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A common solution of the equations of ablation and motion of a droplet undergoing fragmentation in a ho-
mogeneous high-speed gas stream is obtained. Based on the approximate solution of the equation for the
quantity of torn off droplets, an expression for the droplet size distribution function corresponding to these
laws has been found. A comparison of the results of calculations carried out for the obtained distribution
function with the same calculations for the earlier found function with the use of the empirical law of droplet
motion points to their satisfactory agreement.
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Introduction. In [1, 2], basic equations of the kinetics of the fragmentation of droplets in high-speed gas
streams were derived. With some simplifying assumptions, the law of variation of the mass of a fragmenting droplet
m(t) (law of ablation) and the differential size distribution function of the quantity of torn off droplets fn(r) were ob-
tained. The investigation showed that the kinetic laws of fragmentation are substantially influenced by the law of mo-
tion of a droplet in a stream which assigns the change of the factor basic for dispersion, namely, the relative velocity
of the gas and droplet V∞ − w(t). The derivation of the mentioned relations was based on the use, as the law of droplet
motion xdr(t), of dependences that approximate experimental data. In this case, despite the rather good quantitative rep-
resentation, the possibility of their functional form to influence the result obtained arises. At the same time, the experi-
mental database does not contain sufficient information on the dependence xdr(t) for the entire set of investigated
gas–droplet systems with their diverse physicomechanical properties. The determination of the dependence xdr(t) for a
fragmenting droplet by theoretical methods is complicated by the substantial influence, on the law of its motion, of the
laws governing the deformation and ablation, which leads to the necessity of simultaneous solution of the equations for
these three processes. We are not aware of attempts at compiling and finding an analytical solution of such a system
of nonlinear differential equations, whereas an analysis of a numerical solution would have been difficult because of
the multiparameter nature of the problem. At the same time, mathematical simulation of the processes of heat and
mass transfer in the spray of a fragmenting droplet, while being of primary importance for investigating such phenom-
ena as heterogeneous detonation, flows of two-phase mixtures in jet engines, and others, requires the finding of the
size distribution function of all torn off droplets and its time–space evolution in the aerodynamic wake of the droplet.
In the present work, disregarding the influence of droplet deformation, we obtain analytically the basic laws governing
the kinetics of fragmentation as solutions of a system of differential equations of ablation, droplet motion, and of the
quantity of daughter droplets.

Simultaneous equations of deformation and motion of a droplet that apply to high-speed flows and that take
into account the mass loss were derived in [3], but they presuppose the a priori assignment of the law of mass vari-
ation m(t). In [4], with application of the method of asymptotic expansions, a joint solution of the equations of defor-
mation and motion was obtained; however, the ablation, which exerts a substantial effect on both processes, was not
taken into account. Most often, the deformation of a droplet was considered for low-intensity disintegration regimes
("collapse," "parachute," "claviform"), in particular, in determining the value of the Weber number which is critical for
the existence of fragmentation [5, 6], when deformation can attain the values d � (3–4)d0. Experimental investigations
with application of an X-ray apparatus showed [7] that in high-speed flows, where dispersion is intense (following the
"peeling" type), deformation plays a minor role, since it does not exceed the values d ≤ 2d0.
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Law of Ablation of a Droplet Moving under the Action of Aerodynamic Head of the Flow. We write the
equation of motion of the spherical droplet mass center under the action of the force of aerodynamic head of a homo-
geneous gas stream:

 ρliq 
4

3
 πR

3
 (t) 

dw

dt
 = CdπR

2
 (t) 

ρg (V∞ − w (t))2

2
 .

(1)

Passing to dimensionless variables, together with the equation of mass entrainment derived in [1] for a spherical drop-
let (M = R

~3), we obtain the system

dW

dτ
 = C 

(1 − W)2

R
~  ,

dM
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dτ
 = 

dR
~

dτ
 = − 

A
3

 (1 − W) ,

(2)

where A is the characteristic (initial) velocity of mass entrainment, C = 0.75√⎯⎯α  Cd. Excluding the velocity from Eq. (2), we

obtain a differential equation of second order for the droplet radius: R
~..

 = 
R
~. 2

hR
~, where h � 

A
3C

 is the parameter that char-

acterizes the ratio of the rates of the processes to for fragmentation — dispersion and relaxation equalization of the
gas and droplet velocities [1] — the dot signifying differentiation with respect to τ. The solution of this equation with

the initial conditions R
~

 = 1, R
~.

 = − 
A
3

 at h = 1 has an exponential form: R
~

 = exp 
⎛
⎜
⎝
− 

Aτ
3

⎞
⎟
⎠
 ; then Eq. (2) yields 1 − W

= exp (−Cτ). Therefore, in the case of h = 1 and equality of the rates of the progress of the indicated processes, the
laws of the motion of a droplet and of the entrainment of its mass, and, consequently, the size distribution function of
droplets coincide identically with analogous ones obtained in [1] with the use of the empirical relaxation law of drop-
let motion.

At h ≠ 1, integration of (2) with the initial conditions R
~

(0) = 1 and W(0) = 0 leads to the exponential de-
pendences:

R
~

 (τ) = (1 − C (h − 1) τ)h ⁄ (h−1)
 ,   W (τ) = 1 − (1 − C (h − 1) τ)1 ⁄ (h−1)

 . (3)

Relations (3) are applicable up to the moment of cessation of dispersion τdis, when, as follows from the expression
obtained below for τdis, the remainder of the droplet is small.

Figure 1 presents the functions M(τ) (curves 1), W(τ) (curves 2), and R
~

(τ) (curves 3) calculated at h = 1.5 for
identical initial accelerations of the droplet C = H from Eqs. (3) and from the corresponding equations (12) obtained

Fig. 1. Functions M(τ) (curves 1), W(τ) (curves 2), and R
~

(τ) (curves 3) at h =
1.5. Solid curves, dependences (3) and dashed curves — (12) from [1].
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in [1]. A comparison shows that the higher acceleration of the droplet in the first case gradually leads to the slowing
down of mass entrainment, which exerts its influence on the function R

~
(τ) only at the final stage of fragmentation,

when the size and mass of the droplet residue are small.
Distribution Function. It is of interest to find the size distribution function of the quantity of daughter drop-

lets fn(r~) for the case where the mass entrainment and the motion of a droplet obey the laws (3) and to compare this
function with the analogous one obtained in [2] for the empirical law of motion of the form W = 1 − exp(−Hτ). We
write the equations for the quantity of torn off droplets n and their radii r~ that were derived in [1]:

n
.
′ = B1

3
B2 

R
~2

 (τ) (1 − W (τ))

r~
3  sin

2
 ϕ ,   B1 = 

4.4πkrα
1−2ξ

Δm (Weint)√⎯⎯⎯⎯⎯2Re∞

 , (4)

r~ (ϕ, τ) = B1T (τ) Ψ (ϕ) ,   T (τ) = √⎯⎯⎯⎯R
~

 (τ)

1 − W (τ)
 ,   B2 = 

0.21Δm
2

 (Weint) Im zm (Weint)√⎯⎯⎯⎯2Re∞
3

πkrktα
3.5(1−2ξ)

 (1 + αξ)
 , (5)

where B1 and B2 are the parameters having the meaning of the characteristic scales of dimensions and of the quantity

of daughter droplets, respectively; the prime means differentiation with respect to ϕ. The quantity of droplets contained
in the elementary fraction Δr~ is found by integration of Eq. (4) in the band of width Δr~(ϕ, τ) that surrounds the line
r~(ϕ, τ) = const on the plane (ϕ, τ). Under the conditions of intense dispersion, when the values of the gradient insta-
bility criterion considerably exceed the critical value, GN >> GNcr � 0.3, we may consider that the wave number Δm

and the increment of increase in the amplitude of dominant unstable perturbation Im(zm) are constant over the greater

part of the droplet surface; then B1, B2 � const [1]. Multiplying Eq. (4) by Δϕ and by Δτ = 
Δr~

B1T
.
(τ)Ψ(ϕ)

 obtained

from Eq. (5) by differentiation at ϕ = const and B1 = const and integrating  over ϕ along the line r~(ϕ, τ) = const

with the use of Eq. (5), we obtain

Δn = 
6hB1

3
B2

A (h − 1) r~4 ∫ 
ϕlow

ϕup

(1 − C (h − 1) τ (ϕ))η
 sin

2
 ϕ dϕ Δr~ , (6)

where η = 
3h

h − 1
, whereas ϕlow(r~) and ϕup(r~) are selected different for the regions A and B that form the basic and

additional ranges of the distribution of daughter droplets [2]. By virtue of the function τ(ϕ) along the line r~(ϕ, τ) =
const following from Eq. (5), the integral in Eq. (6) can be calculated only approximately. Similarly to the approxima-

tion technique applied in [2], we approximate the integration path τ = τ(ϕ) by the straight line τ − τlow = 
ϕ − ϕlow

aef

with a certain effective value aef(r
~) of its inclination to the axis τ. In Eq. (6) under the sine sign we pass to a double

angle and avail ourselves of the tabulated integral [8] taking place for natural η’s:

∫ Pη (ϕ) cos 2ϕ dϕ = 
sin 2ϕ

2
  ∑ 

k=0

E(η ⁄ 2)

 (− 1)k
 
Pη

(2k)
 (ϕ)

2
2k

 + 
cos 2ϕ

2
       ∑ 

k=1

E((η+1) ⁄ 2)

     (− 1)k−1
 
Pη

(2k−1)
 (ϕ)

2
2k−1

 � Fη (ϕ) ,

where Pη(ϕ) = (b + cϕ)η, Pη
(k)

 is its kth derivative, b = 1 − C(h − 1)
⎛
⎜
⎝
τlow − 

ϕlow

aef

⎞
⎟
⎠
 , c = − 

C(h − 1)
aef

, and E(η) is the in-

tegral part of η. Then, for the differential distribution function we obtain
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 fn (r~) = 
Δn

Δr~
 = 

3hB1
3
B2

A (h − 1) r~ 4 
⎡
⎢
⎣

1

c (η + 1)
 Pη+1 (ϕ) − Fη (ϕ)

⎤
⎥
⎦ϕlow

ϕup

 . (7)

The dependence on r~ within the squared brackets consists of the values b(r~), c(r~), ϕlow(r~), and ϕup(r~) and is attribut-
able to their dependence on aef(r

~).

A number of discrete values of h, 1 < h = 
η

η − 3
 ≤ 4, correspond to the natural values of η > 3. For integer-

valued η < 0 we obtain a number of values of h belonging to he interval 0.25 ≤ h < 1 of incomplete fragmentation re-
gimes; in this case the integral in (6) is expressed via the integral sine and cosine [8]. The indicated set of values of

η rather completely covers the entire practically important range of the values of h.
The principle of the determination of aef(h, r~) remains unchanged and at h > 1 leads to the same equation for

the region A on the plane (ϕ, τ) that forms the basic range, just as in the case of the empirical law of droplet motion
in [2]:

aef = 

⎛
⎜
⎝
h − 1 + 

1

h
2 + 

k (2h − 1)√⎯⎯⎯⎯⎯⎯⎯⏐h − 1⏐

h
2

⎞
⎟
⎠
 aavalow

(h − 1) alow + 
aav

h
2  + 

(aav + alow)√⎯⎯⎯⎯⎯⎯⎯⏐h − 1⏐

h

(8)

with the value of k = 1.08. In the region B, where in the later stage of fragmentation finely divided fractions are
formed, the dependence is somewhat different: 

aef = 
(k1h + k2) aavalow

halow + aav
 .

(9)

The difference is due to the changes in the droplet acceleration and correspondingly in the kinetics of mass entrain-
ment in the later stage, as shown in Fig. 1; the values k1 = 1.133 and k2 = 0.867 for h > 1 remain unchanged.

For  more pr actically inter esting r egimes of complete fr agmentation at h > 1 Eq. (7) is simplified at the

upper  limit ϕup = 
π
2

, where sin ϕup = 0, cos ϕup = −1, and at the lower limit for the basic range, where τlow = 0 and

Pη = (ϕ0) = 1. The following are the final formulas for f(r~) at h = 1.50 (η = 9) in the region A:

fn (r~) = 
3hB1

3
B2

2A (h − 1) r~ 4 
⎡
⎢
⎣

⎢
⎢
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⎛
⎜
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9

2
 cA1

8
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3
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6
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2
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5
A1

4
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2
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7
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2
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4
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⎟
⎠
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⎛
⎜
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9

2
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3
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2
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5
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2
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7
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4
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9⎞
⎟
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⎛
⎜
⎝
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2
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4
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6
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2
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⎟
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 sin 2ϕlow

⎤
⎥
⎦
 , (10)

here A1 = 1 + c
⎛
⎜
⎝
π
2

 − ϕ0
⎞
⎟
⎠
, and in the region B:

fn (r~) = 
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3
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⎢
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⎛
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⎟
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− 
⎛
⎜
⎝
A3

9
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2
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7
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4
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5
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6
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3
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2
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8
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⎞
⎟
⎠
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⎤
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⎦
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Here A2 = 1 + c
⎛
⎜
⎝
τ1aef + 

π
2

 − ϕ1
⎞
⎟
⎠
, A3 = 1 + cτ1aef, ϕ1 = ϕ1(τ) is the equation of the left boundary of the dispersion

region [2]. In conformity with the general procedure, τlow = τ1 in the region B is defined as the moment of the

intersection of the lines ϕ1(τ) and r~(ϕ, τ) = const and can be found from the system of equations (5)–(6) of [2].

Similarly to [2], Eq. (7) can yield formulas for the intermediate distribution of droplets torn off up to
the arbitrary moment τc; for this purpose, it is necessary to assume that ϕup = ϕup(τc).

Using Eqs. (7)–(11), we calculated the distributions for the values h = 1.5, h = 2.0, and h = 4.0. Figure
2 presents the size distributions of all torn off droplets Δn(r~), calculated in conformity with the two techniques
discussed in the present work, of determining the law of droplet motion. A comparison shows good agreement,
whereas an insignificant discrepancy in the range of finely dispersed fractions is explained by the above-men-
tioned difference in the relative velocity 1 − W in the late stage, when the finely dispersed fractions are just
formed at h > 1 [2].

The moment τdis is determined from the condition of disappearance of the dispersion region ϕ1(τdis) =

π
2

 [2], which leads to the equation R
~

(τdis)(1 − W(τdis))
3 = 

⎛
⎜
⎝
7.9⋅10−4(1 + (αμ)1 ⁄ 3)2

αGN

⎞
⎟
⎠

2

 � Z. Using Eq. (3), we obtain

τdis = 
3h

A (h − 1)
 ⎛⎝1 − Z

 (h−1) ⁄ (h+3)⎞
⎠ .

(12)

From Eq. (4), integrating over the entire region ϕ10 < ϕ ≤ 
π
2

, 0 < τ < τdis, we find the upper estimate for the

total number N = ∑ 
Δr~=0

r~0int

Δn  of  torn off droplets:

N � B2  ∫ 
0

τdis

 √⎯⎯⎯⎯⎯⎯⎯⎯⎯R
~

 (1 − W (τ))5
  ∫ 
ϕ10

π ⁄ 2

 
sin

2
 ϕ

Ψ3
 (ϕ)

 dϕ dτ , (13)

Here ϕ10 = ϕ1(0). Using the approximation of the function Ψ3(ϕ) = 
⎛
⎜
⎝

13.59 sin2ϕ
sin2(1.53ϕ)

⎞
⎟
⎠
 proposed in [2] and Eqs. (3), we find

Fig. 2. Distribution of the quantity of torn off droplets Δn(r~) calculated at h =
1.5 from Eqs. (7)–(9) (1) and from Eqs. (4)–(8) of [2] (2). The vertical straight
lines, the limits of the basic range r~0left = 3.43⋅10−3, r~0right = 5.87⋅10−3.
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 N � 0.047 
2hB2

A (h + 1)
 ⎛⎝1 − Z

3(h+1) ⁄ 2(h+3)⎞
⎠ ⎛

⎝
1.45 − 0.76ϕ10 + 0.25 sin (3.05ϕ10)⎞

⎠
 . (14)

At h = 1 Eq. (14) practically coincides with the analogous one obtained in [1] for the case h = 1.
The value of Z is small, and at GN >> GNcr � 0.3 it is negligibly small, allowing one to simplify Eqs. (12)

and (14). It should be noted that at GN > 3 the quantity Z can be expressed only via the initial position of the critical
point on the droplet surface: Z � 0.34ϕ

10
4 .

Conclusions. The investigation carried out has shown that the two techniques determining the law of droplet
motion, based on the empirical and theoretical methods, result in close distribution functions. The absence of a com-
plete, at least to some extent, experimental database on the functions xdr(t) noted in the Introduction allows one to pre-
fer those obtained in the present work by solving a system of differential equations of motion, ablation, and of the
number of torn off droplets to approximate theoretical formulas for the distribution function which can be used for
various combinations of the physicomechanical properties of gas–droplets systems. These equations allow one to find
all the main statistical characteristics of the nonstationary spray of a droplet required for constructing its mathematical
model and describing the kinetics of subsequent processes of evaporation of the whole set of torn off droplets, con-
vection of vapors, and mixture formation in the aerodynamic wake of a fragmenting droplet.

NOTATION

A, B, characteristic regions on the plane of events (ϕ, τ) [2]; A, dimensionless initial velocity of mass en-
trainment [1]; A1, A2, A3, auxiliary parameters; aef(r

~), effective value of the inclination of the curve r~(ϕ, τ) = const;
b, c, formal parameters; B1, B2, dimensionless parameters; C, characteristic dimensionless acceleration of a droplet;
Cd, coefficient of aerodynamic resistance; d, droplet deformation; fn, differential size distribution function of a droplet;
GN � We∞

 ⁄ √⎯⎯⎯⎯Re∞ , criterion of the appearance of gradient instability on the droplet surface; H, dimensionless accelera-
tion [1]; Im(zm), increment of the growth of the amplitude of a dominating perturbation; kr, kt, proportionality factors
[1]; m, mass of a droplet; M = m ⁄ m0; n, quantity of daughter droplets; N, total number of droplets; n

. ′, rate of pro-
duction of droplets on an elementary area of the droplet surface; R0, initial radius of a droplet; R, current radius of a
droplet; R

~
 = R ⁄ R0; r, radius of a torn off droplet; r~ = r ⁄ R0; r~0left, r~0right, left and right boundaries of the basic range

of distribution; Re∞ = ρgV∞2R0
 ⁄ μg, Reynolds number for a paternal droplet; T(τ), dimensionless function; t, time;

tdis, time of dispersion cessation; tch = 2R0
 ⁄ √⎯⎯α  V∞, characteristic time of the process; V∞, gas flow velocity; w, drop-

let velocity; W = w ⁄ V∞; We∞ = ρgV∞
2 2R0

 ⁄ σ, Weber number for a paternal droplet; Weint = ρgV∞
2 2R0

 ⁄ σ, "surface"
Weber number [1]; xdr, displacement of a droplet; Z, auxiliary parameter; z, unstable root of the characteristic equation
for perturbations; α = ρg

 ⁄ ρliq, density ratio; Δm � kmδliq, dimensionless wave number; Δn, number of torn off droplets
in an elementary range; Δr, δliq, boundary layer thickness in a liquid; η = 3h ⁄ (h − 1), parameter ; μg,liq, dynamic coef-
ficients of the viscosity of media; μ = μg

 ⁄ μliq; ξ = logα(αμ)1 ⁄ 3, parameter; ρ, density; σ, surface tension coefficient;
τ = t ⁄ tch, dimensionless time; τc, current moment of time; ϕ = polar angle under which the elementary area is seen
form the droplet center; ϕ1 = ϕ1(τ), equation of the left boundary of the region of dispersion [2]; Ψ(ϕ)
� √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(6ϕ − 4sin 2ϕ + 0.5sin 4ϕ) ⁄ sin5ϕ . Indices: av, average; c, current moment; ch, characteristic; cr, critical conditions;
d, aerodynamic resistance; dis, dispersal; dr, parental droplet; ef, effective; g, gas parameters; int, value on the gas–liq-
uid interface surface; liq, parameters of a liquid; low, lower limit of integration; m, parameter of dominating perturba-
tion; r, radius; t, time; up, upper limit of integration; 0, initial; ∞, values of parameters of an incoming flow.

REFERENCES

1. A. G. Girin, Equations of the kinetics of droplet fragmentation in a high-speed gas flow, Inzh.-Fiz. Zh., 84, No.
2, 248–254 (2011).

2. A. G. Girin, Distribution of dispersed droplets in fragmentation of the drop in a high-velocity gas flow, Inzh.-
Fiz. Zh., 84, No. 4, 805–812 (2011).

3. V. V. Mitrofanov, Equation of liquid droplet deformation in a gas flow behind a shock wave, in: Dynamic
Problems of Continuum Mechanics, Issue 39, 76–87, Novosibirsk (1979).

1014



4. G. A. Simons, Acceleration and deformation of a droplet, Raketn. Tekh. Kosmonavt. ,  14, No. 2, 178–180
(1976).

5. K. A. Gordin, A. G. Istratov, and V. B. Librovich, Concerning the kinetics of liquid droplet deformation and
disintegration in a gas flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 8–16 (1969).

6. M. S. Volynskii and A. S. Lipatov, Deformation and disintegration of liquid droplets in a gas flow, Inzh.-Fiz.
Zh., 18, No. 5, 838–843 (1970).  

7. W. G. Reinecke and G. D. Waldman, Shock layer shattering of cloud drops in reentry flight, AIAA Paper,
No. 152 (1975).

8. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Mos-
cow (1971).

1015


	Abstract
	Introduction
	Law of Ablation of a Droplet Moving under the Action of Aerodynamic Head of the Flow
	Distribution Function
	Conclusions
	NOTATION
	REFERENCES

