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Abstract A new type of decomposition by population subgroup is proposed for the Gini
inequality index. The decomposition satisfies the completely identical distribution (CID)
condition, whereby the between-group inequality is null if and only if the distribution
within each subgroup is identical to all the others. Thus, this decomposition contrasts
strikingly with the subgroup decomposition of the generalized entropy measures, which
satisfy the condition that the between-group inequality is null if the mean within each
subgroup equals those of all the others. The new decomposition can be generalized to the
distance-Gini index and the volume-Gini index, two multivariate Gini indices introduced by
Koshevoy and Mosler, with some modification of the index definition and a somewhat
loosened CID condition in the latter case. The source decomposition is also generalized to
these multi-dimensional indices. Interaction terms appear among sources of different
attributes in the decomposition for the modified volume—Gini index.

Keywords Brunn—Minkowskiinequality - Completely Identical Distribution (CID) condition -
Cramér test - Multi-dimensional Gini index - Multilevel decomposition -
Source decomposition - Subgroup decomposition

1 Introduction

Decomposability of inequality measures into contributions of population subgroups and
contributions of sources is a desirable property for studies of economic inequality status and
trends in populations. In fact, several types of subgroup decomposition of the Gini inequality
index have been proposed so far. However, these decompositions have disadvantages such as
inconsistency and impracticality. In contrast, the new type of decomposition presented in this
paper has good properties. It is notable that the new decomposition satisfies the completely
identical distribution (CID) condition, whereby the between-group inequality is null if and
only if the distribution within each subgroup is identical to all the others. This is in striking
contrast to the well-known subgroup decomposition of the Theil index or the generalized
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entropy measures, which satisfy the condition whereby the between-group inequality is null
if the mean within each subgroup equals those of all the others. It should also be noted that
the new decomposition can be generalized to multivariate Gini indices while essentially
maintaining its properties, indicating its suitability for the Gini decomposition.

Generalization of the Gini index to multivariate settings is a relatively new research
issue, although the Gini index has been the most popular inequality measure for many
years. Koshevoy and Mosler [11] proposed two types of multivariate Gini index, the
distance-Gini index and the volume-Gini index. The former was formulated using an
approach involving generalization of the univariate relative mean difference. The latter is a
modification of the multivariate index proposed by Oja [14], which can be formulated with
an approach using generalization of the Lorenz curve. Koshevoy and Mosler [11] showed
that their indices are decomposable into subgroups in a similar way as the two-term
decomposition of the ordinary univariate Gini index [see (14) in the next section] proposed
by several researchers, including Rao [16] and Dagum [4]. However, their decomposition
has disadvantages in terms of practicality and consistency. The new decomposition in this
paper can easily be generalized based on studies of the multivariate Cramér test [2] in the
case of the distance-Gini index. The generalization can also be achieved in the case of the
volume-Gini index based on the Brunn—Minkowski inequality or Minkowski’s first
inequality concerning mixed volume, with some modifications of the index definition.
The CID condition needs to be loosened somewhat in the latter case. The source decom-
position of Rao [16] can also be generalized to both multivariate indices. It is notable that
interaction terms appear among sources of different attributes in the source decomposition
of the modified volume-Gini index.

The paper is organized as follows. The next section is devoted to subgroup decomposition
of the usual univariate Gini index. Section 2.1 introduces the new type of subgroup decom-
position, which is extended to the multilevel decomposition in section 2.2, and compared
with other types of subgroup decomposition previously proposed in section 2.3. In section
2.4, the new decomposition is applied to Japanese household income data. The results for
age-group decomposition and regional decomposition are presented. Section 3 is devoted to
subgroup and source decomposition of the multivariate Gini indices. The new subgroup
decomposition is generalized to the distance-Gini index in section 3.1, and to the volume-
Gini index in section 3.2, with modifications of the index definition. Source decomposition
of both indices is introduced in section 3.3, followed by applications of the subgroup
decomposition to Japanese household income and expenditure data in section 3.4. Section 4
concludes discussions, with some remarks concerning multivariate inequality measures.

2 Subgroup decomposition of the Gini index
2.1 New type of subgroup decomposition
Let F(y) represent the cumulative distribution function of a nonnegative random variable Y

such as income, with a finite positive expectation x. The Gini mean difference M(F) can be
presented in several ways, as follows:

e =5 | | k-slartaro) = | Fo)0 - FODe

B J (v —wd((F —1)F) =2 J @_“)(F(y)—%)dny) (1)
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In the literature, double M(F) is often called the Gini mean difference; however, M(F)
is defined as the Gini mean difference in this paper. Among the four equivalent
representations in Eq. 1, the first is the original expression of the Gini mean difference,
the fourth express it as the covariance between the variable Y and its rank F(Y) (see [13]).
Strictly speaking, when taking non-continuous distributions into consideration, the fourth
representation does not hold. The second representation expresses M(F) as the co-
moment between the rank function F(y) and its reverse rank function 1—-F(y). Since the
integrand of the second representation F(y)(1 — F(y)) equals the expected variance of
the binary variable “whether the random variable Y takes a value less than or equal to y”,
the second representation is also interpretable as the total of the expected variance of the
binary variable over various values of Y. The second representation can be proved using
Lemma 2.1 of Baringhaus and Franz [2]. The third and fourth representations are derived
from the second using integration by parts. As for the Gini relative mean difference, in
other words, the Gini inequality index R(F) = M(F)/u, the corresponding representa-
tions are obtained by division by x in Eq. 1.

Assume that the population consists of groups 1,2,...,n. Let Fi(y), u;, and p; represent the
cumulative distribution function, the expected value and the share of group 7 in the overall
population, respectively. Note that F(y) = > p;Fi(y). Then, using the second representa-
tions in Eq. 1, the Gini mean difference M(F) and the Gini index R(F) can be decomposed
by subgroup, respectively, as follows:

M(F) =S pM(F)+ 3 p j (Fi(y) — F(»))dy 2)

RF) = Y piteR(F) +Zp,% j (Fi(y) — F(»))dy. (3)

The proof is by direct calculation. The first term on the right-hand side of Eq. 3 corresponds
to the within-group inequality, and the second term corresponds to the between-group
inequality. The contribution of each group to the between-group inequality can be naturally
defined as follows:
1 1

pr | B0 = FOYO = pievFLF) 0), )
ov (G, F) == [(G(y) — F(y))’dy satisfies the following equality [2], which is useful for
generalizing the decompositions 2 and 3 to multivariate settings, as shown in the next
section:

(6.7 = | [ k-yiaoware) -5 | | k-slaowac) —5 [ | - siartoaro.
(5)

Equality 5 forms the basis of the Cramér two-sample test and its generalization to multivariate
settings [2]. In this connection, I call the between-group inequality, the second term on the
right-hand side of Eq. 3, the Cramér coefficient of variation among groups 1....,x.

It may be felt that the second term should not be regarded as the between-group
inequality because the functional form appears different to that of the Gini index. However,
the second term has essentially the same form as the Gini index, because the Gini index
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holds the following equality, which can be regarded as a special case of Eq. 3 with the null
within-group inequality:
1 2 1

RE) = | 465 | (o 0) = PO = [ vl P)AF). (6)
where Iix )(y)=1 if y>x, or 0 if y<x. Equality 6 expresses the notion that the Gini index is
identical to the Cramér coefficient of variation if each population unit forms an individual
group. Note that the indicator function [y ., in Eq. 6 corresponds to the one-point
distribution function for a random variable, which takes value x almost surely. For proof

note that | (7}, )(v) = F(»))*dF(y) = F(y)(1 = F(y)).
The following decompositions are also true:

M(F) = piM(F;) +_ppyev(Fi, F)) (7)
REF) = S p i RE) + Y ppy ov(Fi ) ®

These decompositions can be proved by direct calculation. Decomposition § attributes the
between-group inequality to the relative mean squared difference of distribution functions
between each pair of groups. From Egs. 5 and 1, the following equality is obtained for
cv(FLF):

v(F,,F) = 4 (M GF,- + %F) - %M(F,) - %M(F)) . )

Thus, cv(F;,F) is four-fold greater than the surplus of dispersion in terms of the Gini mean
difference for the horizontal merger of group i and the overall population. Assuming the &
to 1—& merger ratio, where € is a small positive number, the following representation is also
obtained for cv(F,,F) by substituting £, 1—¢, F;, F and €F; + (1 — &)F for py, py, F1, F» and
F, respectively in Eq. 7:

MEeF,+ (1 —e)F) —eM(F;) — (1 —e)M(F)

cv(F;, F) =
£

+o(e). (10)

Thus, cv(F;, F) equals the surplus of the dispersion relative to the merger ratio when merger
with an infinitely small merger ratio of group i takes place.

Obviously, the between-group inequality in decompositions 3 and 8 is null if and only if
the distribution within each group is identical to those of all other groups. I call this condition
the completely identical distribution (CID) condition. For this reason, the decomposition is
quite different from that of the generalized entropy measures of inequality, in which the
between-group inequality is null if and only if the mean within each group is equal to all the
others. Bhattacharya and Mahalanobis [3] mentioned that, intuitively, it is reasonable to lay
down the between-group component should not change if the group distributions F; are
changed, keeping p,; fixed. However, Dagum [4] was opposed to taking the income means of
subpopulations as their representative values to estimate the between-subpopulation
inequality because income distributions significantly depart from normality. I believe that
the new decomposition 3 favors Dagum’s view, although he pursued a different approach that
added an extra component besides the between-group component of Bhattacharya and
Mahalanobis, as shown in section 2.3.
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2.2 Extension to multilevel decomposition

Let Fi(»), p;, and p; represent the cumulative distribution function, the expected value and
the share of subgroup j in group i, respectively. Noting that F, (v) = 25 PiF(¥), and
Hi = Z/‘piiuij, the two-level decomposition of the Gini index R(F) is derived by further
decomposing the Gini index within each group R(F;) in Eq. 3 as follows:

Zpll:tlthMUR iy +ZP1MP11,1 [ (Fy) = F)’dv (1)
+Zpl J () — F(3))dy.

The second term on the right-hand side of Eq. 11 corresponds to the sum of the between-
subgroup inequalities within groups. One of the advantages of decomposition 3 is that the
between-group inequality is consistently defined with hierarchical grouping systems', since
the between-subgroup inequality in the overall population equals the sum of the between-
subgroup inequalities within groups and the between-group inequality in the overall
population, i.e. the following equality is true for each group:

ZPU J Fl,(y dy Z K pl/ J l/(J’) i(J’))Zdnyé J (Fi(y) *F(J’))zd)*
(12)

Obviously, decomposition 11 can be further extended to thicker-layered decompositions,
retaining the consistency.

2.3 Comparison with other types of subgroup decomposition

Several researchers, such as Pyatt [15] and Dagum [4], proposed the following three-term
decomposition:

szz A R /l sziju +— r ZP:PJ ‘,uz Hils (13)

i<j i<j

where Dy = [dF;(x) [{(x — y)dFi(y) if p1; > py,0r [ dFi(x) [3(x — y)dF;(y) if p; <
The first term can be regarded as the contribution of the within-group inequality since the term
is a weighted sum of the within-group inequality values. The third term on the right-hand side
of (13) equals the between-group inequality defined by Bhattacharya and Mahalanobis [3].
The second term is regarded as the contribution of the trans-variation intensity, which
measures a degree of overlap between the within-group distributions. This three-term
decomposition is less satisfactory because it is inconsistent with multilevel groupings, and
the weights assigned to the subgroups in the first term do not sum up to one.

The sum of the second and third terms is called the gross between-group Gini index,
which, with the first term, comprises the following two-term decomposition:

Zp““R ) +— Zp,pfj J|x*ylde(x)dE-(y)- (14)

i<j

! The definition of “consistency with hierarchical grouping systems” in this paper is entirely different from
that of “subgroup consistency” defined by Shorrocks [18].
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Although the two-term decomposition 14 can be extended to a multilevel decomposition
consistently in a sense, the gross between-group Gini index cannot be regarded as the
between-group inequality because it does not take the minimum constant value (usually
normalized to null) when the within-group distributions or means are identical to each other.

Making use of the fourth representation of the Gini mean difference in Eq. 1, Yitzhaki
and Lerman [24] proposed a different type of three-term decomposition, which yields a
between-group inequality that is much closer to the counterpart of the new decomposition
3, as shown in section 2.4.

:ZPI%R +Zpl:qu 00171 ZP: (G 7%)7 (15)

(v—1;)
where ~0i = = n Eq. o; measures the degree to
here O j‘(y M)Fm = JFWAF(), 1 Eq. 15, O he d

which the overall dlstrlbutlon is 1nc1uded in the range of the within-group distribution 7, and
G; is the expected rank of observations belonging to group i if they are ranked according to
the ranking of the overall population. The third term on the right-hand side of Eq. 15 is the
covariance between the within-group means and the average ranks of the respective groups.
Thus, the third term can be regarded as the between-group inequality, which vanishes if the
within-group mean p; equals that of all the others, or the average rank of each group G;
equals that of all the others. Although their decomposition has disadvantages in that the
between-group inequality may take a negative value and there is inconsistency with
multilevel groupings, it notably takes a step towards the new decomposition presented in
this paper, in that the between-group inequality is defined using more than a single type of
aggregates.

The contribution of each group to the between-group inequality in decomposition 3
shows the following relation to the components in decomposition 15 if F; is continuous for
any group:

1 i 1 1
py | =P :pz-%mm(oo,- 1)+ 291 =10 (G 3 ) +PRIFO0 = 1),

(16)
O —  o-wF (y)
where Vi0 = o) ( ) . The proof is given in the Appendix. Note that the third term

on the right-hand side of Eq 16 vanishes on summation.

2.4 Applications to Japanese family income data
2.4.1 Decomposition of income inequality into age groups for household heads

The most recent survey results drew attention to a sharp rise in income inequality among the
young generation in Japan, although the overall inequality has not risen notably if age effects
are excluded. Table 1 shows trends in income inequality within each age group for
household heads measured by the Gini index and the squared coefficient of variance (SCV).
These indices measure the annual income inequality among households with two or more
members. The estimates of the indices are derived from the National Survey of Family
Income and Expenditures, a large-scale family budget survey of approximately 50,000
households, conducted by the Statistics Bureau, Ministry of Internal Affairs and
Communications every 5 years. The Gini indices are estimated from two-way tables of
income class by age group of the household head using the composite Simpson’s rule for
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Table 1 Income inequality by age group for household head

Age group of household head  Gini index by year SCV by year

1989 1994 1999 2004 1989 1994 1999 2004

Overall 0.2942 0.2983 0.3014 0.3088 0.4651 0.4277 0.4017 0.4543
Overall adjusted* 0.2942 0.2928 0.2887 0.2892 0.4651 0.4144 03759 0.3894
< 30 years old 0.2121 0.2174 0.2214 0.2373 0.1764 0.3260 0.1819 0.1998
30-39 0.2275 0.2199 0.2212 0.2234 0.2735 0.2440 0.2166 0.2034
40-49 0.2411 0.2455 0.2436  0.2439 0.2809 0.3434 0.2544 0.2401
50-59 0.2914 0.2741 0.2760 0.2847 0.4173 0.3192 0.3466 0.3422
60—69 0.3515 0.3572 0.3376 0.3376 0.5791 0.6577 0.5170 0.6178
70 < 0.4167 0.3853 0.3483 0.3466 2.3195 0.8987 0.7489 1.0343

*Calculated after replacing the share of each age group with that of 1989.

approximations of Lorenz domains in a similar manner to the official Gini estimates. SCV's
are picked up from the existing statistical tables, so the estimates are virtually calculated
from the micro data. There are 10 income classes, ranging from <2 million yen to >15
million yen. Such Gini estimates are empirically considered to be good approximations to
those estimated from the micro data.

As shown in Table 2, decomposition into age groups for household heads” reveals that
the youngest group, with a household head <30 years old, did not contribute to the slight
increase in overall inequality between 1999 and 2004, despite the sharp increase in the
within-group inequality. The increase in relative income of the youngest group rather
contributed to the decrease in the between-group inequality, which canceled out the positive
contribution of the within-group inequality. Thus, the slight increase in overall inequality
between 1999 and 2004 should be attributed to contributions of other age groups, which did
not draw much attention.

The between-group inequality and contribution of each age group measured by the Gini
decomposition of Yitzhaki and Lerman [24] are approximately two-fold greater than their
counterparts in the new decomposition with the same sign.

2.4.2 Regional inequality in income distribution

It has recently been speculated that the between-region inequality, in particular the gap
between the metropolitan areas including Greater Tokyo and other areas, is increasing, as
well as the between-household inequality. However, the actual trend may differ somewhat
from this speculation according to the results derived from the new decomposition. Table 3
shows the recent trends in regional income inequality in Japan, measured by three types of
the Gini decomposition and decomposition of the generalized entropy measures. The
single-parameter entropy family is defined as follows:

E(F) = j 0./ WAF(y), (17)

2 As noted above, estimates for the new decomposition are made from aggregates using the composite
Simpson’s rule (with Eq. 9 for calculations of the between-group inequalities).

@ Springer



160 M. Okamoto

Table 2 Decomposition of income inequality into age groups for household heads*

Year Inequality indices and Age group of household head

related quantities
Overall <30 30-39  40-49 5059 6069 70 <

2004 Population share Pr 1.0000 0.0476 0.2295 0.2982 0.2303 0.1415 0.0528
(in 1989)
Relative income e 1.0000 0.6607 0.8407 1.0948 1.2336 0.8813 0.7622
Gini  Contribution 0.2892  0.0108 0.0467 0.0826 0.0878 0.0443 0.0169
Within-group itk pR; 0.2672  0.0075 0.0431 0.0796 0.0809 0.0421 0.0140
Between-group Picvi/i 0.0221  0.0034 0.0036 0.0030 0.0069 0.0022 0.0030
Within-group R; 0.2373  0.2234 0.2439 02847 0.3376  0.3466
Gini

cevF* cv; /p 0.0708 0.0158 0.0100 0.0299 0.0154 0.0565
Yitzhaki-Lerman between- 0.0456  0.0081 0.0072 0.0047 0.0169 0.0037 0.0051

group Gini
SCV  Contribution 0.3894  0.0094 0.0390 0.0933 0.1401 0.0721 0.0356
Within-group plpdp)® sev; 03562 0.0043  0.0343  0.0892 0.1247 0.0706  0.0330
Between-group Ppipdp—1)? 0.0332  0.0051 0.0047 0.0040 0.0153 0.0014 0.0026
Within-group SCV  scv; 0.1998 0.2034 0.2401 0.3422 0.6178 1.0343
Change Population share Di 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

from (in 1989)

1999  Relative income e 0.0000 0.0366 —0.0021 0.0013 —0.0203 0.0054 0.0427
Gini  Contribution 0.0005 —0.0002  0.0000 0.0003 —0.0001 0.0002 0.0002
Within-group pithi HR; 0.0035  0.0009 0.0003 0.0002 0.0012 0.0003 0.0007
Between-group PV —0.0030 —0.0010 —0.0003  0.0001 —0.0013 —0.0000 —0.0005
Within-group R; 0.0160  0.0022 0.0003 0.0087 0.0000 —0.0017

Gini
cevH* cv; /i —0.0220 —0.0013  0.0004 —0.0057 —0.0001 —0.0094
Yitzhaki—Lerman between- —0.0057 —0.0018 —0.0004 0.0001 —0.0026 0.0002 —0.0011

group Gini
SCV  Contribution 0.0136 —0.0005 —0.0021 —0.0027 —0.0047 0.0129 0.0108
Within-group i) sev;  0.0175  0.0009 —0.0018 —0.0035 —0.0035 0.0133  0.0121
Between-group pip/p=1)*  —0.0039 —0.0014 —0.0004 0.0007 —0.0011 —0.0004 —0.0013
Within-group SCV  scv; 0.0179 —0.0132 —0.0143 —0.0044 0.1008 0.2854

*Calculated after replacing the share of each age group with that of 1989.
**Contribution to the between-group inequality relative to its population share.

where @.(v/p) = ((v/p)=1)/c(c = 1) if c#0,1,9,(y/p) = (v/1) log (v/ ), @o(y/ 1) =
log(4+/y). The inequality indices drawn from the entropy family 17 satisfy the following

subgroup decomposition:

5.0 = Y (1) £ur) + S po (). (18)

The first and second terms on the right-hand side of Eq. 18 correspond to the within- and
between-group inequality, respectively. In Table 3, the between-region inequality indices in
the case of ¢=0,1 2 are denoted by E\, £, and E;, respectively. E, is equivalent to SCV.
A two-level regional grouping is used for calculation of the regional inequality. The
whole country consists of 47 prefectures. Each prefecture was subdivided into
approximately 3,000 municipalities (cities, wards, towns and villages) before many
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Table 3 Regional income inequality

Type of index/ Between-prefecture Between-municipality-group
decomposition inequality by year inequality by year
1989 1994 1999 2004 1994 1999 2004

Gini

New decomposition 0.0086  0.0067  0.0048  0.0045  0.0090 0.0074  0.0079

Yitzhaki—Lerman 0.0178  0.0141 0.0100  0.0101 0.0185 0.0145 0.0155

Bhattacharya—Mahalanobis 0.0716 0.0614 0.0521 0.0577 0.0697 0.0629 0.0672
E; (SCV) 0.0161 0.0123  0.0088  0.0099  0.0156 0.0127 0.0149
E; (Theil) 0.0083  0.0063  0.0045  0.0051 0.0081 0.0065 0.0075
E, 0.0086  0.0066  0.0047  0.0052  0.0084 0.0066  0.0077

municipality mergers took place in 2005. The municipalities in each prefecture were
grouped for the National Survey of Family Income and Expenditures, based on the more
detailed municipality grouping used for the Establishment and Enterprise Census. Each
municipality group consists of neighboring municipalities within the same prefecture. These
groups were determined by taking into consideration spheres of residential life or economic
relations among municipalities. There are 274 municipality groups in total. Similar to the
application in section 2.4.1, Gini indices and their breakdowns by the new decomposition
are estimated from two-way tables of income class by regions using the composite
Simpson’s rule for approximations of Lorenz domains.

The Gini decomposition of Bhattacharya and Mahalanobis [3] and decomposition of the
generalized entropy measures indicate an increase in the between-prefecture inequality
between 1999 and 2004 as well as an increase in the between-municipality-group in-
equality. In contrast, the new Gini decomposition indicates a continuance of the downtrend
of the between-prefecture inequality, despite an upturn of the between-municipality-group
inequality. The Gini decomposition of Yitzhaki and Lerman shows little change in the
between-prefecture inequality in the same period. Thus, the new decomposition and the
decomposition of Yitzhaki and Lerman imply that the regional inequality within prefectures
should be an issue rather than the gaps among prefectures. If attaching greater importance
to consistency with the measurement of between-household inequality usually made by the
Gini index in Japan, the implication derived from the new Gini decomposition should be
noted, and it deserves further investigation.

Shorrocks and Wan [19] pointed out that the Gini decomposition of Bhattacharya and
Mabhalanobis produces considerably greater shares for the between-group inequality in the
overall inequality compared to the decompositions of other indices. However, the new Gini
decomposition produces slightly smaller shares for the between-group inequality compared
to the decompositions of other indices, as shown in Table 4. The Gini decomposition of
Yitzhaki and Lerman produces slightly greater shares. Similar to the decomposition into age
groups for household heads shown in section 2.4.1, the between-prefecture inequality
derived from the Yitzhaki and Lerman decomposition is approximately two-fold greater than
that of the new decomposition. However, for the between-municipality-group inequality, the
relative difference is less than double. It seems intuitive to suppose that the more minutely
the population is subdivided, the smaller is the relative difference becomes.

@ Springer



162 M. Okamoto

Table 4 Ratio of regional income inequality to the overall income inequality (1999)

Type of index/ Between-prefecture Between-municipality-group Between-municipality-
decomposition inequality (%) inequality within prefecture (%) group inequality (%)
Gini
New decomposition 1.6 0.8 2.4
Yitzhaki-Lerman 33 1.5 4.4
Bhattacharya—Mahalanobis 17.2 10.0 20.8
E, (SCV) 22 1.0 3.2
E; (Theil) 2.9 1.2 4.1
Ey 2.9 1.2 4.2

3 Decomposition of the multivariate Gini index
3.1 Subgroup decomposition of the distance Gini index

In this section, the new type of subgroup decomposition for the Gini index is generalized to
multivariate Gini indices. First, the corresponding decomposition of the distance-Gini
index, a variation of the multivariate Gini index proposed by Koshevoy and Mosler [11], is
introduced, applying the achievement of Baringhaus and Franz [2] concerning the
multivariate Cramér test.

Let x={x;} and y={y;} be d-dimensional vectors, and let F(y) represent the distribution
function of a d-variate random variable ¥ on the orthant R‘i with a finite positive
expectation vector pu={xy}. Koshevoy and Mosler [11] defined the distance-Gini mean
difference Mp(F) as follows:

1

Mp(F) =54

j j Ix — y[dF(x)dF(y), where [x — y|| = (19)

Let x/p be a vector {x/u1}, and F (») be the distribution function of a random variable Y/p.
Then Koshevoy and Mosler [11] defined the distance-Gini relative mean difference (the
distance-Gini index) Rp(F) as Mp | F' ). In the univariate case (d=1), the distance-Gini index
is identical to the ordinary Gini index.

The Euclidean norm can be represented as follows (e.g. [9]; the proof is also given in a

more general form in the Appendix):
Il =Co | xlavia). (20)
e
where v is the uniform distribution on the unit sphere S9! = {a € R | lal| = 1}, and

Ci=T(d+1)/2)/ 27"D/2 Equation 20 allows the distance-Gini mean difference to be
represented as follows [12]:

Mo (F) :f—; Ljildu(a) J: J:O|u — V[dF (u, a)dF (v, a) :% J'Sdildv(a) Jw Flu,a)(1 — F(u, a))du,
(21)

where F(:, a) denotes the distribution function of a-X, the projection of the random variable X
on the line spanned by vector a. The corresponding representation for the distance-Gini index
is obtained by substituting F'(-,a) for F(:, a), where F(-,a) denotes the distribution function
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of a-X/p. Similar to the second representation of the Gini mean difference in Eq. 1, the
second representation of Mp(F) in Eq. 21 can be interpreted as the total expected variance for
whether or not a-X<u occurs over the relative level « and the projection direction a.

Koshevoy and Mosler [12] mentioned that the distance-Gini index is decomposable into
subgroup in a similar manner to the two-term decomposition 14. However, such
decomposition has the same disadvantages as Eq. 14.

An extension of Eq. 5 to multivariate settings allows the (new) subgroup decomposition
for the distance-Gini index. Let G(y) represents another d-variate distribution function.
Baringhaus and Franz [2, Theorem 2.1) proved the following inequality, where the equality
holds if and only if F=G:

ew(G.F) i (| [ Ix=viaowar) -3 [ [ Ix=ylaomac) -5 [ [ Ix-vlarwarm) = o

(22)
Using Egs. 4, 5 and 20, cvp(G, F) can be represented as follows:
_ G > 2
cvp(G,F) = 4 du(a) (G(u,a) — F(u,a)) du. (23)
§d—1 —00

Assume the population consists of groups 1,2,...,n. Let Fi(y), u;, and p; represent the
d-variate distribution function, the expectation vector and the share of group 7 in the overall
population, respectively. Let F;(y) and F;(y) be the distribution functions of ¥/p; and ¥/p
within group i, respectively. Then, the distance-Gini mean difference Mp(F) and the
distance-Gini index Rp(F) can be decomposed as follows:

Mp(F) = piMp(F) + > pievp(Fi, F) (24)

Ro(F) = Mo (F) = 3 pro(F)Ro(Fi) + Y provo (Fi F), (25)
where rp(F;)=0 if Rp(F,)=0 or Mp(F;) /Mp F;) otherwise. The proof is given in the
Appendix. 7p(F;) in Eq. 25 corresponds to"the average relative level of group i. If ;= p, then
rp(F;)=1. However, if p;#p, rp(F;) depends on the distribution F; unlike the univariate case.
The second term on the right-hand side of Eq. 25 corresponds to the between-group inequality.
It is null if and only if F;=F for any group. That is, subgroup decomposition 25 satisfies the
CID condition.

The distance-Gini mean difference and the distance-Gini index also have decompositions
that correspond to Egs. 7 and 8, respectively. The decomposition 8 is extended as follows:

RD(F) = ZpirD(Fi)RD(Fi) + Zp,‘ijVD (Fl,i:j) (26)
i<j
The decomposition 26 can be proved in a similar manner to the proof of Eq. 25. cvp(F;,F)
holds Eq. 27, which correspond to Eq. 10.

Mp(eF; + (1 —e)F) —eMp(F;) — (1 —e)Mp(F)

cvp(Fi, F) = -

+o(g). (27)
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3.2 Subgroup decomposition of the modified volume-Gini index
3.2.1 Modified Torgersen index

Several types of multivariate Gini index proposed in the past can be defined based on the
generalized Lorenz domain. For the introduction of such indices, let y={~;} be a non-
negative d(>2)-dimensional constant vector, and define the quantity Mr(F|y) as follows:

M(FlY) = sy | o | e v =R - aF ). 28)
Thus, a type of multivariate Gini index R/{(F]y) is defined as Mt F Y ). Rr(Fly) ranges
from zero to unity, as proved in the Appendix. Since Rr(F]y) equals the multivariate Gini
index of Torgersen [21] if y=0, Rp(F]y) is called the modified Torgersen index. Mt(Fly),
which corresponds to the Gini mean difference, is hereafter called the modified Torgersen
mean difference or mean volume. As explained later, Rp(F|1), where 1={1,...,1}, is
preferable to the original Torgersen index Rr(F]0). Similarly, M(F|u) is preferable to M1(F|
0). Oja [14] proposed a different generalization, as follows:

MO(F):UI(F):ﬁ J J

IR [ RN R

= J (1 + Zy,-)MT(FIY)dF(Y)-

Ro(F) = Mo F). If d=1, Mo(F) is equivalent to the univariate Gini mean difference, and
Ro(F) is equivalent to the ordinary Gini index. Mo(F) was introduced as a variation of the
generalized variance of Wilks [23], which can be presented as follows:
1
2
) =G J J

det( 1 N 1 >
Yi Yi+1
1

a4 J J ‘det(ﬂ_Pv"'vyaf—H)‘zdF(yl)...dF(yd)

dF(y,) - dF(ya+1)

—det( [ v wty - wor)) (30)

The third representation (rightmost side) in Eq. 30 expresses the notion that the
generalized variance equals the determinant of the variance—covariance matrix of
distribution F. Mo(F) and M1(F|p) can be regarded as counterparts of the first and second
representations of the generalized variance, respectively.

3.2.2 Multidimensional Lorenz domain
The modified Torgersen index and the Oja index can be defined based on the volume of the
Lorenz zonoids, which is a generalization of the Lorenz domain, introduced by Koshevoy

and Mosler [10]. The relation between the indices and the Lorenz zonoids was studied by
Koshevoy and Mosler [11]. This relation is utilized to derive the subgroup decomposition
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of the indices in this paper. For a measurable function:¢: RY — [0, 1], consider a d-
dimensional vector z(¢,F|y), where

20 FY) = | (v = Vo) G1)
The following set Z(F]y), consisting of all z(¢,F]y), is called the 'y-zonoid of the distribution F.

Zr(Fly) = {z(¢, Fly)|¢ : R — [0,1]}. (32)

Zr(F [v), the y-zonoid of F that corresponds to the distribution function of Y/p, is called the
y—Lorenz zonoid of F. Zo(F), the lift zonoid of F, is defined in the d+1 dimensional space
[0,1] x RY as follows:

Zo(F) = {(p(6.F), 2(6, F0))|6 : R — [0, 1]}, where p(6, F) = j S(W)AF(y). (33)

Zo g:“ is called the Lorenz zonoid of F. The y-zonoids and lift zonoids belong to the family
of the’ convex bodies — i.e. nonempty, compact and convex subsets of R? (regardless of
whether they contain interior points or not). Zo(F) and Zo F) are projected onto Zt(Fly)
and Zr (1?" |y§ , respectively, by the following linear transformation from [0, 1] x RY onto R%:

(p,2) = z—pv. (34)

In the univariate case (d=1), the Lorenz zonoid has the shape shown in Fig. 1. The
boundary of the univariate Lorenz zonoid consists of the Lorenz curve and the inverse
Lorenz curve, which is equivalent to the Lorenz curve if rotated on the center point (1/2, 1/2)
at an angle of 180°.

The volumes of Z(F|y) and Zr (1?" h/) multiplied by the reciprocal of 1+Xy; equal the
modified Torgersen mean difference M1(F|y) and the modified Torgersen index Rr(F]y),
respectively. Similarly, the volumes of Zo(F) and Zp F equal the Oja mean difference
Mo(F) and the Oja index Ro(F), respectively. The relation’ between the Lorenz zonoid and
the Oja index was proved by Koshevoy and Mosler [11, Theorem 5.1). The relation
between the y-Lorenz zonoid and the modified Torgersen index can also be proved along
the same lines. In the case of finite-point distributions, it is essentially the relation between
the Minkowski sum of line segments and its volume (e.g. [20]). Koshevoy and Mosler
generalized this using the existence of a sequence of finite-point distributions, which
converges weakly to any distribution.

3.2.3 Subgroup decomposition of the modified Torgersen index

To introduce the subgroup decomposition of the modified Torgersen index, we define the
mixed volume of Z(F|y) and Z(G|y) with d—1 repetitions of Z1(F|y) as follows:

MV, GlY) = [ o | ety = oy = VI () P (5, )46 (3,). (35)

Definition 35 is equivalent to the following ordinary definition (e.g. [8]):

1(Zr(F 7z — vol(Zr(F
MV 1 (F,Gly) = mEOVO( T(Fy) +e T(fdm) vollZlFy)) = (36)
where Zr(F|y) + €Zr(Gly) = {x + ey|x € Zr(F|y),y € Zr(Gly)} is the Minkowski sum
of Zr(Fly) and £Z1(Gly), and vol(¢) denotes the volume of the y-zonoid. Note that
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Fig. 1 Illustration of the Lorenz (1,1
zonoid in the univariate case ’

Lorenz zonoid z(¢,17‘|0)

X

Lorenz
curve

(0,0) p(9,F) (0,1)

vol(Zr(F|y)) = (1 + Xy;)Mr(F|y). According to Minkowski’s first inequality concerning
the mixed volume (e.g. [8]), the following inequality is true if Mr(Fly) > 0.

MVdfl (F7 G|Y)
(14 X y)Me(Fly)/

The equality holds if and only if Z(Fy) and Z(Gly) are homothetic — i.e. Zr(F|y) =
aZr(Gly), where « is a positive constant.

Assume that the population consists of groups 1,2,... ,n. Let F; (y), w;, and p; represent
the d-variate distribution function, the expectation vector and the share of group 7 in the
overall population, respectively. Let F;(y) be the distribution functions of Y/u within
group i. Then inequality 37 allows the following decompositions by subgroup:

cvr(G, Fly) :==

—— Mr(Gly)" > . (37)

Mr(Fy) =" piMr (i)' 4+ piove (Fi, Fly) (38)

Re(FIY)"'= 3 prr(FIV) R (FI)'" + Y pieve (F Fly). (39)

_ N1/
where rr(F;ly) =0 if Rp(F|y) =0, or MT<F,~|1/) Rr(Fily)"? otherwise, and

cvr(G,Fly) = 0 if M1(Fly)=0. Note the following equality for the derivation of
decompositions 38:

Mr(PIY) = S MVar (P ) (40)

The corresponding equality for the derivation of Eq. 39 is obtained by substituting F and
F; for F and F;, respectively. The second term in decomposition 39 corresponds to the
between-group inequality. According to Minkowski’s first inequality concerning the mixed
volume, the second terms on the right-hand side of Eqs. 38 and 39 vanishes if and only if
Z1(F;y) is homothetic to Z1(F|y) for any group. This is true if M(Fy) > 0 —i.e. Zr(Fly)
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has interior points. If Mr(Fly) = 0 — i.e. Zp(Fly) is on some hyperplane, the Brunn-
Minkowski inequality (e.g. [8]) asserts that Zr(F;y) is on the same hyperplane as Zr(F|y);
however, Zr(F}y) does not need to be homothetic to Zr(F|y) in this case.

On the assumption that Rr(F|y) > 0, if the between-group inequality is null, the mean
within each group p; equals oyt + (1 — ;) yp with some homothetic ratio «;>0. Thus, if
vY=1, y; equals p if the between-group inequality is null, while p; equals a;p if y=0. On
this basis, Rp(F|1) is preferable to the original Torgersen index Rr(F]0), whereas rr(Fiy)
can be expressed as the simpler form (ITu;/ p)”d in the latter case.

It may be reasonable to assert that Rp(F|y)""“ should be used as a multivariate inequality
index instead of Ry(F]y), taking the decomposability into consideration. This question is
left open in this paper, since the subsequent discussions do not require any specific decision
on this, although RT(Fly)”  is used for definition of the modified volume-Gini index.

cvr(F,Fly) can be regarded as the contribution of each group to the between-group
mean difference relative to its population share. It has the following representation, which
corresponds to Eq. 10 for the univariate Gini mean difference and Eq. 27 for the distance-
Gini mean difference:

1
evi(F; Fly) = lim —(Mi((1 = )F +eFify)""'~(1 = e)Mr(Fly) P—ebr(Fily) ).

(41)
The proof is given in the Appendix. The representation 41 expresses the notion that
cvr(F,Fly) equals the surplus of the dispersion relative to the merger ratio when a merger
with an infinitely small ratio of group i takes place.

3.2.4 Modified volume-Gini index and its subgroup decomposition

The Oja and the modified Torgersen indices vanish not only when the distribution is
egalitarian — i.e. for a one-point distribution — but also when the distribution is on a
hyperplane. In this extreme case in which only one population unit monopolizes all income
and property, the inequality measures zero. To avoid this drawback, Koshevoy and Mosler
[11] proposed the volume-Gini mean difference, as follows:

d
Mm(F) = ﬁz Z Mo (F/ %), (42)
s=1 1<) < <d

where F/1"7 is the marginal distribution in the space of sub-coordinate axes {1, - - - ,js}. the
volume-Gini index Rgm(F) is defined as My ( F ), namely, the average of the Oja sub-
indices for the distribution F and all its marginal distributions in the spaces of the sub-
coordinate axes. Since the Oja sub-index for any univariate marginal distribution (identical to
the ordinary Gini index) vanishes if Ri\(F') equals zero, Riam(F') vanishes if and only if the
distribution is egalitarian. Thus, the drawback is surely overcome. However, further
modification seems to be desirable, taking it into consideration that the Oja sub-indices for
marginal distributions vary in homothetic degree to the following enlargement with dilation
factor A (> 0) and center at the mean p:

Ty —= My —u)+u (43)

Note that the d-variate Oja index is of homothetic degree d — i.e. Ro (Th.u(F)) = ARo(F).
For this reason, the greater the dilation, the higher is the relative contribution of higher sub-
dimensional marginal distributions, although the shape of the distribution and the mean
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remains the same. Furthermore, the decomposability of the volume-Gini index is also ques-
tionable. Koshevoy and Mosler [12] showed a type of generalization of the two-term
decomposition 14. However, their decomposition has a very complex form, in addition to the
same disadvantages as Eq. 14.

Thus, the volume-Gini mean difference should be modified by replacing the Oja mean
sub-volumes, except for the univariate cases, with the modified Torgersen mean sub-
volumes, power-transformed by the reciprocal of the dimensions, as follows:

My(Fly) = <ZM F)+Z > Mp(F /‘|y)1/5> (44)

s=2 1< j1<-js<d

Strictly speaking, Mr(F/"7|y)"* in Eq. 44 should be denoted as M (F/ s [yi-i)'/*,
where VP = {yjl,---,yj } However, the above notation is used for simplicity. The
modified volume-Gini index Ry(Fy) is defined as Mv (F |Y> Ry(F)y) as well as the original
volume-Gini index Rywm(F) equals zero if and only if F is egalitarian. In addition, if y=1,
Ry(F) is of homothetic degree one to the enlargement 75 . and the relative contribution of
any sub-index is invariant to T ,. Furthermore, My(Fly) and Ry(F]y) are decomposable
into subgroups, as shown below. If considering only the homotheticity, the Oja sub-indices
need not be replaced and the power transformations by reciprocal dimensions are sufficient.
However, the decomposability is an open question in this case.

Assume M1(F|y)>0. Then, according to inequalities 4 and 37, the following inequality
is true:

d
ey (G, Fly) : (ch (G, F +Z Z ch(Gj"'j“,F""'j‘|y)> > 0. (45)

5=2 1<ji<-jo<d

The equality holds if and only if G°=F" for any coordinate axis and Zr(F|y) = Z+(G|y).
Proof of the condition for the equality is given in the Appendix.

Assume that the population consists of groups 1,2, ...,n. Let F; (y), w;, and p; represent the
d-variate distribution function, the expectation vector and the share of group i in the overall
population, respectively. Let F;(y) be the distribution functions of Y/u within group i. Then
inequality 45 allows the following subgroup decomposition of the modified volume-Gini
mean difference and the modified volume-Gini index:

My(Fly) =Y piMv(Fily) + Y pievy(F;, Fly) (46)
and

RV(FIY) = Y prv(ER(EY) + Y pievy (FiFly ). (47)

where ry(F; [Y)=0 if Ry(Fly)=0, or My (Fily) /Ru(Fily) otherwise. The second term on the
right-hand side of Eq. 47, which corresponds to the between-group inequality, equals zero if
and only if i = F* for any group and any coordinate axis, and Zr(F[y)=Z(Fly) for any
group. The proofis given in the Appendix. Thus, My(Fiy)=Mv(F|y), and Ry(F{v)=Rv(Flv)
for any group if the between-group inequality is null. Unfortunately, equality of the y-
zonoids plus equality of the univariate marginal distributions is not equivalent to equality of
the multivariate distributions. This is dissimilar to the equality of the lift zonoids [11]. A
counterexample is given below.
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Example Let F; be a bivariate distribution evenly distributed at the six points {1,1}, {4,4},
{0,2}, {3,2}, {2,0} and {2,3}, and let F, be another bivariate distribution evenly distributed
at the six points {0,0}, {3.3}, {1,2}, {4,2}, {2,1} and {2,4}. Let A and 1-A be the
population share of F| and F», respectively — i.e. F = AF; + (1 — A)F,. Then, F| and F,
have the identical marginal distributions to F. Their means equal 2={2,2}. Their y-zonoids
Z1(F1]2) and Z1(F5|2) are also identical to Z1(F]2) (Fig. 2).

A pair of bivariate distributions evenly distributed within triangles with vertices at {0,2},
{2,0}, {44} and {0,0}, {4.2}, {2,4}, respectively, is also a counterexample, yet decomposition
47 can be considered to nearly satisfy the CID condition, since the condition of the null
between-group inequality ensures some equivalence among within-group distributions in terms
of dilation ordering defined by the y-zonoid 32 in addition to the equivalence of the univariate
marginal distributions. At least, the mean and dispersion of any group measured by the modified
volume-Gini index must agree with each other if the between-group inequality vanishes.

Before closing this subsection, the representation of cvy/(F;,F]y), which corresponds to
that of cv(F,Fly) in Eq. 41, is given below:

cvy(Fi, Fly) = slinjoé My((1 —e)F +eFily) — (1 —e)My(Fly) — eMy(Fiy)). (48)

Similar to Eq. 41, representation 48 expresses the notion that cvy(F;,Fly) equals the surplus of
the dispersion relative to the merger ratio for a merger with an infinitely small ratio of group i.

3.3 Source decomposition of the multivariate Gini indices

In this subsection, source decomposition of the distance-Gini index and the modified
volume-Gini index is introduced.

3.3.1 Source decomposition of the distance-Gini index

Assume that attribute i consists of contributions from m; types of sources (i=1,...,d). Let

xl(»k") and yﬁ’” be the expected contributions from source £; to attribute i for the conditions x=
Fig. 2 y-zonoid of distributions {0,0.5}
F,, F> and F in Example 1 {0.5,0.5}

{-0.5,0} {0.5,0}

{-0.5,-0.5} {0,-0.5}
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{x;} and y={y;}, respectively, and ,uf-ki) be the unconditional mean of the contribution.
Taking it into consideration that the distance-Gini mean difference is proportional to the
average of the Gini mean differences for univariate marginal distributions on lines in all
directions (see Eq. 21), it is intuitive to define the contribution of each source as the average
of the quasi-Gini mean differences for univariate marginal distributions on lines in all
directions with the same multiplier as Eq. 21, as follows:

Mp(F) = Xd: Y g—; J J (xl(k") —yf-k"))dF(x)dF(y) J sgn(a- (x —y))a;dv(a)

=1 k=1 s
d_ mi
= M),
i=1 k=1
(49)
where v is the uniform distribution on the unit sphere S~ = {a € R?|||a|| = 1}, and sgn

(x)=1 if x > 0, or —1 otherwise. M ki )( F), the contribution of each source to Mp(F), should
be called the quasi—distance-Gini mean difference. The corresponding decomposition for
the distance-Gini index is obtained by substituting F for F. Taking the definition of the
univariate i-Gini index i i i i-di -Gini i (k)

quasi-Gini index into consideration, the quasi-distance-Gini index Rp"(F)
should be defined as the(:k contribution of each source to Rp(F) relative to the amount share,
as follows: M (77) - %Rg% F) . Since the following equality is true (the proof is given in
the Appendix), '

Cd/ sgn (a - x)a;dv(a) = — , where x # 0, (50)
Sd—1

[[x]

the quasi-distance-Gini mean difference can be expressed as follows:

'—y, (~—yf)

Note that the integrand in Eq. 51 is assumed to be zero if x=y.

The quasi-distance-Gini mean difference of each source is also derived in the following
manner. Assume that the contributions from source k; increase by an infinitely small rate €
uniformly — i.e. x(k) increases to (1 + €)x; *) on any populatlon unit; then the increase in the
distance-Gini mean difference relative to rate € equals M} g )(F ). This derivation is also
applicable to the univariate Gini source decomposition of Rao [16].

3.3.2 Source decomposition of the modified volume-Gini index

The modified volume-Gini mean difference and the modified volume-Gini index seemingly
do not have such intuitive derivation of source decomposition as the distance-Gini mean
difference and the distance-Gini index. However, if adhering to the reasoning that the
contribution of each source to the mean difference is derived from differentiation by rate of
a uniform increase in amount for each source as mentioned in section 3.3.1, then a type of
source decomposition is obtained for the modified volume-Gini mean difference and the
modified volume-Gini index if Mt (F"|y) > 0 for any marginal distribution in space of
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any sub-coordinate axes. Due to space limitations, only the result of the derivation for the
modified volume-Gini index is presented here.
For introduction of the source decomposition, the following s xs matrices are first defined:

M(th',yv‘l] ) [y] Y’__"ys7Y]’andN(ki1---ki\->(y17...’ys‘i]...l's)
(kit-++kis) (kir-++kis) (52)
y ¥s
= |: 1 Y:|7

pli ke~ Y )

(ki)
where y( ki) {yoz}[ }1:1,--5’ and plknk) — {#l(,k}/)} . Note that abbreviated
notations are used in (52) for simplicity. [y, —y,~~~,l§;’1"vy] is an abbreviation of

[y, —Y" -, y, — ¥"], for instance. In the #-th row of N®i k) (y ...y |ij---i),
each element is equal to the conditional expected contribution of source k;, to attribute i,
relative to the unconditional expected contribution ,uf’k”) minus ;.

By performing some manipulation after the above-mentioned derivation, the source
decomposition of the modified volume-Gini index can be expressed as follows:

d m; )
ST ST RED (R
i=1 k=1

1
Rv(Fh’):ﬁ d i e s s
+Z Z Z Z H , R(ln k>(F‘1 l’|Y)/RT(F"”""|Y)(A )/s
s=2 1<ij<-<iy<d kn=1 kis=1 [=1
(53)
RN _ oty
where R (F') = [ [sgn (x; (A) — oy JdF (xi)dF'(y;) and Ry (Fhbly) =
t(NER) (yy -y lin - ds) )dF (yy) - - dF(y,).

%f‘“fsgn(det(M(yh---yys\u “i5))) de
5!<l+;7q>

R%) (Fi) in the first term is the quasi-Gini index of the univariate marginal distribution in
subspace of attribute i. The second term can be regarded as an interaction term among
sources of different attributes, which makes a notable difference with the decomposition of
the distance-Gini index.

3.4 Application to Japanese family budget data

Several types of multivariate Gini indices are estimated for annual income and consumption of
Japanese households with two or more members using tabulated data from the National Survey
of Family Income and Expenditures. Three-way tables of consumption class by income class by
age class of household head are available for the household distribution. However, owing to the
unavailability of the three-way table for average income and consumption, average income in
two-way tables of income class by age class of household head are used for the estimation
instead, irrespective of consumption class, and the intermediate value between the lower and
upper limits of each consumption class is used as average consumption, irrespective of income
class and age class of the household head. The estimates after adjustment by excluding the age
effects are presented in Table 5. These estimates should be treated carefully because of the
above-mentioned approximation; nevertheless, it is notable that the multivariate Gini indices
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Table 5 Multivariate Gini indices for distribution of income and consumption*

Year  Univariate Gini Rp Ro Ro'?  Rp Rt'?  Rum Ry
v=1 v=1 v=1

Income Consumption

1989  0.2892 0.2564 02132  0.05591 0.2364 0.03205 0.1790 0.2005 0.2416

1994 0.2879 0.2457 0.2084 0.05377 0.2319 0.03128 0.1768 0.1958 0.2368

1999  0.2837 0.2486 0.2078 0.05389 0.2321 0.03135 0.1771 0.1954 0.2365

2004 0.2844 0.2516 0.2097 0.05532 0.2352  0.03196 0.1788 0.1971 0.2383
(1989=100)

1989  100.0 100.0 100.0  100.0 100.0  100.0 100.0  100.0  100.0

1994 99.5 95.8 97.8 96.2 98.1 97.6 98.8 97.6 97.9

1999  98.1 97.0 97.5 96.4 98.2 97.8 98.9 97.4 97.7

2004 983 98.1 98.4 99.0 99.5 99.7 99.9 98.3 98.6

*Calculated after replacing the share of each age group with that of 1989.

for 2004 relative to 1989 are higher than the Gini indices of both univariate marginal
distributions for income and consumption. For example, the distance-Gini index and the
modified volume-Gini index for 2004 relative to 1989 are 98.4 and 98.6, respectively, while
the Gini indices for annual income and consumption are 98.3 and 98.1, respectively. This
indicates that consumption tends to vary more widely than before within the same income
class, although the whole consumption distribution does not disperse as before.

It is also notable that the modified volume-Gini index is relatively close to the distance-
Gini index in comparison with the Oja index, the modified Torgersen index or their 1/2-th
power transformations.

The contributions of age groups for household heads to changes in these indices are also
estimated using the subgroup decomposition technique (Table 6). The multivariate Gini
indices show similar tendencies to the univariate Gini indices, although the magnitudes of
the contributions vary somewhat.

4 Concluding remarks

In this paper, a new type of subgroup decomposition for the Gini index is proposed. The
new decomposition is consistent with multilevel sub-groupings’, and is characterized by the
CID condition — i.e. the between-group inequality vanishes if and only if distributions
within groups are identical to all the others.

The new decomposition is then generalized to two types of multivariate Gini indices
introduced by Koshevoy and Mosler [11]. In the case of the distance-Gini index, the
decomposition strictly satisfies the CID condition, while for the volume-Gini index, the
decomposition satisfies the condition not strictly, but nearly after the index definition is
modified to be of homothetic degree one to enlargement with the center at the mean.

Source decompositions of the two types of multivariate Gini indices are also introduced
as a generalization of the Gini decomposition of Rao [16].

I hope this new decomposition will advance studies of economic inequality. The
following remarks concerning the definition or concept of multivariate Gini indices may be
helpful for further research.

3 See footnote 1.
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Table 6 Contributions of age groups for household heads to changes in multivariate Gini indices for
distribution of income and consumption*

Age Univariate Gini for income Univariate Gini for consumption

1994 1999 2004 1994 1999 2004

Total —0.0014 —0.0042  0.0007 —0.0107 0.0030  0.0030
Within-Group ~ —0.0065 —0.0036  0.0038 —0.0129 0.0037  0.0056
<30 0.0003 —0.0001  0.0009 —0.0004 —0.0001  0.0007
30-39 —0.0019  0.0004  0.0004 —0.0010 0.0009  0.0002
40-49 0.0023  0.0003  0.0002 —0.0022 0.0019 0.0013
50-59 —0.0037  0.0005 0.0014 —0.0058 0.0010 0.0027
6069 —0.0003 —0.0037  0.0002 —0.0023 0.0002 0.0004
70 < —0.0031 —0.0010  0.0007 —0.0013 —0.0001  0.0003
Between-Group  0.0051 —0.0006 —0.0031  0.0022 —0.0007 —0.0027
<30 —0.0001  0.0005 —0.0011  0.0003 0.0000 —0.0009
30-39 0.0006 —0.0003 —0.0003  0.0006  0.0002  0.0000
40-49 0.0003  0.0003  0.0002  0.0002 —0.0002 —0.0007
50-59 0.0022 —0.0006 —0.0014  0.0009  0.0001 —0.0003
6069 0.0007  0.0002  0.0000 —0.0001 —0.0002 —0.0004
70 < 0.0014 —0.0005 —0.0005 0.0002 —0.0006 —0.0004
Age Rp R y=1 Ry, v=1

1994 1999 2004 1994 1999 2004 1994 1999 2004

Total —0.0048 —0.0006 0.0019 -0.0022 0.0002 0.0017 —0.0048 —0.0003 0.0018
Within-Group ~ —0.0074 —0.0003  0.0039 —0.0023 0.0003 0.0019 —0.0072 0.0001 0.0038
<30 —0.0001 —0.0001  0.0006 —0.0001 —0.0001 0.0001 —0.0001 —0.0001 0.0006
30-39 —0.0012  0.0004 0.0002 —0.0003 0.0002 0.0000 —0.0011 0.0005 0.0002
40-49 0.0000  0.0007  0.0006  0.0007 0.0006 0.0003 0.0003 0.0009 0.0006
50-59 —0.0036  0.0007 0.0016 —0.0014 0.0007 0.0009 —0.0037 0.0008 0.0016
60-69 —0.0008 —0.0014  0.0004 —0.0003 —-0.0007 0.0003 —0.0009 —0.0014 0.0003
70 < —0.0017 —0.0004  0.0005 —0.0009 —-0.0004 0.0003 —0.0017 —0.0005 0.0004
Between-Group  0.0026 —0.0004 —0.0020  0.0001 —0.0001 —0.0002 0.0025 —0.0005 —0.0020
<30 0.0001  0.0002 —0.0007  0.0000 0.0001 —0.0001 0.0001 0.0002 —0.0007
30-39 0.0004  0.0000 —0.0001  0.0000 0.0000 0.0000 0.0004 0.0000 —0.0001
40-49 0.0002  0.0000 —0.0002 —0.0001 —0.0001 0.0000 0.0001 0.0000 —0.0002
50-59 0.0012 —0.0002 —0.0006 0.0000 0.0000 0.0000 0.0011 —0.0002 —0.0006
60-69 0.0002  0.0000 —0.0001  0.0001 0.0000 0.0000 0.0002 0.0000 —0.0001
70 < 0.0006 —0.0004 —0.0003  0.0001 —0.0001 0.0000 0.0005 —0.0004 —0.0003

*Calculated after replacing the share of each age group with that of 1989.

Anderson [1] used the following multivariate Gini index, which is similar to the
distance-Gini index:

1
GINIMCW = ——
2V/d / /

d 2 d
Zwi(ﬁ—lyf) ,wi>0and Y w; =d..
i=1 ! ! i=1

The differences between Eq. 54 and the distance-Gini index highlight two issues. First,
the Anderson index (Eq. 54) almost equals unity if the amounts for all attributes are

% dF(x)dF(y), (54)

X
[ w
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monopolized by only one population unit and all other units have no contributions. The
index exceeds unity if all the amounts for each attribute belong to only one pdopulation unit,
but the monopolist for each attribute differs. The index almost equals ﬁ; VWi(>1) in

this case. The index can be limited to less than unity by modifying d for v/d in Eq. 54 and
w2 for wi in definition of the between-unit distance. Note that the weights constraint

Z w; = d needs not be replaced. Such an index can be regarded as the weighted distance-

G1n1 index. The subgroup and source decomposition for the distance-Gini index presented
in this paper can easily be extended to it. However, the following naive question still
remains open:

Which situations should be judged to be higher in inequality, only one population unit
makes all contributions to all attributes (the absolute monopolistic situation) or
different monopolists exist for each attribute?

Since the Lorenz zonoid in the latter situation is wider than that in the former, the Oja
index, the (modified) Torgersen index and the (modified) volume-Gini index are higher in
the latter case. So is the distance-Gini index because of its consistency with the dilation
ordering of the Lorenz zonoid [11]. This characteristic is seemingly not necessarily a
disadvantage, at least in terms of the weighting problem described in the next paragraph.
Nevertheless, several researchers have pursued multivariate inequality measures that are
higher in the absolute monopolistic situation. Tsui [22] studied the multidimensional
generalized entropy measures satisfying a condition of consistency with the correlation
increasing majorization (CIM) as well as some other conditions. If a multidimensional
inequality measure satisfies the CIM condition, the absolute monopolistic situation is
judged to be higher in inequality. However, imposition of this condition is seemingly too
restrictive (see also [7]). For example, Tsui’s multidimensional extension of the Theil
measure is outside the restriction. The above question may rarely arise if wealthy
population units contributing to one attribute tend to contribute to other attributes in
practice. It thus seems likely that one of the approaches to determine the appropriateness of
the CIM condition is to verify whether a set of attributes or the subject to be studied can be
accounted by uni- or multi-dimensional factors after excluding measurement errors. If
multiple factors are identified, then the way to extract each factor with mutual relations
should be explored for measurement of inequality. In usual cases, attributes seem to be
determined by one major common factor and some additional factors peculiar to individual
attributes. In this context, it is notable that Easterlin [5, 6] pointed out that correlation
between income and self-reported well-being is weak at least over the life cycle, implying
that (subjective) well-being is affected by multiple factors.

Another issue raised by the Anderson index is the weight assignment to attributes
concerned. If economic inequality is measured in terms of income, consumption and
education level achieved, it seems to be reasonable to assign smaller weights to income and
consumption relative to educational attainment because of their similarity. However, as the
multivariate Gini indices automatically have lower outcomes if attributes are correlated with
each other — in other words, the indices run counter to the CIM condition — the weighting
problem is not considered to be serious relative to multivariate inequality measures that
satisfy the CIM condition. The way to determine appropriate weights is not a trivial matter.

Thus, further research is still needed for applications of the multivariate Gini indices or
other multivariate inequality measures.
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Appendix
Proofs
Proof of Eq. 16

On the assumption that F; is continuous, by applying integration by parts, cv(F;,F) can be
expanded as follows:

Vv(F;, F) = /(F F)’dy = 2/ (Fi—F)dFi+2/y(F,-—F)dF

:2( / (v — ) FdF, — / (y—p,-)F,-dF,-) +2ui( / FdF,-—%) (55)
+2(/(y—u)F,-dF—/(y—u)FdF) +2u(/F,-dF—%>.

Note that [FidF/=[FdF=1/2. Then, using the equality [FdF; —1/2 = — [ F,dF +1/2
and the notation in section 2.3, Eq. 16 is obtained.

Proof of Eqs. 24 and 25

By applying the definition of cvp(F;,F) in Eq. 22, the distance-Gini mean difference Mp(F)
can be expanded as follows:

) =5 [ [l =rlarear ) =53 m [ [ = sldritoaro)

Zp,MD - MD F)+5 Zpich(F,«, F). (56)
Note that F'=3p,F;. Subtracting MD(F) from both sides after doubling, decomposition 24
is obtained. Equation 25 is easily derived by replacing F with F.

Range of the modified Torgersen index

Since

(o.Fv) = [ (3-7)oware) = [ Loware) —v [owar) e 3 o.e)+0.~v)

(57)

where ", [0, e;] + [0, —y] is the Minkowski sum of the line segments [0,e;] (i=1....,d) and
[0,—Y], and e;= {e,,} is a unit vector consisting of elements e;=0 if j#i, or =1 if j=i, then,
the volume of Z; (F }y) is less than or equal to the volume of Z [0,€,] + [0, —Y], which is

calculated at 1+X; by using the following formula vol <Z [0, a,]) = > |det (a;,,---,a;,)|

i=1 1<i)<-<ig<n

(e.g. [20]). Thus, the modified Torgersen index Rp(F|y) is less than or equal to unity.
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Assume that F' is an n-point d-variate distribution in which there is a different
monopolist for each variable (attribute). Then, Rr(Fly) — 1 if n — oo.

Proof of Eq. 41

By applying Eq. 38, Eq. 58 is derived.

Mr(G(e)[)"" = eMr(Fily)"* = (1 — e)Mr(Fly)"* (1 — o ST GEN)

€ € 58)

where G(g) = ¢F; + (1 — €)F. The modified Torgersen mean difference M(G(e)|y) and
the mixed volume MV, |(F,G(¢)|y) have the following derivatives at £=0:
d MVy((F,G(e)ly) _ MVa(Fi, Fly)

= Mr(Fly) = My (Fly)“=D
PR ST T(Fly) = My (Fly)

cevr(Fi, Ge)ly) =

d 1/d
£MT(G(5)\Y) :

(59)

The derivative of cv(F, G(e)|y) at e=0 equals zero from its definition and Eq. 59.
Thus, the second term on the right-hand side of Eq. 58 — 0 if ¢ — 0. Since the left-hand
side — cvr(F;, Fly) if e—0, Eq. 41 is derived.

Proof of the equality condition in Eq. 45 and the condition for null between-inequality
in Eq. 47

It is trivial that cvy(G,F|y) =0if G* = F* for any coordinate axis, and Zp(G|y) =
Zr(F|y). If evy(G, F|y) = 0, all terms constituting cvy(G,Fly) in Eq. 45 should be zero,
including cv(G,Fly). On the assumption that Mp(Fy)>0, this means that Zp(G|y) =
aZr(F|y), where « is a positive constant, according to Minkowski’s first inequality concerning
the mixed volume. Since cv(G®, F*) should also be zero at the same time, G°*=F" for any
coordinate axis. This forces « to be unity. Thus, the equality condition in Eq. 45 is proved.

If M1(Fly)>0, the equality condition in Eq. 45 can be applied to the proof of the
condition for the null between-inequality in Eq. 47. If Mr(F|y)=0, the Brunn-Minkowski
inequality (e.g. [17]) asserts that Z(F|y) is on the same hyperplane as Zr(F|y). Let ky,....k;
be the highest-dimensional sub-coordinate axes under the condition that My (F/*"7|y) > 0.
The equality condition in Eq. 45 asserts that ZT(Ff""k’\'y) :ZT(F"I“""h/) (Note that
cvy (Ff% Fhkly) = 0 if evy(F;, F|y) = 0). From this, Z(Fly) should be identical to
Zr(Fly). G*=F" is true for any coordinate axis, irrespective of the value of Mr(Fl|y). Thus,
the condition for null between-inequality in Eq. 47 is proved.

Proof of Egqs. 20 and 50

First, the proof of Eq. 50 is given inductively. Without loss of generality, we can assume
that i=1 and x={x{,%5,0,...,0} because of invariance for rotation on axis i and axis
permutation. If d=2, Eq. 50 can be proved as follows:

L(x) = / sgn (a-x)adv(a) = /7T sgn (a - x) cos 0d0

St -

p+m/2 p+31/2 1 x
/ cos 0do — / cos0df =4cosp = — —. (60)
p—7/2 o+m/2 C2 ||X||
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where a={cosf,sinf}, and x = {x1,x2} = {||x|| cos ¢, ||x|| sin¢}. Assume that Eq. 50 is
proved if the dimension is d—1. Then,

1 d=2 1 X1
1 = . =1, 1— 2 = — 1
= [ senlavado@) =10 [ \1=a da= g 61

Equation 50 is derived by summing Eq. 50 over i after multiplying by x;.
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