
SOLUTION OF PHASE-TRANSFORMATION PROBLEMS
BY THE METHOD OF EXTENSION OF BOUNDARIES

A. D. Chernyshov UDC 536.539.517.946

The efficiency of the analytical method of extension of boundaries is shown using phase transformations as an
example. The initial problem is replaced by an auxiliary one where rectangular regions with known eigen-
functions and eigenvalues are made to correspond to curvilinear regions with moving boundaries of each
phase. This enables us to represent the solution by expansions in improved Fourier series differing from the
classical ones by an increased convergence rate. Finally, the problem is reduced to a small number of differ-
ential equations of first order in time.
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Introduction. Versions of moving-boundary problems are problems on phase transformations [1]. Such prob-
lems are difficult to mathematically analyze, since not only the temperatures in both phases are unknown (i.e., two un-
knowns now, not one) but the curvilinear moving boundary Γ ∗ separating the phase regions Ω1 and Ω2, at which the
boundary conditions due to the phase transition must be fulfilled, is also unknown. The most substantial results in this
field have been obtained in G. A. Grinberg and E′. M. Kartashov’s works, reviewed in sufficient detail in [2]. Several
exact solutions of multidimensional single-phase Stefan problems have been obtained in [3].

Formulation of the Problem and Its Solution. For simplicity we consider a plane problem in variables (x, y),
although the method can be applied analogously to spatial problems with phase transformations. The case where the
entire material is in the state of just the 1st phase and the 2nd phase begins to be initiated under certain condition will
not be considered here. Consequently, from the very beginning of the process of phase transformation, both phases of
the given material are in the simply connected region Ω.

We prescribe the law of motion of the boundary Γ of the region Ω in parametric form

Γ � x = xΓ (t, θ) ,   y = yΓ (t, θ) ,   0 ≤ θ ≤ 2θ0 ,   

[xΓ (t, θ), yΓ (t, θ)] � C
(1)

 (0 ≤ t ≤ t0, 0 ≤ θ ≤ 2θ0) .
(1)

We will assume that as the parameter θ varies within [0, θ0], the point (xΓ, yΓ) traces the entire boundary Γ, and for
θ � [θ0, 2θ0], it traces it for the second time. The boundaries Γ1 and Γ2 can be both moving and stationary, which
is determined by prescribing dependences (1). The entire region Ω is separated here into two simply connected parts
Ω1(t) and Ω2(t) corresponding to the 1st and 2nd phases (see Fig. 1). The boundary Γ of the region Ω consists of the
parts Γ1 and Γ2. The regions Ω1 and Ω2 are separated by an unknown moving phase-transformation boundary Γ ∗(t),
which intersects Γ at two points Au

∗ (xau
∗ , yau

∗ ) (u = 1 and 2) whose coordinates are unknown, too. To find them we
write the equation of the Γ ∗ curve for an arbitrary t and its initial position at t = 0:

Γ∗ (t) � y = f
∗(t, x) ,   Γ∗⏐t=0 � y = f0

∗
 (x) ,   [f

∗
, f0
∗] � C

(1)
 (0 ≤ t ≤ t0, xa1

∗
 ≤ x ≤ xa2

∗ ) , (2)

where f ∗(t, x) is the unknown function and f0
 ∗(t, x) is the prescribed function as the initial position of the phase

boundary Γ ∗ at t = 0. The boundaries Γ1 and Γ2 unite at two points Au
∗ whose coordinates can be determined from

the condition of intersection of the Γ and Γ ∗ curves. Substituting xΓ and yΓ from (1) into (2), we obtain

Journal of Engineering Physics and Thermophysics, Vol. 82, No. 3, 2009

Voronezh State Technological Academy, 19 Revolyutsiya Ave., Voronezh, 394000, Russia; email: chernyshovad@
mail.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 3, pp. 576–585, May–June, 2009. Original article
submitted January 11, 2008.

1062-0125/09/8203-0574�2009 Springer Science+Business Media, Inc.574



yΓ (t, θu
∗) = f

∗
 (t, xΓ (t, θu

∗)) ,   0 ≤ θu
∗
 ≤ θ0 ,  u = 1, 2 . (3)

Hence we find two values of the parameter θu
∗ = θu

∗(t), u = 1 and 2, as functions of the time t, which determine the
coordinates of two moving points Au

∗:

xau
∗

 = xΓ (t, θu
∗
 (t)) ,   yau

∗
 = yΓ (t, θu

∗
 (t)) ,   u = 1, 2 . (4)

We will assume that the temperature T1(t, x) in the region Ω1 of the first phase is lower, and T2(t, x) in the
region Ω2 of the second phase is higher than the phase-transformation temperature T ∗; these temperatures are coinci-
dent at their common boundary Γ∗ and are equal to T ∗. Furthermore, the energy balance between the heat fluxes and
the heat of phase transition must hold, i.e., we must have

T1⏐Γ∗ = T2⏐Γ∗ = T
∗
 = const ,   

⎡
⎢
⎣
λ1 

∂T1

∂n
∗ − λ2 

∂T2

∂n
∗
⎤
⎥
⎦

⎪
⎪
⎪Γ∗

 = h
∗
vn ,

T1 (� (x, y) � Ω1) ≤ T
∗
 ≤ T2 (� (x, y) � Ω2) .

(5)

The normal projection of the velocity vn can be expressed by the equation of the moving boundary Γ ∗:

vn = 
∂f
∗
 (t, x)
∂t

 ⁄ N0 ,   N0 = √⎯⎯⎯⎯1 + 
⎛
⎜
⎝

∂f
∗
 (t, x)
∂x

⎞
⎟
⎠

2

 .
(6)

If we take the vector 
⎛
⎜
⎝
− 1

N0
 
∂f ∗(t, x)

∂x
, 

1
N0

⎞
⎟
⎠
 directed toward the second phase as the normal n∗ (see Fig. 1), the phase-

transformation conditions in (5) will take a more convenient form:

 T1⏐Γ∗ = T2⏐Γ∗ = T
∗
 ,   T1 (� (x, y) � Ω1) ≤ T

∗
 ≤ T2 (� (x, y) � Ω2) ,

⎡
⎢
⎣

⎢
⎢
λ1 

⎛
⎜
⎝

∂T1

∂y
 − 

∂T1

∂x
 
∂f
∗
 (t, x)
∂x

⎞
⎟
⎠
 − λ2 

⎛
⎜
⎝

∂T2

∂y
 − 

∂T2

∂x
 
∂f
∗
 (t, x)
∂x

⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥

⎪
⎪
⎪

⎪
⎪Γ∗

 = h
∗
 
∂f
∗
 (t, x)
∂t

 .

(7)

Here the sign of the expression in square brackets determines the direction of the process: if it is positive, we have
vn > 0 and then the second phase changes to the first phase, whereas for a negative sign of vn < 0, the first phase be-

Fig. 1. Curvilinear region Ω consisting of the phase regions Ω1 and Ω2 that
are separated by the phase-transition boundary Γ ∗.
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comes the second phase. For simplicity the material particles will be considered not to move in each phase and the
heat-conduction equations can be written in the form

Di (Ti) = qi (t, x, y) ,   (x, y) � Ωi ,   t � [0, t0] ;

Ti � Lp
α+2

 (Ωi) ,   Ti � C
(2)

 (Ωi) ,   i = 1, 2 .

(8)

The differential operators Di in (8) can be different if the material has unequal physical properties in different phase
states. In addition to (7), we should write, for Eqs. (8), the initial and boundary conditions at Γ1 and Γ2:

Li (Ti)⏐Γi = fΓi (t, xΓ, yΓ) ,   (xΓ, yΓ) � Γi ,   Ti⏐t=0 = f0
(i)

 (x, y) ,

(f0(i), fΓi) � C
(2)

 (Ωi) ,   (f0(i), fΓi) � Lp
α

 (Ωi) ,   i = 1, 2 .

(9)

The smoothness and integrability conditions in (8) and (9) are dictated by the necessity of differentiating and the pos-
sibility of expanding the corresponding functions in generalized Fourier series [4] in the process of obtaining the solu-
tion. For the formulation of the problem to the completed, it is necessary that at the two points Au

∗ (xau
∗ , yau

∗ ), u = 1
and 2 (see Fig. 1), where three boundaries Γ1, Γ2, and Γ ∗ intersect, the boundary conditions at them be matched, i.e.,

[Li (Ti) = fΓi (t, x, y)]⏐Aj

∗ � 

⎧

⎨

⎩

⎪
⎪

⎪
⎪

⎡
⎢
⎣
λ1 

⎛
⎜
⎝

∂T1

∂y
 − 

∂T1

∂x
 
∂f
∗

∂x

⎞
⎟
⎠
 − λ2 

⎛
⎜
⎝

∂T2

∂y
 − 

∂T2

∂x
 
∂f
∗

∂x

⎞
⎟
⎠

⎤
⎥
⎦
 = h

∗
 
∂f
∗

∂t

T1 = T2 = T
∗

⎫

⎬

⎭

⎪
⎪

⎪
⎪

⎪

⎪

⎪

⎪
⎪

⎪
⎪

Aj

∗

 , (10)

where � means "matching." Thus, e.g., in the case where the Dirichlet conditions are specified at Γ1 and Γ2, the func-
tions fΓi (t, x, y) at the points Au

∗  (xau
∗ , yau

∗ ), u = 1 and 2, in accordance with conditions (10), must satisfy the equalities

fΓi (t, xau
∗

, yau
∗ ) = T

∗
 ,   i, u = 1, 2 . (11)

In problem (1)–(10), the unknown functions are the temperatures Ti in the phase regions Ωi and the equation of the
phase boundary f ∗(t, x).

Had the boundary Γ ∗ been known, the first two boundary conditions of the three in (7) in combination with
boundary and initial conditions (9) would have closed the problem on finding Ti (i = 1 and 2) by solution of the dif-
ferential equations (8). To find f ∗(t, x) we use the supplementary third equation from (7), i.e., the phase-transformation
condition.

To solve the entire problem in accordance with the method of extension of boundaries we introduce two aux-
iliary classical simply connected regions Ω

�1 and Ω
�2 which are wider than Ω1(t) and Ω2(t), i.e.,

Ω1 (t) � Ω
�1 ,   Ω2 (t) � Ω

�2 ,   t � [0, t0] ,

here, Ω�1 and Ω�2 can intersect. Their closed boundaries will be denoted by Γ�1 and Γ�2. We select, as Ω�i, two rec-
tangles of the same width a along the x axis and of height bi (i = 1 and 2) along the y axis

Ω
�i = (0 ≤ x ≤ a) × (0 ≤ y − y0i ≤ bi) ,   y01 = 0 ,  (12)

where the dimensions y02, a, and bi (i = 1 and 2) should be selected so that the regions Ωi do not go beyond their
rectangular regions Ω�i (0, y0i) over the period t0 and (0, y0i) are the coordinates of the lower left angle of the corre-
sponding rectangle. From further presentation of the method, it will be evident that when the dependence for the
phase-transition boundary in the form (2) is used, expansion of the function f ∗(t, x) in a Fourier series is substantially
simplified if both rectangles Ω�1 and Ω�2 of the same width along the x axis are selected so that Ω�1 and Ω�2 are
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located in the same band 0 ≤ x ≤ a. In the case where the equation of the boundary Γ ∗(t) is written, instead of (2), by
the equality x = g∗(t, y) we should select the same height of both rectangles along the y axis.

We replace the problem on phase transformation (1)–(10) for the region Ω by an auxiliary phase-transforma-
tion problem in the region Ω

�1 � Ω
�2 with boundary conditions at Γ

�1 and Γ
�2, which are not known in advance.

Phase transition is assumed at a certain boundary Γ
�

 ∗(t), which will be determined so that both Γ ∗(t) and Γ
�

 ∗(t) are
coincident at common points for the points (x, y) � Ω. For this purpose we continue (extend) the phase boundary
Γ ∗ � Ω into the extended part of the region Ω

�i \ Ω (i = 1 and 2):

y = f
�

∗
 (t, x) ,   f

�

∗
 (t, x)⏐t=0 = f

�0
∗

 (x) ,   f
�

∗
 (t, x) � C

(2)
 (0 ≤ t ≤ t0, 0 ≤ x ≤ a) , (13)

where f�

 ∗(t, x) is the unknown function and y = f�0
 ∗ (x) is the equation of the initial position of Γ�

 ∗(0), which is pre-
scribed.

We make the auxiliary problem with Dirichlet boundary conditions (for definiteness, although we can use
other linear boundary conditions) correspond to problem (1)–(10):

Di (T�i) = q
�i (t, x, y) ,   T

�i⏐Γ�i = f
�Γi (t, xΓ�i, yΓ�i) ,   T�i⏐t=0 = f

�0
(i)

 (x, y) ,

(x, y) � Ω
�i ,   t � [0, t0] ,   T

�i � Lp
α+2

 (Ω
�i) ,   T�i � C

(2)
 (Ω
__

�i) ,   i = 1, 2 . (14)

Now, instead of (7), the phase-transformation conditions should be fulfilled at Γ�

 ∗:

T
�1⎪⎪Γ�

∗
 = T

�2⎪⎪Γ�

∗
 = T

∗
 ,   Γ

�

∗
 � y = f

�

∗
 (t, x) ,

⎡
⎢
⎣

⎢
⎢
λ1 

⎛
⎜
⎝

∂T1

∂y
 − 

∂T1

∂x
 
∂f

�

∗

∂x

⎞
⎟
⎠
 − λ2 

⎛
⎜
⎝

∂T2

∂y
 − 

∂T2

∂x
 
∂f

�

∗

∂x

⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥
 
⎪
⎪
⎪

⎪
⎪Γ�

∗
 = h

∗
 
∂f

�

∗

∂t

⎪
⎪
⎪

⎪
⎪Γ�

∗
 .

(15)

Similarly to (8), we impose additional conditions on the operators Di in the extended regions Ω�i:

if   F (x, y) � Lp
α+2

 (Ω
�i) ,   then   Di (F (x, y)) � Lp

α
 (Ω

�i) .
(16)

We should continue the right-hand sides q�i of the differential equations (8), the initial conditions f�0
 i , and the function

f0
 ∗(x) determining the initial position of the boundary Γ ∗ into the region Ω�i \ Ω (i = 1 and 2), supplementing the defi-

nition with the equalities

(q�i, f�0
(i)

, f
�0
∗ ) = 

⎧

⎨

⎩

⎪

⎪

(qi, f0
(i)

, f0
∗) ,   if   (x, y) � (Ωi) ,

(q~i, f
~
0
 (i)

, f
~
0
 ∗) ,   if   (x, y) � (Ω

�i \ Ω) ,

(q�i, f�0
(i)

, f
�0
∗ ) � Lp

α
 (Ω

�i) ,   (q�i, f�0
(i)

, f
�0
∗ ) � C

(1)
 (Ω

�i) ,   f�0
∗

 � C
(2)

 (Ω
�i) .

(17)

The variables q~i, f~0
 (0) , and f~�0

 ∗  are prescribed by selection so that the smoothness and integrability conditions indi-
cated in (17) are fulfilled for q�i, f�0

 (i), and f�0
 ∗ . In the cases where these functions are prescribed in analytical form we

can use analytical continuations into Ω�i \ Ω (i = 1 and 2) for them.
The boundary conditions f

�Γi(t, xΓ�
, yΓ�

) at the boundaries Γ
�i from (14) in the auxiliary problem are assumed

to be not known in advance and will be determined so that the problem’s solution at the corresponding moving
boundaries Γi(t) takes on the values of the boundary conditions of the initial problem (1)–(10), i.e.,

Li (T�i)⎪⎪Γi
 = fΓi ,   (xΓ, yΓ) � Γi ,   T

�i⎪⎪Γ�i
 = f

�Γi ,   (xΓ�
, yΓ�

) � Γ
�i ,   i = 1, 2 . (18)
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Thus, the method of extension of boundaries involves the formulation of the following problem: to find
boundary conditions f

�Γi at the boundaries of the rectangles Γ
�i of the extended regions Ω

�i and a solution T
�i of the

auxiliary problem (13)–(18) such that they satisfy all the conditions of the initial problem (1)–(10).
To find T

�i we select the most convenient extended regions Ω
�i and construct the solution of problem (13)–

(18) with arbitrary boundary conditions f
�Γi not known in advance. In formulating problem (13)–(18), we have

T
�i � C (2)(Ω

__
�i); therefore, computation of the nonlinear operators Li (T

�i)⏐Γi is legitimate since the points of the
boundaries Γi belong to the corresponding extended regions Ω

�i where the assumed Fourier series for T
�i uniformly

converge. Problem (13)–(18) is more simple than (1)–(10), since either stationary regions Ω
�i are selected or their

boundaries move by preprescribed laws.
The ranges of eigenfunctions and eigenvalues for the rectangular regions Ω

�i will have the form

Gm,n
(i)

 = sin mπ 
x

a
 sin nπ 

y − y0i

bi
 ,   (0 ≤ x ≤ a) × (0 ≤ y − y0i ≤ bi) ,

μm,n
(i)

 = 
⎛
⎜
⎝

mπ
a
⎞
⎟
⎠

2

 + 
⎛
⎜
⎝

nπ
bi

⎞
⎟
⎠

2

 ,   (m, n) = 1, 2, ... ,   i = 1, 2 . (19)

We perform the replacement

T
�i (t, x) = Mi (t, x) + Vi (t, x) ,   (Mi, Vi) � Lp

α+2
 (Ω

�i) ,    t � [0, t0] ,   i = 1, 2 , (20)

where Vi are the new unknowns and Mi are boundary functions selected so as to satisfy the boundary conditions for
T�i in the formulation of the auxiliary problem (13)–(18). For this purpose we write the Dirichlet conditions on the
sides of the rectangles in general form

 T
�i⏐Γ�

 = Mi⏐Γ�
 � Mi⏐y=y0i

 = f1
(i)

 (t, x) ,   Mi⏐x=a = f2
(i)

 (t, y) ,   i = 1, 2 ,   t � [0, t0] ;

 Mi⏐y=y0i+bi
 = f3

(i)
 (t, x) ,   Mi⏐x=0 = f4

(i)
 (t, y) ,   fj

(i)
 � Lp

α+2
 (Ω

�i) ,   j = 1−4 ,

(21)

where fj
 (i) are eight functions (not known in advance) of the time t and of one geometric coordinate corresponding to

their domain of definition. The continuity of Mi at the angles of the rectangles, as they are approached from both di-
rections along the sides of a given angle, yields eight conditions of matching for the functions fj

 (i):

f1
(i)

 (t, 0) = f4
(i)

 (t, y0i) ,   f1
(i)

 (t, a) = f2
(i)

 (t, y0i) ,   t � [0, t0] ;

f2
(i)

 (t, y0i + bi) = f3
(i)

 (t, a) ,   f3
(i)

 (t, 0) = f4
(i)

 (t, y0i + bi) ,   i = 1, 2 .

(22)

In addition to (22), the functions fj
 (i) must satisfy supplementary conditions identical to the matching relations (10) for

the basic problem. Therefore, from the auxiliary problem, boundary conditions (21) at Γ�i and (15) at Γ�i
 ∗ at the points

B�u
∗  must also be matched. To obtain these conditions we write the coordinates of two points B�1

∗  and B�2
∗  of intersec-

tion of the phase boundary Γ�

 ∗ and the rectangle sides x = 0 and x = a;

B
�1
∗

 → xb1
∗

 = 0 ,   yb1
∗

 = f
�

∗
 (t, 0) ;   B

�2
∗

 → xb2
∗

 = a ,   yb2
∗

 = f
�

∗
 (t, a) . (23)

Then the matchings of boundary conditions (21) and conditions (15) for the auxiliary problem take the form of four
additional equations

f4
(i)

 (t, yb1
∗ ) = f2

(i)
 (t, yb2

∗ ) = T
∗
 ,   i = 1, 2 , (24)
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where yb1
∗ , yb2

∗  should be taken from (23). Had the boundary Γ�

 ∗ been located in a band parallel to the x axis, we
would have had, instead of (24), four similar equalities for the functions f1

 (i) and f3
 (i).

In accordance with boundary conditions (21), the functions Mi will be represented by the dependences

 Mi = 
⎛
⎜
⎝
1 − 

y − y0i

bi

⎞
⎟
⎠
 
⎡
⎢
⎣
f1
(i)

 (t, x) − 
x

a
 f1
(i)

 (t, a) − 
⎛
⎜
⎝
1 − 

x

a

⎞
⎟
⎠
 f1
(i)

 (t, 0)
⎤
⎥
⎦
 + 

x

a
 f2
(i)

 (t, y) 

+ 
y − y0i

bi
 
⎡
⎢
⎣
f3
(i)

 (t, x) − 
x

a
 f2
(i)

 (t, bi) − 
⎛
⎜
⎝
1 − 

x

a

⎞
⎟
⎠
 f3
(i)

 (t, 0)
⎤
⎥
⎦
 + 

⎛
⎜
⎝
1 − 

x

a

⎞
⎟
⎠
 f4
(i)

 (t, y) .

(25)

Thus, in constructing the solution of the phase-transformation problem, we must find the following 11 func-
tions:

⎧
⎨
⎩
Vi (t, x, y), f1

(i)
 (t, x), f2

(i)
 (t, y), f3

(i)
 (t, x), f4

(i)
 (t, y)

⎫
⎬
⎭
 � 

⎧
⎨
⎩
C
(2)

 (Ωi), Lp
α

 (Ωi), 0 ≤ t ≤ t0
⎫
⎬
⎭
 ,   

f
�

∗
 (t, x) � 

⎧
⎨
⎩
C
(1)

 (Ωi), Lp
α

 (Ωi), 0 ≤ t ≤ t0
⎫
⎬
⎭
 ,   i = 1, 2 .

We represent them as uniformly convergent Fourier series in the corresponding regions, where we confine ourselves to
a finite number of terms:

Vi = ∑ 
m,n=1

m0,ni

 Vm,n
(i)

 (t) Gm,n
(i)

 ,   (x, y) � Ω
�i ;   fj

(i)
 = 

x
a

 ⎡⎢⎣
fj
(i)

 (t, a) − fj
(i)

 (t, 0)⎤⎥⎦
 

+ fj
(i)

 (t, 0) + ∑ 
m=1

m0

fj,m
(i)

 (t) sin mπ 
x
a

 ,   x � [0, a] ,   j = 1, 3 ,   i = 1, 2 ;   fj+1
(i)

 = fj+1
(i)

 (t, y0i) 

+ 
y − y0i

bi
 ⎡⎢⎣

fj+1
(i)

 (t, y0i + bi) − fj+1
(i)

 (t, y0i)
⎤⎥⎦
 + ∑ 

n=1

ni

fj+1,n
(i)

 (t) sin nπ 
y − y0i

bi
 ;

y − y0i � [0, bi] ,   f�

∗
 = f

�

∗
 (t, 0) + 

x
a

 ⎡⎣f�

∗
 (t, a) − f

�

∗
 (t, 0)⎤⎦ + ∑ 

s=1

s∗

f
�s
∗

 (t) sin sπ 
x
a

 .

(26)

The coefficients of Fourier expansions in (26) are determined from standard formulas. Here all functions have been de-
termined either for 0 ≤ x ≤ a, or for 0 ≤ y − y0i ≤ b, or for (x, y) � Ωi; therefore, their presented expansions in Fourier
series in sines are legitimate. The expansions (26) are so constructed that these series uniformly converge not only in-
side the corresponding regions but at their boundaries as well. It is well known [5] that a Fourier series  in sines for
smooth functions can singly be differentiated termwise if the series converges at the boundaries, which is the case.
After differentiation, we obtain cosine series which, according to the corresponding theorem [5], allow termwise differ-
entiation, too. Thus, the series (26) can be doubly differentiated with respect to geometric coordinates. The functions
in (26) are dependent on the time t as on the parameter; therefore when the conditions of their smoothness are ful-
filled, the series (26)  allow termwise differentiation with respect to t as with respect to the parameter. We note that
the convergence of the series (26) at the boundaries contribute to their rapid general convergence, which substantially
reduces computation time and improves the exactness of the approximate solution.

Using the expansions (26) we reduce the solution of the auxiliary problem (13)–(21) to finding the following
coefficients and two parameters θu

∗ (u = 1 and 2) dependent just on time:
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Vm,n
(i)

 (t) ,   fj,m
(i)

 (t) ,   fj+1,n
(i)

 (t) ,   f
�s
∗

 (t) ,   fj
(i)

 (t, 0) ,   fj
(i)

 (t, a) ,   fj+1
(i)

 (t, y0i) ,   fj+1
(i)

 (t, y0i + bi) ,

f
�

∗
 (t, 0) ,   f

�

∗
 (t, a) ,   i = 1, 2 ;   j = 1, 3 ;   (m, n) = (1, 1) − (m0, ni) ,   s = 1 − s

∗
 .

In this case the unknowns (with indication of their number) are

Vm,n
(i)

 (t) − m0 (n1 + n2) ,   fj,m
(i)

 (t) − 4m0 ,   fj+1,n
(i)

 (t) − 2 (n1 + n2) ,   f�s
∗

 (t) − s
∗
 ,   

(m, n) = (1, 1) − (m0, ni) ,   j = 1, 3 ;  i = 1, 2 ;   s = 1 − s
∗
 ,

(27)

and 20 more unknowns

fj
(i)

 (t, 0) ,   fj
(i)

 (t, a) ,   fj+1
(i)

 (t, y0i) ,   fj+1
(i)

 (t, y0i + bi) ,   f�

∗
 (t, 0) ,   f

�

∗
 (t, a) ,   θu

∗
 (t) ,   (i, u) = 1, 2 . (28)

The total number of the unknown functions in (27) and (28), dependent just on the variable t, is equal to [m0(n1 + n2)
+ 4m0 + 2(n1 + n2) + s∗ + 20]. Two unknown θu

∗(t) are found as two roots of Eqs. (3). The remaining 18 quantities of
those indicated in (28) are related by 12 equations (22) and (24).

To close system (27) and (28) it only remains for us to write [m0(n1 + n2) + 4m0 + 2(n1 + n2)  + s∗ + 6] equa-
tions. For this purpose we substitute the series for Vi from (26) and Mi from (25) into the differential equations (13),
multiply them by Gm,n

 (i) , and integrate over the region Ω for i = 1 and 2. As a result we will have a system of ordi-
nary differential equations of first order in t from m0(n1 + n2) equations for Vm,n

 (i) (t):

 ∫
Ω

�i

∫ ⎡⎣Di (Vi + Mi) − q
�i
⎤
⎦ Gm,n

(i)
dxdy = 0 ,   (m, n) = (1, 1) − (m0, ni) ,   i = 1, 2 . (29)

The initial conditions for system (29) will be obtained from the initial conditions f�0
 (i) given in (14). For this purpose

we substitute their expressions from (20), (25), and (26) instead of T�i, Mi, and Vi and, similarly to the actions in (29),
find the sought initial conditions

Vm,n
(i)

 (0) = 
4

abi
 ∫
Ω

�i

∫ ⎡⎢⎣f�0
(i)

 (x, y) − Mi⏐t=0
⎤⎥⎦
 Gm,n

(i)
dxdy,   (m, n) = (1, 1) − (m0, ni) ,   i = 1, 2 .

 (30)

Also, system (29) contains other unknowns given in the sets (27) and (28) because of which it should be supple-
mented with equations obtained from the boundary conditions at Γ1, Γ2, and Γ�

 ∗. To fulfill the boundary conditions at
Γi, i = 1 and 2, from (18) we must know the location of two points Au

∗, u = 1 and 2, which separate Γ into the parts
Γ1 and Γ2. Therefore, Eq. (3) for finding two parameters θu

∗ should be included into the general system for unknown
quantities. We impart a more convenient form to Eq. (3), replacing f ∗(t, xΓ(t, θu

∗)) by f�

 ∗(t, xΓ(t, θu
∗)) in it, since these

functions are coincident at two points Au
∗:

yΓ (t, θu
∗) = f

�

∗
 (t, 0) + 

xΓ (t, θu
∗)

a
 ⎡⎣f�

∗
 (t, a) − f

�

∗
 (t, 0)⎤⎦ + ∑ 

s=1

s∗

f
�s
∗

 (t) sin sπ 
xΓ (t, θu

∗)
a

 . (31)

Two parameters θu
∗ found from (31) will be arranged in the order θ1

∗ < θ2
∗; then we can indicate, for Γ1 and Γ2, the

following two ranges:

θ � [θ1
∗
, θ2

∗] ,   θ � [θ2
∗
, θ1

∗
 + θ0) . (32)

From the initial conditions given in (9), we can accurately determine where the 1st and 2nd phases are to be found.
This will enable us to establish to what boundary the ranges of variation in the parameter θ from (32) belong. Let, for
definiteness, the first range in (32) belong to Γ1 and the second belong to Γ2.
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To fulfill boundary conditions (18) at Γ1 and Γ2 we substitute Mi from (25) and Vi from (26) into (18) where
the coordinates (xΓ, yΓ) will be replaced by their parametric dependences (1) in accordance with the ranges (32) which
will be denoted by (xΓi(t, θ) and yΓi(t, θ)), i = 1 and 2:

Fi (t, θ) = fi (t, θ) ,   Fi (t, θ) = Li (Mi + Vi)⏐(x,y)=(xΓi,yΓi)
 ,

fi (t, θ) = f (t, xΓi, yΓi) ,   [fi, Fi] � [C
(1)

 (Ω), Lp
α

 (Ω)] .

(33)

The left- and right-hand sides of the equalities will be expanded in sines in the corresponding ranges (32), which en-
sures a uniform convergence of the approximate solution. Equality of the functions in (33), according to Fejer’s theo-
rem [6], yields the equality of their Fourier coefficients, i.e.,

  ∫ 
θ1

θ2

F1 (t, θ) sin kπ 
θ − θ1

∗

θ2
∗
 − θ1

∗
 dθ = ∫ 

θ1

θ2

f1 (t, θ) sin kπ 
θ − θ1

∗

θ2
∗
 − θ1

∗
 dθ ,

   ∫ 
θ2

θ0+θ1
∗

F2 (t, θ) sin kπ 
θ − θ2

∗

(θ0 + θ1
∗) − θ2

∗
 dθ = ∫ 

θ2

θ0+θ1

∗

f2 (t, θ) sin kπ 
θ − θ2

∗

(θ0 + θ1
∗) − θ2

∗
 dθ ,

k = 1 − (2m0 + n1 + n2 − s∗) .

(34)

When sine expansions in accordance with formulas of the (26) type are used, we should add, to system (34), four
equalities resulting from (33) for a θ value equal to the values at the ends of their ranges (32):

Fi (t, θi
∗) = fi (t, θi

∗) ,   F1 (t, θ2
∗) = f1 (t, θ2

∗) ,   F2 (t, θ2
∗
 + θ0) = f2 (t, θ2

∗ + θ0) ,   i = 1, 2 . (35)

The entire system (34) and (35) contains 2(2m0 + n1 + n2 − s∗) equations for the quantities of (27) and (28). It only re-
mains for us to fulfill conditions (15) at the phase boundary Γ�

 ∗, which will be rewritten in a more convenient form:

Φi (t, x) = ϕi (t, x) ,   Φi (t, x) = T
�i⏐Γ

�

∗  ,   ϕi (t, x) = T
∗
 ,

Φ3 (t, x) = ϕ3 (t, x) ,   ϕ3 (t, x) = h
∗
 
∂f

�

∗

∂t

⎪
⎪
⎪Γ

�

∗
 ,   i = 1, 2 ;

Φ3 (t, x) = 
⎡
⎢
⎣

⎢
⎢
λ1 

⎛
⎜
⎝

∂T1

∂y
 − 

∂T1

∂x
 
∂f

�

∗

∂t

⎞
⎟
⎠
 − λ2 

⎛
⎜
⎝

∂T2

∂y
 − 

∂T2

∂x
 
∂f

�

∗

∂t

⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥

⎪
⎪
⎪

⎪
⎪Γ

�

∗
 .

(36)

We expand the left- and right-hand sides of three equalities (36) in sines in the range [0, a]. From the equality of
their Fourier coefficients, we will have

  ∫ 
0

a

Φj (t, x) sin sπ 
x
a

 dx = ∫ 
0

a

ϕj (t, x) sin sπ 
x
a

 dx ,   j = 1 − 3 ,   s = 1 − s
∗
 . (37)

To system (37), we should add six more equalities obtained from (36) in computing the values of the functions at the
ends of the range:
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Φj (t, 0) = ϕj (t, 0) ,   Φj (t, a) = ϕj (t, a) ,   j = 1 − 3 . (38)

The entire system (37) and (38) contains 3(s∗ + 2) equations. The last s∗ + 2 equations in (37) and (38) for j = 3 are
ordinary differential equations of first order for f�

 ∗(t, 0), f�

 ∗(t, a), and f�m
 ∗ (t). We find the initial conditions for them

from the corresponding initial conditions given in (2), which will be rewritten, using the supplemented definition (17),
in the form

f
�0
∗

 (x) = f
�

∗
 (0, 0) + 

x
a

 ⎡⎢⎣
f�

∗
 (0, a) − f

�

∗
 (0, 0)⎤⎥⎦

 + ∑ 
s=1

s∗

f
�s
∗

 (0) sin sπ 
x
a

 . (39)

Setting x = 0 and x = a in (39), we have two equations; thereafter, multiplying (39) by sin sπ x ⁄ a and integrating over
the region 0 ≤ x ≤ a, we obtain additionally s∗ equations, a total of s∗ + 2 equalities as the sought initial conditions for
system (37) and (38):

  f
�

∗
 (0, 0) = f

�0
∗

 (0) ,   f
�

∗
 (0, a) = f

�0
∗

 (a) ,   s = 1 − s
∗
 ;

f
�s
∗

 (0) = 
2
a

 ∫ 
0

a
⎧
⎨
⎩
f

�0
∗

 (x) − f
�0
∗

 (0) − 
x
a

 ⎡⎢⎣
f

�0
∗

 (a) − f
�0
∗

 (0)⎤⎥⎦
⎫
⎬
⎭
 sin sπ 

x
a

 dx .

(40)

Conclusions. To find [m0(n1 + n2) + 4m0 + 2(n1 + n2) + s∗ + 20] unknowns we have the same number of equa-
tions: Eq. (31) for computation of two parameters θu

∗, m0(n1 + n2) equations with initial conditions (30) for determina-
tion of Vm,n

 (i)  in (29), 3(s∗ + 2) equations in (37) and (38), and 2(2m0 + n1 + n2 − 2s∗) more equations and 12 equations
from (22) and (24) in (34). The above system enables us to obtain the approximate solution of the phase-transforma-
tion problem in analytical form. The improved Fourier series used uniformly and quite rapidly converge. Thus, e.g., if
the functions have a curvature of constant sign, no more than ten terms can safely be allowed for in these series.

Algorithm for the Employment of the Method

1. Write the equation of the boundary Γ in parametric form (1).
2. Reduce the formulation of the phase-transformation problem to the form (8)–(10).
3. Determine the smallest dimensions of the rectangles Ω

�1 and Ω
�2, which must contain the regions Ω1 and

Ω2 at t � [0, t0].
4. The rectangles Ω

�1 and Ω
�2 must have the same dimension along the x axis; the possibility of their partial

overlapping is allowed.
5. Supplement the definition of the initial conditions f

�0
 (i) and f

�0
 ∗  of the right-hand side of the differential

equation (14) q
�i in the region Ω

�i \ Ω.
6. Write the boundary condition of the auxiliary problem for the region Ω

�i in general form (21) in terms of
the functions fj

 (i).
7. Represent the boundary functions Mi in the form (25).
8. Write matching conditions (24).
9. Represent the unknown functions Vi, fj

 (i), fj+1
 (i) , and f

�

 ∗ in the form of improved Fourier series (26) with a
limited number of terms.

10. Compose a closed system of Eqs. (22), (24), (29), (31), (34), (37), and (38) for two unknown θu
∗ and the

coefficients indicated in (27) and (28).
11. In solving the above system, it is necessary to use initial conditions (30) and (40).
12. Substitute the found quantities into expressions (26) for Vi and (25) for Mi on solution of this system.
13. Substitute the found quantities Mi and Vi into (20) and obtain the solution of the problem for T

�i.
14. Determine the position of the phase-transformation boundary Γ ∗ from the equation y = f

�

 ∗(t, x) where f
�

 ∗(t,
x) is taken from (26).
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In considering nonlinear boundary-value problems for curvilinear regions without phase transition, one should
omit all actions related to the moving phase boundary in the algorithm. The method of extension of boundaries is sub-
stantially simplified.

NOTATION

Au
∗, two points at the intersection of three boundaries Γ1, Γ2, and Γ ∗; (a, bi), dimensions of the rectangles

Ω
�i, m; a~, thermal diffusivity, m2 ⁄ sec; B

�u
∗ , two points at the intersection of three boundaries Γ

�1, Γ
�2, and Γ

�1
 ∗ ;

C (1) and C (2), spaces of differentiable functions; Di, nonlinear differentiable operators of 2nd order in the coordinates
x and of 1st order in the time t; f

�Γi, boundary conditions in general form at Γ
�i; f0

 (i), initial conditions of the initial
problem for the regions Ωi; f

�0
 (i), initial conditions for the extended regions Ω

�i; f
�0
 ∗ , initial position of the phase-trans-

formation boundary in the regions Ω
�i; f

�

 ∗, equation of the phase-transformation boundary in the extended regions
Ω

�i; fj
 (i) (j = 1–4 and i = 1 and 2), unknown boundary conditions on the sides of the rectangles Γ

�i; f ∗, equation of
the phase-transformation boundary for the initial problem; f0

 ∗, initial position of the phase-transformation boundary in
the initial problem; fΓi, boundary conditions in general form at the boundaries Γi of the regions Ωi; fi(t, θ) and Fi(t, θ),
auxiliary functions used when the boundary conditions at Γi are fulfilled; fj,m

 (i), f
�m
 ∗ , qm,n

(i) , and Vm,n
 (i) , Fourier coefficients

of the functions fj
 (i), f

�

 ∗, qi, and Vi in the corresponding domains of their definition; g∗(t, y), equation of the phase-
transformation boundary, expressed relative to the variable x; h∗, specific heat of phase transformation, J ⁄ kg; Lp

α,
classes of Sobolev–Liouville functions; Mi, boundary functions; m0, n1, n2, and s∗, number of retained terms in Fourier
series; N0, auxiliary quantity used in determining the velocity of motion of the phase boundary; n∗, vector of unit nor-
mal to Γ

�m
 ∗ ; qi and q

�i, known right-hand sides of the differential equations (8) and (14), having the meaning of
sources; T

�i, temperatures inside the regions Ω
�i; t, time, sec; t0, time of consideration of the process, sec; vn, normal

component of the velocity of motion of the boundary Γ ∗, m ⁄ sec; Vi, functions satisfying the homogeneous boundary
conditions at Γ

�i; Vm,n
 (i) , fj,m

 (i), and f
�s
 ∗ , coefficients of spectral Fourier expansions; xΓ, coordinates of points of the bound-

ary Γ or Γi in the corresponding problem; (xΓ�i, yΓ�i), moving boundary of the region Γ
�i; (xau

∗ , yau
∗ ), coordinates of

two points Au
∗ at the intersection of three boundaries Γ1, Γ2, and Γ ∗; (xbu

∗ , ybu
∗ ), coordinates of two points Bu

∗ at the
intersection of three boundaries Γ�1, Γ�2, and Γ�

 ∗; x, y, Cartesian coordinates; Γ, moving boundary of the region Ω; Γi,
boundary of the phase region Ωi; Γ�i, boundary of the phase region Ω�i; Γ�

 ∗, phase-transformation boundary in Ω�;
θ, parameter in the equation of the boundary Γ; θ0, range of variation in the parameter θ; θu

∗, values of the parameter
θ at the points Au

∗ (u = 1 and 2); λ1 and λ2, thermal conductivities, W ⁄ (m⋅K); Φj(t, x) and ϕj(t, x), auxiliary functions
used when the boundary conditions at the phase boundary Γ�

 ∗ are fulfilled; Ω, arbitrary curvilinear region. Subscripts:
i, number of the phase region Ωi, i = 1 and 2; j, number of the side of a rectangle; m and n, numbers of the ranges
of eigenfunctions and eigenvalues for a rectangle; s, summation index; u, number for quantities that refer to the points
of intersection of the boundary Γ�

 ∗ and Γi or Γ�i; �, quantities that refer to the auxiliary problem in the extended re-
gion Ω�; 0, initial conditions or fixed quantities t0, θ0, m0, and n0. Superscripts: (i), quantities that refer to the phase
regions Ωi, i = 1 and 2; *, quantities that refer to the phase-transformation boundary Γ ∗.
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