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Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been 
widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is 
assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have 
rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the 
effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, 
we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in 
the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), 
Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) 
values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of 
phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat 
honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. 
The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical 
richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among 
different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have 
a more pronounced effect in mitigating pesticide toxicity.
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Introduction

Insecticide toxicity to insect herbivores has long been known 
to vary across different host plants. Among the mechanisms 
proposed by which host plant identity can influence the 
toxicity of an insecticide to an insect herbivore is that the 
species-specific phytochemical content of hostplant tis-
sues determines the pattern of induction of detoxification 
enzymes, particularly the cytochrome P450 monooxyge-
nases and carboxylesterases, capable of detoxifying the 
insecticide. This phenomenon was first described in inter-
actions between polyphagous folivores and their host plants. 

Berry et al. (1980), e.g., showed that induction of aldrin 
epoxidase in Peridroma saucia (variegated cutworm) (Lepi-
doptera: Noctuidae) differed depending on hostplant identity 
and that this induction in turn affected the level of tolerance 
of three organophosphate insecticides.

Since then, host plant effects on insecticide toxicity have 
been demonstrated in other polyphagous (e.g., Karuppaiah 
et al. 2016; Saeed et al. 2019; Xue et al. 2010) as well as 
oligophagous (Prouty et al. 2021) lepidopterans. At least one 
coleopteran folivore, the oligophagous Colorado potato bee-
tle, Leptinotarsa decemlineata, is known to experience dif-
ferential toxicity in response to insecticide exposure depend-
ing on host plant identity (Ghidiu et al. 1990; Mahdavi et al. 
1991). Mechanistically, differential activity of cytochrome 
P450 monooxygenases (P450s) can mediate the differen-
tial toxicity of insecticides to generalist lepidopterans. In 
the polyphagous tobacco cutworm, Spodoptera litura, with 
more than 120 recorded hostplant species, hostplant identity 
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affected LD50 values for the organophosphate profenophos 
and the pyrethroid cypermethrin, with LD50 values for pro-
fenophos higher for larvae consuming castor than for larvae 
consuming soybean and the LD50 for cypermethrin lower 
for larvae consuming castor than for larvae consuming soy-
bean. Activity levels of P450s were positively correlated 
with the LD50 of cypermethrin (Karuppaiah et al. 2016). 
Moreover, Guo et al. (2023) found that host-plant switching 
by the rice leaf-folder Cnaophalocrocis medinalis affected 
its susceptibility to abamectin and chlorpyrifos as well as 
activity of its detoxification enzymes [glutathione-S-trans-
ferases, “multifunctional oxidases” (including P450s) and 
carboxylesterases].

Although most extensively documented in folivores, 
hostplant identity can also influence the toxicity of insec-
ticides to sap-sucking herbivores. Castle et al. (2008) dem-
onstrated that the highly polyphagous silverleaf whitefly, 
Bemisia tabaci, recorded on more than 600 hostplant spe-
cies, displayed higher LC50 values for a bifenthrin-endosul-
fan mixture when raised on broccoli or related cole crops 
than on cantaloupes or cotton. Similarly, Xie et al. (2011), 
comparing performance of B. tabaci across multiple host 
plants, demonstrated that all insecticides tested displayed 
lower toxicity on one host species, poinsettia (Euphorbia 
pulcherrima), relative to three other host plants, with the 
LC50 values for acetamiprid approximately 15-fold, tenfold, 
and 7.3-fold higher than for whiteflies on tomato, cucum-
ber, and cabbage, respectively. In terms of mechanisms, Xie 
et al. (2011) linked induction effects of host plants to insec-
ticide susceptibility in B. tabaci; glutathione-S-transferase 
(GST) and cytochrome P450 activity levels were lowest in 
the population on cucumber. Liang et al. (2007) linked the 
hostplant effects on insecticide toxicity to the induction of 
carboxyesterase activity in Bemisia tabaci biotype B and 
greenhouse whitefly, Trialeurodes vaporariorum. Njiru et al. 
(2023) found host plant modulation of acaricide resistance in 
the two-spottedspider mite, Tetranychus urticae, which use 
their mouthparts to pierce individual cells to remove their 
contents, to 13 acaricides with different modes of action and, 
with piperonyl butoxide synergism assays, demonstrated 
enhancement of toxicity of cyflumetofen in tomato but 
not bean, implicating P450s in detoxification. In addition, 
Dermauw et al. (2013) observed that when T. urticae mites 
were adapted from bean to a challenging host plant (tomato), 
their differentially expressed genes increased over genera-
tions, including P450 genes. Moreover, expression profiles 
of adapted mites resembled those of multipesticide-resistant 
strains, and this adaptation reduced their susceptibility to 
pesticides. This finding links host plant adaptation to pesti-
cide resistance. 

Despite the broad recognition of impacts of hostplant 
identity on pesticide toxicity to foliage-feeding or piercing-
sucking herbivores, there is virtually no literature on the 

effects of plant food source identity on insecticide toxicity 
to pollinators. As well, although enzymatic responses to host 
plant identity have been well-characterized, phytochemical 
traits of host plants that differentially affect pesticide toxic-
ity have almost never been documented. As a consumer of 
plant nectar, pollen and their processed forms honey and 
beebread, the western honey bee, Apis mellifera, in particu-
lar should be susceptible to effects, positive and negative, of 
phytochemicals due to the considerable diversity of nectar 
sources exploited by this highly polylectic species and to 
its ability to concentrate and convert nectar into honey as 
a storable food resource. Some nectars, e.g., contain phy-
tochemicals toxic to bees; conversion of these nectars into 
honey can lead to hive collapse (Bischoff and Moiseff 2023). 
Others contain phytochemicals that can be beneficial, pro-
viding antioxidant and antimicrobial activities (Berenbaum 
and Calla 2021). Most importantly, certain phytochemicals 
found in honey can ameliorate pesticide toxicity in bees by 
upregulating cytochrome P450 enzymes (Mao et al. 2011, 
2013).

In this study, we set out to determine whether pollina-
tors, like other herbivores, experience differential toxicity 
of insecticides depending on the species identity of the nec-
tar sources used to make honey. Apis mellifera, the western 
honey bee, was selected for this study as a test case due to 
its ability to collect and process into honey nectars from 
many different plant species, encountering a broad range 
of nectar phytochemicals in the process. As well, because 
bees concentrate nectar in converting it to honey, effects of 
nectar source identity on pesticide toxicity should be more 
likely to be detectable, particularly if induction of detoxifica-
tion enzymes is dose-dependent. To date, individual honey 
constituents have been tested for their effects on insecticide 
toxicity (Arathi and Bernklau 2021; Liao et al. 2020, 2017; 
Mao et al. 2011, 2013; Mitton et al. 2020; Wong et al. 2018), 
but honey bees encounter phytochemicals in complex mix-
tures, not in isolation, when they eat honey, and there are 
few if any studies of the effects of the phytochemical com-
position of honey on insecticide tolerance. Accordingly, we 
tested the toxicity of a pyrethroid insecticide, bifenthrin, 
on adult honey bees consuming three types of monofloral 
honeys–i.e., honeys that derive 50% or more of their con-
stituent nectar from a single nectar source. Bifenthrin is both 
highly toxic to honey bees (USEPA OPP Pesticide Ecotoxic-
ity Database) and frequently encountered in agroecosystems 
in which bees forage and in the hive environment; accord-
ingly, we selected it to serve as a representative pesticide to 
determine effects of honey identity on pesticide toxicity. In 
a recent study of pesticide residues in bee-attractive border 
plantings, e.g., bifenthrin was the most frequently detected 
among 33 pesticides, found in 44 percent of all samples 
(Ward et al. 2022). As well, in a four-year monitoring sur-
vey of honey bee exposure to pesticide residues in hives 
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in China’s main honey-producing areas, bifenthrin had the 
third-highest detection rate, 19.7% (Xiao et al. 2022), behind 
only the fungicide carbendazim, with a detection rate of 
45%, and the in-hive acaricide tau-fluvalinate, with a detec-
tion rate of 36.8%. In addition, we analyzed the correlations 
between alpha diversity metrics, which measure the rich-
ness and evenness of the “community” of phytochemicals 
contained in honey, and the LD50 values of bees consuming 
a pesticide administered in five honey diets. This analysis 
allowed us to measure correlations between the identity and 
diversity of honey phytochemicals consumed and observed 
toxic effects of pesticide exposure.

Methods

Identification and Quantification of Phenolic 
Components of Honeys

Monofloral honeys from each of three plant families known 
to differ in phytochemical content and composition (Ghel-
dof et al. 2002) were selected for this study: white tupelo 
(Nyssaceae: Nyssa ogeche; commercial tupelo honey from 
Wewahitchka, FL, USA), black locust (Fabaceae: Robinia 
pseudoacacia; commercial locust blossom raw honey, from 
Plains, PA, USA), and buckwheat (Polygonaceae: Fag-
opyrum esculentum; commercial buckwheat honey, from 
Plains, PA, USA). Methods for honey sample preparation 
and high-pressure liquid chromatography (HPLC) analysis 
were adapted from those reported by Gheldof et al. (2002) 
and Michalkiewicz et al. (2008). Twenty grams of tupelo or 
locust honey or 10 g of buckwheat honey were dissolved in 
100 mL of acidified deionized water (pH 2.0) and filtered 
through solid-phase extraction (SPE) cartridges (186008718, 
Waters Corporation, Milford, MA) on a vacuum station at 
flow rate < 5 mL/min. The loading quantity of buckwheat 
honey was halved to avoid saturating and blocking SPE car-
tridges. After washing each cartridge with an additional 100 
mL acidified water to remove sugars and polar compounds, 
50 mL methanol were eluted to recover the adsorbed phe-
nolic acids and flavonoids. The methanol extract was con-
centrated using a rotary evaporator at 30°C and the solid 
extracts were then redissolved in 1 mL (tupelo and locust) or 
0.5 mL (buckwheat) methanol containing methyl 4-hydroxy-
benzoate (200 μg/mL) as internal standard. The supernatant 
of reconstituted extract, centrifuged at 18,000 g RCF for 30 
s, was used for HPLC analysis.

HPLC analysis was performed on a Phenomenex® Gem-
ini C18 column (150 mm by 2 mm, 5 μm) with a Shimadzu 
Prominence SPD-M20A photodiode array detector (PDA; 
scanning range: 190–450 nm, slit of 1.2 nm, acquisition 
rate of 1.5625 Hz, and flow in the cell temperature of 40 
°C). The column oven temperature was maintained at 40°C 

as well. Gradient elution and variable total flow rate of the 
mobile phase were carried out for obtaining an optimized 
chromatographic peak separation and for keeping the operat-
ing pressure below the upper limit of the pump and system. 
The mobile phase consisted of 0.5% formic acid in water 
(phase A) and methanol (phase B). Before the sample injec-
tion, the mobile phase was kept at 20% B for 15 min at 0.2 
mL/min flow rate. After the injection (0 min), the mobile 
phase was delivered in linear gradient mode as follows: in 
0.01 min decreasing 15% B, 0.01–5 min 15% B, 9–16 min 
25% B, 30–34 min 45% B, 44 min 48% B, 50–65 min 60% 
B, 66–71 min 95% B, and holding for 4 min. The flow rate 
was also changed linearly after sample injection, decreasing 
from 0.2 to 0.1 mL/min over four min, maintained from 4–7 
min at 0.1 mL/min, from 9–16 min at 0.15 mL/min, from 
17–24 min at 0.18 mL/min, from 28–38 min at 0.16 mL/min, 
for 39 min at 0.18 mL/min, from 43–71 min at 0.2 mL/min; 
and holding for 4 min.

Components were identified and quantified by comparing 
with reference standard retention time, absorbance spectral 
characteristics, and integrated area of absorbance peaks 
detected at their best detection wavelength (Table S1). The 
quantification was calibrated via normalization of the peak 
areas by referring to the internal standard and calibration 
curves established with known concentrations of standard 
chemicals.

Effects of Honey Phytochemicals on Acute Pesticide 
Toxicity

For bioassays assessing pesticide toxicity to bees on dif-
ferent monofloral honey diets, the method of Wong et al 
(2018) was used to evaluate the impact of consuming three 
different monofloral honeys on bifenthrin median lethal dose 
(LD50) values. Honey bees were obtained from apiaries of 
the University of Illinois Bee Research Facility located in 
Urbana, Champaign County, IL (40°07′52"N 88°08′43"W 
and 40°07′38"N 88°10′31"W) in summer 2018. Frames of 
capped brood were collected from three naturally mated 
queen colonies and then incubated in a dark room at 34°C 
to obtain newly emerged worker bees. The day-old bees, col-
lected within 24 h of eclosion, were introduced into cages in 
groups of 10 individuals (except for two cages, which inad-
vertently contained 11 bees). Each cage, following meth-
ods used in earlier studies (Liao et al. 2020, 2017, 2019), 
was equipped with four 2-mL microcentrifuge tube feeders; 
three feeders provided a formulated honey diet and one pro-
vided water. The experiment comprised five diet treatments: 
tupelo, locust, and buckwheat honey in separate cages, a 
choice treatment (TLB-Choice) offering three honey options, 
and a sugar control that represents the average sugar propor-
tions in the honeys (40% fructose: 29% glucose: 1% sucrose) 
as documented in previous studies (Gardiner 2015; Pasini 
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et al. 2013; White and Doner 1980). All diets contained 
casein (C3400, Sigma–Aldrich Co. LLC., St. Louis, MO) at 
a ratio of 1:12 protein to carbohydrate as a phytochemical-
free protein source. Three days after caging, surviving bees 
(9–11 bees per cage) within their cages were chilled with 
ice to keep them immobilized and were then individually 
treated topically with bifenthrin in acetone or acetone alone 
as a solvent control. We evaluated the effects of honey on 
the bifenthrin (LD50) with 1 µl acetone containing concentra-
tions of bifenthrin encompassing 0 ppb, 120 ppb, 150 ppb, 
240 ppb, 300 ppb, 600 ppb, 1200 ppb, 1500 ppb, 2400 ppb, 
and 3000 ppb. Three to nine replicates of each concentration 
in each treatment were tested from each of three naturally 
mated queen colonies, except for 120 ppb, which had two 
replicates for two colonies, for a total of 5159 bees. All three 
hives and cage replicates were carried out within a 24-day 
period.

Probit analysis was conducted to estimate LD50 values 
using IBM SPSS Statistics (version 24, SPSS Inc., Chicago, 
IL, USA). A heterogeneity factor was included in the cal-
culation of 95% confidence limits if the significance level 
of Pearson Goodness-of-Fit Test was below 0.15 (Norušis 
2007). Significant differences between LD50 values were 
determined by estimation of confidence intervals of the rela-
tive median potency (RMP) when values of the 95% confi-
dence interval of relative median potency did not include 
“1”.

Analysis of the Phytochemical Composition 
of Honeys and their Associations with Honey Bees

In phytochemical studies, alpha diversity indices have been 
used to assess of phytochemical diversity to provide a quan-
titative measure of the composition of naturally occurring 
mixtures (Hilker 2014; Wetzel and Whitehead 2020). The 
indices have facilitated comparisons of phytochemical diver-
sity among host samples and have been used as quantitative 
indices to develop models to study the effects of phytochem-
ical diversity on herbivore performance (Glassmire et al. 
2020), ecological interactions (Cacho et al. 2015; Doyle 
2009; Richards et al. 2015), and evolutionary processes 
(Morris et al. 2014; Tewes et al. 2018). We used several 
common diversity indices for a comprehensive characteri-
zation of phytochemical richness and evenness, including 
Richness, Shannon–Wiener diversity Index (Shannon), 
Inverse Simpson diversity Index (inv_ Simpson), Pielou's 
Evenness Index (Pielou), and extrapolated richness estima-
tors (Chao et al. 2014), including the Chao1 richness estima-
tor (Chao1) and the Abundance-based Coverage Estimator 
(ACE), using the 'vegan' package (Dixon 2003; Oksanen 
et al. 2022) in R (R Core Team 2023). The Richness index 
quantified the total number of phytochemicals in each honey 
sample; the Shannon index and the inverse Simpson index 

were used to measure both richness and evenness; the Pielou 
index measured the evenness of the compound distribution; 
and Chao1 and ACE estimated the total number of phyto-
chemicals, considering both detected and undetected ones.

To assess the differences in phytochemical diversity 
among the three honey samples, we first used Levene's test 
for equality of variances to evaluate the homogeneity of vari-
ances. If homogeneity of variances was confirmed (Levene's 
test, p > 0.05), we used analysis of variance (ANOVA) fol-
lowed by Scheffé's post-hoc analysis. If homogeneity of 
variances was violated, indicating unequal variances, we 
performed the Kruskal–Wallis rank test with Dunn's test 
for pairwise comparisons. A significance level of α = 0.05 
was used in the tests. For the analysis of the phytochemi-
cal composition of honey and its effects on pesticide tox-
icity, we employed multivariate analysis with non-metric 
multidimensional scaling (NMDS) and the envfit function 
from the R package 'vegan' (Dixon 2003; Oksanen et al. 
2022). Prior to analysis, the phytochemical units in honey 
were converted to μM to assess the bioavailable concentra-
tions of the phytochemicals in the honey diet. NMDS plots, 
in conjunction with a stress value and the Adonis index, 
were utilized to evaluate the clustering of honey samples 
based on phytochemistry (Bray–Curtis distance, k = 5). A 
stress value close to 0 indicated a good fit to the NMDS 
plot, while the Adonis test provided R-square and p values 
to assess the significance of the observed group differences. 
Additionally, the envfit function for multiple regression with 
999 permutations was used to fit variables (vectors) to the 
NMDS ordination, regardless of whether explained vari-
ables were part of the original analysis that generated the 
plot. This function facilitated the visualization and quantifi-
cation of relationships between variables by aligning envi-
ronmental factors with the ordination plot (Dixon 2003). 
This approach revealed associations of the variables with the 
phytochemicals present in the honey samples by correlating 
them with the underlying ordination axes. It also helped to 
characterize relationships between variables; for example, 
angles between vectors (variables) on the NMDS ordination 
plot indicate their correlations (Šmilauer and Lepš 2014). 
These variables included individual phytochemicals, alpha 
diversity metrics of honey phytochemical composition, and 
average 24-h LD50 values to represent toxicity of pesticides 
to bees on different honey diets.

Results

Monofloral Honey Characteristics: Phytochemicals 
and Alpha‑Diversity

The major phytochemical constituents of the three mono-
floral honey are presented in Table 1. Buckwheat honey 
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is characterized by its richness in phenolic acids, espe-
cially p-hydroxybenzoic acid, and surpassed tupelo and 
locust honey in its levels of pinobanksin and pinocem-
brin (Table 1). Tupelo honey contained high levels of the 
sesquiterpene abscisic acid and greater concentrations of 
quercetin and kaempferol, while locust honey was charac-
terized by its higher hyperoside content.

As reflected by diversity indices, buckwheat and locust 
honeys exhibited a phytochemical profile with higher rich-
ness than tupelo honey. Buckwheat honey had the highest 
Chao1 estimation at 21.89 ± 1.46 of total phytochemicals, 
followed by locust honey at 19.38 ± 0.20, and tupelo honey 
at 16.50 ± 0.13. Both buckwheat and locust honeys had sig-
nificantly higher estimation of phytochemicals than does 

Table 1   Major phytochemical constituents of three monofloral honeys

Buckwheat 
honey1 Tupelo honey Locust honey

Compound (mg/kg) Mean ± SD Mean ± SD Mean ± SD

p-Hydroxybenzoic acid 15.342 ± 0.04 1.73 ± 0.01 0.97 ± 0.02Phenolic 

acids
p-Coumaric acid 10.12 ± 0.13 1.75 ± 0.04 2.47 ± 0.01

Benzoic acid 4.13 ± 0.04 2.63 ± 0.03 1.30 ± 0.02

(±)-Abscisic acid 1.8 ± 0.02 16.88 ± 0.06 1.47 ± 0.01

Ferulic acid 1.33 ± 0.01 1.41 ± 0.04 0.91 ± 0.00

Caffeic acid 0.88 ± 0.01 0.63 ± 0.09 0.69 ± 0.01

Chlorogenic acid 0.64 ± 0.51 0.69 ± 0.01 0.41 ± 0.07

Vanillic acid 0.53 ± 0.01 2.26 ± 0.05 0.47 ± 0.06

trans-Cinnamic acid 0.07 ± 0.01 1.53 ± 0.01 0.58 ± 0.00

Syringic acid n.d.3 0.43 ± 0.06 0.37 ± 0.01

Flavonoids Pinobanksin 12.95 ± 0.06 0.18 ± 0.00 6.65 ± 0.01

Pinocembrin 8.48 ± 0.02 n.d. 4.15 ± 0.05

Galangin 3.89 ± 0.02 n.d. 1.63 ± 0.02

Chrysin 3.03 ± 0.01 0.10 ± 0.00 1.25 ± 0.01

Kaempferol 1.61 ± 0.01 3.90 ± 0.03 1.02 ± 0.05

Quercetin 0.87 ± 0.02 2.94 ± 0.01 0.53 ± 0.00

Rutin 0.77 ± 0.12 n.d. n.d.

Hyperoside 0.46 ± 0.01 n.d. 10.28 ± 0.03

(±)-Naringenin 0.06 ± 0.01 0.04 ± 0.00 0.04 ± 0.00

Myricetin n.d. n.d. 0.52 ± 0.03

1  n = 6 in each monofloral honey
2  Colors indicator ranges from white (n.d.) to red (highest) in each monofloral honey
3  n.d. = not detected
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tupelo honey (Table 2 and S2) (p < 0.05, Dunn's test after 
Kruskal–Wallis rank test). In the ACE estimation of honey 
phytochemicals, a similar pattern was observed, with buck-
wheat honey having the highest value at 20.51 ± 0.48, fol-
lowed by locust honey at 19.68 ± 0.20, and tupelo honey at 
18.47 ± 0.17. Both buckwheat and locust honeys showed sig-
nificantly higher values than tupelo honey (p < 0.05, Scheffé 
post hoc test after ANOVA), with no significant difference 
between buckwheat and locust honeys. The average phy-
tochemical richness values were 19.33, 18, and 15.17 for 
locust, buckwheat, and tupelo honeys, respectively, with 
locust honey having a significantly higher richness value 
than tupelo honey (p < 0.05, Dunn’s test after Kruskal–Wal-
lis rank test), while no significant difference was observed 
between locust and buckwheat honey. However, with respect 
to phytochemical evenness, locust honey had the highest 
evenness (Pielou index: 0.60); Pielou evenness values for 
buckwheat (0.50) and tupelo honey (0.53) were lower. In 
addition, locust honey was characterized by the highest val-
ues for the Shannon and Inverse Simpson indices.

Effects of Honey on Honey Bees: Pesticide Acute 
Toxicity

In terms of acute toxicity, the median lethal dose (LD50) 
values for bifenthrin in bees on each of the four honey-
containing diets were higher than those for bees on the 
phytochemical-free diet at both 24 h and 48 h (Table 3). 
The LD50 values for bifenthrin for bees on the buckwheat 
honey diet were greater than the LD50 values for bees on the 
phytochemical-free sugar diet [the relative median potency 
(RMP) = 0.73 (0.61–0.87, 95% CI) at 24 h and RMP = 0.77 

(0.63–0.93, 95% CI) at 48 h]. Bees on the TLB-Choice diet 
also had greater LD50 values at 24 h than the bees on the 
sugar diet [RMP = 0.80 (0.67–0.95, 95% CI)].

Honey Phytochemical Composition and Associations 
with Honey Bees

The non-metric multidimensional scaling (NMDS) plot 
(Fig. 1), based on the Bray–Curtis distance, illustrated the 
grouping of honey samples according to their phytochemi-
cals (Adonis: 0.99, p < 0.001). With the exception of rutin 
and chlorogenic acid, phytochemicals showed statistically 
significant associations with honey types (p < 0.01; based 
on 999 permutations, Fig. 1A; Table S3). Similarly, LD50 
values and alpha diversity metrics of phytochemicals showed 
statistically significant associations with honey phytochemi-
cal composition (Fig. 1B; Table S3).

In addition, our analysis using envfit evaluated the relation-
ships between honey bee LD50 and phytochemical variables 
within the NMDS ordination plots (Fig. 1), suggesting that 
certain phytochemicals influence susceptibility to bifenthrin 
pesticide toxicity more than others. For example, some phy-
tochemical variables, such as p-hydroxybenzoic acid, p-cou-
maric acid, benzoic acid, caffeic acid, naringenin, pinobank-
sin, pinocembrin, galangin, and chrysin, pointed in a similar 
direction to the LD50 variable, suggesting positive correlations, 
while others showed negative correlations (hyperoside, myri-
cetin, syringic acid and trans-cinnamic acid) or were uncor-
related (Fig. 1).

Because honey bees are exposed to phytochemicals in 
mixtures rather than in isolation, our analysis examined the 

Table 2   Alpha diversity metrics of honey phytochemical compositions (mean ± se)

Honey Chao11 ACE Richness Shannon inv_Simpson Pielou

buckwheat 21.89±1.46a2 20.51±0.48a 18.00±0.00 ab 2.08±0.01b 5.73±0.02 ab 0.50±0.00b

locust 19.38±0.20a 19.68±0.20ab 19.33±0.21a 2.55±0.01a 9.96±0.09a 0.60±0.00 a

tupelo 16.50±0.13b 18.47±0.17b 15.17±0.17b 2.09±0.01b 5.42±0.03 b 0.53±0.00ab

1 Chao1: Chao1 richness estimator; ACE: Abundance-based Coverage Estimator; Shannon: Shannon–Wiener diversity Index; inv_Simpson: 
Inverse Simpson diversity Index; Pielou: Pielou's Evenness Index
2 Superscripted lowercase letters following alpha diversity metrics indicate statistical differences in phytochemical composition of honeys in µM 
(p < 0.05, n = 18, df = 2, 15, Scheffé post hoc test after ANOVA or Dunn’s test after Kruskal–Wallis rank test); Color indicator ranges from white 
(lowest) to red (highest) for the mean values of each diversity metric
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correlations between honey bee LD50 and alpha-diversity 
metrics of phytochemicals in honey. Acute angles reflected 
the relationship between honey bee LD50 and the Chao1 
richness estimate (Chao1), as well as between LD50 and the 
Abundance-based Coverage Estimator (ACE), suggesting a 
positive correlation (Fig. 1B). This finding indicates that, as 
the richness estimate increases, so does the LD50 value. Both 
Chao1 and ACE estimate phytochemical richness by weight-
ing more heavily compounds present in low abundance to 
account for compounds that may have been missed during the 
analysis (Chao et al. 2014; Xia and Sun 2023). By contrast, the 
observed nearly perpendicular angles between LD50 and the 
richness index indicate a lack of correlation. However, when 
alpha diversity metrics that incorporate evenness, such as Pie-
lou's Evenness Index, Shannon's Index, and inverse Simpson's 
Index, are considered, we observed inverted angles. This find-
ing indicates a negative correlation between honey bee LD50 
and these metrics, suggesting that, as the evenness of phyto-
chemical distribution increases, the LD50 tends to decrease.

Discussion

In our study, the significant associations between LD50 
with honey phytochemical composition suggest multiple 
phytochemicals of honey influence susceptibility to bifen-
thrin. Although in honeys some properties are associated 
with sugars (Berenbaum and Calla 2021), in most honeys 

biological activity results from their phytochemical pro-
file, which varies substantially according to availability of 
floral sources for foragers. Examining only three monoflo-
ral honeys to evaluate functional differences among hon-
eys varying in phytochemical diversity is a limitation of 
our study in that it captures only a minuscule sample of 
honey phytochemical diversity. As well, accurately esti-
mating phytochemical ingestion by bees is challenging. 
The TLB-Choice diet, designed to allow bees to choose 
among the three honeys to simulate behavioral regulation 
of phytochemical ingestion, did not allow us to determine 
the exact amounts of each honey type consumed and thus 
to estimate the diversity of phytochemicals ingested by the 
bees choosing their food. Notwithstanding these limita-
tions, we were able to document differences in biological 
activities of these three honeys that are directly relevant 
to bee health—that is, sensitivity to a pesticide of agricul-
tural importance.

A well-documented property of honey relevant to bee 
health is its ability to up-regulate specific detoxification 
enzymes (Johnson et al. 2012; Mao et al. 2013). Such activ-
ity is reflected in the diet-dependent differences in bifenthrin 
LD50 we observed; relative to the sugar diet, the median 
lethal dose of bifenthrin increased with consumption of 
honey with greater diversity of phytochemicals (Chao1 
richness estimate and Abundance-based Coverage Estimator 
(ACE)). This finding is consistent with increased pesticide 
detoxification after ingestion of individual phytochemicals 

Table 3   Median lethal dose (LD50) of bifenthrin to adult honey bees on three different monofloral honey diets and the sugar control diet

LD50

(ng/bee)
95% Confidence 

Intervals1

LD 50
(ng/bee)

95% Confidence 
Intervals

n at 24hr Lower Upper at 48hr Lower Upper

Sugar 1024 10.962 9.71 12.37 10.6 9.28 12.12

Tupelo 1041 12.64 11.21 14.25 10.91 9.56 12.46

Locust 1027 12.26 10.86 13.85 10.94 9.56 12.51

Buckwheat 1038 14.99* 13.28 16.95 13.82* 12.09 15.81

TLB3 1026 13.67* 12.1 15.45 11.59 10.13 13.27

1  a heterogeneity factor is used in the calculation of confidence limits, logarithm base = 10, due to Pearson Goodness-of-Fit Test p < 0.15
2  Color indicator ranges from white (lowest) to red (highest) for median lethal dose levels
3  TLB: free choice among three honeys
* Significantly different from the sugar control, based on relative median potency (RMP) analysis
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found in honey. Multiple studies have demonstrated amelio-
ration of pesticide toxicity by consumption of certain phy-
tochemicals individually (Arathi and Bernklau 2021; Liao 
et al. 2020, 2017; Mao et al. 2013; Mitton et al. 2020; Wong 
et al. 2018). Along the same lines, Ardalani et al. (2021a) 
demonstrated that bees consuming quercetin displayed 
reduced residual concentrations of ingested imidacloprid. 
To date, however, Ardanali et al. (2021b) is the only study 
of impacts of diets containing natural mixtures of phyto-
chemicals on pesticide metabolism; these authors reported 
that flavonoids in nectar and pollen diets reduce the residual 
concentrations of imidacloprid and tau-fluvalinate.

Fully characterizing the beneficial non-nutritive effects of 
honey phytochemicals will require a multifactorial approach. 
The main mechanism for increased pesticide detoxification 
by complex mixtures of phytochemicals in honey relative to 
a phytochemical-free sugar diet is ostensibly the collective 
induction of detoxification pathways, particularly CYP6AS 
and CYP9Q subfamilies (Haas et  al. 2022a; Mao et  al. 

2009). Induction of cytochrome P450s occurs in honey bees 
consuming individual phytochemicals, including p-coumaric 
acid, pinocembrin, pinobanksin and pinobanksin 5-methyl 
ether (Mao et al. 2013); of these, present in all three honeys 
were p-coumaric acid and pinobanksin, albeit in different 
concentrations. CYP6AS subfamily enzymes and CYP9Q3 
metabolize quercetin and are induced by p-coumaric acid 
(Mao et al. 2009, 2013, 2015); phytochemical-rich honeys 
induced four CYP6AS transcripts and CYP9Q3 transcripts, 
which likely also increased the overall capacity for detoxi-
fication of natural and synthetic xenobiotics (Liao et al., in 
preparation). Additionally, CYP9Q3 is involved in the detox-
ification of multiple insecticides, including the pyrethroid 
tau-fluvalinate and the organophosphate coumaphos (Mao 
et al. 2011), the N-cyanoamidine neonicotinoid thiacloprid 
(Manjon et al. 2018), the butenolide flupyradifurone (Belden 
2022), and the anthranilic diamide chlorantraniliprole (Haas 
et al. 2022a). A phylogenomic analysis showed that func-
tional CYP9Q orthologs are generally conserved across bee 

Fig. 1   The nonmetric multidi-
mensional scaling (NMDS) plot 
illustrates the phytochemical 
distributions among samples 
from three monofloral honey, 
based on the Bray–Curtis 
distance (n = 18; Adonis: 0.99, 
p < 0.001). The NMDS plot also 
displays vectors for phyto-
chemicals (A), alpha diversity 
metrics of honey phytochemical 
composition (B), and LD50 of 
bifenthrin for honey bees (red), 
as determined by the envfit 
function. The direction of the 
vector arrows indicates the 
maximum gradient direction of 
the variable (the direction of the 
most rapid change in the vari-
able), and the arrow length is 
proportional to the squared cor-
relation coefficient with honey 
samples. The angle between two 
vectors indicates the direction of 
the relationship between them, 
with an acute angle indicating a 
positive correlation, a perpen-
dicular angle indicating an 
uncorrelated relationship, and 
obtuse angles indicating a nega-
tive correlation. Only variables 
that are statistically significant 
are shown (p < 0.05; based on 
999 permutations; Table S3)
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families (Haas et al. 2022b), suggesting their importance in 
the adaptation of bees to environmental stress. Rather than 
consuming phytochemicals individually, however, honey 
bees ingest mixtures of phytochemicals while feeding on 
honey. Herbivore-plant ecological interactions correlate with 
mixtures of host phytochemicals (Marion et al. 2015; Petrén 
et al. 2023), suggesting that studies of the effects of phyto-
chemicals of honey on bees should take into account the 
overall diversity of honey phytochemicals. Our multivariate 
analysis revealed the relationship between bifenthrin toxic-
ity and the diversity of phytochemicals of the three honeys, 
reflected by positive correlations between LD50 and rich-
ness estimates (Chao1 and ACE), indicating higher LD50 
with increased richness, and negative correlations with alpha 
diversity metrics incorporating evenness of phytochemical 
composition. These results suggest that certain specific 
compounds may have a more pronounced effect than others 
in reducing pesticide toxicity. In addition, the positive cor-
relation observed between richness estimates (Chao1 and 
ACE) and LD50 suggests that low-abundance phytochemi-
cals, which are weighted more heavily in these estimates 
(Chao et al. 2014; Xia and Sun 2023), may also contribute 
to the reduction of bifenthrin pesticide toxicity.

Conclusions

Although up-regulation of xenobiotic detoxification path-
ways in honey bees in response to honey likely evolved in 
response to potentially toxic phytochemicals, induction of 
detoxification pathways by phytochemical-rich honeys is 
likely beneficial in contemporary pesticide-contaminated 
environments. Impacts of reduced phytochemical diver-
sity in the diet provide insights into the consequences of 
reduced floral resource diversity and intensively farmed 
agroecosystems (Decourtye et al. 2010). It is important 
to note, however, that phytochemicals that are not derived 
from floral nectars are also found in honey (Nešović et al. 
2020). As Soler et al. (1995) point out, honeys contain 
not only phytochemicals derived from nectar but also 
“the characteristic flavonoids from propolis and/or bees-
wax (chrysin, galangin, tectochrysin, pinocembrin and 
pinobanksin)”, which in our study have a positive corre-
lation with the LD50 variable. Truchado et al. (2008) spe-
cifically point out that the flavonoid aglycones in acacia, 
or locust, honey (R. pseudoacacia) derive from propolis, 
the substance made by bees from resins collected from 
plants that are mixed with wax and saliva. The phenolic 
acid p-coumaric acid is a frequent component of Euro-
pean propolis (Hegazi et al. 2000). Propolis-derived flavo-
noids, including pinocembrin, pinobanksin, and galangin, 
are absent or present in very low concentrations in our 
tupelo honey samples relative to the amounts in locust 

and buckwheat honey. Buckwheat honey in particular is 
rich in these flavonoids. Mao et al. (2013) reported that 
p-coumaric acid is the strongest inducer of the detoxifica-
tion enzyme CYP9Q3 among phenolic acids, and, among 
flavonoids, chrysin and naringenin were more effective at 
inducing CYP9Q3 than were pinocembrin and galangin; 
pinobanksin 5-methyl ether is “highly effective.” Thus, for 
bees, plant diversity of landscapes other than that repre-
senting nectar sources may have hitherto unrecognized or 
underestimated health benefits in terms of pesticide toxic-
ity challenges.

In conclusion, honey, the principal stored food prod-
uct during a substantial proportion of the lifecycle of the 
honey bee, likely has greater importance in honey bee 
health than previously recognized, particularly if bees 
can self-regulate induction of detoxification enzymes as 
they apparently self-medicate in the presence of patho-
gens (Gherman et al. 2014; Spivak et al. 2019; Tihelka 
2018). Variation in honey phytochemical content may help 
equip bees with defenses against both natural and synthetic 
xenobiotics. Potential applications arising from our find-
ings may include landscape diversification plans aimed at 
optimizing the phytochemical content of non-crop flora 
to increase the likelihood of occurrence of honey phyto-
chemicals, particularly those introduced into the hive via 
resin-collecting and propolis production, that can upregu-
late detoxification enzymes, to promote year-round good 
health.
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