should be stressed that of practical interest is the investigation 
of this problem at small values of ε.

Asymptotic Analysis of Problem (6), (3), (16), (17) at ε = 0. Just as above, we limit ourselves only to the solution 
of the equations of the basic approximation in the parameter ε.

External solution. Assuming that ε = 0 in (6), we obtain an equation

 
( ) ,T B T

z
∂

= θ −
∂

  (18)

which together with (17) determines the progress of the process in a quasi-stationary approximation. The supplementary 
conditions for these equations are

 ( ) 0 00 const, ( , 0) const .zT t Tθ = θ = = =   (19)

The second condition (in the variable t) for the equation of the external problem is not required. In a typical situation of 
interest there is the inequality Tz0 < θ0 which is assumed to be satisfi ed, i.e., a cooling liquid fl ows inside the tube (coil).

 Since the function θ is independent of z, it can be regarded as a constant in Eq. (18). Then the integral of this equation 
subject to the second condition of (19) has the form

 0( , ) ( )  [ – ] exp (– ) .zT z T Bzτ = θ τ + θ(τ)   (20)

Equation (17) involves the average value of T. For this quantity, from relation (20) subject to (12), we have

 0( ) ) [ – ( )] ,   zT T〈 τ 〉 = θ(τ + κ θ τ   (21)

where

  [1 – exp (– )]/ .B Bκ =   (22)

Substitution of (21) into (17) yields

 
( )0 .z

d T
d

θ
= κ − θ

τ
  (23)

From Eq. (23), subject to the fi rst condition of (19), we fi nd the function θ(τ):

 0 0 0( – ) exp (– ) ,         z zT Tθ(τ) = + θ κτ   (24)

which precisely completes the construction of the external problem. It should be noted that, accurate to notations, such a 
solution is cited in [11]. Equations (18)–(24) can also yield us the results obtained in [12].
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In processing the experimental data on the change of the functions of the problem in time, it is often convenient to 
determine the exponent in relations of type (24). It is natural that of basic interest is the parameter B connected with the heat 
transfer coeffi cient K. The quantity B is not expressed in an explicit form via the parameter κ from the transcendental equation 
(22). Though it is easy to fi nd B from the known value of κ with the aid of standard numerical algorithms, it is more preferable 
to have a suffi ciently accurate analytical expression. There exist methods for constructing approximation expressions that 
make use of the expertise of the asymptotic solutions of the problem. We avail ourselves here of the Padé approximation [13] 
that allows one to approximately "invert" dependence (22) as follows [14]:

 

( ) ( )
( )

2 1 1 1.4
.

2 0.4
B

− κ + κ
=

κ + κ  
 (25)

Figure 1 presents the dependences of κ on B, i.e., the graph that illustrates the problem of "inversion" of (22), and the approx-
imate dependence of function (25). The plotted curves turned out to be so close that it was meaningless to label them in the 
fi gure, i.e., the approximation of the dependence (22) by formula (25) is quite acceptable. The slightly noticeable difference 
in the graphs is evident only in the interval B ∈  (1.0, 4.2). At B > 4.2 (κ < 0.2) the asymptotic (κ → 0, B → ∞) formula B ≈ 
1/κ can be used, and also beyond Fig. 1.

Internal solution. To construct this expansion, we introduce the "internal" time ξ = τ/ε. The system of equations (6), 
(17) in the internal variables ξ, z can be rewritten as

 
( ) ,T T B T

z
∂ ∂

+ = θ −
∂ξ ∂

 (26)

 ( ) .d T
d

θ
= ε − θ

ξ
 (27)

The supplementary conditions for system (26), (27) are the following relations:

 ( ) ( )0 0 00 const , ( , 0) const , 0, const .z tT T T z Tθ = θ = ξ = = = =   (28)

It is seen from Eq. (27) that in the basic approximation in the ε number the solution of this equation is the constant θ(ξ) = 
θ0 = const, i.e., in the small time scale in which system (26), (27) "is operating", the temperature in the intertube space has 
insuffi cient time to be altered. This simplifi es Eq. (26), which can be solved, for example, by the operational method [10, 15]. 
As a result we obtain

 0 0 0 0 0( , ) ( – ) exp (– ) ( – ) ( – ) exp (– ) ( – ) ,z tT z T Bz H z T B H zξ = θ + θ ξ + θ ξ ξ   (29)

where H(z) = 1 at z > 0 and H(z) = 0 at z < 0 is the Heaviside function. This function shows that the solution in the tube is 
of wave character. The wave velocity in the dimensionless coordinates ξ, z is equal to unity and in the dimensional, to UT = 
GT/(STρT), i.e., to the heat-transfer agent velocity in the tube. After the passage of the wave "front" through the entire tube of 

Fig. 1. Graphs of functions (22) and (25).
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length L in the dimensional time t = L/UT, solution (29) corresponds, as is to be the case, to Eq. (20) of the external solution 
at τ = 0.

Uniformly applicable solution of zero order in ε. When we have at hand the external and internal solutions of the 
corresponding equations of zero order in ε, we, using the standard methods of [8, 9], can construct a combined, uniformly 
applicable approximation of the solution. Strictly speaking, the uniformity of the approximation can be disturbed when 
τ → ∞. In the problem considered, to construct a combined expression, use can be made of the sum of the external and 
internal solutions minus their common part obtained by the matching procedure. The common part for the function θ is θ0 
and for the function T, θ0 + (Tz0 – θ0) exp (–Bz). As a result, we arrive at a situation where Eq. (24) of the external solution 
will also be a uniformly acceptable approximation for the function θ. For the function T we fi nd

 0 0 0 0 0 ( – ) exp (– ) ( – ) ( – ) exp (– x) ( – ) [ – ][1 – exp (– )] .  z tT T Bz H z T B H z Bz= θ ξ + θ ξ + θ(τ) θ   (30)

Example. As a simple example of calculation by the proposed relations, we analyze a practically conventional case 
with Tt0 = θ0 > Tz0, i.e., the temperature in the entire system is the same up to the moment of fl ow "initiation" in the tube. 
Let us consider the temperature at the exit from the tube T(τ, 1) and the temperature in the vessel θ as functions of time. For 
graphical illustration of the solution, it is convenient to represent the above-mentioned temperatures in the form of dimen-
sionless complexes:

 
( ) ( ) ( ) ( ) ( ) ( ) ( )0 0

T
0 0 0 0

exp , exp 1 exp exp .z z

z z

T T Tf f B H B
T Tθ

θ − −
τ = = −κτ τ = = −κτ − − + ε − τ −⎡ ⎤⎣ ⎦θ − θ −

  (31)

To be more specifi c, we adopt the following values of the parameters: ε = 0.3 and B = 1.5, which, according to Eq. (22), leads 
to κ = 0.518. The results are presented in Fig. 2. We see that the infl uence of the wave "front" (of the internal solution) is 
exerted within the framework of the model at hand as a jump of the function fT at the moment τ = ε(t = L/UT). In a practical 
situation, sharp changes in the function T can be smoothed by means of the longitudinal stirring ignored in the in-tube space. 
Moreover, when the value of ε is small enough in an experiment (more precisely, when the time L/UT is small as compared 
to the observation time), the described effect will be barely discernible.

Attention should be paid to the fact that fT > fθ before the passage of the wave "front" and fT < fθ after its passage. This is 
explained as follows: after the initiation of fl ow in the tube, the indirect heat transfer through the liquid in the vessel has no time 
to exert a noticeable effect on the heat-transfer agent portions located near the exit from the tube. The temperature in the vessel 
fi rst decreases and then starts to infl uence the mentioned heat-transfer agent portions in the tube. However, after the passage of 
the wave "front," the cooler (cooling) heat-transfer agent naturally remains cooler. This can be easily verifi ed analytically. To do 
this, we subtract the function fθ from fT according to (31). As a result we obtain fT(τ) – fθ(τ) = exp (–B)[H(ε – τ) – exp (–κτ)]. 
According to what has been said above, the indicated difference between the functions at τ > 0 is negative or positive de-
pending on whether the Heaviside function is equal to zero or unity (whether the "front" arrived at the point z = 1 or not). It 
is also natural that, when τ → ∞, both dependences get closer and tend to the common value of temperature θ(∞) = T(∞, 1) 
= Tz0 equal to that at the coil inlet.

Fig. 2. Dimensionless temperatures vs. time: 1) f = fθ; 2) f = fT.
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Exact Solution of the Problem. In this section we do not use the perturbation method [8, 9], but analyze the solution 
of the problem on the basis of Eqs. (26) and (27) not assuming that the parameter ε is small. We consider the practically most 
interesting situation where Tt0 = θ0 > Tz0 under conditions (28).

We analyze the problem with the aid of the Laplace transformation [10, 15] for the variable ξ:

 
( ) ( ) ( )

0

exp .f p f p d
∞

∗ = ξ − ξ ξ∫   (32)

The quantities transformed in this way will be denoted by an asterisk *. Applying operation (22) to system (26), (27) with 
account for the supplementary conditions (28), we obtain

 0 0 0 0( ) , ( ) , | .z zdT dz p B T B p T T T p∗ ∗ ∗ ∗ ∗ ∗
=+ + = θ + θ + ε θ + θ + ε =   (33)

Next, from (33), after integration of the differential equation for the function T ∗, we have

 

( )

( )
( )

0 0 0

0 0 0

exp ,

1 exp
.

z

z

B T BT z p B
p B p p B

p BB T BT
p B p p B p B

∗ ∗
∗

∗ ∗
∗

⎛ ⎞θ + θ θ + θ
= + − − +⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟+ +⎝ ⎠

− − −⎡ ⎤⎛ ⎞θ + θ θ + θ ⎣ ⎦= + −⎜ ⎟⎜ ⎟+ + +⎝ ⎠

  (34)

Substituting the expression for the Laplace-transformed average temperature in the tube T ∗  into the second relation of (33) 
and making some transformations, we obtain

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )0 0 ,z

R p Q p p B Q p
T

pR p BQ p p pR p BQ p
∗ − +

θ = θ +
+ +⎡ ⎤⎣ ⎦

  (35)

where

( ) ( )( ) , ( ) [1 – exp (– – )] .R p p B p B Q p p B= + + + ε = ε

In Eq. (35) the infl uence of the temperatures θ0 and Tz0 on the process is separated. The inversion of (35) is connected with the 
determination of its singular points (poles) and with the fi nding, at these points, of the residues of this expression multiplied 
by exp (pξ) [10, 15]. Note that relation (35) does not have branching points.

It is evident that Eq. (35) has a singular point p = 0. The value of the corresponding residue is equal to Tz0, which 
conforms to the stationary solution for ξ → ∞. In addition to the point p = 0, the expression in the denominator of Eq. (35)

 ( ) ( ) ( )   F p pR p BQ p= +   (36)

yields only one real singular point (pole) for relation (35). In the general case, the function F(p) has two real zeros, with one 
of them being the point p = –B. The point p = –B will be a second-order zero if the function

 , )  2 – (2 )   B Bν(ε = ε + ε   (37)

is not equal to zero. Otherwise, it is a third-order zero. In the latter variant the point p = –B is the pole of relation (35). Of 
importance is the fact that the numerators in Eq. (35) at p = –B have second-order zeros; therefore, at ν ≠ 0 they "compensate" 
the second-order zeros of the denominator, i.e., the point p = –B is not singular. It can be shown by the methods of differential 
calculus that there always exists a real root of the equation F(p) = 0 (except for p = –B) that at ν = 0 combines with the root p 
= –B. Thus, there is only one pole at the real point: p = –B at ν = 0 and at some other point at ν ≠ 0. The situation is illustrated 
by Fig. 3 where the function F is plotted at several (characteristic) values of the parameters ε > 0 and B > 0. Note that the 
foregoing is related precisely to this, physically meaningful, variant of the positive values of ε and B.
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For the sake of convenience, in Fig. 3 we actually "represented" the abscissa axis by replacing p = –s in order to 
present the results in the right half-plane. Curves 1 and 2 correspond to the variant with ν < 0. They intersect the abscissa axis 
at the points s = 0.1337 and 0.2746, respectively. In some sense, curve 3 is exclusive because ν = 0. For curve 4 the value 
of the function ν in Eq. (37) is positive. Here the zero of the function F, which is also the pole of Eq. (35), is realized at s = 
1.5884. Apart from the indicated roots of the equation F(p) = 0, it has an infi nite number of complex roots, which follows 
from the generalized Picard theorem [16]. Indeed, let us consider the expression

 ( ) [ ( ) ] – exp (– – ) .F p pR p B B p Bω = ω + ε ε   (38)

At ω = 1 Eq. (38) yields Eq. (36), and at ω = 0 the relation –Bε exp (–p – B), which does not contain any root as a function 
of p [16]. Thus, according to the generalized Picard theorem, the value ω = 0 is exclusive for the equation Fω(p) = 0, which 
means that at any complex (different from zero) values of the parameter ω, at  ω = 1 too, the equation Fω(p) = 0 has an infi nite 
set of complex roots.

We denote the real root by the symbol p0, and the complex roots, with the positive imaginary part for defi niteness, 
by pk (k = 1, 2, 3, …). Applying the operation of complex conjugation to the equation F(pk) = 0 and taking into account the 
fact that all the coeffi cients at the function F are real, we easily see that the quantities kp , complex conjugate of pk, will 
also be roots of the equation F(p) = 0. Therefore in what follows, when writing the solution, it is expedient to combine terms 
corresponding to the complex conjugate points. As a result of the application of the theorem on residues and of other standard 
operations [10, 15], we can write the inversion of Eq. (35) in the form

 

( )
( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( )
( ) ( ) ( )

0 0 0 0 0 0 0 0
0

0 0 0 0

0 0

1

exp

exp
2 Re .

z
z

p p

k k z k k k k

k p k k p kk

R p Q p T p B Q p p p
T

p R p R p BQ p

R p Q p T p B Q p p p

p R p R p BQ p

∞

=

θ − + + ξ⎡ ⎤⎣ ⎦θ ξ = +
′ ′+ +

θ − + + ξ⎡ ⎤⎣ ⎦+
′ ′+ +∑

  (39)

Here Re is the real part of the expression. Note that with ε → 0 and changeover from the variable ξ to τ Eq. (39) can yield the 
limiting form of solution (24).

In (39) all of the complex roots pk have a negative real part whose absolute value exceeds the real part p0. This allows 
the assertion that the behavior of the function θ(ξ) is determined at large enough values of time by the fi rst terms (outside the 
sum) of Eq. (39). We will show this in the case of ν < 0. For this purpose, we use the argument that, in the given case, gives 
the number of zeros inside the contour γ traversed in the positive direction (the region bounded by the contour remains at the 
left when the contour is marched down) [15]:

Fig. 3. Graphs of function F at: 1) ε = 0.5, B = 1.8; 2) 0.5, 1.2; 3) 2/3; 4) 2, 0.25.
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( )
( ) ( )1 1 arg ,

2 2
pF p

N dp F p
i F p γ

γ

′
= = Δ

π π∫   (40)

where i is the imaginary unit and Δγ arg F(p) designates the full increment of the argument of the function F(p) in traversing 
the contour γ. It is assumed here that the function F(p) is analytic inside γ, continuous over γ, and does not become zero on 
the contour (each zero is counted as many times as its multiplicity). In our case the function F(p) enters into the denominator 
of Eq. (35). The necessary contour is shown in Fig. 4. The point B (the root of F(p)) is traversed over an arc (semicircle) of 
small radius which is to be allowed to go to zero. The transition CA takes place along an arc of large radius that subsequently 
should be allowed to go to infi nity. In the right half-plane Re (p + B) > 0, the asymptotic behavior of the function F(p) is as 
follows: |F(p)| ≅  |p|3. This assures the absence of zeros of the function F on the large semicircle arc at its fairly large radius. 
Analogously we can easily see that at a rather small radius of the semicircle with the center at the point B (p = – B), the func-
tion F on the arc of this semicircle also does not have roots. Substituting the value of p on the ABC line (p = – B + iβ) into 
the function F(p), equating the real and imaginary parts of the resulting expression to zero, we can see that in the case of the 
presence of the root of F(p) on the ABC line the variable β must satisfy the equation β2{β4 + [2εB + (ε – B)2]β2 – ενB} = 0 
obtained after some transformations with the aid of dependence (37). At ν < 0 it is seen from the latter equation that the sole 
preliminarily known root of the equation obtained is β = 0, since the expression in the curly brackets is always positive. The 
foregoing provides the possibility of using the argument principle [15] in the form formulated above. We can easily verify that 
on the AB′ line the change in the argument of the function F(p) is equal to π/2 (to within an infi nitely small quantity coupled 
with the arc radius near the point B) just as on the B″C line. In marching down the second-order zero on the small-radius arc 
the increment of the argument of the function F(p) is approximately equal to 2π, whereas in marching down the large-radius 
arc with account for the asymptotic behavior of |F(p)| ≅  |p|3, the increment is approximately equal to 3π. In the limit, when 
the fi rst radius tends to zero and the second to infi nity, we fi nd that the total increment of the argument of the function F(p) is 
equal to 2π. Therefore, according to Eq. (40), inside the considered contour the function F(p) has one root marked by a cross 
in Fig. 4. Its availability has already been proved above. Therefore all the other roots of the function F(p) will have their real 
part smaller than –B. An analogous analysis of the case ν > 0 will not be discussed here.

Solution of the form of (39) is especially convenient at suffi ciently large values of time when the exponents under 
the summation sign become small; therefore, in the calculation we may limit ourselves to a small number of terms of the sum. 
At small values of time, it is worthwhile to suggest another form of solution that would be convenient for the present case. 
To do this, the function F(p) that enters into the denominator of Eq. (35) should be represented in the form F(p) = V(p)[1 + 

Fig. 4. Contour inside which the number of roots of the equation F(p) = 0 is determined.
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Bε exp (–p – B)/V(p)], where V(p) = R(p) + Bε. With the use of this representation one should expand Eq. (35) in exp (–p). 
The structure of the resulting Laplace-transformed solution is

 
( ) ( ) ( ) ( )0

1
exp ,j

j
p R p R p pj

∞
∗

=
θ = + −∑   (41)

where the function Rj(p) (j = 0, 1, 2, …) can easily be expressed through V(p) and R(p). The inversion of Eq. (41) has the form

 
( ) ( ) ( ) ( ) ( ) ( )

3 3

0
0 1 0

res exp res exp 1 ,k k j k k
k j k

R p p R p p j H j
∞

= = =

⎡ ⎤θ ξ = ξ + ξ − ξ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∑ ∑ ∑   (42)

where p0 = 0 and pk (k = 1, 2, 3) are the roots of the third-degree polynomial V(p) =  0. Of importance is the fact that at any 
fi xed moment ∗ξ = ξ  relation (42) contains a fi nite number of terms, which is ensured by the functions H(ξ – j) in it. The 
terms appearing anew on increase in the time ξ correspond to the wave character of the process (the multiplicity of the pas-
sage by a heat-transfer agent with a unit dimensionless velocity through the coil after the start of the process). It should also 
be noted that for ε → 0 Eq. (42) may yield a "wave" solution in the form of (29). Determining the function θ(ξ) and using 
Eqs. (34), (39), (42), we can easily construct a solution also for the function T(ξ, z). However, this construction, as well as the 
matching of the limiting variant of the function T(ξ, z) for ε → 0 with relations (29), (30) will not be discussed here. Actually, 
the basic stage of calculation is the determination of the roots of the third-degree equation V(p) =  0, which can fi rst be derived 
analytically and then easily found using the modern program means such as MathCad.

CONCLUSIONS

1. Based on the model that takes into account the longitudinal stirring in the intertube space, an asymptotic model of 
heat exchange between the in-tube and intertube spaces with intense stirring has been constructed. The intertube space can be 
replaced by a vessel-coil apparatus, and the in-tube space, by a coil.

2. The quasi-stationary approximation of the asymptotic model has been investigated thoroughly.
3. An exact solution of the asymptotic model equations has been constructed.

NOTATION

A, B, similarity parameters (5); C, heat capacity of the heat-transfer agent, J/(kg·oC); F(p) = pR(p) + BQ(p); Fω(p), 
auxiliary function defi ned by Eq. (38); f, dimensionless temperature defi ned by Eq. (31); G, mass fl ow of the heat-transfer 
agent, kg/s; H, Heaviside function; K, heat transfer coeffi cient, W/(m2·oC); L, tube length, m; N, number of zeros inside the 
contour γ; P, tube perimeter along which heat-transfer agents come into contact, m; Pe, Peclet number; p, parameter of La-
place transformation, see Eq. (32); Q(p) = ε[1 – exp (–p – B)]; R(p) = (p + B)(p + B + ε); res, residues of the corresponding 
function at singular points (poles); S, cross-sectional area of the channel, m2; T, θ, temperatures in the in-tube and intertube 
space, respectively, oC; Tx0, temperature at the inlet of the heat exchanger in-tube space, oC; Tt0, initial distribution of tem-
perature in the heat exchanger in-tube space, oC; t, time, s; UT = GT/(STρT), wave velocity, m/s; W, volume of intertube space, 
m3; x, coordinate along the heat exchanger, m; z = x/L, dimensionless coordinate along the heat exchanger; β, imaginary part 
p on the ABC line (Fig. 4); ε, small parameter defi ned by Eq. (5); ζ = τ/Pe, "compressed" dimensionless time; θ0, initial dis-
tribution of temperature in the heat exchanger intertube space, oC; θ+(t), temperature in the inlet fl ow into the heat exchanger 
intertube space, oC; κ, parameter defi ned by Eq. (37); λ, effective thermal conductivity, W/(m·oC); ν(ε, B), function defi ned by 
Eq. (37); ξ = τ/ε, "internal" dimensionless time; ρ, heat-transfer agent density, kg/m3; τ, dimensionless time; , sign pertain-
ing to the averaging of functions. Indices: T, in-tube space; θ, intertube space; 1, 2, ... , number of the function in expansions 
(9); *, refers to the functions Laplace-transformed according to Eq. (32).
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