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Abstract

- David P. Tchouassi®

- Abdullahi A. Yusuf'

Tsetse flies are vectors of the parasite trypanosoma that cause the neglected tropical diseases human and animal African
trypanosomosis. Semiochemicals play important roles in the biology and ecology of tsetse flies. Previous reviews have
focused on olfactory-based attractants of tsetse flies. Here, we present an overview of the identification of repellents and
their development into control tools for tsetse flies. Both natural and synthetic repellents have been successfully tested in
laboratory and field assays against specific tsetse fly species. Thus, these repellents presented as innovative mobile tools
offer opportunities for their use in integrated disease management strategies.
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Introduction

Semiochemicals are chemical signals that mediate intra-
specific (pheromones) and interspecific (allelochemicals
including kairomones, allomones e.g. repellents, and syno-
mones) interactions among organisms (Nordlund and Lewis
1976; Torto 2009; Norin 2007). Like most hematophagous
arthropods, tsetse flies navigate their environment to locate
resources (such as hosts, mate, resting and larviposition
sites), and reduce mortality-related risks using visual, olfac-
tory, tactile and acoustic cues. However, olfactory cues play
crucial roles at long range (Gibson and Torr 1999; Gik-
onyo et al. 2000, 2003; Olaide et al. 2019). Exploiting the
chemicals that mediate these behaviors creates an avenue to
manipulate the behavior of tsetse flies and to develop effec-
tive control tools.
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Tsetse flies are obligate blood feeding insects found in
37 sub-Saharan African countries (Fig. 1). They are the
most important vectors of trypanosome pathogens that
cause African trypanosomosis, a devastating neglected
tropical disease which affects both humans and livestock
(Holmes 2013; FAO and WHO 2022; Vreysen et al. 2013).
In sub-Saharan Africa, an estimated 60 million people and
about 50 million head of cattle are at risk of infection of
the disease-causing pathogens (FAO 2024). African try-
panosomosis is a severe constraint to sustainable develop-
ment in sub-Saharan Africa, particularly in terms of poverty
alleviation, food security, good health and wellbeing, and
rural development (Alsan 2015; Muriithi et al. 2021). While
remarkable progress has been made in eliminating Human
African Trypanosomosis (HAT) (FAO and WHO 2022;
Franco et al. 2020, 2022), Animal African Trypanosomosis
(AAT) is still a serious problem (Abro et al. 2023; Muriithi
et al. 2021; Shaw et al. 2017). AAT causes about 3 million
cattle deaths per year, and accounts for USD 4.75 billion
total annual losses in agriculture and livestock production
(FAO 2024).

There are 31 known species and sub-species of tsetse flies
placed in three taxonomic groups. They include savannah
(or morsitans), riverine (or palpalis) and forest (or fusca)
tsetse flies. Nonetheless, only 8—10 species and sub-species
are of epidemiological and economic importance (Vrey-
sen et al. 2013). Riverine tsetse flies, notably subspecies of
Glossina fuscipes and G. palpalis transmit the trypanosome
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Fig. 1 Distribution of savannah, riverine and forest tsetse flies across Africa (Picture modified from Jonas G. King in Krinsky 2019)
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pathogens that cause the endemic, chronic and mostly
anthroponotic gambian HAT in West and Central Africa
(FAO and WHO 2022; Franco et al. 2022; Vreysen et al.
2013). On the other hand, G. fuscipes SL together with the
savannah tsetse flies G. swynnertoni, G. morsitans morsi-
tans and G. pallidipes transmit the trypanosomes that cause
the acute zoonotic rhodesiense HAT in eastern and south-
ern Africa (Franco et al. 2022; Vreysen et al. 2013). Their
role in the transmission of AAT depends on geographical
location. While riverine tsetse flies transmit the pathogen
in West and Central Africa, the savannah group, particu-
larly G. m. morsitans and G. pallidipes are implicated for
transmissions in eastern and southern Africa (Vreysen et al.
2013; Akazue et al. 2019).

Current control of tsetse fly populations includes use
of four methods, namely: sequential aerosol techniques,
stationary attractive devices (traps and targets), live baits
(insecticide treated cattle), and sterile insect technique
(Holmes 2013; Vreysen et al. 2013; Gimonneau et al. 2018).
However, none of these methods is effective alone, hence
their use in tandem (Akazue et al. 2019; Holmes 2013;
Musungu et al. 2021; Percoma et al. 2018) and need for
novel vector control strategies.

Semiochemical-based tools developed for tsetse fly con-
trol, specifically bait technology, is one of the most success-
ful in the control of hematophagous insects. The obligate
hematophagy of tsetse flies and the important role of hosts
in mate location (mating usually occur on or in the vicin-
ity of a host (Krinsky 2019) may have contributed to this
success. Using a combination of laboratory and field-based
behavioral experiments, many attractants have been identi-
fied from the breath, skin, and urine of preferred hosts such
as buffalo Syncerus caffer and cattle Bos taurus (Fig. 2¢)
(Dransfield et al. 1986; Omolo et al. 2009; Owaga et al.
1985; Vale et al. 1986). Subsequently, a four-component
attractant blend comprising 3-n-propylphenol, 1-octen-3-ol,
4-methylphenol (p-cresol) and acetone (POCA) (Fig. 2e),
and cow urine and acetone (Fig. 2g) were identified as
potent host-derived odor baits (Masiga et al. 2014; Rayaisse
et al. 2010; Vale and Torr 2004). The bait technology is effi-
cient for savannah tsetse flies; their combination with traps
and targets can increase catches up to ten-fold (Masiga et al.
2014). Likewise, modest extra daily mortality rates of about
2-3% can suppress savannah tsetse fly populations by more
than 90% within a period of 12—18 months (Vreysen et al.
2013). However, a major limitation of the bait technology is
their immobility which restricts application to small defined
areas.

Non-preferred vertebrate hosts of tsetse flies are known
to release repellent compounds. These natural repellents
and their synthetic derivatives represent another promis-
ing semiochemical-based tool that has now been exploited

in integrated management of tsetse flies. Here, we review
advances in the identification of repellents and development
of innovative tools for the control of tsetse flies. Further,
we provide insights into the future directions for research
in this area.

Preferential Feeding patterns of Tsetse Flies

Early works analyzing blood meal samples from more
than 70, 000 tsetse flies belonging to the three taxonomic
groups savannah, riverine and forest collected across many
sub-Saharan African countries (Clausen et al. 1998; Moloo
1993; Weitz et al. 1963) clearly revealed certain feeding pat-
terns. Generally, certain vertebrates were more frequently
fed on by tsetse flies compared with others (Fig. 2b and c).
This host selectivity appears to be important in the ecology
of tsetse flies, as the feeding patterns reported in the earlier
work have largely been replicated in recent studies (Auty et
al. 2016; Channumsin et al. 2021; Ebhodaghe et al. 2021;
Gashururu et al. 2023; Kim et al. 2022; Makhulu et al. 2021,
Muturi et al. 2011). For instance, in the Serengeti national
park Tanzania, the savannah tsetse fly G. swynnertoni pref-
erentially fed on warthog, buffalo and giraffe, and G. pal-
lidipes, another savannah species, fed on buffalo, giraffe and
elephant despite the low densities of these hosts. Interest-
ingly, however, wildebeest, zebra, impala and Thomson’s
gazelle which are more abundant were not fed on (Auty et
al. 2016). On the other hand, at the Masai Mara National
reserve Kenya, African buffalo and elephant were the most
common wildlife hosts of G. pallidipes and G. swynnertoni,
and no blood meals were detected from wildebeest and zebra
despite their abundance (Makhulu et al. 2021). Similar pat-
terns were reported for the savannah species G. m. centralis
in Zambia in southern Africa (Gaithuma et al. 2020), and
for G. pallidipes and G. m. centralis in Rwanda, Central
Africa (Ghasururu et al. 2023). Despite their ecological rel-
evance, these feeding patterns may be modified or overruled
by changes in environment, for example drought, fauna and
host availability (Clausen et al. 1998; Hargrove and Wil-
liams 1995; Muturi et al. 2011). Additionally, hunger status
of tsetse flies and specie-specific preferences (Gikonyo et al.
2000, 2002) may modify these feeding patterns.

Riverine tsetse flies which are mostly opportunistic in
their host choice are an exception to these feeding patterns.
This exception likely developed as a strategy for survival
in their riparian habitat where the probability of contacting
a host is low, rather than innate physiological differences
compared to savannah tsetse flies (Vale et al. 2014). Macha-
ria et al. (2016) found that genes responsible for transporting
hydrophobic molecules, such as the volatile semiochemi-
cals involved in host location, are conserved across the
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Fig.2 Olfaction-mediated preferential feeding exploited for the control
of tsetse flies. (a) blood-fed gravid female tsetse fly (1) and the antenna
(2, adapted from Krinsky 2019). The third antennal segment (F) is
covered with hairlike sensory organs called sensilla (3, scanning elec-
tron micrograph adapted from Diallo et al. 2020). (b) Less-preferred
hosts, others include wildebeest, impala and Thompson’s gazelle. (c)
Preferred hosts, other common ones are warthog, elephant, giraffe,
bushpig and bushbuck. Tsetse flies avoid (red x mark) less-preferred
hosts such as waterbuck and zebra releasing repellent chemicals while
they prefer (green check mark) vertebrates such as cattle and buffalo
which release attractants. (d) Repellents identified from waterbuck
(red asterisk) which are components of the tsetse repellent blend WRB,
and components of the zebra-derived repellent blend ZRB (red number

sensillum of both riverine and savannah tsetse flies, support-
ing the possible ecological basis of the behavioral differ-
ence. Moreover, where options are available, riverine tsetse
flies show preference for monitor lizards Varanus niloticus
(Omolo et al. 2009).
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sign). (e) Attractants identified from Cattle and Buffalo breathe (green
asterisk) and urine (green number sign) used as olfactory bait (POCA)
in traps and targets for the control of tsetse flies. (f) Tsetse repellent
technology — Cattle wearing the collar containing the repellent blend
WRB identified from waterbuck skin odor (adapted from Saini et al.
2017). The repellent blend is released at predetermined optimum rates
from the tubing connected with a repellent reservoir (4) and covered
by a protective shield. (g) Bait technology — odor-baited Ngu tsetse
trap. The host-derived odor bait (5) (cow urine and acetone) attracts
tsetse flies at long range beyond the vicinity of the trap, the blue-col-
ored panel of the trap attracts the flies at short range, and the black-
colored panel helps to maximize landing. Created with BioRender.com

The presence of certain allomones (repellent chemicals)
emitted in the skin volatiles of less-preferred hosts which
are absent or present in trace amounts in preferred ones
(Fig. 2b and c) (Gikonyo et al. 2002, 2003; Olaide et al.
2019; Weldon 2010) play a role in the observed feeding
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patterns of tsetse flies. For instance, certain skin odor com-
ponents of less-preferred waterbuck (Kobus ellipsiprymnus
defassa), which are absent in the preferred hosts cattle and
buffalo, explain the avoidance of this bovid by tsetse flies
(Gikonyo et al. 2002, 2003; Bett et al. 2015). Similarly, the
non-preferred zebra releases certain compounds which repel
tsetse flies (Olaide et al. 2019, 2021). Other features may
offer protection to the non-preferred hosts at close range, for
instance, the shaggy coat of waterbuck which make blood
feeding difficult (Bett et al. 2015), and the stripes of zebra
which usually make landing unsuccessful by confusing
most approaching tsetse flies (Britten et al. 2016). However,
the repellent chemicals emanating from these non-preferred
hosts may have evolved as a first line of defense at long
range against blood feeding insects like tsetse flies (Bett et
al. 2015; Weldon 2010). While the evolutionary drivers for
the feeding patterns are still unclear, the understanding of
the feeding behavior of tsetse flies and their contact rates

with different hosts have led to the identification of vari-
ous repellent semiochemicals, which are discussed in detail
below.

Repellents Identified for Tsetse Flies

The use of repellent chemicals to prevent tsetse-host contacts
have been suggested since the 1970s, with the identification
of lactic acid, acetophenone, hexanoic acid and guaiacol as
repellents for G. pallidipes and G. morsitans (Bursell et al.
1988; Vale 1979, 1980; Vale et al. 1988). Since then, espe-
cially in the last decade, research has contributed additional
repellents to the existing literature (Table 1).

Investigation of the possible semiochemical basis to
explain the preferential feeding patterns of tsetse flies on
different vertebrates led to the identification of natural repel-
lents. In their pioneer work, Gikonyo et al. (2000) observed

Table 1 Repellents identified for tsetse flies: source, targeted tsetse fly species, collection, analysis and evaluation

Source Targeted tsetse fly ~ Volatile collection Method Behavioral evaluation  Repellents identified References
species method of
analysis
Synthetic? G. pallidipes and - - Live host (0x)° Lactic acid (2-hydroxypropa- Vale 1979
G. morsitans noic acid)
morsitans
Synthetic G. pallidipes and - - Biconical trap, model  Acetophenone and hexanoic Vale 1980
G. m. morsitans and electrified netting®  acid
Cattle (Bos G. pallidipes and  Solvent (dichloro- EAD, Wind-tunnel bioassay®, Guaiacol (2-methoxyphenol) Bursell et al.
taurus) urine  G. m. morsitans methane) extraction  GC, Beta or F3 traps and 1988; Vale
GC/MS targets® etal. 1988
Synthetic G. pallidipes - - Epsilon traps and live ~ Acetophenone, pentanoic acid, Torr et al.
host (0x)° hexanoic acid and guaiacol 1996
Waterbuck G. pallidipes and ~ Adsorption onto GC/ Two-choice wind tun-  Pentanoic acid, hexanoic acid,  Bett et al.
(Kobus G. m. morsitans activated charcoal EAD, nel assay®, Ngu trap heptanoic acid, 2-octanone, 2015; Gik-
ellipsiprymnus and reverse-phase GC, and live host (0x)® 2-decanone, 2-undecanone, onyo et al.
defassa) skin silica, elution with GC/MS 2-dodecanone, geranyl 2002, 2003
dichloromethane acetone, guaiacol, carvarol and
d-octalactone
Synthetic G. pallidipes and - - Two-choice wind tun-  4-Methylguaiacol Saini and
G. m. morsitans nel assay®, Ngu trap Hassanali
and live host (0x)® 2007
Synthetic G. pallidipes and - - Two-choice wind tun-  8-Nonalactone? Wachira et
G. m. morsitans nel assay®, Ngu trap® al. 2016
Synthetic G. fuscipes - - Biconical trap and Pentanoic acid, guaiacol, Mbewe et
fuscipes sticky small targets® d-octalactone, geranylacetone  al. 2019
and 4-methylguaiacol
Zebra (Equus  G. pallidipes and ~ Dynamic headspace ~ GC/ Ngu trap® 6-Methyl-5-hepten-2-one, ace-  Olaide et al.
quagga) skin  G. f. fuscipes volatile collection EAD, tophenone and geranyl acetone 2019, 2021
onto adsorbent GC/MS
filter (Carbopak
B), elution with
dicholoromethane

# Lactic acid is a component of human skin odor which may account for the repellence of natural human skin odor to G. pallidipes and G. m.

morsitans (Vale et al. 1979)
b Laboratory-based experiment; © Field-based evaluation

4 4-Methylguaiacol and 8-nonalactone are derivatives obtained by structural modification of the natural guaiacol and §-octalactone,’ respec-

tively
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that caged individuals of G. m. morsitans showed signifi-
cantly higher reluctance to feed on the less-preferred water-
buck or on waterbuck sebum-smeared feeding membranes,
compared to the preferred ox or untreated feeding mem-
branes. This suggests an allomonal basis for the differential
feeding of tsetse flies on these bovids in the wild. Follow-
up coupled gas chromatography-electroantennographic
detection (GC/EAD) and GC-mass spectrometry (GC/MS)
studies comparing the responses of G. m. morsitans and
G. pallidipes to the skin odors of waterbuck and preferred
hosts (ox and buffalo) identified fifteen compounds. These
included straight chain C5 - C10 carboxylic acids, C8§ — C12
2-ketone homologues and geranyl acetone, phenols (guaia-
col and carvarol), and a lactone (6-octalactone) (Gikonyo et
al. 2002). These compounds which repelled G. m. morsitans
in a laboratory two-choice wind tunnel assay were either
specific to waterbuck alone or only present in trace amounts
in the preferred hosts (Gikonyo et al. 2003). This finding
was interesting and confirms that the identified semiochemi-
cals underpin the preferential feeding of tsetse flies on these
vertebrates. Subsequent field studies by Bett et al. (2015)
reduced the complex fifteen-component blend comprised
of four classes of compounds (acids, ketones, phenols and
d-octalactone) to a five-component (guaiacol, geranyl ace-
tone, hexanoic and pentanoic acid and §-octalactone) repel-
lent blend. Subtractive assays showed significant reduction
in trap catches (84%) and feeding efficiency on ox (96%)
relative to the control. The recorded reduction in trap
catches and feeding efficiency by the five-component blend
was comparable to the fifteen-component blend (90% and
94%, respectively) (Bett et al. 2015). Based on redundancy,
hexanoic acid was later removed from the blend (Saini et al.
2017), leaving a four-component tsetse fly repellent blend
named waterbuck repellent blend (WRB) (Fig. 2d).
Following this finding on the repellents mediating avoid-
ance of waterbuck by tsetse flies, Olaide et al. (2019) inves-
tigated the semiochemical basis of the avoidance of zebra,
another less-preferred host of tsetse flies (Fig. 2b). In their
study, crude zebra (Equus quagga) skin odors significantly
reduced field Ngu trap catches of G. pallidipes (66.7%)
compared to attractant-baited traps. This indicated that
like in the waterbuck, repellent semiochemicals released
by zebra contributed to their avoidance by tsetse flies. GC/
EAD and GC/MS analyses identified seven electrophysio-
logically-active components as candidate repellents from
the crude skin odors. These components included 6-methyl-
5-hepten-2-one, acetophenone, geranyl acetone, heptanal,
octanal, nonanal and decanal. In field studies, Olaide et al.
(2019) found that, a seven-component blend of these com-
pounds mimicking their natural ratio of occurrence in zebra
skin odor significantly reduced catches of G. pallidipes
(48.9%). This compared with the crude skin odor and the
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repellency of WRB (58.1—-59.2% catch reduction). Remark-
ably, further subtractive assays showed the repellency of the
crude zebra skin odor and the seven-component blend was
due mainly to the three ketones 6-methyl-5-hepten-2-one,
acetophenone and geranyl acetone (62.7% catch reduction)
(Fig. 2d) (Olaide et al. 2019). This resultant three-compo-
nent blend ZRB, comprised of only ketones, which may be
more stable compared to WRB, and an excellent alterna-
tive repellent blend for tsetse flies which may be easier to
formulate for large-scale use. Further, these results should
encourage research into possible semiochemical basis of the
avoidance of other non-preferred hosts of tsetse flies.

Apart from investigating other less-preferred hosts, struc-
tural modification has also proved useful in the identifica-
tion of new tsetse fly repellents. For instance, derivatization
of the natural repellent guaiacol by replacing hydrogen in
the “4-” position with a methyl substituent (4-methylguaia-
col) significantly increased repellency to G. m. morsitans
in 2-choice wind tunnel assays (Saini and Hassanali 2007).
The 4-methyl derivative also significantly reduced numbers
of G. pallidipes attracted to traps and to ox odor, and the
proportion that fed on ox by >80%. Similarly, increasing
the side chain length of the repellent 5-octalactone from
-C3H,; to -C4Hy (6-nonalactone) enhanced repellency to
G. pallidipes and G. m. morsitans in laboratory assays,
and to G. pallidpes in field studies (Wachira et al. 2016).
A four-component blend of these two synthetic analogues
(4-methylguaiacol and d-nonalactone), and heptanoic acid
and geranyl acetone, representing the four classes of com-
pounds in the original WRB (Bett et al. 2015; Saini et al.
2017) was found to be promising as a repellent for savannah
tsetse flies (Wachira et al. 2020). However, the repellency of
this hybrid blend (natural repellents and structurally modi-
fied derivatives) compared to the natural blend WRB, and
effects on feeding efficiency and disease incidence are still
unknown.

The development of odor-based tools for the control of
the riverine tsetse flies, which are responsible for more than
97% of reported HAT cases and important in the transmission
of AAT (Opiro et al. 2017; Tirados et al. 2015), have been
challenging. This is because of the perceived low respon-
siveness of these species to odors (Oloo et al. 2014; Torr
and Vale 2015; Vale et al. 2014). Recent findings, however,
have shown that odor cues play key roles in their ecology
(Mbewe et al. 2019; Olaide et al. 2021). For instance, results
from a study conducted on four islands of Lake Victoria in
Kenya showed a significant reduction in catches of the riv-
erine tsetse flies G. fuscipes fuscipes in biconical traps and
sticky small targets in the presence of WRB and 4-methyl
guaiacol compared to control trap or target alone (Mbewe et
al. 2019). Likewise, field evaluations of the repellent blend
identified from zebra skin odor (ZRB) on G. f. fuscipes in
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the same study area showed significant reductions in biconi-
cal trap catches similar to the WRB (Olaide et al. 2021).
Although the observed repellency of WRB and ZRB on G.
f- fuscipes was lower compared to previously reported data
for savannah tsetse flies (Mbewe et al. 2019; Olaide et al.
2021), chemosensory gene families responsible for host
selection in these two tsetse fly species appeared to be con-
served across the sensilla of both fly groups (Macharia et
al. 2016). Therefore, the observed variation in repellency
may relate to ecological adaptations in the different habi-
tats of the savannah and riverine tsetse flies as previously
suggested (Omolo et al. 2009; Vale et al. 2014). Regardless
of the lower repellency, these results indicate the potential
for the application of the repellent blends WRB and ZRB
initially identified for savannah tsetse flies in the control of
riverine tsetse flies and integrated management of HAT.

Individual compounds in a repellent blend may differ in
their relative contribution to repellency or interaction with
the olfactory system of tsetse flies at the molecular and cel-
lular level. For instance, of the four components of WRB,
geranyl acetone is a major contributor to the repellency of
WRB to both the savannah G. pallidpes (Bett et al. 2015)
and the riverine G. f. fuscipes (Mbewe et al. 2019). Further,
geranyl acetone has been found to contribute significantly
to the antifeedant effect of the repellent blend WRB (Diallo
et al. 2020). Interestingly, geranyl acetone is the only shared
component between WRB and the recently identified ZRB
(Fig. 2d), an important component of ZRB eliciting repel-
lency in both tsetse fly groups (Olaide et al. 2019, 2021). In
fact, when the components of ZRB were tested individu-
ally, geranyl acetone alone replicated the repellency of ZRB
on G. f. fuscipes (Olaide et al. 2021). By contrast, certain
components may be only marginally repellent when tested
alone, however, they synergize activities of other com-
pounds. For example, 6-methyl-5-hepten-2-one alone had
minimal and no significant effect on trap catch reduction of
G. pallidipes (Olaide et al. 2019)d {. fuscipes (Olaide et al.
2021), respectively. However, when combined with other
components of ZRB (acetophenone and geranyl acetone), it
significantly increased repellency, up to 50% for G. f. fusci-
pes (Olaide et al. 2021).

Investigating the mechanisms of detection and cod-
ing of these chemicals on tsetse fly antennae may unravel
the sensory basis of the observed differences in their con-
tribution to the repellency of the blends. Further, this may
enhance effectiveness of existing repellent blends or lead
to the development of novel blends. In their study, Diallo
et al. (2020) predicted the olfactory receptors (ORs) in G.
f- fuscipes antenna responsible for coding the individual
components of WRB (Fig. 2d) and evaluated the effect
of the individual components on their mRNA transcripts.
While all the components produced a mixture of up and

down regulations of the mRNA transcripts, there was a cor-
relation with their antifeedant effect. Strong antifeedants
such as geranyl acetone induced up- and down-regulation
in almost equal number of OR mRNA transcripts, while
guaiacol which had no observed effect on feeding inhibition
upregulated mRNA transcripts of more ORs (Diallo et al.
2020). Considering its commonality in both repellent blends
(WRB and ZRB), high spatial repellency and strong anti-
feedant activity, geranyl acetone may play important roles
in the ecology of tsetse flies. Thus, it should be considered
as a potential candidate single component tsetse fly repel-
lent which would require additional research. Additionally,
subject to further study, structural modification of the natu-
ral geranyl acetone may reveal derivatives that are equally
or more effective repellents.

Application of Host-Derived Repellents in Tsetse fly
Control (Tsetse Repellent Technology)

Apart from the vector control methods that aim to reduce
tsetse fly populations such as attractant-baited traps (Fig. 2g)
and targets, tactics that limit vector-host contact, such as the
use of repellents, can disrupt disease transmission cycle
and incidence (Saini et al. 2017). One technique by which
repellents have been applied in vector control and disease
management is in the use of innovative repellent collars
from which the repellent blend WRB is dispensed at con-
trolled release rates (Fig. 2f). In a field trial in coastal Kenya
involving 1,100 cattle, these repellent collars worn by indi-
vidual cattle under natural tsetse fly challenge (savannah
tsetse flies predominantly G. pallidipes) provided signifi-
cant protection against disease incidence (> 80% reduction)
(Saini et al. 2017). The innovative repellent collars (Fig. 2f)
protect members of the herd against tsetse fly bites, allow-
ing free-grazing in areas infested by tsetse flies, either alone
or combined with insecticide treated traps in a “push-pull”
approach. Immediate farm-level socioeconomic benefits
included increase in herd size, market value, land cultiva-
tion, improved food security and household income (Saini
et al. 2017; Muriithi et al. 2023). Further, the use of the
repellent collars compared favorably with trypanocides in
terms of costs, and significant reduction (> 60%) in trypano-
cide use (Saini et al. 2017). Subsequent expert elicitation
survey from 18 countries across different regions of sub-
Saharan Africa estimated a benefit: cost ratio of the WRB as
9:1 and monetary gains of US$ 78-869 million per annum
(Abro et al. 2021). These data show that the tsetse repellent
technology represent an environment smart, sustainable and
cost-effective tsetse fly and African trypanosomosis man-
agement approach.

Key strengths of the tsetse repellent technology are its
mobility and ease of use which are compatible with the
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pastoralist lifestyle of livestock keepers in sub-Saharan
Africa. In addition, unlike stationary traps (Fig. 2g) and tar-
gets which are considered public goods, tsetse fly repellent
collars (Fig. 2f) are owned and maintained by the livestock
keepers (Saini et al. 2017). The limitation of repellents is
that their efficacy is dependent on the population density
of tsetse flies and disease incidence (Torr et al. 2011). As
such, application of repellents to protect cattle in areas with
high tsetse fly challenge or disease incidence will require
integration with other vector control methods that reduce
tsetse fly population such as insecticide treated traps and tar-
gets. Encouragingly, the tsetse repellent technology might
be more effective in the integrated management of riverine
tsetse flies and elimination efforts of HAT because of the
characteristic low infection rates of the causal pathogenic
Trypanosoma brucei species. Here, the repellents could be
incorporated into clothing, necklaces and hand bands as per-
sonal protective materials.

Future Perspectives and Conclusion

Tsetse flies and African trypanosomosis are at the focal
point of poverty, hunger, and poor health and wellbeing in
sub-Saharan Africa. Given the challenges in developing a
successful vaccine, and the ineffectiveness and toxicity
of available trypanocides (Delespaux and Koning 2007,
FAO 2022; Meyer et al. 2016), integrated vector control
approaches are likely to be more effective in disease man-
agement. However, limitations of available control methods
for tsetse flies, including sequential acrosol techniques, traps
and targets, live baits and sterile insect technique, motivate
ongoing studies to develop new innovative vector control
methods. Semiochemical-based or assisted control tactics
have been useful in this regard, specifically host-derived
attractants used as baits in traps and targets and recently, the
tsetse repellent technology.

There is immense opportunity for improvement of the
newly developed tsetse repellent technology. The design
of combination tactics such as “push-pull” informed by
using predictive models to understand the distribution of
the semiochemical plumes and flight dynamics of tsetse
flies under different field conditions may enhance efficacy.
For instance, in livestock, members of the herd wearing the
repellent collar could “push” flies away and those not wear-
ing repellent collar but treated with insecticide may act as a
dead-end “pull”. Alternatively, flies that are “pushed” away
from hosts by the repellent blend may be “pulled” into an
attractant-baited trap or target in a more area-wide approach,
especially when there is high disease incidence or tsetse fly
challenge. In both instances, reduced use of insecticide may
help mitigate development of resistance to insecticides, and
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other environmental and ecological concerns associated
with insecticide use. Additionally, if treating only selected
members of a cattle herd (for instance males which are
more attractive compared to females and calves (Torr et
al. 2006, 2007) with the repellent collars could protect the
whole herd, then the costs will be significantly reduced and
research into this possibility is warranted. Apart from the
above, comparison of the two repellent blends WRB and
ZRB (in terms of efficacy in reducing feeding efficiency
and disease incidence in the field, stability/longevity, and
cost) and studying possible synergy between these blends
for an enhanced repellency will also be useful. Finally, apart
from waterbuck and zebra, the possible semiochemical
basis of the avoidance of other less-preferred hosts of tsetse
flies such as wildebeest and impala is still unknown. Apart
from filling a fundamental gap in knowledge, investigating
this possibility might reveal identical or novel and equally
potent repellents for tsetse flies.

It has been reported that infection with disease-causing
organisms can change the chemical profiles of vertebrate
hosts (Emami et al. 2017; Getahun et al. 2022a; Magalhaes-
Junior et al. 2014; Peled et al. 2012; Shirasu and Touhara
2011) and disease vectors (Ebrahim et al. 2023). As such,
it is important to investigate how trypanosome infection
could alter odor profiles and attractiveness of less-preferred
vertebrates to tsetse flies. Apart from revealing potential
unknown aspects of tsetse fly ecology and disease epidemi-
ology, such investigations could also lead to the identifica-
tion of novel semiochemicals (attractants and repellents) to
be explored for tsetse fly control.

Characterizing the physiological, cellular and molecular
basis of odor detection, coding and processing in the tse-
tse fly antennae leading to different behavioral responses
will facilitate identification of novel semiochemicals such
as repellents. In addition, this may lead to the development
of new or enhanced control tools for tsetse flies. Although
this aspect of tsetse fly chemoreception is yet to be fully
revealed, however, the availability of genomes of several
tsetse fly species (IGGI 2014; Attardo et al. 2019), have
aided annotations of chemosensory genes in the tsetse flies
including those associated with chemoreception (Obiero et
al. 2014; Macharia et al. 2016). This has also led to sub-
sequent studies which are starting to unravel the sensory
architecture of tsetse flies (including sensillum types, recep-
tors, neurons, proteins, enzymes and genes), and their prop-
erties and functions (reviewed in Getahun et al. 2022b).
Such molecular and chemosensory biology-assisted meth-
ods in combination with machine learning tools represent
next generation approaches to isolation, identification, func-
tional characterization and optimization of repellents and
other semiochemicals for the control of tsetse flies.
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