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ANALYSIS OF ERRORS OF MULTIBLOCK COMPUTATIONAL TECHNOLOGIES
BY THE EXAMPLE OF CALCULATING A CIRCULATION FLOW IN A SQUARE
CAVITY WITH A MOVING COVER AT Re = 103

S. A. Isaev,a A. G. Sudakov,b P. A. Baranov,b  UDC 532.517:2
Yu. V. Zhukova,c and A. E. Usachovd

The errors of multiblock computational technologies realized in different versions of the VP2/3 package and involving 
the use of structured computational meshes of the H and O types with superposition were methodically investigated 
by the example of solving the problem on a circulation fl ow of an incompressible viscous fl uid in a square cavity with 
a moving cover at a moderate Reynolds number of ~103. A comparison of the numerical estimations of the integral 
and extremum local characteristics of the indicated fl ow, made with the use of composite and multiblock meshes with 
varying densities and near-wall steps, has shown that it is reasonable to use multiblock computational technologies 
with linear interpolation in the calculations with conversion of parameters from mesh to mesh.

Keywords: circulation fl ow, cavity, calculation, procedure of pressure correction, Rhie–Chow approach, multiblock 
computational technologies, VP2/3 package.

Introduction. Package technologies used for solving problems of aerohydromechanics and heat exchange represent 
a powerful instrument of basic and applied research that successfully supplements analogous experimental means. Among 
the widely used program packages, the universal commercial Fluent and CFX packages with a closed (for users) "core" and 
open-type packages, e.g., the OPEN FOAM package, whose codes are accessible on the Internet, stand out. In these packages, 
computational subgerions are divided as a rule by multiblock meshes with common boundaries, which sometimes leads to an 
increase in the bevel angles of the generated cells and to signifi cant errors in the numerical simulation.

An alternative approach based on multiblock computational technologies (MCT) involves solution of initial 
equations with the use of composite meshes, in which simple-topology meshes of the H and O types are superimposed and 
intersected. Multiblock computational technologies are realized using the specialized velocity-pressure (VP) package in the 
two-dimensional and three-dimensional versions [1, 2]. The MCT conception was initially associated with the construction of 
near-orthogonal algebraic meshes superimposed on each other with intersection for description of fl ows in multiply connected 
computational regions [3]. The development of multiblock computational technologies has made it possible to calculate the 
fl ow about a body with built-in vortex cells, investigate the effect of decreasing the drag of a circular cylinder and a thick 
profi le, and increase the lifting force acting on a profi le by control of the circulation fl ow about it and partial or complete 
prevention of its separation on the backside of the body [4]. It is signifi cant that, in this case, different-scale structured meshes 
with steps changing spasmodically from subregion to subregion are used, which makes it possible to easily pass from the 
consideration of complex-geometry streamlined objects to the less obvious reproduction of the different-scale elements of 
a fl ow on the specially introduced meshes of corresponding scale. In the problems on the vortex intensifi cation of the heat 
exchange in holes, of importance is the representation of both the high-gradient fl ows in the vicinity of the rounded edges 
of the holes and the spiral-like vortex structures in the near wake downstream of them, for identifi cation of which special 
meshes are introduced [5–7]. The discussion presented in [8] once again called attention to the analysis of the errors of 
multiblock computational technologies that arise as a result of the conversion of parameters from mesh to mesh, especially 
in the case where meshes of different types with different densities are used. Therefore, it makes sense to test multiblock 
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computational technologies and different modifi cations of the VP2/3 package by the example of solving the classical problem 
on the circulation fl ow of a viscous incompressible fl uid in a square cavity with a moving cover, for which a considerable 
amount of recent calculation data has been accumulated [9, 10]. Since, in the previous investigations, emphasis was placed 
on the variations of the density and the near-wall step of a multiblock mesh as well as on increasing the Reynolds-number 
range to 6·104, in the present work we introduced additional meshes of the H and O type and analyzed the infl uence of the 
parameters of the external and internal meshes on the integral and local characteristics of the fl ow in a square cavity with a 
moving cover at Re = 103.

Investigation Object. The problem on the circulation fl ow of an incompressible viscous fl uid in a square cavity, 
initiated by the movement of its upper solid wall with a constant velocity, is considered. For a long time, this problem was 
used as a basis for development of methods for solving Navier–Stokes equations. In the late 1960s — early 1970s, the 
calculation possibilities of computers not only provided no way of using fi ne meshes (the number of mesh nodes was limited 
by several hundreds) but also forced one to decrease the number of dependent variables by writing the initial equations in 
transformed variables, e.g., in vorticity–stream function ones [11–13]. Despite the limitedness of the computational resources, 
one of the most important problems in solving numerically the Navier–Stokes equations, associated with the presence of the 
small parameter at the higher derivative, was solved. The requirement for the stability of the computational process dictated 
the use of upwind schemes of the fi rst-order accuracy, in particular the Spaulding scheme [12, 14]. In this case, the errors 
in the approximation of the convective numbers of the vortex-transfer equation give birth to the numerical diffusion that is 
proportional to the local velocity of the fl ow, the step of the mesh being used, and the bevel-angle of the fl ow relative to the 
mesh lines [15]. At large Reynolds numbers, this diffusion exceeds the physical diffusion. Therefore [9], the scheme errors 
cannot be eliminated by increasing the density of the mesh, and, at a moderate Reynolds number Re = 103, the asymptotic 
value of the rate of fl ow of a viscous incompressible fl uid involved in the circulation motion initiated by the moving cover 
is markedly smaller (smaller than 0.1 in fractions of the product of the characteristic velocity of the fl ow by the length of the 
cavity face) than in the case where more exact algorithms are used (|ψm| = 0.1191).

It has been possible to overcome the distorting infl uence of the numerical diffusion on the solution of the 
Navier–Stokes equations with the use of high-order schemes, e.g., Arakawa schemes of the second and fourth orders of 
approximation [16, 17], the Agarwal upwind scheme of the third order of approximation [18], Leonard′s upwind scheme 
with quadratic interpolation [19], and schemes of the fourth order of approximation described in [20]. The progress in 
computer engineering and then the computer boom made it possible not only to refi ne computational meshes, but also to 
solve equations written in natural variables. This approach is more easily generalized to the spatial case, and the boundary 
conditions set at the wall are simpler. During the several last decades, a number of monographs on the methodology of 
solving the equations of hydromechanics in natural variables have been published [21–23]. These monographs form the 
information basis for the development of applied-program packages (package technologies) realized with the use of the 
fi nite-volume method and the pressure-correction algorithms based on the concept of splitting by physical processes. In 
one of the fi rst detailed methodological investigations of the problem being considered [24], the solutions of the Navier–
Stokes equations for different dependent variables and digitization schemes with varying mesh parameters were compared. 
Particular emphasis was placed on the use of staggered and centered templates for disposition of dependent variables. It 
should be noted that the disposition of all the variables at the center of a cell of a structured or a nonstructured mesh is 
generally accepted now.

The problem on the fl ow of an incompressible viscous fl uid in a square cavity with a moving cover has always 
received the attention of researchers, because, in this case, a simple computational region and an orthogonal computational 
mesh can be used, despite the cone features of the problem associated with the drop in the velocity of the fl ow at the upper 
cone points of the cavity and the absence, by this reason, of a physical analog of such a fl ow. However, this classical problem 
attracted the interest of researchers even before the numerical-simulation age, fi rst of all, due to the Batchelor hypothesis 
on the formation of a nonviscous vortex surrounded by a thin boundary layer in such a cavity at ultimately large Reynolds 
numbers Re → ∞. This hypothesis was confi rmed to some extent for a circular cavity by Squire [25]. An effort was made by 
Burggraf [26] to numerically substantiate the indicated hypothesis for a square cavity; however, at that time, the methodical 
and computational limitations prevented obtaining of an acceptable result. In the comparatively recent works [4, 5, 9, 20], 
results of calculations of a stationary circulation fl ow in a square cavity with a moving cover at large Reynolds numbers (of 
the order of 5·104) were analyzed. It has been shown that, as Re increases, the solution of the problem becomes asymptotical 
in character, the stream-function modulus (the fl ow rate of the primary large-scale vortex) reaches a maximum gradually, 
and a vortex pattern with a central primary vortex, an angular secondary vortex, and a tertiary vortex is stabilized. Thus, in a 
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square cavity there arises not a single vortex, as Batchelor thought, but different-scale vortices with constant-vorticity cores 
surrounded by shear layers, i.e., the Batchelor hypothesis is only acceptable partially.

In the present work, attention is focused on the analysis of the solutions of the Navier–Stokes equations for the 
circulation fl ow of an incompressible viscous fl uid in a square cavity with a moving cover at a moderate Reynolds number 
Re = 103, obtained with account for the structure of the primary vortex with a constant-vorticity core and a surrounding shear 
layer.

Evolution of the Computational Algorithm. The principal positions of the methodology of solving problems of 
aerohydromechanics and heat exchange, realized in the modern package technologies, were developed in the 1980s [21, 22]. The 
Navier–Stokes equations were usually represented in natural variables and a centered template was selected for calculation 
of fl ows in complex-topology objects because these calculations call for the use of oblique meshes. The indicated equations 
were digitized by the fi nite-volume method with representation of convective and diffusion fl ows by schemes of not less than 
second order of approximation as a rule to avoid the distorting infl uence of the numerical diffusion. The algorithm of solving 
the initial equations was constructed within the framework of the concept of splitting by physical processes with the use of the 
SIMPLEC procedure of pressure correction involving the replacement of the continuity equation by the equation of pressure 
correction. The coordination of the velocity and pressure fi elds calculated with the use of a centered mesh was performed by 
the Rhie–Chow method involving the correction of the mass fl ows through the faces of the cells in the process of determining 
the pressure correction [27].

The computational methodology realized in the programs and forerunners of the VP2/3 package is similar on the 
whole to the methodology realized in the modern VP2/3-package versions; however, it has original features [23]. Unlike 
the methods of [23, 29–31], in the indicated methodology, the system of initial equations is written in the delta-form in the 
curvilinear coordinates consistent with the boundaries of the computational region relative to the increments of the dependent 
variables [22, 28]. The linearized system of initial equations is solved using a consistent SIMPLEC fi nite-volume procedure 
of pressure correction. For decreasing the numerical diffusion in the calculations of separation fl ows, in particular those that 
are sensitive to the errors in the approximation of the convective members of the transfer equations, in the explicit side of the 
motion equations, a one-dimensional analog of Leonard′s upwind scheme with quadratic interpolation (the QUICK scheme) 
is used [19]. For prevention of spurious oscillations in the representation of fl ows with thin shear layers, in the implicit 
side of these equations, the mechanism of artifi cial diffusion is used in combination with one-side upwind differences for 
representation of convective numbers. For elimination of the nonmonotonicity of the pressure fi eld in the digitization of 
the pressure gradient by a central-difference scheme with the use of a centered template, a Rhie–Chow monotonizer [27] 
with an empirical multiplier of 0.1, determined in the numerical experiments on the fl ows about a cylinder and a sphere, is 
introduced into the pressure-correction unit [28]. The high effi ciency of the computational procedure for solving discrete 
algebraic equations is provided with the use of the incomplete matrix factorization method in the Stone SIP version [32]. 
An important element of the methodology developed in [28] is the introduction of the Rhie–Chow monotonizer only at the 
stage of calculating the defect of the mass of a cell in the pressure-correction unit; this monotonizer is not used in solving the 
momentum equations. Such an approach was used at a later time in the development of the generalized pressure-correction 
method for calculating incompressible and compressible fl uid fl ows [2, 5, 8]. In [33], this approach was called the implicit 
method of using the Rhie–Chow correction.

The above-described algorithm of calculating nonstationary fl uid fl ows is diffi cult to realize because it involves a 
passage from one time step to another, which disturbs the pressure fi elds. This is explained by the fact that, in the standard 
approach [28], the contribution of the Rhie–Chow monotonizer to the total fl ow at the face of a cell is dependent on the 
empirically determined coeffi cient independent of the other parameters of the scheme used, such as the relaxation coeffi cient 
in the dynamic equation and the time step. The undesirable effect becomes especially obvious in the case where a small time 
step is used, and, consequently, the Rhie–Chow correction has practically no infl uence on the computational process. The 
generalization of the Rhie–Chow approach made in [35] makes it possible to obviate the above indicated differences. Two 
main features should be considered. First, the fl ows calculated with the use of the Rhie–Chow monotonizer not only are used 
in the pressure-correction equations, but also are stored and then used for simulation of convective terms in all the transfer 
equations (of turbine, energy, concentration, and others). Thus, one more stage — the calculation of the fl ows at the faces of 
a cell — appears in the numerical procedure. This calculation is carried out after the solution of the dynamic equation before 
the pressure-correction stage. After the pressure correction is determined, not only the velocities of the fl ows at the centers of 
the cells, but also the normal components of this velocity at their faces, i.e., the values of the mass fl ows, are corrected. The 
second feature is even more important. It consists of the fact that the normal component of the fl ow velocity at the face of a 
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cell is determined by not the simple averaging of the fl ow-velocity values, as in [28], but by the averaging of the fl ow-velocity 
values obtained from the discrete dynamic equations for the adjacent cells. This allows one, in the determination of the normal 
component of the fl ow velocity at the face of a cell, to distinctly separate the fl ow components proportional to the value of 
this velocity at the previous iteration and the previous step, to determine the dependence of these components on the mass 
forces, and to introduce, into the determination of the fl ow velocity, the local value of the normal component of the pressure 
gradient calculated only by its values in the adjacent cells. In this approach, the Rhie–Chow monotonizer appears automatically 
with a coeffi cient equal to the relaxation coeffi cient of the dynamic equation. Since the value of the fl ow at the previous iteration 
(previous time step) is present in the current value of the fl ow at the face of the cell, a change in the fl ow parameters does not 
cause a sharp increase in the errors. Moreover, it can be shown that the converged solution (if it exists) is independent of these 
parameters. An analogous approach, with the obvious use of the Rhie–Chow correction, was used in [33].

We call the reader’s attention to an important aspect associated with the writing of the above-described algorithm 
simultaneously for structured and nonstructured grids (this problem was partially considered in [5]).

As already noted, multiblock computational technologies were developed for calculating fl ows in multiconnected 
regions with the use of composite grids superimposed on each other with intersection (overlapping grids) [4, 6–8]. An 
important element of the algorithm being considered is the intermesh interpolation of the dependent variables from one mesh 
to another. We will illustrate this interpolation by the example of solving the problem being investigated. As in [3, 4], all the 
cells of a composite mesh are divided into two groups: the computational cells, in which the initial equations are solved, and 
the connected cells, in which the parameters of the fl ow are determined by the intermesh interpolation. Figure 1a and b shows 

Fig. 1. Typical composite meshes of the H (a) and O (b) types with marked centers of the 
connected cells and schemes of intermesh interpolation: c) disposition of the point P of a 
connected cell of the internal mesh on the external mesh; d) determination of a parameter 
at this point by its values at the corners of the corresponding triangle.
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composite meshes of two types: the meshes including an internal Cartesian mesh in the square subregion (Fig. 1a) and a set 
of internal meshes including a cylindrical mesh in the ring subregion and a Cartesian mesh in the square "patch" (Fig. 1b). In 
Fig. 1a and b, the heavy square points represent the centers of the connected cells.

At the preliminary stage of calculations, a minimum bounding rectangle is determined for each computational cell 
of the mesh (Fig. 1c), and an R* tree is constructed on the basis of these rectangles [34], which allows one to rapidly fi nd the 
cell, in which a defi nite point representing a center of a connected cells of the internal mesh is found. From the R* a cell or a 
set of cells, the minimum bounding rectangles of which include a given point, is determined. Then the cells from this set are 
divided into the triangles, each of which is constructed at the center of a cell, at the center of its face, and at a corner point of 
the cell. The total number of these triangles will be equal to the twice the number of the faces of the cell.

Considering successively all the triangles, we fi nd the triangle for which the barycentric coordinates of the given 
point are nonnegative, i.e., inside which this point is found (the triangle with the vertices C1FN in Fig. 1).

The value of the fl ow at the vertex of the cell C1 is equal to the value of the fl ow at the center of the cell, which is 
known. The value of the fl ow at the vertex F (the center of the cell face) is determined by the values of the fl ow in the cells 
C1 and C2, weighted with account for the distances along the normal from the centers of the cells to their faces. The value of 
the fl ow at the vertex N is determined by averaging its values in all the cells, for which the vertex N is common, i.e., in the 
cells C1–C4 for the case being considered.

The interpolation dependence inside the triangle in Fig. 1d is written in barycentric coordinates: V = 
3

1
i ih V∑ , where 

Vi is the velocity of the fl ow at the ith node of the mesh.
The weight coeffi cients hi for an arbitrary triangle are determined from the following ratios:

1 1 2 2 3 3, , .h S S h S S h S S= = =

Here S is the whole area of the triangle, and the inner areas Si are calculated as a z coordinate of the vector product, 

e.g., S1 = 1
2

((P3 – P2)(P – P2))z; therefore, the coordinates of a point can be negative when it is found outside the triangle.

It should be noted that the above-described procedure imposes no restrictions on the shape of a mesh cells and, 
consequently, can be realized with the use of both structured and nonstructured meshes.

Modifi cations of the VP2/3 Package. Modern program packages used for engineering analysis have a module 
structure and include a preprocessor (a unit for preparation of initial data), a solver (the core of a package with a catalog of 
mathematical models), and a postprocessor (an interpreter of the calculation data obtained). The predecessors of the VP2/3 
package are programs written on the algorithmic Fortran-77 language [22]. The emphasis shown by researchers on the 
graphical processing of calculation data, including the monitoring of the computational process in the representation of the 
behavior of the trajectories error in the special window, resulted in the use of not the most effi cient program-oriented DELPHI 
medium [4]. It is signifi cant that multiblock computational technologies were realized in the single-processor version of the 
VP2/3 package. For the unparallelization of this package, the initial codes were rewritten in C++. At the fi nal stage of the 
development of the VP2/3 package, it was substantially modifi ed with the use of the coordinated computational procedure, 
which can be realized with both the structured and nonstructured meshes.

Comparison of the Results of Numerical Calculations Obtained with the Use of Different-Density Multiblock 
Meshes and Different Versions of the VP2/3 Package. The above consideration of the development of package technolo-
gies is a continuation of the methodological investigation carried out in [9, 10]. The results of an investigation of the infl uence 
of the density of an N × N mesh and its near-wall step δm on the convergence of the iteration process and the accuracy of 
calculating the integral and extremum local characteristics of the fl ow in a square cavity with the use of different versions of 
the VP2/3 package are presented in Figs. 2 and 3, and in Table 1. In the solution of such problems, as an initial approximation, 
a Reynolds number of 102 is used, or the fi elds of dependent variables calculated at Re = 103 are reinterpolated on a coarse 
mesh.

The convergence trajectories were determined by the behavior of the errors in determining the longitudinal component 
of the fl ow velocity ErrU and the pressure ErrP (pressure correction), i.e., the increments in the dependent variables at each 
iteration step, and of the scaled errors (scaled residuals), in particular ErrUnr [5], which are widely used in the Fluent, CFX, 
StarCD, and other packages. First and foremost, the fairly slow convergence of the computational process in solving the 
problem being considered, i.e., the attainment of the given level of increments equal to 10–7 with the use of about 10,000 
iterations, has attracted our attention. In this case, the normalized error is smaller by an order of magnitude as compared to the 
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ordinary increments (Fig. 2b), which creates the illusion of attainment of convergence of the problem even though it has yet 
to be solved. This feature of the problem on the circulation fl ow in a cavity was considered in [10]. It was established that, in 
addition to the monitoring of the behavior of the errors, it is necessary to control the integral characteristics. It was proposed 
in [22] to use, as an indicating characteristic, the maximum (in absolute value) stream function in the cavity, corresponding to 
the rate of the fl uid fl ow in the primary vortex, which is accelerated by the movement of the cover. In the present investigation, 
we additionally controlled the behavior of the longitudinal resistance force Rx acting on the cavity walls. One more interesting 
conclusion follows from the analysis of the data presented on Table 1. The value of the criterion determining the completion 
of the iterations infl uences the solution of the problem. It is usually assumed that ErrUo = 10–5 [9, 10]. However, it follows 
from Table 1 that ErrUo should be equal to 10–7.

Figure 2 shows estimates made with the use of the old VP2/3 package written in DELPHI and estimates made with 
the use of the new VP2/3 package, whose unparallelization codes are written in C++. In Table 1, the calculation data obtained 
by the methodology of [22, 28] and by the consistent methodology described in the present work are given. It should be noted 
that the numerical data presented in Fig. 2, which were obtained with the use of different versions of the VP2/3 package, are 
in good agreement. The marked deviation of the total number of iterations before the convergence of the solution obtained 
using the DELPHI version of the package VP2/3 from that obtained with the use of the C++ version is probably explained 
by the fact that the old VP2/3 package was developed for a 32-bit operating system. Moreover, in the new C++ version of 
this package, nonstructured meshes are used and, therefore, the upwind schemes of the second and higher orders can give 
different results on nonuniform meshes.

Fig. 2. Mesh of size 200 × 200 with a near-wall step of 10–3 (a), comparison of the 
trajectories of the errors in determining the longitudinal component of the fl ow velocity 
ErrU (Nit) and of the scaled error ErrUnr (Nit) (b), behavior of the pressure correction 
ErrP (Nit) (c), comparison of the integral force loads on the walls of the cavity Rx (Nit) 
(d), and dependences of the minimum stream function ψm (Nit) and the vortex at the 
center of the cavity Ω00 (Nit) on the parameter Nit (e): 1, 4, 5) DELPHI version of the 
VP2/3 package; 2, 3) C++ version of the VP2/3 package. The solutions at Re = 102 were 
used as initial approximations.
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An analysis of the behavior of the integral and local parameters Rx, ψm, and Ω00 has shown that the change in 
them at the initial stage of the convergence process is pulsating rather than monotonic in character within the fi rst thousand 
of iterations (Fig. 2d and e). In this case, the errors reach 10–4–10–3 and the integral force load is stabilized. However, at 
this stage, the solution of the problem is still far from completion and, in the subsequent 900 iterations, ψm monotonically 
increases and Ω00 at the center of the cavity gradually decreases and attains an asymptotic value.

The infl uence of the density of a multiblock mesh with a fairly small near-wall step (10–4) on the convergence of the 
iteration solution is illustrated in Fig. 3. It is seen that a change in the mesh density leads to a large change in the total number 
of iterations (by 10 times, from 2 to 20 ths) until the solution of the problem is completed. In this case, the number of cells in 
the cavity increases from 10 to 160 ths, i.e., by 16 times.

Comparison of the Results of Calculations of the Circulation Flow in a Square Cavity with the Use of Different-
Topology Meshes Including Composite Ones and Analysis of the Applicability of MCTs. Some results of our methodical 
investigation are presented in Figs. 3–9 and in Table 2.

Composite meshes were generated by imposition of uniform square and ring meshes on the nonuniform Cartesian 
meshes that are usually used in the calculations of a circulation fl ow of an incompressible viscous fl uid in a square cavity 
with a moving cover. The superimposed meshes were symmetrical relative to the walls of the cavity. In the case where an 
O-type mesh was used, a square "patch" with square cells was superimposed on the central zone. In principle, the use of a 
multiblock computational technology for solving the problem of fl ow in such a cavity is not seen as necessary, unlike the 
situation with multiconnected subregions where the usual approaches obviously cause complications and lead to a decrease 
in the accuracy of numerical estimations. However, in addition to the monitoring of the errors introduced by multiblock 
computational technologies in calculations and the comparison of the superimposed different-type meshes, it is useful to 
estimate the infl uence of them on the effi ciency of the calculations carried out with the use of moderate-resource computers. 
It is advantageous to use composite meshes with cells decreasing substantially as the wall of the cavity is approached (with 
a step of the order of 10–4 at high Reynolds numbers), which provides a proper resolution of the structural elements of the 
fl ow at a large distance from the cavity wall. Multiblock meshes, including nonstructured ones, are usually designed for 
representation of complex-geometry streamlined surfaces and the structure of the fl ow near the wall of a cavity without regard 

TABLE 1. Infl uence of the Step (the number of cells) of a Mesh at the Center of the Computational Region and the Near-
Wall Step on the Extremum Characteristics of the Circulation Flow in the Square Cavity with a Moving Cover at a Constant 
Reynolds Number of 103

N δm/δmax –ψm –um –vm vmax –103fm Ω00

200*** 10–3/0.142 0.1187 0.3895 0.6796 0.3816 4.049 2.056

200 ** 10–3/0.142 0.1188 0.3899 0.6797 0.3826 4.049 2.049

200 old** 10–3/0.142 0.1889 0.3900 0.6797 0.3827 4.221 2.050

200 del** 10–3/0.142 0.1188 0.3899 0.6797 0.3827 4.231 2.049

400*** 10–4/0.0121 0.1187 0.3897 0.6797 0.3820 4.066 –

400 ** 10–4/0.0121 0.1189 0.3902 0.6799 0.3828 4.122 2.051

400 10–4/0.0121 0.1188 0.3901 0.6799 0.3827 4.237 2.049

400*** 5·10–4/ 0.0071 0.1187 0.3895 0.6794 0.3816 4.059 2.063

400 ** 5·10–4/ 0.0071 0.1189 0.3903 0.6799 0.3828 4.059 2.059

400 ** 10–3/0.005 0.1189 0.3902 0.6797 0.3828 4.210 2.059

1000 10–3 0.1189 0.3903 0.6797 0.3828 4.214 2.065

Note. The errors in determining the fl ow-velocity components ErrUo is 10–7; *) ErrUo = 10–5; **) 32-bit system; old) C++ 
version (the calculation begins with Re = 100, Nit = 11,000); del)  DELPHI version (the calculation begins with Re = 100, 
Nit = 18,500).
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for the character of the fl ow at a large distance from the cavity wall where the sizes of the computational cells are comparable 
or exceed the characteristic scales of the fl ow elements. In the case where moderate multiblock meshes (Fig. 2) with a small 
near-wall step (10–4) are used, the size of the computational cell at the center of the cavity is extremely large to provide an 
exact representation of the core of the primary vortex. By this reason, it is necessary to cover this zone by an additional fi ne 
mesh of the H or O type, and the latter topology of the mesh agrees with the character of the circulation fl ow in the cavity. 
A systematic investigation should begin with the determination of the infl uence of the dimension of the inner square region 
divided by a square mesh with a step of 0.01 on the process being considered. The size of the superimposed mesh varies from 
0.4 to 0.95, and the external mesh consistent with the walls of the cavity contains 100 × 100 cells with a near-wall step of 
10–4. At the second stage of the investigation, emphasis should be laid on the variation of the density of the external mesh 
on condition that the size of the internal square mesh (0.95 × 0.95) divided into 100 × 100 square cells remains unchanged. 

Fig. 3. Different-density multiblock computational meshes of size 100 × 100 (a), 200 × 
200 (b), 300 × 300 (c), and 400 × 400 (d) with a constant near-wall step and convergence 
trajectories in the logarithmic (e) and linear (f) scales. The solutions at Re = 102 were 
used as initial approximations.
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Fig. 4. Convergence trajectories in the calculations with the use of composite meshes 
including a constant internal uniform 100 × 100 mesh covering the square region of size 
0.95 × 0.95 and internal meshes with N = 100 (1), 150 (2), 200 (3), and 250 (4). The 
solutions at Re = 102 were used as initial approximations.

TABLE 2. Infl uence of the Type of a Composite Mesh on the Extremum Characteristics of the Circulation Flow in the Square 
Cavity with a Moving Cover at a Constant Reynolds Number of 103

Basic 
mesh NN Additional mesh,

δm/ δmax
–ψm –um –vm vmax –103fm Ω00

Multiblock meshes

1 104 10–4/0.0615 0.1145 0.375 0.6797 0.3700 4.500 1.866

2 4·104 10–4/0.0278 0.1185 0.389 0.6798 0.3818 4.257 2.031

3 107 10–3 0.1189 0.3903 0.6797 0.3828 4.214 2.065

Composite O-type meshes

1 16,090
Ring 41 × 201 mesh

0.1170 0.3843 0.6799 0.3776 4.473 2.015

2 44,260 0.1181 0.3876 0.6799 0.3804 4.256 2.043

Composite H-type meshes 

1 16,612 90 × 90 mesh with a step 
of 0.01 0.1176 0.3865 0.6793 0.3789 4.363 2.041

2 42,160 95 × 95 mesh with a step 
of 0.01 0.1187 0.3892 0.6811 0.3823 4.142 2.064

1 11,716 50 × 50 mesh in the
region of size 0.8 × 0.8 0.1156 0.3793 0.6800 0.3720 4.416 1.995

1 18,732 100 × 100 mesh in the 
region of size 0.8 × 0.8 0.1158 0.3806 0.6795 0.3733 4.452 1.995

1 17,920 100 × 100 mesh in the 
region of size 0.95 × 0.95 0.1178 0.3871 0.6795 0.3795 4.254 2.048

2 46,716 100 × 100 mesh in the 
region of size 0.8 × 0.8 0.1181 0.3874 0.6798 0.3800 4.282 2.046
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At δm = 10–4, N changes from 100 to 250 with a step of 50. The trajectories of convergence of the calculation carried out 
with the use of such composite meshes (Fig. 4) differ insignifi cantly from each other (the number of iterations necessary for 
the convergence of the solution falls within the range 7–10 ths) even though the total number of the computational cells NN 
changes markedly (from 18 to 60 ths). The infl uence of NN of the composite and multiblock meshes on the local and integral 
characteristics of the fl ow in the square cavity is demonstrated in Fig. 5.

As NN increases, the minimum value of the stream function in the cavity, characterizing the fl ow rate of the fl uid 
involved in the large-scale vortex motion, gradually approaches the asymptotic level (Fig. 5a). It is apparent that composite 
meshes introduce systematic errors into the results of calculations due to the intermesh interpolation. The maximum error 
in determining ψm is of the order of 3.5% in the case where ψm changes nonmonotonically depending on NN (curve 2) with 
change in the size of the additional square mesh. At the same time, the use of a composite mesh including a square mesh 
of size 0.95 × 0.95 in the process of successive refi nement of the near-wall zone (curve 1) makes the solution more exact 
as compared to that obtained with the use of the basic multiblock mesh (curve 3). For comparison, Figure 5a presents the 

Fig. 5. Dependences of ψm (a), Ω00 (b), um (c), vm (d), vmax (e), and fm (f) on the total 
number of computational cells N × N: 1) multiblock meshes with δm = 10–4; 2) composite 
mesh including an external 100 × 100 mesh with δm = 10–4 and internal square meshes 
with δm = 10–2 and sizes changing from 0.4 to 0.9 with a step of 0.1; 3) composite mesh 
including a constant internal 100 × 100 mesh in the subregion of size 0.95 × 0.95 and an 
external mesh with N changing from 50 to 250 with a step of 50 cells at δm = 10–4; 4) data 
of [36]; 5) data of [20]. The dashed lines represent the asymptotic values obtained with 
the use of a uniform 103 × 103 mesh.
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solutions of the Navier–Stokes equations in the transformed variables [20, 36]. It should be noted that the most recent of 
them have been obtained with the use of fourth-order schemes and very fi ne meshes, and they are exceeded by the solutions 
obtained in the present work.

It follows from Fig. 5b that the estimates of Ω00 made with the use of moderate composite meshes are more exact 
than those obtained with the use of multiblock meshes. The maximum error in determining the maximum velocity of the 
backfl ow um with the use of a composite mesh including a variable square mesh (curve 2, Fig. 5c), equal to 7.5%, seems large 
too. However, the estimates made with the use of moderate-resource composite meshes including a constant subregion of size 

Fig. 6. Comparison of the zones Ω = 2 represented on the initial multiblock 100 × 100 
mesh with δm = 10–4 (a) and on the composite meshes including additional internal 
square meshes with δm = 10–2 and subregions of size 0.4 × 0.4 (b), 0.5 × 0.5 (c), 0.6 × 
0.6 (d), 0.7 × 0.7 (e), 0.8 × 0.8 (f), and 0.9 × 0.9 (g) and the zone Ω obtained using a 400 
× 400 mesh with δm = 10–4 (h).
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0.95 × 0.95 (curve 1) are more exact than those made with the use of an analogous multiblock mesh (curve 3). The accuracy 
of estimation of vm with the use of any mesh is acceptable (Fig. 5d), and the change in vmax with increase in NN (Fig. 5e) is 
analogous to the behavior of the dependence um (NN). The errors in determining the minimum friction at the bottom of the 
cavity with the use of composite meshes are of the same order or even somewhat smaller than those in the case of use of 
multiblock meshes (Fig. 5f); the maximum error is of the order of 5%.

The evolution of the zone Ω = 2 (Fig. 6) calculated with the use of multiblock and composite meshes explains 
well the reason for the nonmonotonic behavior of the errors in determining ψm, um, and vm in the case where the subregion 
occupied by the internal square mesh widens gradually. It is seen that the maximum errors are obtained in the case where the 
size of the subregion falls within the range 0.6–0.8 and the constant-vorticity spot is transformed into a protuberance.

Comparison of the friction distributions at the bottom of the cavity (Fig. 7), calculated with the use of composite 
meshes including superimposed meshes of the H and O types (1–4), a standard 400 × 400 mesh (the full line 5), and a basic 
multiblock 100 × 100 mesh (the dashed line 6) with δm = 10–4, shows that these distributions differ insignifi cantly from each 
other, even though the differences between the friction distributions at the central region of the cavity bottom are marked 
(Fig. 7b). The solutions obtained with the use of internal 50 × 50 (data 4) and 100 × 100 (data 3) square meshes including a 
subregion of size 0.8 × 0.8 agree well with the solution obtained with the use of a ring mesh (data 1). The solutions obtained 
for ψm with the use of meshes having close total numbers of cells NN are also in good agreement (approximately 0.116 and 
0.117, Table 2). Thus, the step of an internal mesh δ = 0.02 is entirely acceptable. It should be noted that the solutions obtained 
with the use of an internal 100 × 100 mesh including a subregion of size 0.95 × 0.95 are practically identical to the solutions 
obtained with a standard multiblock 400 × 400 mesh.

Fig. 7. Comparison of the friction distributions at the bottom of the cavity calculated 
using composite meshes including superimposed H- and O-type meshes (1–4), a standard 
400 × 400 mesh (the full line 5), and a standard multiblock 100 × 100 mesh (the dashed 
line 6) with δm = 10–4: 1) ring mesh with a patch; 2) square 100 × 100 mesh with a 
subregion of size 0.95 × 0.95; 3) square 100 × 100 mesh with a subregion of size 0.8 × 
0.8; 4) square 50 × 50 mesh with a subregion of size 0.8 × 0.8.
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The evolution of the zone Ω = 2 (Fig. 8) calculated with the use of the composite mesh including a constant square 
zone of size 0.95 × 0.95 and an external mesh with an increasing number of cells and δm = 10–4 shows that the core of constant 
vorticity is well estimated even with the use of an external 100 × 100 mesh. An entirely acceptable solution is obtained with 
the use of ring meshes too. Comparison of the local and integral characteristics of the fl ow being investigated, calculated with 
the use of different-topology composite meshes with approximately equal numbers of cells, show that these characteristics 
agree well.

When the friction distributions at the bottom of the cavity, calculated with the use of composite meshes including 
constant internal uniform meshes of the O and H type and nonuniform basic external meshes, are compared, it is apparent that 
they are estimated with an acceptable accuracy in the case where N ≥ 100 (Fig. 9). Note that the introduction of an internal 
100 × 100 square mesh covering the region of size 0.95 × 0.95 improves, by and large, the solution of the problem; however, 
as the external mesh is detailed beginning with N = 200, a small disagreement (curve 4) with the standard solution arises.

Fig. 8. Comparison of the zones Ω = 2 represented on the composite meshes including 
constant internal uniform H- and O-type meshes and varying external basic meshes with 
δm = 10–4: a) N = 50; b) N = 100; c) N = 150; d) N = 200 (a square 100 × 100 mesh covers 
the zone of size 0.95 × 0.95); e) N = 100; f) N = 200 (a ring mesh with a patch).
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The below conclusions on the applicability of multiblock computational technologies for solving problems of 
aerohydrodynamics and heat exchange were made on the basis of the analysis of the infl uence of the density of multiblock 
and composite meshes, the topology of the superimposed meshes, the linear interpolation, and different versions of the VP2/3 
package based on the SIMPLEC pressure-correction procedure on the solution of the test problem on the circulation fl ow of 
an incompressible viscous liquid in a square cavity with a moving cover.

CONCLUSIONS

1) The selection of the criterion ErrUo determining the completion of the iteration procedure infl uences the solution 
of the problem on the circulation fl ow of an incompressible viscous liquid in a square cavity with a moving cover. It has been 
established that the best value of this criterion is 10–7 and not 10–5 as it is usually taken.

2) Different versions of the VP2/3 package written in DELPHI and C++ give numerical estimations consistent in 
accuracy. The computational effi ciency of the consistent Rhie–Chow method is half that of the method realized with the use 
of the Rhie–Chow monotonizer in the explicit form with an empirically selected relaxation coeffi cient equal to 0.1.

3) The drag in a square cavity is stabilized in the nonmonotonic pulsed process approximately at the 1000th iteration, 
while the minimum stream function is attained and the vorticity is established at the center of the cavity during the additional 
9000 iterations.

4) The 16-fold increase in the number of cells in a nonuniform Cartesian mesh with a constant near-wall step of 10–4 
is accompanied by a 10-fold increase in the number of iterations until the computational process is converged.

5) A large increase in the total number of the computational cells in a composite mesh (from 18 to 60 ths) leads to a 
small increase in the number of iterations (from 7 to 10 ths).

Fig. 9. Comparison of the friction distributions at the bottom of the cavity calculated 
using composite meshes including constant internal uniform meshes of the H and O 
types  and varying external basic meshes with δm = 10 and N = 50 (1), 100 (2), 150 (3), 
200 (a square 100 × 100 mesh covers the zone of size 0.95 × 0.95 (4)), 200 (a ring mesh 
with a patch) (5), and 400 (a standard multiblock mesh) (a, b) and fragment of the fi rst-
mentioned graph (c).
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6) The calculations carried out with the use of a composite mesh including a superimposed H-type mesh, a variable 
square subregion of size 0.4–0.9, a square mesh with a step of 0.01, and a constant internal 100 × 100 mesh with a near-wall 
step of 10–4 give nonmonotonic dependences of the minimum stream function, the minimum longitudinal velocity of the 
fl ow, and the maximum vertical velocity of the fl ow on the total number of the computational cells in the cavity; however, 
the maximum errors of the MCT in determining the indicated parameters, equal to 3.5%, 7.5%, and 4.5%, respectively, seem 
acceptable because a coarse basic external mesh was used in the calculations.

Unlike the indicated meshes, composite meshes including a constant internal subregion of size 0.95 × 0.95 divided 
by a 100 × 100 square mesh and a variable external mesh with a number of cells from 50 × 50 to 250 × 250 and a near-wall 
step of 10–4 refi ne the solution of the problem considered as compared to that obtained on the basic meshes with increasing 
densities and, especially, on those with moderate numbers of cells. At the same time, the basic meshes containing more than 
200 cells give a small systematic error in determining the minimum friction at the bottom of the cavity.

7) The estimates made with the use of composite meshes of the H and O types with approximately equal numbers of 
computational cells are close in accuracy and computational effi ciency.

8) A comparison of the results of the calculations carried out with the use of composite meshes with the standard 
solutions obtained with the use of limiting multiblock 400 × 400 and 103 × 103 meshes has substantiated the acceptability of 
the linear interpolation in the multiblock computational technologies, which was determined earlier in [4, 5].

The authors express their thanks to Professors V. M. Goloviznin and P. N. Vabishchevich for the very useful discussion 
of the computational methodology.

This work was carried out with fi nancial support from the Russian Foundation for Basic Research (Projects Nos. 
08-01-00059 and 12-08-90001).

NOTATION

ErrU and ErrP, error in the longitudinal component of the fl ow velocity and pressure correction, in fractions of U 
and U2, respectively; ErrUnr, scaled error in the longitudinal component of the fl ow velocity, in fractions of U; f, friction at 
the lower wall of the square cavity, in fractions of U2; h, ratio between areas; L, size of a cavity face, m; N, number of cells 
on the cavity face; NN, total number of computational cells in the cavity; Nit, number of iteration steps necessary for the 
convergence of the computational process; P, radius-vector determining the position of a point; Re = UL/ν, Reynolds number; 
S, area, in fractions of L2; U, velocity of movement of the upper cover, m/s; u and v, longitudinal and transverse velocities 
of the fl ow, in fractions of U; x and z, longitudinal and transversal coordinates, in fractions of L; Rx, total longitudinal force 
acting on the walls of the cavity, in fractions of U2 and L; V, variable at the mesh nodes; ν, kinematic viscosity coeffi cient, 
m2/s; Ω00, vorticity at the center of the cavity, in fractions of U/L; δ, size of the mesh step, in fractions of L; ψ, stream 
function, in fractions of U and L. Subscripts: i, number of a mesh node; 0, minimum error in the completion of the iteration 
process; m, minimum; max, maximum.
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