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The governing equations for a transversely isotropic rotating magnetothermoelastic medium are solved, giving
a cubic velocity equation, which is indicative of three plane waves. Some limiting cases are considered: in the
absence of anisotropy, rotation, and thermal and magnetic effects. The effects of the anisotropy, rotation, ther-
mal and magnetic parameters on the speeds of plane waves are shown graphically.

Keywords: anisotropic thermoelasticity, rotation, magnetic field, plane waves.

Introduction. Schoenberg and Censor [1] studied the effect of rotation on the plane wave propagation in an
isotropic medium. They considered the propagation of three plane waves in a rotating isotropic medium. According to
their results, a longitudinal or transverse wave can exist only if the direction of propagation and the axis of rotation
are either parallel or perpendicular. The wave propagation in a transversely isotropic solid has been studied in [2–8].
The effect of rotation does not increase the number of waves in a transversely isotropic medium, but significantly af-
fects their speeds. Chandrasekharajah and Srinath [9, 10] have studied thermoelastic plane waves in a rotating isotropic
solid. Ahmad and Khan [11] have discussed the theory of thermoelastic plane waves in a rotating isotropic material
and have shown the existence of four waves in the medium. None of these waves is dilatational or transverse in char-
acter, unless the special propagation directions are considered. Problems on the propagation of waves in rotating iso-
tropic and anisotropic bodies with electric, magnetic, and thermal effects have been studied in [12–16]. In the present
paper, the Lord and Shulman theory of generalized thermoelasticity [17] is applied to study the propagation of plane
waves in a transversely isotropic rotating magnetothermoelastic medium.

Formulation of the Problem and Its Solution. We consider an infinite, homogeneous, transversely isotropic,
thermally and electrically conducting elastic medium with the reference temperature T0 under the action of a primary

magnetic field with the magnetic induction B0. The medium is uniformly rotating with an angular velocity � = Ωn,
where n is the unit vector in the direction of the axis of rotation. The displacement equation in a rotating frame of
reference includes two additional terms corresponding to the centripetal acceleration due to only time-varying motion
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a way that the planes of isotropy are perpendicular to the z axis. The origin of the frame is located on the plane sur-

face, and the z axis is directed normally into the medium which is thus represented by z ≥ 0. We restrict our analysis
to the plane strain parallel to the xz plane with the displacement vector  u = (u, 0, w) and temperature T(x, z, t). We

also assume that the half-space is rotating about the y axis with the angular velocity � = (0, Ω, 0). We consider the
time-dependent dynamic solutions and the time-independent part of the centripetal acceleration, and all the body forces
are neglected, except for the time-dependent part of the electromagnetic body force. Then, the displacement equations
in an elastic solid with increase in the temperature T above the reference temperature T0 are
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where B = μeH. We set H = H0 + h(x, z, t), where H0 = (0, H0, 0) is the constant primary magnetic field strength.
The perturbation of the magnetic field h is so small that the product of h, u, and their derivatives can be neglected
in linearizing the field equations.

Following Lord and Shulman [17], we write the heat conduction equation as
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where τ0 is a short time required to establish a steady-state heat conduction when a temperature gradient is suddenly
produced in a solid. This time is called the thermal relaxation time.

The electromagnetic field is governed by the Maxwell’s equations in the absence of the displacement current
and charge density [18]:

curl h = J ,   curl E = − μe 
∂h
∂t

 ,   div h = 0 ,   div E = 0 , (4)

where h = curl (u × H0). The generalized Ohm’s law is
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where the small effect of the temperature gradient on the conduction current J is neglected. With the help of Eqs. (4)
and (5), Eqs. (1) and (2) become
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To solve Eqs. (3), (6), and (7), we assume

�u, w, T� = �A, B, C� exp �ik (x sin θ + z cos θ − vt)� , (8)

Using Eq. (8), we obtain from Eqs. (3), (6), and (7) the following set of three homogeneous equations for A, B, and C:
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where
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For the existence of a nontrivial solution of Eqs. (9)–(11), the determinant of the coefficients at A, B, and C must be
equal to zero, i.e.,
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which presents a cubic equation relative to ζ:
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The real parts of the three roots of Eq. (12) correspond to the speeds of propagation of the qP, qSV, and qT plane
waves.

Limiting Cases. (i) In the absence of thermal effects, i.e., at ε = 0, K1 = K3 = 0, and D5 = 0, Eq. (12) re-
duces to
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The two roots of quadratic equation (13) correspond to the speeds of the qP and qSV waves in a rotating transversely
isotropic magnetoelastic medium.

(ii) For the isotropic thermoelastic case, we have
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β1 = β3 = β ,   β
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The three roots of cubic equation (14) correspond to the speeds of the qP, qSV, and qT waves in a rotating isotropic
magnetothermoelastic medium.

(iii) In the absence of rotation and magnetic effects, i.e., at H0 = 0 and Ω = 0, Eq. (12) reduces to
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The three roots of cubic equation (15) correspond to the speeds of the qP, qSV, and qT waves in a trans-
versely isotropic thermoelastic medium.

Numerical Results and Discussion. To compute the speeds of the plane waves, the following relevant elastic
and thermal constants are used [7]:

ρ = 7.14⋅10
3
 kg⋅m−3

 ,   c11 = 1.628⋅10
9
 N⋅m−2

 ,   c33 = 1.562⋅10
9
 N⋅m−2

 ,

c13 = 0.385⋅10
9
 N⋅m−2

 ,   c44 = 0.6215⋅10
9
 N⋅m−2

 ,   β1 = 5.75⋅10
6
 N⋅m−2⋅deg
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β3 = 5.17⋅10
6
 N⋅m−2⋅deg

−1
 ,   K1 = 1.24⋅10

2
 W⋅m−1⋅deg
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 ,   K3 = 1.34⋅10

2
 W⋅m−1⋅deg

−1
 ,
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CE = 3.9⋅10
2
 J⋅kg

−1⋅deg
−1

 ,   T0 = 296 K ,   τ0 = 0.05⋅10
−12

 s .

With the help of a Fortran program, the absolute values of the real speeds of various plane waves are computed
versus the angle of propagation and magnetic parameter. These variations in the speeds of the plane waves are
shown in Figs. 1–3.

The speed of the qP wave increases from a minimum value of 1.6⋅103 m/s at θ = 0o to a maximum value of
1.735⋅103 m/s at θ = 90o (Fig. 1a), whereas the speed of the qSV wave decreases from 0.327⋅103 m/s at θ = 0o to
0.292⋅103 m/s at θ = 90o (Fig. 1b). As to the qT wave, its maximum speed is equal to 0.0549⋅103 m/s at θ = 0o and
90o, and the minimum speed — to 0.05395⋅103 m/s at θ = 45o (Fig. 1c). In the absence of thermal effects, the cor-

Fig. 2. Variations of the speeds of the qP and qSV waves with the angle of

propagation in the absence of thermal effects at H0 = 10 A/m and 
Ω
ω

 = 5.

Fig. 1. Variations of the speeds of the qP (a), qSV (b), and qT (c) waves with

the angle of propagation at H0 = 10 A/m and 
Ω
ω

 = 5.
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responding curves in Fig. 1 reduce to the curves in Fig. 2, where the qT wave disappears and the speeds of the qP
and qSV waves increase with the angle of propagation.

The speeds of the qP, qT, and qSV waves are also computed against the magnetic parameter H0 for different
angles of propagation and three different values of the rotation parameter. As seen from Fig. 3, the speeds of the qP
(Fig. 3a) and qSV (Fig. 3b) waves increase with the magnetic parameter, whereas the changes in the speed of the qT
waves are insignificant (Fig. 3c). It is evident from the figure that an increase in the value of the rotation parameter
leads to a decrease in the speed of each of the waves. It should be mentioned that the value of the angle θ slightly
affects the values v(H0), so that we present this dependence only for θ = 30o.

Conclusions. The solutions for plane waves in a transversely isotropic rotating magnetothermoelastic medium
show the existence of three waves, namely, the qP, qT, and qSV ones. The speeds of these waves change significantly
with the angle of propagation, as well as with the transverse anisotropy, thermal, magnetic, and rotation parameters.

NOTATION

B, magnetic induction; cij, elastic constants; CE, specific heat at constant strain; E, electric field strength; H,
magnetic field strength; h, perturbation of magnetic field strength; J, current; K1, K3, thermal conductivities; k, wave
number; n, unit vector; T, temperature; T0, reference temperature; t, time; u, displacement vector; u, w, components of
the displacement vector; v, wave speed; x, y, z, coordinates; β1, β3, thermal coefficients; θ, angle of propagation meas-
ured from the normal to the half-space; λ, μ, Lame’s constants; μe, magnetic permeability; ρ, density; σ, electrical
conductivity; τ0, relaxation time; Ω, angular velocity; ω, circular frequency.
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