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THERMOPHYSICAL PROPERTIES

MODEL OF THE STRUCTURE OF FIBROUS HEAT-INSULATING MATERIALS FOR 
ANALYZING COMBINED HEAT TRANSFER PROCESSES

A. V. Zueva and P. V. Prosuntsovb   UDC 536.21:536.33

A model of the structure of a highly porous fi brous material is suggested within the framework of which 
deformation of a setting semifi nished item is considered. An algorithm is suggested for calculating the effective 
thermal conductivity and its components. It accounts for heat transfer through a solid phase and a gas, as 
well as by radiation. The Mie theory is used to estimate the radiative heat transfer, which led to a somewhat 
underestimated result in determining the effective thermal conductivity. To refi ne the contribution of radiative 
heat transfer, it is suggested to determine the optical properties of materials by solving the inverse problem of 
radiation transfer, the initial data for which are furnished by experimentally measured values of the coeffi cients 
of radiation transmission through a set of samples of different thickness. As a result, the radiation absorption and 
diffusion coeffi cients of a fi brous heat-insulating material have been determined. The dependence of the effective 
thermal conductivity of a material on temperature has been obtained, which actually coincides with the results of 
experimental investigations.

Keywords: fi brous heat-insulating materials, model of a structure, computational determination of thermal 
conductivity, radiative component of effective thermal conductivity, optical properties, prediction of properties.

Introduction. The task confronting material-science laboratories is the creation of materials that can most fully meet 
the requirements of construction designers. For heat-proof materials, of greatest value is their basic operating characteristic, 
viz., the thermal conductivity. The characteristics of this class of materials in the time-temperature regimes that correspond to 
operating conditions may differ appreciably from standard ones measured in the process of certifi cation [1]. The optimization 
of the composition and structure of a material whose characteristics cannot be estimated under real operating conditions is a 
problem whose solution is often achieved by the trial and error method. Application of computational methods also proves 
useful.

In creating an optimal, from the viewpoint of the optimization of the thermal conductivity, material structure, it is 
necessary to describe the processes of combined heat transfer in a wide temperature range. The solution of the problems 
associated with the analysis of the infl uence of the structure and properties of components on the characteristics of the entire 
material is possible using the technique of the theory of generalized thermal conductivity based on the construction of a 
model of a structure and on calculation of heat transfer in it. In our opinion, this is the most effective means of estimating 
the infl uence of the material structure on its resultant characteristics. The advantage of the technique of the generalized 
thermal conductivity theory [2] is the relative simplicity of the mathematical apparatus with the simultaneous possibility of 
taking into account the complex processes of heat transfer. Moreover, the use of the models of structure makes it possible 
to account for the effect of the characteristic features of the technological process of material production. As a result, the 
coupling between the technological process parameters and the resultant structure of the material can be revealed. Application 
of computational methods to determine the thermal conductivity of fi brous materials allows one to justifi ably formulate the 
trends in the optimization of characteristics, aids in reduction of the terms and cost of designing fl ying vehicles, and upgrades 
the reliability of a heat-shielding system as a whole.
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Model of the Structure of a Binder-Containing Highly Porous Fibrous Material. By this time, many models of 
the structure of a highly porous fi brous material have been devised, mostly based on the principles formulated in [2]. Making 
no claims to the completeness of this review, we only note part of them [2–8]. Each model has its drawbacks and merits. We 
will consider some of them.

As a model of the elementary cell of a structure we have selected the variant that was used at one time by M. V. 
Chebunin and that is based on the fact that in view of the low density of the material the probability of the simultaneous 
intersection of three fi bers at one point is extremely improbable (Fig. 1). This somewhat complicates the calculations but 
allows one to adopt a more justifi able model of the structure as compared to the most known one [2, 4, 6, 7] in which all fi bers 
or their projections onto the coordinate axes intersect in one contact. According to our data, the replacement of one contact by 
two in the model did not infl uence the calculation of thermal conductivity, but this very model was also used for calculating 
Young’s elasticity modulus and of the temperature coeffi cient of linear expansion in modeling some technological processes 
where this replacement played a certain role.

A unique model of the structure was suggested by N. A. Bozhkov in [5]. In this model the diameter of the fi ber-rod in 
each direction was adopted equal to the probability of the origination of fi bers in this direction, i.e., for an isotropic material 
the model coincided with the well-known solutions [2]. Such a model of the structure clearly refl ected the emergence of a 
preferable orientation of fi bers that appeared after the formation of a semifi nished item of a fi brous material.

For binder-containing fi brous materials [9], the quality of the contact between individual fi bers is such that its 
thermal resistance is close to zero (Fig. 1). As to its properties, the material of the contact is close to the material of the fi ber, 
and the interface is not expressed, with no decrease of the solid phase cross section in the zone of contact. For materials 
without a binder, recommendations of [2] were used in calculating the thermal resistance of the point contact of fi bers. The 
force of the compression of fi bers in the zone of contact and the roughness parameters of the surface of fi bers were taken into 
account in this case.

As a result, the elementary cell selected for the structure to analyze the process of heat transfer includes three identical 
mutually perpendicular rods (Fig. 2) and obviously reveals the anisotropy of properties. For simplicity of calculations of the 
geometrical parameters of the cell, the rods were selected to have a square cross section.

In using the initially anisotropic cell of a structure, there arises the problem of its coordination with the structure of a 
highly porous fi brous material that can be isotropic as a whole. For this purpose, the notion of a representative element of the 
structure constructed of an equal number of cells of all orientations was used (Fig. 3). Since no contact of two cells is possible 
without rupture of fi bers at the boundary, cells of one orientation are collected in small cubes, the size of whose fi n is equal to 
the mean length of a fi ber lf. The representative element of the structure consists of 27 volumetrically uniformly distributed 
cubes with cells of one orientation. As a result, the representative element of the structure has the shape of a cube with side 
equal to 3lf. With the selected construction of the cell, such a volume of the material that enters into the representative element 
is the minimum possible for the cells whose properties are isotropic.

In some cases, in binder-containing materials "clotting" of fi bers can occur, i.e., formation, in a raw fi brous mass of 
fi ber, of clots having a shape close to spheres (Fig. 4), the so-called globules [9]. In what follows, the parameters that refer to 

Fig. 1. Contact between fi bers [9].
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a fi brous medium between globules will be labeled by "p," those referring to globules, by "g," those to a binder, by "b," and 
those to the material as a whole are not denoted by a subscript.

As an example we will consider the infl uence exerted on the properties of a material by one of the technological 
processes, i.e., the moulding that greatly determines the parameters of the structure and the degree of the fi brous material 
anisotropy. Since on compression of a raw fi brous mass (pulp) the repacking of globules can be neglected, we assume that 
deformation of a preform is equal to the blank thickness-average deformation of a globule ∆rg. Compression of globules under 
the weight of the fi brous mass is not taken into account, although it is not diffi cult in principle to consider the pressure variable 
over the blank thickness and equal to the weight of the corresponding upper layer of the pulp. In calculating ∆rg we use the 
following expression obtained in [10, 11] for the internal stresses σ appearing in a particle under the action of pressure P:

Fig. 2. Model of the elementary cell of material structure.

Fig. 3. Representative element of the structure composed of small cubes with cells of one 
orientation.
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 σ = ρ − ξ(1 ) .P gH G  (1)

The condition of deformation termination is determined from the equality of internal stresses appearing in a globule 
under the action of compression forces at the contact spot of radius rcg that form the left-hand side of Eq. (2) and the resistance 
forces of the binder surface tension σst appearing in deformation of the contact spot with the perimeter Lc that in a linear 
approximation represent the right-hand side of Eq. (2):

 σ
= π σ∫

cg
st c c

c
g 0

4 .
r

L N drL
V

 (2)

As a result we can obtain an expression for the globule relative deformation equal, under the adopted assumptions, to the 
relative deformation of the blank with a binder that had not been solidifi ed:

 σ
ξ = −

ρ δ
st

3
81 .

3
dr

PGH g
 (3)

This allows one to estimate the characteristics of the spot of contact between globules. Assuming that the contact spot has the 
shape of a circle of radius rcg, we obtain

 ( )= − − ξ2
cg g 1 1 .r r

 
 (4)

When calculating the change in the volume between the globules in the course of material moulding, we will 
consider the process of deformation of a sphere with the shell surrounding it. The shell consists of a less dense fi brous mass 
that was not incorporated into the globules. We determine it as a porous medium with a volume Vp. In accordance with the 
recommendations given in [2], we assume that the globules pack among themselves with the coordination number Nc = 6–8. 
Using the relationship between the coordination number and porosity, we can determine the change occurring in the latter 
depending on the characteristics of deformation of a raw fi brous mass:
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(5)

Fig. 4. Contact between globules (magnifi cation of 50) [9].
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The mean distance between fi bers is calculated from the volume contents of the components:

 ⎛ ⎞π ρ ρ
δ = + ν⎜ ⎟ρ ρ⎝ ⎠

b f
f b

f
1 .

2
d   (6)

In the course of moulding, directions of the preferred orientation of fi bers are formed. We assume that the fraction of 
fi bers in the ith direction, fiN , is proportional to the radius of a globule in this direction gir , i.e., f gi iN r  = const. Then, for 
the distances between the contacts in the cell we obtain

 δ = δ − ξ(1 ) ,z x z  (7)

when compression occurs along the z axis, where δx = δy =  ⎛ ⎞− ξ
δ ⎜ ⎟− ξ⎝ ⎠

1 2
2 1

z

z
,

and

 1 (4 )(1 ) ,
4z y z zδ = δ = δ − ξ − ξ  (8)

when compression is along the x axis. The expression for the y axis is similar to Eq. (8).
The proposed algorithm for constructing the model of the structure allows one not only to determine the distance 

between the contacts of individual fi bers, but also to relate them to the characteristics of a raw fi brous mass and to the 
technological parameters, which makes it possible to analyze the change in the structure and subsequently in the thermal 
conductivity over the thickness of the moulded tablet in various directions. This, in turn, allows one to determine the optimum 
direction of the orientation of an anisotropic fi brous material when casting an element of a heat shielding system.

As a result, we have obtained a relationship between the cell parameters, semifi nished-item properties, and the 
parameters of the technological process that forms the material structure. The use of a representative element of the structure 
makes it possible, also without altering the model of the elementary cell, to carry out the calculation of the elasticity moduli of 
a material as of a deformable rod system, which makes it possible to determine the thermal coeffi cient of the linear expansion 
of a fi brous material

Heat Transfer in the Elementary Cell of a Fibrous Material. The general scheme of calculation of the effective 
thermal conductivity with the use of the apparatus of the theory of generalized conductivity in the case of the globular 
structure of a highly porous fi brous material is presented in Fig. 5. First the conductive transmission of heat through the 
fi brous frame of the material λfr and molecular heat conduction through the gas medium in the cell λmp are determined. 
According to our results and foreign author estimates [12–14], we can neglect the convective component in the heat transfer 
balance for the fi brous materials considered. The total thermal conductivity λcond was calculated as a combination of the 
thermal resistances connected in parallel and successively [2]. Thereafter we determined the thermal resistance of the contact 
between globules and the conductive component of the effective thermal conductivity of a fi brous material. As the size of a 
globule is larger than that of the representative element of the structure, the thermal conductivity of the fi brous medium in the 
globule is taken equal to the thermal conductivity of the starting material of corresponding density. Otherwise it is necessary 
to determine the thermal conductivity of the material as mathematical expectation in an ergodic homogeneous random fi eld of 
the local values of the thermal conductivity of these globules [15]. Next the radiative component of the thermal conductivity 
λrad and the effective thermal conductivity of the fi brous material as a whole λeff are determined.

The molecular component of the conductivity in a pore in the ith direction was calculated with the use of the notion 

of the thermal conductivity of a gas in an infi nite volume λgas, the parameter of the structure Ci = 
δ

f

i

d
, and the Knudsen 

number Kn [16]:
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.
161 Kn

i
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  (9)

The analysis carried out in [16] shows that calculation from (9) yields better agreement with experimental data than from 
well-known Prasolov′s formula (2). For modeling radiation transfer in partially transparent media use was made of the optical 



1379

dense medium approximation (the Rosseland approximation) [17] in which the radiative component of the effective thermal 
conductivity of the material is represented in the form

 σ
λ =

κ

2
30

rad
16 .
3

n T  (10)

Here the model of a "gray" medium was used. The assumption was based on the data of [18–20] where the problem of the 
applicability of this approach for materials from amorphous silicon oxide fi bers is considered.

To calculate the spectral dependence of the attenuation factor κλ and of its components, the absorption kλ and scat-
tering σλ coeffi cients, we used the Mie theory that describes the interaction of a single spherical particle with a plane electro-
magnetic wave propagating in an isotropic infi nite dielectric medium. The objection to the application of such an approach to 
highly porous fi brous materials is well known (for example, from [18]). At the same time, some research works demonstrate 
good numerical agreement of the calculation by the Mie theory with experiments on a group of particles. For example, in [19] 
scattering and absorption of radiation were measured in a suspension of polystyrene microspheres enclosed between two par-
allel glass plates. Good agreement is obtained between the results of measurements and calculations by the Mie theory with 
account for a single scattering when the mean distance between the spheres is greater than 0.3Λ. Layers of optical thickness 
from 0.25 to 3000 m–1 were investigated in that work.

The attenuation factor of radiation (with a wavelength Λmax) that corresponds to the maximum of intrinsic emission 
has the following form with the use of the dimensionless attenuation factor Γp :

 
λ

ρ
κ = Γ = Γ − ν

π ρ
m

p f p b
f f

8 1(1 ) ,
3

nS
d  (11)

 
=f f f .S d l  (12)

The attenuation factor Γp ≈ 1.35 was calculated in accordance with the Mie theory in the approximation of scattering on a 
single dielectric sphere [20–23], which for a material from amorphous silicon oxide fi bers with a density of 144 kg/m3 and 
with a mean diameter of a fi ber of 1.5 μm yielded κΛmax ≈ 45,000 m–1 at 1500 K. Next, we took the average of the spectral 
dependence of the attenuation factor using the radiation functions of the second kind [24]. As a result, for a temperature of 
1500 K we obtained that κ = (10–15)·103 m–1. The well-known experimental and calculated data in this case are at the level 
(5–8)·103 m–1 [25–28].

Fig. 5. Scheme of calculation of the total thermal resistance of the elementary cell of 
material structure.
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Thus, calculation of the radiative component of thermal conductivity by means of the employed algorithm yields 
an underestimated result for the radiative component of the effective thermal conductivity. However, despite the simplicity 
of the mathematical technique used, the coupling between the technological process parameters and the characteristics of a 
semifi nished item with the structure and properties of a fi nished material has been revealed.

Determination of the Optical Properties of Fibrous Materials. In our opinion, the problem of the discrepancy 
between the calculated and experimentally measured values of the optical properties consists in the incomplete agreement 
between the implications of the Mie theory and the real characteristics of fi brous materials. This primarily concerns the 
assumption on the independent character of radiation scattering on individual fi bers. Here account for multiple scattering leads 
to the necessity of constructing complex algorithms that in turn require the availability of initial data on the optical properties 
not only of a fi ber but also of a binder and of the material of globules, and this usually requires special experimental research. 
Therefore to elevate the accuracy with which the radiative component of the effective thermal conductivity could be found, we 
decided to determine the optical properties of studied materials from the experimentally measured transmission coeffi cients 
of a set of samples of different thickness. Such an approach also calls for carrying out of supplementary experiments but 
without doubt cuts down on the whole the time needed for investigation.

We have developed a method of determining the optical properties (coeffi cients of radiation absorption and diffusion) 
from the results of measurement of radiation transmission by a set of samples of different thickness [27, 28]. Theoretically the 
method is based on the solution of inverse problems of radiation transfer.

It was considered that a test sample in the form of a disk or a plate of thickness ∆ is illuminated at the front by a 
monochromatic radiation fl ux qw,R  of directional-diffusive character. The temperature within the sample does not change 
during the experiment, which allows us to consider the optical properties of the material constant. The optical properties of 
the boundaries of the sample are assumed to be known. Because the samples are not very thick (1–20 mm) and there is a 
considerable fraction of the directed component in the radiative fl ux incident on the frontal surface of it, the transfer equation 
was solved using a modifi cation of the diffusion approximation [29, 30] in which the directed (singular) component of 
the radiation fl ux is considered separately. The application of this approach makes it possible to substantially increase the 
accuracy of calculating the radiation fi eld.

The mathematical model of the process of radiative transfer in this case has the form

 

2
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A set of N samples of different thicknesses (N > 2) are investigated. In each experiment the radiation fl ux q∆,R  transmitted 
through the sample is measured. From these data we are to determine the radiation absorption and diffusion coeffi cients of a 
partially transparent material. For solving the inverse problems of radiation transfer, we used an extreme formulation, i.e., we 
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determined the vector of the unknown parameters u = {D, k} that minimized the functional of the discrepancy between the 
experimental and predicted values of the transmission coeffi cient:

Δ= =, ,

w, ,
, 1, ,R i

i
R i

q
F i N

q

 
2

e
1

1( ) 1 ,
2

N
i

i i

FS
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⎝ ⎠
∑u  (17)

where Fi and e
iF  are the calculated and experimentally measured values of the transmission coeffi cient in the ith experiment. 

Thus, to calculate the value of the functional it is necessary to solve system (13)–(16) N times. The value of the transmission 
coeffi cient for each experiment was calculated as
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The functional (17) was minimized by the conjugate-gradient method. To fi nd the gradient of the functional, the problem 
conjugate of (13)–(16) is solved N times. It has the form
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After the solution of problem (19)–(21) the components of the residual functional gradient vector are calculated as
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The inverse problems of radiation transfer were tested by a method of mathematical simulation. In the course of 
simulation in a wide range of variation of the optical properties of the material k = 0.1–1000 m–1, D = 10–6–10–2 m, bound-
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ary surfaces r = 0.01–0.95, and sample thickness ∆ = 0.001–0.1 m; the accuracy for which the inverse problems of radiation 
transfer were solved was not more than 0.1%. The cases of the solution nonuniqueness were not noted. We also analyzed the 
stability of solution of the inverse problems of radiation transfer with respect to random errors in the experimentally measured 
transmission coeffi cients. The calculations showed that 10% of the random errors introduced into the values of the transmis-
sion coeffi cients leads to not more than 5% of errors in the results of the solution of inverse heat transfer problems in a broad 
range of simulation parameters. It has been revealed by numerical experiments that with the optical properties determined 
from the results of two to three experiments and with the use of perturbed data, the error of solution of the inverse radiation 
transfer problems may reach 20%. When a larger number of experiments were carried out (with a number of samples of dif-
ferent thicknesses from 5 to 10), the error of solution of these problems decreased to 5%. This permits us to draw a conclusion 
on the necessity of carrying out experimental investigations with samples no fewer than fi ve.

Experimental investigations of the optical properties of amorphous silicon oxide fi bers of density 144 kg/m3 were 
carried out at the N. É. Bauman Moscow State Technical University with the use of a commercial SF-14 spectrophotometer 
within the range 0.4–0.75 μm [28]. In the process of experiments, the frontal surface of samples was illuminated by a directed 
monochromatic radiation fl ux of known density. An integrating hemisphere was installed at the rear of the samples for re-
cording the radiation fl ux transmitted through a sample. As a result of a series of experiments, the values of the transmission 
coeffi cient were obtained for 25 samples of thickness from 1.4 to 14.8 mm to be used subsequently for solving the inverse 
radiation transfer problems. Figure 6 presents the optical properties of the material based on the amorphous silicon oxide 
fi bers. They correlate well with the results of [25–28].

Because of the lack of data on the spectral range of the optical properties of the studied material and their unavailability 
for high temperatures, a spectral model of optical properties has been developed (Fig. 7). In constructing the model it was 
assumed that the absorption coeffi cient and the range of partial transparency of the material corresponded to the absorption 
coeffi cient and to the range of partial transparency (0.2–4.8 μm) of quartz glass KV. Since the radiation diffusion coeffi cient 
is mainly determined by the structure of the material, which does not change within the temperature range 300–1500 K, we 
may assume that the radiation diffusion coeffi cient is constant in this spectral region and is equal to 4.75·10–5 m.

Determination of the Thermal Conductivity of a Fibrous Material. The developed model for the structure of a 
material was used for calculating the thermal conductivity of a material based on the amorphous silicon oxide fi bers of density 
144 kg/m3 (Fig. 8). Figure 9 displays a comparison of the calculated data on the thermal conductivity of a material with the 
data obtained in processing the results of experimental investigations by means of an absolute stationary method [31]. It is 
seen that the data are in good agreement, which confi rms the adequacy of the proposed models of the structure and calculation 
methods. Figure 10 presents the calculated dependence of the effective thermal conductivity and of its components for a 
material based on amorphous silicon oxide fi bers of density 144 kg/m3 on the fi ber diameter. It was concluded that the optimal 
value for the fi ber diameter is 1.5–2.0 μm.

Fig. 6. Spectral dependence of the optical properties of the material based on amorphous 
silicon oxide fi bers of density 144 kg/m3: 1) radiation absorption coeffi cient; 2) radiation 
diffusion coeffi cient.

Fig. 7. Model of the spectral dependence of the absorption coeffi cient of the material 
based on amorphous silicon oxide fi bers of density 144 kg/m3: 1) at 293 K; 2) at 1500 K.
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NOTATION

B, radiation intensity of a black body, W/(m2·sr); Ci  = 
δ

f

i

d , parameter of a structure; D, radiation diffusion coef-

fi cient, m; df, fi ber diameter, m; F i and e
iF , calculated and experimentally measured values of the transmission coeffi cient 

in the ith experiment; G, weight of the fi ll layer per unit area, kg; H, height of the fi ll layer per area unit, m; h, coeffi cient of 
radiation transmission to the outside of a sample; Kn, Knudsen number; kλ, absorption coeffi cient, m–1; Lc  = 4df, perimeter 
of the spot of contact between fi bers, m; lf, mean length of a fi ber, m; Nc = Vg/δ3, number of contacts between fi bers at a mean 
distance between them δ; n, refractive index; q, coeffi cient of radiation transmission inside a sample; qw,R, incident radia-
tion fl ux, W/(m·K); q∆,R,t, transmitted radiation fl ux,W/(m·K); r, refl ection coeffi cient of the sample surface; rδ, refl ection 
coeffi cient of the frontal surface in relation to directed radiation; T, temperature, K; U, radiation energy density, W/m2 ; Vg = 

π 3
cg

4
3

r , volume of a globule, m3; x, coordinate, m; Γ1 and Γ2, frontal and rear surfaces of a sample; ∆, thickness of a sample, 

Fig. 8. Temperature dependence of the thermal conductivity of the material based on 
amorphous silicon oxide fi bers of density 144 kg/m3: 1) λcond; 2) λmp; 3) λrad determined 
by the Mie theory; 4) λrad determined by solving the inverse problem of radiation transfer.

Fig. 9. Temperature dependence of the thermal conductivity of the material based on 
amorphous silicon oxide fi bers of density 144 kg/m3: λeff, experiment, stationary method 
[31]; 2) λeff, calculation, inverse problem of heat conduction [31]; 3) λeff, calculation, 
generalized thermal conductivity theory.

Fig. 10. Thermal conductivity of the material based on amorphous silicon oxide fi bers 
of density 144 kg/m3 vs. the fi ber diameter at a temperature of 1500 K and normal 
atmospheric pressure: 1) λeff; 2) λcond; 3) λmp; 4) λrad.
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m; δ, delta function; δi, distance between contacts in the direction of the i axis, m; ηm, fraction of a diffusive radiation fl ux 
at the frontal boundary of a sample; ηδ, fraction of directed radiation fl ux at the frontal boundary of a sample; κ, attenuation 
factor, m–1; Λ, radiation wavelength, μm; λ, thermal conductivity, W/(m·K); λfr, conductive heat transmission through fi brous 
material frame, W/(m·K); λmp, molecular heat conduction through the gas medium in a cell, W/(m·K); λcond, total conduc-
tive heat transmission in a cell, W/(m·K); λrad, radioactive component of heat conduction in a cell, W/(m·K); λeff, effective 
thermal conductivity of fi brous material, W/(m·K); λgas, thermal conductivity of a gas in an infi nite volume, W/(m·K); μ, μ′, 
angles of radiation incidence and refl ection (transmission); ξ = ∆rg/rg, relative deformation of globules; ρ, density of a pulp, 
kg/m3; σ0, Stefan–Boltzmann constant, W/(m2·K4); σλ, scattering coeffi cient, m–1; Ω, region of a sample. Indices: λ, η, refer 
to the spectral and frequency dependences. 
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