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Abstract
For the comparison of inequality and welfare in multiple attributes the use of generalized 
Gini indices is proposed. Individual endowment vectors are summarized by using attribute 
weights and aggregated in a spectral social evaluation function. Such functions are based 
on classes of spectral functions, ordered by their aversion to inequality. Given a spectrum 
and a set P of attribute weights, a multivariate Gini dominance ordering, being uniform in 
weights, is defined. If the endowment vectors are comonotonic, the dominance is deter-
mined by their marginal distributions; if not, the dependence structure of the endowment 
distribution has to be taken into account. For this, a set-valued representative endowment is 
introduced that characterizes the welfare of a d-dimensioned distribution. It consists of all 
points above the lower border of a convex compact in ℝd , while the set ordering of repre-
sentative endowments corresponds to uniform Gini dominance. An application is given to 
the welfare of 28 European countries. Properties of P-uniform Gini dominance are derived, 
including relations to other orderings of d-variate distributions such as convex and depend-
ence orderings. The multi-dimensioned representative endowment can be efficiently calcu-
lated from data. In a sampling context, it consistently estimates its population version.

Keywords  Generalized Gini index · Spectral social evaluation function · Stochastic order · 
Dual stochastic dominance · Increasing concave order · Weighted-mean orders

1  Introduction

Socio-economic status has many aspects. It is not only income on which the welfare of a 
person is based. Other dimensions of well-being such as wealth or education substantially 
influence the position of an individual and thus the degree of welfare in a society. Inequal-
ity and welfare in several, say d dimensions, can be measured by indices and orderings 
that operate on distributions in ℝd , where each individual of a population is represented by 
her or his vector of endowments. An early source of such multivariate approaches is Kolm 
(1977); for a recent survey see Andreoli and Zoli (2020).
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The classical uni-dimensional Gini index measures income inequality by the difference 
between mean income and a weighted mean of incomes, x −

∑n

i=1
x(i)(2n − 2i + 1)∕n2 , 

where x(1),… , x(n) are incomes ordered from below, and x is their mean. It has been 
extended to the generalized Gini index (Mehran (1976)),

incorporating general weights w1 ≥ w2 ≥ … ≥ wn ≥ 0 that sum up to 1. For an axiomatic 
characterization of (1), see Weymark (1981). The term 

∑n

i=1
x(i)wi is mentioned as the rep-

resentative income of the distribution. It takes its maximum if all weights wi are equal, 
yielding G(x1,… , xn) = 0 . The representative income reflects two aspects of the distribu-
tion: the general level of incomes as well as the inequality among them. Note that (1) is an 
absolute Gini index. By assuming x > 0 and substituting relative endowments xi∕x for the 
xi, a relative Gini index is obtained, which focusses on inequality of income shares.

To apply these indices for welfare comparisons, however, parameters have to be inserted, 
which often are not available. To manage this, dominance relations have been introduced 
in the literature that hold for certain sets of parameters. Representative incomes have been 
constructed on the basis of generalized Gini indices and distributions have been ordered 
by those representative endowments (Weymark 1981). Uncertainty about the degree of 
inequality aversion has been coped with by unanimous preference orderings. Muliere and 
Scarsini (1989) investigate a sequence of progressively finer stochastic orderings, called 
inverse stochastic dominance, and use it to order income distributions regarding their ine-
quality; see also Lando and Bertoli-Barsotti (2020). Inverse stochastic dominance employs 
the quantile functions of two random variables in the same way as classical stochastic dom-
inance employs their distribution functions. Weymark (1981) relates n-th inverse stochastic 
dominance to the ordering of S-Gini indices having a large enough exponent.

My goal is to address these tasks in the case of several attributes: to provide a frame-
work of multi-dimensioned representative endowments, and to construct unanimous order-
ings under uncertainty about the relative weights of the attributes and also about the degree 
of inequality aversion.

Consider d-variate vectors of endowments in a population, which form the rows of an n 
× d matrix X = (x

j

i
) . More general, we treat multivariate probability distributions resp. ran-

dom vectors X in ℝd . An endowment matrix then corresponds to an empirical distribution 
on its rows.

Several authors propose indices of multivariate inequality, aggregating the informa-
tion to a single number. Tsui (1995) constructs an index that aggregates the data in two 
steps, first over individuals and then over attributes. Similarly, Gajdos and Weymark (2005) 
derive a multivariate generalized Gini index from axioms including those of comonotonic 
independence and attribute separability. In their dual theory of multivariate risk, Galichon 
and Henry (2012) present a general risk index, which does not assume attribute separabil-
ity and is based on multivariate quantiles; if interpreted as an inequality index it comes 
out as an extension of the Gajdos-Weymark index. In contrast, the multivariate Gini index 
of Koshevoy and Mosler (1997a) measures the mean Euclidean distance of the d-variate 
endowments from each other.

In the sequel we start with social evaluation functions for one attribute, say income, 
which are based on integrals involving a distorted distribution. The representative 
endowment is a spectral measure of the distribution, the spectrum being the derivative 
of a given distortion (i.e. weight-generating) function; the generalized Gini measure 

(1)G(x1,… , xn) = x −

n∑

i=1

x(i)wi,
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comes as the difference of the representative income to the mean income. Concavity of 
the distortion function corresponds to inequality aversion. The representative endow-
ment decreases if the distortion function is changed to a more concave (= less convex) 
one. Parametric classes of distortion functions are considered that show increasing ine-
quality aversion. Special cases are discussed where the representative endowment is the 
highest income of the lower α ⋅ 100 percentage of the population or the mean income 
of this subpopulation. Given a distortion function, any two endowment distributions are 
compared by their representative incomes. This provides a complete ordering of distri-
butions that reflects their inequality as well as their general level. In case of uncertainty 
about the distortion weights to be put on incomes, a set of admissible distortion func-
tions may be considered. Uniform comparison of representative endowments regarding 
a set of distortion functions yields a partial order of distributions. For certain such sets 
it comes out that the respective ordering is equivalent to known stochastic orders, viz. 
first and second degree stochastic dominance relations as well as higher degree dual sto-
chastic dominance orders.

With several attributes we introduce a vector p ∈ P+ of attribute weights by which the d 
attribute levels are aggregated, P+ being the standard simplex in ℝd

+
 . These weights reflect 

the relative importance of the attributes. Each attribute is valued by a (generally unknown) 
weight or ‘price’, and the welfare of the ‘priced endowment’ is assessed. Given a distortion 
function, this allows for any p to build a representative ‘priced endowment’ and to produce 
a generalized Gini index. Here contrary to Tsui (1995) and successors the aggregation is 
first done over the attributes and then over the population. As the weights are generally 
unknown, a partial order of distributions is defined, P-uniform Gini dominance, saying that 
two representative ‘priced endowments’ are ordered in the same way for some set P of non-
negative price vectors p, which reflects the available information about p. This in particular 
incorporates that certain attributes may have no common unit of measurement.

It is shown that, if each endowment vector X and Y is comonotonic, P+-uniform Gini 
dominance is equivalent to dominance of the marginal distributions. If not, the dependence 
structure of the multivariate distribution of endowments has to be taken into account. To 
cope with this, we construct a visual tool by which two distributions can be compared. The 
welfare of a multi-attribute distribution, given a distortion function, is geometrically char-
acterized by a convex upper set in d-space, the convex representative endowment (CRE). It 
again is described by its set of minimal (= Pareto) points, which is called the Pareto repre-
sentative endowment (PRE). For each price vector p, the PRE contains a point xp that lies 
on the ray in direction p, and xp serves as the equally distributed representative vector of 
endowments under the given price vector. Every point in CRE is not worse than xp, and the 
CRE comes out as the union of upper orthants of all xp. Uniform Gini dominance regarding 
all p ≥ 0 comes out to be equivalent to set inclusion of the respective CREs.

The definitions, so far, assume a fixed underlying distortion function. Next, as in the 
univariate case, classes of distortion functions are discussed which are ordered by their ine-
quality aversion. A less convex, that is more inequality averse distortion function enlarges 
the CRE.

P-uniform Gini dominance relations will be shown to be increasing orders as well as 
orderings of variability. For any concave (= inequality averse) distortion function and any 
information P on prices, they are implied by usual multivariate stochastic order as well as 
reverse convex stochastic order. Moreover, weak price majorization proves to be stronger 
than P-uniform Gini dominance. Further, P-uniform Gini dominance is shown to be related 
to increasing correlation; it is implied by the submodular order. Finally, P-uniform Gini 
dominance relations are introduced which are uniform in a given set of distortion functions.
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When it comes to data, the PRE can be numerically calculated by existing software. By 
this, two empirical distributions are numerically checked for P-uniform Gini dominance. If 
the data is sampled from an underlying distribution, the empirical PRE is a consistent esti-
mator of its underlying population version.

Overview: Section 2 treats generalized Gini orderings and representative endowments 
in the univariate case. Uniform Gini dominance with multiple attributes is introduced in 
Section 3 and the comonotonic case is treated. Section 4 presents the convex representa-
tive endowment and its Pareto set, while Section 5 is about increasing inequality aversion 
and an application to well-being data of 28 European countries. Section 6 shortly discusses 
a similar scale invariant measurement of multi-attribute inequality. In Section 7 uniform 
Gini dominance is related to known multivariate orderings of variability and dependence. 
Section 8 concludes with remarks on statistical and computational issues. Most proofs are 
collected in an Appendix A, which is provided in the electronic version of this article as 
supplementary material.

2 � Gini orderings and representative endowments in one dimension

We start with a single dimension of welfare, say income, and discuss social evaluation 
functions which are based on an integral that involves a distorted distribution.

Let X be a variable of socio-economic interest, which is modeled as a real-valued ran-
dom variable on a proper probability space, having distribution function FX. In particular, 
X may have an empirical distribution, giving equal probability 1

n
 to points x1,… , xn ∈ ℝ.

Let W0 be the set of all functions v : [0,1] → [0,1] that are non-decreasing, right-contin-
uous, and satisfy v(0) = 0, v(1) = 1. In other words, W0 contains the probability distribution 
functions living on [0,1]. Given v ∈ W0, we define its dual function ṽ as ṽ(t) = 1 − v(1 − t) . 
For v ∈ W0 consider the integral

where QX(t) = min{x ∶ FX(t) ≥ t}, t ∈]0, 1], denotes the usual left continuous inverse of 
FX. The integral (2) becomes

(Here and in the sequel we tacitly assume that these integrals exist and are finite, if neces-
sary, under proper regularity conditions.) Obviously, for v(t) = ṽ(t) = t the mean, Sv(X) = 
E[X], is obtained. When v has a derivative v′ , then

Sv(X) is a spectral measure of endowment having weight-generating function v and spec-
trum v′ . The function v is called a distortion function as it distorts the probabilities of 
results arising from X in a generally nonlinear way. With other words, Sv(X) is a weighted 
mean of endowments, which serves as a representative endowment, being the aggregate 
evaluation of incomes weighted by their relevance to welfare. Observe that the representa-
tive endowment of a distribution that gives everybody the same constant income equals 

(2)S
v
(X) = ∫

1

0

Q
X
(t)dv(t),

S
v
(X) = ∫ ∞

−∞
x d (v ◦ F

X
(x))

= ∫ ∞

0
ṽ(1 − F

X
(x))dx − ∫ 0

−∞
v(F

X
(x))dx.

(3)S
v
(X) = ∫

1

0

Q
X
(t)v�(t)dt.
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the constant, hence Sv(Sv(X)) = Sv(X). Thus, the representative endowment, if equally dis-
tributed in the population, yields the same welfare as the distribution of X and is therefore 
mentioned as the equally distributed equivalent income. Usually, to measure the degree 
of welfare, lower incomes are given more weight than higher ones, that is, the distortion 
function v is assumed to be concave. Then the spectral measure Sv(X) is called inequality 
averse, and the representative income undermatches the mean income, Sv(X) ≤ E[X].

For an empirical distribution on x1,… , xn , one obtains a weighted mean of the ordered 
data,

 The generalized Gini index G(X) compares Sv(X) with the non-weighted mean E[X],

which for empirically distributed X is Mehran’s index (1). Choosing vβ(t) = 1 − (1 − t)β, 
β ≥ 1, produces the famous S-Gini index introduced by Donaldson and Weymark (1980), 
Donaldson and Weymark (1983) and Yitzhaki (1983),

Here, the parameter β indicates the aversion towards inequality: With increasing β, lower 
values of X get more weight. While (5) is an absolute S-Gini index, the relative index is 
given by G

S�
(X)∕E[X] , provided E[X] > 0.

With an empirical distribution on x1,… , xn it holds

 Especially β = 1 yields S1(x1,… , xn) = x . For β = 2 obtain

the classical absolute Gini index (Gini 1912).
In the sequel further parameterized families of weight-generating (= distortion) functions 

are considered, whose parameter α ∈]0,1] indicates the degree 1
�
 of inequality aversion. With

obtain Ss� (X) = QX(�) , the highest income of the lower α-part of the population.
Another interesting family is given by

Sv(X) =

n∑

i=1

x(i)wi, with wi = v
(
i

n

)
− v

(
i − 1

n

)
.

(4)G(X) = E[X] − Sv(X),

(5)G�(X) = E[X] − S�(X) = ∫
1

0

Q
X
(t)[1 − �(1 − t)�−1]dt.

S�(x1,… , x
n
) =

n∑

i=1

x(i)∫
i

n

i−1

n

�(1 − t)�−1dt =

n∑

i=1

x(i)

(
n − i + 1

n

)�

−
(
n − i

n

)�

.

S2(x1,… , xn) =
1

n2

n∑
i=1

x(i)(2n − 2i + 1),

G2(x1,… , xn) = x − S2(x1,… , xn) =
1

n2

n∑
i=1

x(i)(2i − n − 1),

(6)s𝛼(t) =

{
0 if t < 𝛼,

1 if t ≥ 𝛼,

(7)r𝛼(t) =

{ t

𝛼
if t < 𝛼,

1 if t ≥ 𝛼 .
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This yields S
r�
(X) =

1

�
∫
]−∞,Q

X
(�)]

xdF
X
(x) , the mean income of the lower α-part of the pop-

ulation. Note that the rα are concave, while the sα are not.
Maccheroni et al. (2005) have introduced partial orderings of income distributions based 

on their representative incomes over a range of weight-generating functions as follows. Each 
element of W0 defines a rank-dependent weighting scheme by which incomes enter the social 
evaluation. Let V be a subset of W0 and define: A random variable Y dominates another ran-
dom variable X in V -dual stochastic dominance, X ≼VY, shortly V -dominance, if

If V = {v} is a singleton, we write X ≼vY in place of X ≼VY. Note that ≼V is a preorder 
(reflexive and transitive), but not necessarily antisymmetric. E.g., when V = {rα : α < α*} 
with rα as in (7) and some α* < 1, only the quantile restricted left tails of the two distri-
butions are considered, which means that the welfare measurement focuses on the lower 
income population.

With special choices for the class V of weight-generating functions, well known stochastic 
dominance (SD) relations arise:

–	 Let V1 = W0. X ⪯V1
Y is equivalent to usual first degree SD, that is

–	 Consider Vconc = {v ∈ W0 ∶ v concave, v�bounded} . Then X ⪯Vconc
Y is equivalent to 

usual second degree concave SD, that is

 In this case Y is less dispersed than X.
–	 With Vconv = {v ∈ W0 ∶ v convex, v�bounded} , X ⪯Vconv

Y is equivalent to usual second 
degree convex SD, that is

 Here, Y is more dispersed than X. Note that the two second degree dominance relations 
are linked by

A further example of V -dominance is the Donaldson-Weymark dominance: Let DW(A) 
= {v : v(t) = 1 − (1 − t)β,β∈ A} for some bounded set A ⊆ [1,∞[ . Then X ≼DW(A)Y says that, 
measured by the S-Gini index, the welfare of X is larger than that of Y for every aversion 
degree β ∈ A. Since VDW(A) ⊆ Vconc , Donaldson-Weymark dominance is weaker than second 
degree concave stochastic dominance,

(8)�
1

0

Q
X
(t)dv(t) ≤ �

1

0

Q
Y
(t)dv(t) for all v ∈ V .

FX(z) ≥ FY (z) for all z ∈ ℝ.

�
z

−∞

FX(x)dx ≥ �
z

−∞

FY (y)dy for all z ∈ ℝ.

�
∞

z

FX(x)dx ≥ �
∞

z

FY (y)dy for all z .

X ⪯Vconv
Y ⇔ −Y ⪯Vconc

−X.

X ⪯Vconc
Y ⇒ X ⪯DW(A) Y .
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 Instead of Sv(X) one may likewise regard the upper interval [Sv(X),∞[ as a set-valued 
representation of income and compare those representations by set inclusion. With (6), [
QX(�),∞

[
 is the income range of the upper (1 − α)-part of the population, while with (7)

 is the range of incomes larger than the mean income of the lower α-part. With multiple 
attributes we will employ a similar set-inclusion approach.

3 � Uniform Gini dominance in several dimensions

So far, a single attribute of welfare, say income, has been examined. Now consider d attrib-
utes, each being desirable as a ‘good’. Let v be a weight-generating function from Vconc. 
X denotes a random vector in ℝd depicting the distribution of d-variate endowments in a 
population. This includes the empirical case, where X has a distribution giving equal mass 
1/n to n points in d-space. For p ∈ P+ = {p ∈ ℝ

d ∶ p ≥ 0,
∑n

i=1
pi = 1} consider

where p′X denotes the inner product. p may be seen as a vector of relative ‘prices’, that 
is, importance weights of attributes. For a given vector p, (9) is an amount of representa-
tive ‘priced endowment’ or aggregate value. It measures the welfare in the population; the 
larger this amount, the larger is the welfare. As v is concave, the measure Sv(p�X) is ine-
quality averse and always smaller or equal to mean priced endowment E[p′X]. Thus, as in 
the single-dimensional case, the difference

serves as an absolute measure of inequality, and Sv(p�X) is an amount of individual aggre-
gate value that, if equally distributed, would yield the same level of welfare as the given dis-
tribution. E.g., if Sv(p�X)∕E[p�X] = 0.9 , only 90 percent of total aggregate value would be 
needed for the same welfare level under equal distribution. Or, if Sv(p�Y)∕Sv(p�X) = 1.05 , 
the distribution of Y yields a five percent welfare gain over the distribution of X. Here, 
welfare is defined in terms of individual aggregate value only. This does include a possible 
substitution of attribute levels: each individual can change her/his relative levels under the 
condition of a given aggregate value.

Observe that in (9) the individual data of wellbeing is

–	 first aggregated over the attributes by an additive score,
–	 and then evaluated over the population.

Also Tsui (1995) constructs multivariate inequality indices that aggregate the data in 
two steps. But different from the present approach he aggregates first over the attributes on 
an individual level and then over the population. The same is done in the index of Gajdos 
and Weymark (2005).

Two distributions, those of X and Y, may be compared by the index (9) if some vec-
tor p of attribute weights is given. But in an applied setting, this will be rarely the case. 

[
1

�∫ ]−∞,Q
X
(�)]

xdF
X
(x),∞

[

(9)S
v
(p�X) = ∫

1

0

Qp�X(t)dv(t),

(10)E[p�X] − Sv(p
�X)
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Therefore, we introduce a uniform ordering that allows for uncertainty about p. Let 
� ≠ P ⊆ P+ reflect some partial information on the price vector p.

Definition 1  For v ∈ Vconc and � ≠ P ⊆ P+ define X ≼vP Y  if

in words, Y has higher v-welfare than X in P-uniform Gini dominance. If P = P+, the rela-
tion is simply mentioned as uniform Gini dominance.

Often, partial information P is described by a finite number of linear inequalities on 
p, such as p1 + p4 ≤ 0.8, p1 + p2 ≤ p3 and similar. Then P is mentioned as a linear par-
tial information on prices. It implies that its set of extremal points, Ext(P), is finite, P = 
conv(Ext(P)) being the convex hull. The following Proposition 1 says that, under linear 
partial information on prices and a certain requirement of comonotonicity, P-uniform Gini 
dominance can be checked by checking (11) for a finite number of price vectors only, viz. 
p ∈ Ext(P).

A set U of real random variables is called comonotonic if there exists a random vari-
able V and for each U ∈ U a non-decreasing function gU such that U =d gU(Z) holds in 
distribution. Particularly, if U consists of the marginals of a given random vector X, 
U = {X1,… ,Xd} , the random vector is comonotonic in the usual sense.

Proposition 1  Assume that P is a linear partial information on prices and each of the sets 
{p�X ∶ p ∈ Ext(P)} and {p�Y ∶ p ∈ Ext(P)} is comonotonic. Then

For proof, see the Appendix A. In case of no information on p, P = P+, we have 
Ext(P) = {(1, 0,… , 0)�,…(0,… , 0, 1)�} . If X as well as Y are comonotonic random vec-
tors, the Proposition 1 implies that uniform Gini dominance is fully determined by domi-
nance of their marginals:

Corollary 1  Let X as well as Y be comonotonic random vectors. Then

Of course, in general this is not the case. To establish P-uniform dominance, not only 
the marginals but also the dependence structures of the random vectors X and Y have to be 
taken into account. To cope with this, in what follows the set-valued representative endow-
ment of a given random vector is constructed, which is a subset of ℝd reflecting the given 
inequality posture as well as the (total or partial) uncertainty about attribute weights.

4 � Convex compacts and representative endowments

As a visual device to depict and compare the multivariate welfare of X, convex sets in 
d-space are introduced whose upper extension will serve as a convex representative endow-
ment. Those sets are characterized by their support functions.

The support function hK of a non-empty closed convex set K ⊆ ℝ
d is defined as

(11)�
1

0

Qp�X(t)dv(t) ≤ �
1

0

Qp�Y(t)dv(t) for all p ∈ P,

X ⪯vP Y ⇔ X ⪯vExt(P) Y.

X ⪯vP+
Y ⇔ Xi ⪯v Yi for i = 1, 2,…d.
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 The support function gives, for each direction p ∈ ℝ
d , the distance between the origin and 

the tangent hyperplane in outer direction p; its values are finite if and only if K is compact. 
A support function is convex and positive homogeneous of degree 1. On the other hand, 
every such function characterizes a unique closed convex set. Moreover, the inclusion of 
two closed convex sets, K and L, is simply described by their support functions: K ⊆ L if 
and only if hK(p) ≤ hL(p) for all p ∈ ℝ

d . For these and more properties, see e.g. Rockafel-
lar (1970).

Consider a function w ∈ Vconv, that is, w convex, increasing and continuous with w(0) 
= 0, w(1) = 1, w′ being bounded. Assume that E[||X||] is finite. Then the function

is obviously positive homogenous. It is also convex and takes always finite values (Dycker-
hoff and Mosler 2012, Proposition 1). Therefore, (12) is the support function of a compact 
convex set, say C(X,w), in ℝd.

Note that, given p, the support function (12) resembles the representation (9) of uni-
variate welfare but is based on a convex distortion function w instead of a concave one. 
If a distortion function v is convex, its dual ṽ is concave, and viceversa. For any p ∈ ℝ

d 
it holds

From Lemma 1 in Appendix A we conclude

Thus, for v ∈ Vconc and any p ∈ ℝ
d , Sv(p�X) equals the distance of a tangent hyperplane 

to C(X, ṽ) from the origin, namely the tangent hyperplane in outer direction −p. C(X, ṽ) is 
partially ordered by the usual componentwise ordering ≤ of ℝd . Its set of minimal points, 
that is its Pareto minimum PRE(C(X, ṽ)) , will serve us as a multivariate version of repre-
sentative endowment. As the attributes are ‘goods’ and their prices are non-negative, we 
expand C(X, ṽ) to its upper set,

 Here, ⊕ means Minkowski addition of sets, A⊕ B = {a + b ∶ a ∈ A, b ∈ B}. Obviously, 
C+(X, ṽ) has Pareto minimum equal to that of C(X, ṽ) and is uniquely characterized by its 
support function

We define:

hK ∶ ℝ
d
→ ℝ ∪ {∞}, hK(p) = max{p�x|x ∈ K}.

(12)h(p) = ∫
1

0

Qp�X(t)dw(t), p ∈ ℝ
d
,

(13)∫
1

0

Qp�X(t)dv(t) = −∫
1

0

Q−p�X(t)dṽ(t).

(14)S
v
(p�X) = ∫

1

0

Qp�X(t) dv (t) = −h
C(X,ṽ)(−p), p ∈ ℝ

d
.

C+(X, ṽ) = C(X, ṽ)⊕ℝ
d
+
.

(15)hC+(X,ṽ)(−p) =

{
hC(X,ṽ)(−p), if p ∈ ℝ

d
+
,

∞, otherwise.
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Definition 2 C+(X, ṽ) = C(X, ṽ)⊕ℝ
d
+
 is the convex representative endowment (CRE) of 

distribution X under the weight-generating function v. Its Pareto minimum set is mentioned 
as the Pareto representative endowment (PRE).

For p ≥ 0, consider

 Observe that C+(X, ṽ) is the union of all upper orthants originating from xp, p ≥ 0. Every 
z ∈ C+(X, ṽ) is not less desirable than xp given this price vector p. Moreover it holds 
Sv(p

�xp) = Sv(p
�X) , that is, xp is the equally distributed representative vector of endow-

ments under price vector p.
Hence, for two distributions of X and Y, it holds C+(Y, ṽ) ⊆ C+(X, ṽ) if and only 

if hC+(Y,ṽ)(p) ≤ hC+(X,ṽ)(p) for all p ∈ ℝ
d
+
 , equivalently, by (14) and homogeneity, if 

∫ 1

0
Qp�X(t)dv(t) ≤ ∫ 1

0
Qp�Y(t)dv(t) whenever p ∈ P+. This again is tantamount saying that 

X ⪯vP+
Y . We have obtained the following geometrization of uniform Gini dominance:

Theorem 1  Let v ∈ Vconc, P = P+. Then

The inclusion of CREs is equivalent to uniform Gini dominance. Particularly in dimen-
sions two and three this allows for a visual assessment of the ordering. When the data is 
transformed by a positive affine-linear transformation, the convex representative endow-
ment alters in the same way:

Proposition 2  Consider an m × d matrix A, A ≥ 0, and b ∈ ℝ
m . Then

For proof, see Appendix A. As Proposition 2 holds for a diagonal matrix having positive 
entries in the diagonal, we get:

Corollary 2  The CRE as well as the PRE of a d-variate distribution are translation and 
multivariate scale equivariant.

Further, with a projection matrix AJ, yielding XJ and YJ, conclude:

Corollary 3  The CRE of a d-variate distribution restricted to attributes 
j ∈ J ⊆ {1, 2,… , d} equals the projection of the d-variate convex representative endow-
ment to the subspace having indices j ∈ J. The same holds for the PREs.

From Corollary 3 it is also clear that uniform Gini dominance persists if some of the 
attributes are dropped:

Corollary 4  For any v ∈ Vconc

XJ and YJ being the subvectors regarding any subset J ⊆ {1, 2,… , d} of indices.

xp ∈ argmin{p�x ∶ x ∈ C+(X, ṽ)}.

X ⪯vP+
Y ⟺ C+(Y, ṽ) ⊆ C+(X, ṽ).

(16)C+(AX + b, ṽ) = AC+(X, ṽ) + b.

X ⪯vP+
Y ⟹ XJ ⪯vP+

YJ ,
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5 � Increasing inequality aversion

For a single attribute, the S-Gini index Gβ and the related representative endowment 
provide a family of measures which is parameterized by the degree β of aversion to 
inequality. Similarly, with multi-dimensioned endowments we introduce families of 
weight-generating functions depending on a parameter of inequality aversion.

Let R = {uα}α∈[0,1] be a convex-ordered family of functions from Vconc, that is, uα 
becomes less convex with increasing α (Chan et al. 1990). Then, if α >β, the graph of 
uα lies above that of uβ. In other words, regarded as probability distribution functions, uβ 
dominates uα in first degree stochastic dominance. Therefore with any p ∈ ℝ

d it follows 
that

 since the integrand increases with t. With (15) and (14) obtain:

Proposition 3  Consider a convex-ordered family R = {u𝛼}0<𝛼≤1 ⊆ Vconc . Then

For α >β the PRE of X evaluated with α lies below that evaluated with β. In other 
words, the welfare measured by PRE decreases when the parameter of inequality aver-
sion α increases.

As an example of a convex-ordered family, consider the Donaldson-Weymark 
class RDW = {wα}0<α≤ 1,

 as used in the univariate S-Gini index (5) with � =
1

�
 . It yields w̃𝛼(t) = t1∕𝛼 and the so 

called continuous ECH* regions (Cascos 2007). Note that Galichon and Henry (2012) 
employ this weight generating function with α = 1/2.

Another example is given by the family Rzon = {rα}0<α≤ 1 of concave distortion func-
tions (7)

 hence r̃𝛼(t) = 0 ∨ (t − 1 + 𝛼)∕𝛼 . The resulting sets C(X,0 ∨ (t − 1 + α)/α) are mentioned 
as zonoid regions (Koshevoy and Mosler (1997b)). Observe that the family Rzon consists of 
the ‘most concave’ distortion functions, that is the minimal elements of the convex order 
among all distortion functions which are either convex or concave.

We illustrate the RDW-based PREs by an example of welfare between countries, viz. 
the members of the European Union in 2015 (see Table 1), considering two attributes: 
life expectancy at birth and GDP per capita, being measured in constant prices. The 
data is listed in Tables 2 and 3, Appendix B. These attributes are incommensurable and 
necessitate a bivariate approach. As no common unit of measurement exists, any non-
negative vector p of relative attribute weights is considered. Figure 1 exhibits RDW-based 
PREs in the years 2000 and 2015, for various values of 1/α. Figure 2 demonstrates their 
change over time for 1/α = 2 and 1/α = 14/3.

�
1

0

Qp�X(t)du�(t) ≤ �
1

0

Qp�X(t)duβ(t),

𝛼 > 𝛽 ⇒ C
+(X, ũ𝛽) ⊆ C

+(X, ũ𝛼).

w�(t) = 1 − (1 − t)1∕� , 0 ≤ t ≤ 1,

r𝛼(t) =
t

𝛼
∧ 1 =

{ t

𝛼
, if 0 ≤ t ≤ 𝛼,

1, if 𝛼 < t ≤ 1 ,
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The two figures show that for these data all CREs are close to upper quadrants. The 
curved parts of them are rather small, which means that the effect of different weight vec-
tors p is slight. Each PRE divides the countries into two groups, one above and one below 
the line. E.g. for 1/α = 2 (upper right lines), which corresponds to the usual univariate Gini 
index, we see that in 2000 the countries below the PRE line consist of the East European 
states (besides Czechia and Slovenia), while all members of the European Union at that 
time are clearly above the line. In 2015, after the Eastern countries entered the European 
Union, this divide remains (only Portugal and Greece move to the lower part), but the rela-
tive positions of Eastern countries changes, which is further described by PREs with lower 
degrees of 1/α. Figure 2 emphasizes the movement of PREs over time: For each α, the PRE 
in 2015 lies above that in 2000, which means that the distribution in 2015 has higher wel-
fare regarding uniform Gini dominance than that in 2000.

Table 1   European countries and 
year of accession to EU or its 
predecessors

Country abbr. EU since Country abbr. EU since

Austria AU 1995 Belgium BE 1957
Bulgaria BG 2007 Croatia CR 2013
Cyprus CY 2004 Czech Republic CZ 2004
Denmark DK 1973 Estonia ET 2004
Finland FI 1995 France FR 1957
Germany GE 1957 Greece GR 1981
Hungary HU 2004 Ireland IR 1973
Italy IT 1957 Latvia LT 2004
Lithuania LT 2004 Luxembourg LU 1957
Malta MA 2004 Netherlands NL 1957
Poland PL 2004 Portugal PT 1986
Romania RO 2007 Slovakia SK 2004
Slovenia SN 2004 Spain SP 1986
Sweden SW 1995 United Kingdom UK 1973
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Fig. 1   RDW-based representative endowments of European countries (later EU-28) regarding life expectancy 
(years) and per capita GDP (1000 USD) in 2000 (left panel) and 2015 (right panel). The parameter is 1/α 
= 2,14/5,14/3,7, lowest at the upper right curve and increasing to the lower left one
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While different classes of distortion functions provide different representative endow-
ments, results appear to be similar in a qualitative sense. Figure 3 in Appendix B shows 
the respective PREs based on the class of distortion functions (7).

6 � Scale invariant measurement of inequality

The multi-dimensioned representative endowment is a set-valued measure of welfare, 
reflecting both the inequality and the general level of the distribution. It is equivari-
ant to translation and multivariate scale. However, to measure ‘pure’ inequality usually 
scale invariant measures are preferred. In this section we shortly discuss a scale invari-
ant measure of inequality that is closely related to the above representative endowments.

Given a random vector X = (X1,X2,… ,Xd)
� in ℝd having strictly positive expecta-

tion, E[X] = (𝜇1,𝜇2,… ,𝜇d)
� > 0 , denote its normalized version by
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Fig. 2   Comparison of RDW-based representative endowments of European countries (EU-28) regarding life 
expectancy (years) and per capita GDP (1000 USD) in 2000 (black) and in 2015 (blue). The parameter is 
1/α = 2 (upper right curves) resp. 14/3 (lower left curves)
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 and consider the convex representative endowment C+(X∗, ṽ) of the normalized X under 
weight-generating function v. This notion is scale invariant by construction. A scale invari-
ant ordering may be simply introduced as follows.

Definition 3  Given two random vectors X and Y that have positive expectations, define 
X ⪯∗

vP
Y if X∗ ⪯vP Y∗ . In words, Y is less unequal than X regarding distortion function v ∈ 

Vconc and information P on attribute weights.

If 0 < E[X] = E[Y] = (𝜇1,𝜇2,… ,𝜇d)
� it follows from the definition that

where P∕� = {q = �−1(p1∕�1, p2∕�2,… , pd∕�d)
� ∶ (p1, p2,… , pd)

� ∈ P, � =
∑d

i=1
pi∕�i} . 

Since P+/μ = P+, obtain:

Proposition 4  Let E[X] = E[Y] > 0 and P = P+. Then

Among multi-dimensioned distributions of equal mean, the uniform Gini dominance 
⪯vP+

 is a scale invariant ordering of inequality.

7 � Ordering properties

The P-uniform Gini dominance, X ≼vPY, means that X has lower welfare than Y, given a 
function v ∈ Vconc reflecting inequality posture and a set P providing information on attrib-
ute weights. This Section presents aspects of ≼vP as a reverse ordering of variability and its 
relations to known stochastic orderings of distributions. Proposition 5 states two properties 
of ≼vP that are typical for a variability ordering:

Proposition 5  For any v ∈ Vconc and � ≠ P ⊆ P+ it holds

	 (i)	 X ≼vP E[X],
	 (ii)	 β(X − E[X]) ≼vP X − E[X] if β ≥ 1.

For proof see Appendix A. The Proposition says that the distribution of X has vP-lower 
welfare than the one-point distribution at E[X] and that, for any β ≥ 1, the centered distri-
bution of X has vP-higher welfare than the same distribution ‘blown-up’ by some factor β 
> 1. The next result is about the ordering of expectations.

Proposition 6  X ⪯idP+
Y ⇒ E[X] ≤ E[Y], where id is the identity function on [0,1].

For proof, note that when v = id, (11) becomes ∫ 1

0
Qp�X(t)dt ≤ ∫ 1

0
Qp�Y(t)dt for all p ≥ 0, 

which implies E[X] ≤ E[Y].

X∗ =

(
X1

�1

,
X2

�2

.… ,
Xd

�d

)�

,

(17)X ⪯∗
vP

Y if and only if X ⪯
vP∕� Y,

X ⪯∗
vP

Y if and only if X ⪯
vP

Y.
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Now, let us compare uniform Gini dominance relations with known stochastic orders. 
A random vector X in ℝd is dominated by another random vector Y in increasing con-
cave (convex) order≥iconc (resp. ≥iconv), if

holds for all functions g ∶ ℝ
d
→ ℝ that are componentwise increasing and concave (resp. 

convex) and for which both expectations exist. Y is stochastically larger than X, X ≼stY, if 
(18) is satisfied for all increasing g. Obviously, ≼st is stronger than ≼iconc. The latter proves 
to be stronger than uniform Gini dominance, for any v ∈ Vconc and P ⊆ P+:

Proposition 7  It holds that X ≼iconcY implies
X ≼vPY for all v ∈ Vconc and � ≠ P ⊆ P+.

For proof, see Appendix A.
As we have seen, the Gini dominance orders reflect the spread of the attributes’ dis-

tributions as well as their general levels. Further, they indicate differences in correla-
tion. For example, consider bivariate random vectors, X = (X1,X2)′ and Y = (Y1,Y2)′, each 
being concentrated at two points with equal probabilities,

 With X one unit has high, the other unit low value in both attributes, while with Y each 
unit has one high and one low value. These distributions have identical marginals, and X is 
more correlated than Y. Then for any p = (p1, p2)

� ∈ P ⊆ P+,

 In case 0 < p1 ≤ p2 it holds

 and we obtain X ≼v{p}Y if and only if 1 − v(0.5) ≤ v(0.5)p1 + (1 − v(0.5))p2 if and only if 
v(0.5) ≥ 0.5, which is true since v ∈ Vconc. In case 0 < p2 ≤ p1, we similarly get X ≼v{p}Y if 
and only if v(0.5) ≥ 0.5. Consequently, X ≼v{p}Y holds for every p ∈ P+, hence X ⪯vP+

Y : 
Y has higher v-welfare in uniform Gini dominance than X. Here, under equal marginals the 
higher correlation of X results in less welfare .

General orderings of dependence are the submodular order and the concordance 
order; see e.g. Müller and Stoyan (2002). A function f ∶ ℝ

d
→ ℝ is submodular if

Y is larger than X in submodular order, X ≼submodY, if (18) holds for all submodular func-
tions (19) as far as the expectations exist. Like the increasing concave order, the submodu-
lar order is stronger than the ordering ≼vP (for proof see Appendix A):

Proposition 8  It holds that X ≼submodY implies
X ≼vPY for all v ∈ Vconc and � ≠ P ⊆ P+.

(18)E[g(X)] ≤ E[g(Y)]

P[X = (0, 0)�] = P[X = (1, 1)�] = 0.5, P[Y = (1, 0)�] = P[Y = (0, 1)�] = 0.5.

∫
1

0

Qp�X(t)dv(t) = v(0.5)p�(0, 0)� + (v(1) − v(0.5))p�(1, 1)� = (1 − v(0.5))(p1 + p2) = 1 − v(0.5).

∫
1

0

Qp�Y(t)dv(t) = v(0.5)p1 + (1 − v(0.5))p2,

(19)f (x ∧ y) + f (x ∨ y) ≤ f (x) + f (y) for all x, y.
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The concordance order, X ≼cY, says that for each i, j ∈ {1, 2,… , d} the bivariate dis-
tributions FXij

 and FYij
 are pointwise ordered, FXij

(z) ≤ FYij
(z) for all z ∈ ℝ

2 . This implies 
equal marginals and increasing covariances, Cov(Xi,Xj) ≤Cov(Yi,Yj). The reverse con-
cordance order is weaker than the submodular order, Y ≼cX follows from X ≼submodY.

In view of the above one may consider Gini dominance relations that are uniform not 
only in attribute weights, viz. the vector p, but also in their attitude to inequality aver-
sion, which is described by some family of functions v.

Definition 4  Given some convex-ordered family R, define X ≼RPY, which means P-uniform 
Gini dominance for all v in R ⊆ Vconc , in words, X has higher RP-welfare than Y.

This kind of Gini dominance is doubly uniform in attribute weights as well as in distortion 
functions of different inequality aversion collected in R. From Propositions 7 and 8 follows 
that, for any R ⊆ Vconc , X has lower RP-welfare than Y if either X is less than Y in increasing 
concave stochastic order or in submodular order.

Consider the special case R = Rzon. The positive weighted-mean order ⪯RzonP+
 , based on 

the zonoid regions, is also known as weak price submajorization; see Mosler(2002, Sec. 9.4). 
For a general convex-ordered family R and given P the relation ≼RP may be mentioned as 
P-positive weighted-mean order as it is the variant of a weighted-mean order (Dyckerhoff 
and Mosler 2011) restricted to non-negative directions in P. It can be shown that the ordering 
⪯RzonP

 implies any other P-positive weighted-mean order:

Proposition 9  Let R ⊆ Vconc be convex ordered and � ≠ P ⊆ P+ . Then

The proof is similar to that of Proposition 11 in Dyckerhoff and Mosler (2012), who also 
provide examples of weighted-mean orderings ≼RP that are different from ⪯RzonP

 . The fol-
lowing theorem collects the above results regarding orders that are stronger than ≼RP, that is, 
imply ≼RP.

Theorem 2  Let R ⊆ Vconc be convex ordered and � ≠ P ⊆ P+ . Sufficient for X ≼RPY is each of 
the following restrictions:

(i)	  X ⪯RzonP
Y,

(ii)	 X ≼iconcY,
(iii)	 X ≼concY,
(iv)	 X ≼stY,
(v)	 X ≼submodY,

and the reverse implications are generally wrong.
Specifically consider two Gaussian vectors X and Y, X ∼ N(�X,ΣX) , Y ∼ N(�Y ,ΣY) . Then 

the mentioned orders are characterized by first and second moments as follows, which yields 
parametric conditions that are sufficient for X ≼RPY.

X ⪯RzonP
Y ⇒ X ⪯RP Y.
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Proposition 10 

(i)	  X ⪯
R
zon

P
Y ⇔ �X ≤ �Y and p�(ΣX − ΣY)p ≥ 0 for all p ∈ P,  

(ii)	 X ≼iconcY ⇔ μX ≤ μY and ΣX −ΣY nonnegative definite,
(iii)	 X ≼concY ⇔ μX = μY and ΣX −ΣY nonnegative definite,
(iv)	 X ≼stY ⇔ μX ≤ μY and ΣX = ΣY,
(v)	 X ≼submodY ⇔ Y ≼cX ⇔ μX = μY,Var(Xi) = Var(Yi) and Cov(Xi,Xj) ≥Cov(Yi,Yj) for all i,j.

For proof see Appendix A.

8 � Statistical and computational issues

For the comparison of welfare in multiple attributes set-valued representative endowments have 
been introduced as well as P-uniform Gini dominance orderings. We conclude the paper by some 
remarks on computational and statistical issues that arise when these notions are used with data. 
Consider data in ℝd , d ≥ 2, that is, an empirically distributed X. To numerically determine the 
convex representative endowment C+(X, ṽ) for a given concave function v that generates the ine-
quality weights, the exact algorithm of Bazovkin and Mosler (2012) and the R-package Bazovkin 
(2013) may be used. This procedure calculates the set C(X, ṽ) , being a so called weighted-mean 
(WM) region. Its lower boundary coincides with the lower boundary of C+(X, ṽ) , which corre-
sponds to attribute weight vectors p ∈ P+. It constructs the WM region by its facets, that is, step-
by-step building the surface of the convex polytope in ℝd . The algorithm is easily restricted to the 
part of the lower boundary that corresponds to a specified set P of attribute weights p.

In a sampling context one may ask whether a sample of d-variate representative endowments 
converges to the representative endowment of the underlying probability distribution. Consider 
an i.i.d. sample X1,X2,… ,Xn,… from X in ℝd and the sequence of representative endow-
ments C+(Xn, w̃n) . Dyckerhoff and Mosler (2011) have shown a strong law of large numbers: If 
w̃n(t) ∈ Vconv converges pointwise to some w̃(t) and supn w̃�

n
(1) < ∞ , then C(Xn, w̃n) converges 

to C(X, w̃) in Hausdorff metric with probability one, which is tantamount saying that

 This convergence result implies the Hausdorff convergence of C+(Xn, w̃n) to C+(X, w̃) . We 
conclude that the empirical PRE is a strongly consistent estimator of its theoretical coun-
terpart C+(X, w̃).
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