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Abstract
In myrmecophilous organisms, which live in symbiosis with ants, cuticular hydrocarbons (CHCs) play a pivotal role in 
interspecific communication and defense against chemical-oriented predators. Although these interactions form complex 
information webs, little is known about the influence of biotic environmental factors on the CHC profiles of myrmecophiles. 
Here, we analyzed the effect of different host plants and tending ants on the larval CHC profile of Synargis calyce (Lepidop-
tera: Riodinidae), a polyphagous species with facultative myrmecophily. Groups of caterpillars were fed individually with 
three host plant species (without tending ants), and with two tending ant species. Through gas chromatography analysis, 
we compared the cuticular profiles of treatments and found a high similarity between plants and caterpillars (65–82%), but 
a low similarity between caterpillars and their tending ants (30 − 25%). Cluster analysis showed that caterpillars, ants, and 
plants form distinct groups, indicating that S. calyce caterpillars have their own chemical profile. These results are similar 
to those observed for Lycaenidae caterpillars indicating that there is functional convergence in the chemical strategies used 
by myrmecophilous caterpillar species with similar ecology. Also, the results suggest that the cuticular compounds of S. 
calyce are primarily influenced by their host plants rather than their tending ants. Thus, we propose that these caterpillars 
present a trade-off between camouflage and directly informing their presence to ants, maintaining their unique chemical 
profile, though slightly affected by biotic environmental factors.
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Introduction

Ants are predominant in many terrestrial ecosystems in 
terms of abundance and biomass (von Beeren et al. 2012). 
These eusocial insects live in complex societies where 
communication plays a crucial role in their functioning 
(Hölldobler and Wilson 1990; Yamaoka 1990; Lenoir et al. 
1999; Akino 2008). In ants and other social insects, com-
munication and particularly the recognition of nestmates 
is primarily based on chemical cues and signals (Yamaoka 
1990; Lenoir et al. 1999; Akino 2008; Blomquist and Bag-
nères 2010; Nunes et al. 2014). Cuticular hydrocarbons 
(CHCs), the main class of cuticular compounds in ants, are 
colony-specific and actively participate in nestmate recogni-
tion (Howard and Blomquist 2005; Hefetz 2007; Ferguson 
et al. 2021). The ecological success, wide distribution, and 
social organization of ants have contributed to the evolu-
tion of diverse associations with organisms from various 
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kingdoms, including plants, fungi, and animals, particularly 
other insects (Casacci et al. 2019). Organisms that interact 
with ants during at least part of their lifecycle are called 
myrmecophiles (Hölldobler and Wilson 1990; Kronauer 
and Pierce 2011; Hölldobler and Kwapich 2022). There are 
about 10,000 species of myrmecophiles across various insect 
orders (Thomas et al. 2005; Parker 2016; Hölldobler and 
Kwapich 2022).

Myrmecophily in Lepidoptera is primarily observed in 
the families Lycaenidae and Riodinidae, with 75% of the 
species in these families having immatures stages that 
interact with ants (Pierce et al. 2002; Casacci et al. 2019). 
These families commonly exhibit facultative and unspecific 
relationships, involving interactions with various ant taxa. 
However, there are butterfly species that establish obliga-
tory and specific relationships with specific ant taxa (Fie-
dler 1994, 2021; Kaminski 2008; Pierce and Dankowicz 
2022). Interactions between butterflies and ants can range 
from mutually beneficial outcomes, such as mutualism, to 
interactions where butterflies benefit without harming ants 
in commensalism, and to antagonist interactions where but-
terflies may be preyed by ants or where ants may be harmed 
by butterflies, as seen in social parasitism and competition 
for resources (Fiedler 1995, 1996; Pierce and Dankowicz 
2022). Both lycaenid and riodinid species exhibit various 
adaptations resulting from the pressures exerted by their 
association with ants (Pierce et al. 2002). These adaptations 
include highly specialized ant-organs involved in chemical 
and acoustic deception (Cottrell 1984; Fiedler et al. 1996; 
Pierce et al. 2002; Elmes et al. 2002; Barbero et al. 2012; 
Hill et al. 2022). For instance, nectary organs such as the 
dorsal nectary organ (DNO) in Lycaenidae and tentacular 
nectary organs (TNOs) in Riodinidae liquid secretions rich 
in sugar and amino acids (Newcomer 1912; Malicky 1970; 
DeVries 1988). Caterpillars of these two families are also 
equipped with a pair tentacular organs (TOs) in Lycaeni-
dae and anterior tentacular organs (ATOs) in Riodinidae, 
which emit chemical signals or vibroacoustic signals that 
modify the ant behavior (Henning 1983; DeVries et al. 1986; 
DeVries 1988; Gnatzy et al. 2017; Schönrogge et al. 2017).

Chemical strategies mediated by cuticular compounds 
enable myrmecophiles to overcome the barrier of chemi-
cal recognition employed by ants (von Beeren et al. 2012). 
One such strategy is chemical camouflage, where organisms 
resemble their background and avoid detection by chemi-
cally oriented predators (Silveira et al. 2010). In herbivorous 
organisms, achieving chemical camouflage with their host 
plants is possible through diet (Espelie et al. 1991; Barbero 
2016; Lima et al. 2024). In Lepidoptera, this strategy has 
already been demonstrated in both non-myrmecophilous 
and myrmecophilous caterpillars (Akino et al. 2004; Por-
tugal and Trigo 2005; Lima et al. 2021). One of the most 
extensively studied strategies is chemical mimicry, where 

organisms possess chemical compounds that close resem-
ble those of other organisms such as ants. This strategy has 
been observed in social parasitic species (Akino et al. 1999; 
Elmes et al. 2002; Schlick-Steiner et al. 2004; Schönrogge 
et al. 2004; Akino 2008). Additionally, some myrmecophil-
ous caterpillars present low concentration of compounds on 
their surface, making their detection challenging - a strat-
egy known as chemical insignificance (Inui et al. 2015; Bar-
bero 2016). Recently, a new strategy has been proposed in 
myrmecophilous caterpillars called chemical conspicuous-
ness. In this strategy, caterpillars that do not provide caloric 
rewards for ants exhibit a distinct cuticular profile compared 
to ants or host plants. However, their profile is similar to that 
of other caterpillars that offer caloric rewards to ants (Lima 
et al. 2021).

Although ant-plant-herbivore systems embrace complex 
communication networks involving multiple species (e.g., 
Lima et al. 2021, 2023), there is still a lack of information 
regarding the influence of phenotypic plasticity and biotic 
environmental factors on the cuticle compounds of general-
ist myrmecophilous species (Otte et al. 2018; Sprenger and 
Menzel 2020). Therefore, our aim was to investigate whether 
the CHC profile of a polyphagous caterpillar changes (1) 
according to their diet on different host plant species and 
(2) according to their interaction with different tending ant 
species. Considering that the caterpillar species used here 
were fed on their host plants, we hypothesized that their 
CHCs would be influenced primarily by their food source 
rather than the contact established with tending ants. Fur-
thermore, due to the production of caloric rewards by cat-
erpillars (trophobiosis) we predicted that caterpillars would 
exhibit a specific chemical profile distinct of both host plant 
and tending ants.

Methods and Materials

Study System Synargis calyce C. Felder and R. Felder, 1862 
(Lepidoptera: Riodinidae) (Fig. S1) is a Neotropical her-
bivorous and myrmecophilous butterfly whose caterpillars 
feed on several host plants in different families, including 
non-native species (Callaghan 1986; Beccaloni et al. 2008; 
Alves-Silva et al. 2018; Kaminski 2021). Female butterflies 
tend to lay their eggs on plants that are frequented by atten-
dant ants and caterpillars are tended by ants during all instars 
(Callaghan 1986). Although it presents facultative myrme-
cophily, the caterpillars are almost always found with tend-
ing ants of several genera, but mainly Camponotus species 
(Callaghan 1986; Alves-Silva et al. 2018; Kaminski 2021). 
It is common to observe temporal turnover, with attendance 
by different species of ants during the day and night (LAK, 
personal observation). Due to the high degree of ecologi-
cal plasticity of this butterfly in terms of both host plants 
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and tending ants, it is an excellent model of a generalist 
myrmecophile.

Collection and Rearing of Study Species Insects were col-
lected at the Universidade de São Paulo (21.1637° S, 
47.8592° W), Ribeirão Preto Campus, SP, Brazil, between 
January 2021 and April 2022. To conduct our chemical 
analysis, we collected ~ 90 eggs of S. calyce for rearing in 
the laboratory. Initially, ~ 20 field observations were con-
ducted to identify plant species used by butterflies for ovi-
position and seven species were identified serving as host 
plants. Subsequently, eggs were collected from three of these 
host plants (Senegalia polyphylla (DC.) Britton and Rose 
(Fabaceae), Inga laurina (Sw.) Willd. (Fabaceae), and Ter-
minalia catappa Linnaeus (Combretaceae)) at various study 
locations by harvesting branches where oviposition had been 
observed. In the field, three ant nests of Camponotus cras-
sus Mayr, 1862 (Formicidae: Formicinae) were collected 
and transferred to the laboratory. Each nest was placed in 
two connected boxes measuring 9 × 26.6 × 26.6 cm. One box 
served as the nesting area and contained test tubes (15 cm 
long) filled with water, plugged with hydrophilic cotton. The 
other box served as the foraging area. The ant colonies were 
provided with a diet of Tenebrio molitor Linnaeus, 1758 
larvae (Coleoptera: Tenebrionidae), diluted sugar solu-
tion (10%), and water ad libitum. Each colony consisted of 
approximately 150 workers, a queen, and some brood (eggs, 
larvae and pupae). Additionally, approximately, 600 work-
ers of Paratrechina longicornis Latreille 1802 (Formicidae: 
Formicinae) were collected from three established colonies 
near the laboratory buildings. The insects were kept under 
controlled conditions at a temperature of 25 °C and a pho-
toperiod of 12 h of light and 12 h of darkness.

Does the Chemical Composition of Caterpillars Change 
According to Their Food Sources? As the caterpillars stud-
ied here are polyphagous, we selected three host plant spe-
cies on which the caterpillars feed in the study area: two 
native, S. polyphylla, and I. laurina, and one non-native, T. 
catappa. Our aim was to investigate whether the CHCs of 
the caterpillar change according to its diet in the absence of 
tending ants. To conduct the experiment, we placed individ-
ually each egg in a plastic container (250 ml). Once the eggs 
hatched, we provided the caterpillars with shoots containing 
young leaves and extrafloral nectaries from the host plants. 
The shoots were replaced daily and kept in contact with 
moistened cotton to prevent them from drying. The S. calyce 
caterpillars were reared separately in plastic containers on 
three host plant species: caterpillar-S. polyphylla (n = 10), 
caterpillar-I. laurina (n = 10), caterpillar-T. catappa (n = 6). 
After reaching the fifth instar, we killed the caterpillars by 
freezing and kept them at -20 °C until CHC extractions were 
performed. Additionally, we collected leaves of S. polyphylla 

(n = 10), I. laurina (n = 10), and T. catappa (n = 10) for CHC 
extractions (See Table S1).

Does the Chemical Composition of Caterpillars Change 
According to Their Tending Ants? In our field site, the cat-
erpillars are attended by four different ant species: C. cras-
sus, P. longicornis, Camponotus renggeri Emery, 1894, and 
Wasmannia auropunctata Roger, 1863 (AVCG, personal 
observation). Thus, to assess whether the caterpillar CHCs 
change according to their tending ants, we individually 
reared S. calyce caterpillars in a plastic container as previ-
ously described, along with a group of associated ants. Spe-
cifically, we reared the caterpillars with two experimental 
groups: (caterpillar-C. crassus) (n = 10), and (caterpillar-P. 
longicornis) (n = 10). These caterpillars were fed with the 
host plant S. polyphylla. Each caterpillar was placed together 
with 10 workers of C. crassus or 30 workers of P. longi-
cornis. The number of ants was based on the average amount 
observed in the field. The ant workers were replaced every 
day until the caterpillars were frozen for chemical extraction, 
as previously mentioned. For chemical analysis, we also col-
lected worker ants from colonies reared in the laboratory for 
C. crassus (n = 8 colonies; n = 20 ants for chemical analyses) 
and from colonies established near the laboratory for P. lon-
gicornis (n = 10 colonies; n = 300 ants for chemical analyses) 
(See Table S1).

Chemical Analyses To perform the chemical analyses, we 
placed insects or plant shoots in glass vials (1.5 ml) and 
covered them with n-hexane (Macron Fine Chemicals, 95% 
n-hexane, USA) for 1 min (Lima et al. 2023). For each sam-
ple, a fifth-instar larva of S. calyce, two workers of C. cras-
sus, 30 workers of P. longicornis, and one young shoot with 
two leaves from each plant species were used individually. 
External standards were exclusively employed and the sam-
ples were not weighed. Subsequently, we left each vial at 
room temperature in a flow chamber to allow for drying. 
Once completely dried, we resuspended the contents in 5 
µl of hexane, of which 2 µl were manually injected. The 
samples were analyzed with gas chromatography coupled 
to a mass spectrometer (GC/MS; Shimadzu, model QP2010 
Plus), using a 30 m Rxi-1ms column, with helium gas flow 
rate set at 1 ml/min. The oven temperature was initially set 
to 40 °C and then increased by 3 °C min- 1 until reaching 
310 °C (held for 15min), following da Silva et al. (2021). 
The injector temperature was set to 250 °C. Data were ana-
lyzed by GC/MS Solutions for Windows (Shimadzu Corpo-
ration), and compounds were identified based on their mass 
spectra, including diagnostic and molecular ions (Carlson 
et al. 1998). Additionally, a retention index was calculated 
for each identified peak using a standard solution of differ-
ent synthetic linear hydrocarbons (n-C21 to n-C40). We also 
consulted the Registry of Mass Spectral Data (Wiley) and 
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National Institute of Standards and Technology (NIST) mass 
spectra search program (version 2.2) Libraries database for 
identification (Lima et al. 2023).

Statistical Analyses We used Morisita’s Similarity Index 
(SI) which ranges from 0% (indicating no similarity) to 
100% (representing complete similarity) (Krebs 1999) to 
compare CHC profiles of different groups, following the 
methodology of Lima et al. (2021). This analysis was car-
ried out using PAST software (Version 4.13) (Hammer et al. 
2001). Furthermore, to assess the overall chemical similarity 
or dissimilarity between groups, we performed a permuta-
tion analysis (PERMANOVA). This analysis was performed 
using the adonis function from the vegan package (Oksanen 
et al. 2013) with 9999 permutations. In order to represent the 
multivariate chemical dataset and check for the cluster for-
mation, we next performed a Principal Component Analysis 
(PCA). For this, we used the prcomp function of the stats 
package (R Core Team 2019). We also ran a multivariate 
similarity analysis (SIMPER) using the Bray-Curtis dis-
tance and adopting 999 permutations. The SIMPER analysis 
allowed us to determine the contribution of each chemical 
variable to the existing variation among samples. For this 
analysis, we used the simper function from the vegan pack-
age (Oksanen et al. 2013). For all tests, we determined the 
relative abundance percentages of each compound present in 
the cuticular extracts, treating the compounds as 100% and 
then analyzed the data. All these analyses were conducted 
using R version 4.0.2 (R Core Team 2019).

Results

Overall Chemical Information A total of 78 peaks were 
identified in the cuticular extracts from the different groups 
studied (Table 1). Senegalia polyphylla exhibited 22 peaks, 
I. laurina had 29 peaks, T. catappa, C. crassus had 28 
peaks each, P. longicornis had 22 peaks, and S. calyce cat-
erpillars had 25–30 peaks. These peaks corresponded to 
various chemical compounds, including branched hydrocar-
bons (mono-, di-, and trimethylated), linear alkanes, alkenes, 
alcohols, and aldehydes. The carbon lengths of the identified 
compounds ranged from 18 to 36.

The cuticular profile of the three host plant species 
revealed a shared class of compounds, including linear 
alkanes, alcohols, and aldehydes. However, variations 
existed among them, particularly in the proportion and 
presence or absence of specific alcohols and aldehydes. For 
instance, 1-hexadecanol, 1-hexacosanol, and hexacosanal 
were exclusively present in I. laurina, while 1-triacontanol 
acetate was found only in T. catappa (Table 1). The SIs of 
the cuticular compounds of the plants varied according to 

the pairs of compared species. Terminalia catappa with S. 
polyphylla showed the highest SI of up to 77%, followed 
by T. catappa with I. laurina, which exhibited a SI of up to 
65%, and I. laurina with S. polyphylla, which showed a SI 
of up to 62%. Senegalia polyphylla and I. laurina shared 20 
compounds, representing 69% and 91% of their respective 
cuticles. Senegalia polyphylla shared 15 compounds with 
T. catappa, representing 52% and 68.2% of their respective 
cuticles. Terminalia catappa shared 18 compounds with I. 
laurina, representing 60% and 62.06% of their respective 
cuticles. Although post hoc pairwise comparisons did not 
reveal a significant difference based on relative abundance 
or chemical composition (Table 2), the PCA revealed that 
the three species form separate groups, in which the first and 
the second principal component explained 30% and 13.77%, 
respectively. (Fig. 1). In terms of major compounds, S. poly-
phylla had the n-C29, 1-triacontanol and triacontanal; I. lau-
rina had the n-C29, Hexacosanol and n-C31, and T catappa 
had the n-C29 and n-C31.

Does the Chemical Composition of Caterpillars Change 
According to Their Food Sources? When comparing the 
compounds found in caterpillars reared on three different 
host plants, we found the following similarity indices: The 
cuticular profiles of caterpillars reared on T. catappa showed 
a SI of up to 82% with T. catappa, up to 74% with I. laurina, 
and up to 61% with S. polyphylla. The cuticular profiles of 
caterpillars reared on I. laurina showed a SI of up to 76% 
with I. laurina and T. catappa, and up to 60% with S. poly-
phylla. Finally, caterpillars reared on S. polyphylla exhibited 
a SI up to 65% with S. polyphylla, and up to 64% with T. 
catappa, and I. laurina. Moreover, certain compounds were 
exclusively found in groups of caterpillars reared on specific 
plant species. For example, 1-hexadecanol was found only in 
the cuticular profile of caterpillars reared on I. laurina, and 
this particular compound was also identified in the chemical 
profile of this plant. Similarly, 1-docosanol, identified in T. 
catappa, was also detected in caterpillars reared on this plant 
but was absent in those reared on S. polyphylla (Table 1). 
The qualitative similarity varied according to the host plant. 
Specifically, caterpillars shared 19 compounds with S. poly-
phylla, representing 70.37% and 86.36% of their respective 
cuticles. Caterpillars and I. laurina shared 23 compounds, 
representing 76.66% and 79.31% of their respective cuti-
cles, while caterpillars and T. catappa shared 17 compounds, 
representing 58.6% and 60.7% of their respective cuticles. 
However, there was a low degree of similarity in the relative 
abundance of compounds between caterpillars and their host 
plants. The post hoc pairwise comparisons revealed signifi-
cant differences in relative abundance and in the chemical 
composition among caterpillars reared on different plants 
(Table 2). However, most of the compounds were shared in 
the three groups and we found an overlap among caterpillars 
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in the PCA (Fig. 1). Specifically, caterpillar–T. catappa and 
caterpillar–I. laurina shared 27 compounds, representing 
93.1% and 90% of their respective cuticles. Caterpillar-T. 
catappa and caterpillar–S. polyphylla shared 26 compounds, 
representing 89.7% and 92% of their respective cuticles. Cat-
erpillar–I. laurina and caterpillar–S. polyphylla shared 25 
compounds, representing 83.3% and 92.6% of their respec-
tive cuticles. In general, all caterpillar groups had n-alkanes 
(C29, C31, and C33) as their major compounds and they 
also showed a few methylated compounds, alcohols, and 
aldehydes, these last two also present in all plants.

Does the Chemical Composition of Caterpillars Change 
According to Their Tending Ants? The cuticular profiles of 
caterpillars reared with C. crassus, or P. longicornis ants, 
as well as caterpillars reared without attendant ants, had a 
high SI (> 90%). Moreover, the cuticular profiles of all cat-
erpillar groups were qualitatively similar, with 24 shared 
compounds, representing 96% of their respective cuticles. 
Hence, we found an overlap among samples of caterpillars 
in the PCA (Fig. 1). The post hoc pairwise comparisons 
did not show differentiation based on chemical composition 
among caterpillars reared with different species of attendant 
ants (Table 2).

In contrast, the cuticular profiles of caterpillars and atten-
dant ants showed low similarity indexes and varied according 
to the attendant ant (SI < 30% for C. crassus and SI < 25% for 

P. longicornis). Caterpillars and C. crassus shared 14 com-
pounds, representing 54% and 50% of their respective cuti-
cles. Caterpillars and P. longicornis shared four compounds, 
representing 16% and 18.2% of their respective cuticles. The 
post hoc pairwise comparisons showed a significant differ-
entiation based on chemical composition between all groups 
of caterpillars and their respective attendant ants (Table 2). 
Moreover, the PCA revealed that ants and caterpillars form 
separate groups. In terms of major compounds, C. crassus 
had the n-C21, n-C30 and C33:1, and P. longicornis had the 
n-C29, 15-;13-;11-;9-MeC29, 15-;13-;11-MeC29 and 9.17-; 
9.19-diMeC29 (Table 1).

In general, caterpillars, host plants, and attendant ants 
shared the n-C27, n-C29, and n-C31 compounds (Fig. 3). 
Only caterpillars and plants showed alcohols and alde-
hydes in their chemical profiles (hexadecanol, octadecanol, 
eicosanol, octacosanal, docosanol, and triacontanal). The 
most significant differentiating compounds among the 
groups, according to SIMPER analysis, were the n-C33, 
n-C31 and, n-C29, which were major compounds in cat-
erpillars (Fig. 2; Table S2). Overall, we observed that all 
groups of caterpillars presented high similarity in compo-
sition and proportion of their cuticular compounds. Host 
plants and caterpillars had a higher number of compounds 
in common, with n-alkanes (n-C29 and n-C31) as their 
major compounds. Host plants also had various alcohols 
and aldehydes, which are also present in caterpillars, but in 
smaller proportions. The three plants exhibited qualitative 

Fig. 1  Principal component  analysis (PCA) of chemical compounds 
in S. calyce caterpillars (three groups reared on three plants species 
without ants and two groups reared with two ants species), the atten-

dant ants (C. crassus and P. longicornis) and the host plants (S. poly-
phylla, I. laurina, and T. catappa)
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similarities in their linear alkanes, with some variations 
in proportion. Additionally, there were qualitative dif-
ferences in the alcohols and aldehydes among the three 
species. Thus, the cuticular profile of caterpillars was 
not influenced by attendant ants. Ant species showed a 
greater diversity of compounds compared to caterpillars, 
including various branched alkanes, alkanes, and alkenes 
(Fig. 3).

Discussion

We found that the cuticular profile of caterpillars are more 
similar to those of the host plants rather than to their tend-
ing ants. Moreover, caterpillars reared on different species 
of plants, without ants or in close contact with ants also had 
similar cuticular composition and proportion, meaning that 
in an overall perspective caterpillar cuticular composition 
is weakly affected by exogenous factors. However, some of 

Fig. 2  Box plots of the relative abundance of the most important 
chemical compounds (n-C29, n-C31 and n-C33) that contributed 
to differentiating the groups according to SIMPER. Groups 1 and 2 

include attendant ants; 3–5 include host plants and 6–10 include cat-
erpillars exposed to different conditions. Different letters represent 
p < 0.05
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Fig. 3  Comparison of CHC profiles among host plant, myrmecophilous caterpillar, and attendant ants. All compound identities can be found in 
Table 1
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their compounds varied depending on the host plants where 
they were reared, which suggests that they acquired part of 
these compounds through their diet. Thus, S. calyce cater-
pillars have a chemical profile that it is slightly altered by 
their food. Consequently, our hypothesis that the caterpillar 
cuticular composition is influenced by their food source was 
partially corroborated. Even though the caterpillars are not 
chemically identical to their host plants, there is a higher 
similarity between caterpillar-plant when compared to cat-
erpillar-ant species. Given that some compounds, such as 
1-hectacontanol, are present in one of the host plants and in 
caterpillars reared on that plant, but not in the other groups 
of caterpillars, this may suggest that at least part of the cat-
erpillar chemical composition should derive from their food 
source. In this way, we suggest that the chemical composi-
tion of caterpillars is mainly genetically derived and slightly 
influenced by the environment. Acquiring compounds from 
host plants through diet and the usage of them when interact-
ing with ants stands out as a promising strategy and it has 
also been observed in other plant-herbivorous insect systems 
(e.g., Silveira et al. 2010; Lima et al. 2021, 2024).

The three plant species used to feed the caterpillars 
exhibit qualitative similarities in their linear alkanes, as 
well as in certain alcohols and aldehydes. This suggests 
that S. calyce females likely tend to lay eggs on plants with 
similar chemical profiles, a similar pattern was observed in 
lycaenids (Lima et al. 2021). There is evidence that alkanes 
and alcohols can serve as signals for host plant selection (Li 
and Ishikawa 2006; Barbero 2016; Bertea et al. 2020). In a 
recent study involving S. calyce, it was observed that but-
terflies sometimes mistakenly lay eggs directly on treehop-
pers because the treehoppers have a cuticular profile similar 
to that of the host plant (Lima et al. 2023). The compounds 
found on the surface of leaves have been described to play 
a role in the chemical defense of plants (aliphatic hydrocar-
bons, fatty and phenolic acids derivatives) (Martemyanov 
et al. 2015: Bertea et al. 2020). Hence, there is a possibil-
ity that an evolutionary arms race between caterpillars and 
plants has driven caterpillars to develop mechanisms coun-
tering the chemical defenses of plants. This may involve 
detoxification of compounds through enzymes or the seques-
tration of such compounds. Consequently, caterpillars may 
exhibit a preference for specific chemical compounds present 
in various host plants (Zu et al. 2020).

Through chemical analyses, we found that the chemical 
profile of caterpillars were not influenced by their attendant 
ants thus confirming our second hypothesis that S. calyce 
CHCs are not affected by the interactions that they estab-
lish with different ant species. The two ant species studied 
showed distinct chemical profiles, while the groups of S. cal-
yce caterpillars reared with different ant species or without 
ants had similar cuticular profiles composition and propor-
tion. This indicates that S. calyce caterpillars have cuticular 

profiles that are independent of their attendant ants, indi-
cating that they do not use chemical mimicry as a strategy 
when interacting with them. This finding is supported by the 
dissimilarity in chemical composition between caterpillars 
and ants, compared to the similarity between caterpillars 
and plants. Additionally, S. calyce caterpillars have faculta-
tive association with several species of ants, and they do not 
exploit ant nests (Callaghan 1986; Alves-Silva et al. 2018; 
Kaminski 2021). Previous studies demonstrating chemi-
cal mimicry between caterpillars and ants have typically 
involved obligate interactions with a few specific ant spe-
cies, where the CHCs of caterpillars closely resemble those 
of the ants (Henning 1983; Elmes et al. 1991, 2002; Dettner 
and Liepert 1994; Akino et al. 1999; Schönrogge et al. 2004; 
Hojo et al. 2009, 2014; Thomas et al. 2013; Witek et al. 
2013; Barbero 2016; Casacci et al. 2019). Chemical mimicry 
with attendant ants is an effective strategy for social parasitic 
caterpillars, as they typically inhabit ant nests and benefit 
from being perceived as members of the colony, allowing 
them to exploit valuable resources within the nest such as ant 
larvae or trophallaxis (Fiedler 1991; Barbero 2016; Casacci 
et al. 2019). We also ruled out the possibility of a chemical 
insignificance strategy in S. calyce caterpillars as in pre-
vious studies where caterpillars and pupae used chemical 
insignificance, their cuticular profile consisted of only a 
few hydrocarbons in very small proportions (Lohman et al. 
2006; Inui et al. 2015). In contrast, S. calyce caterpillars 
showed 27–30 cuticular compounds, with some of them in 
high proportions.

Thus, it seems that this species maintains its own chemi-
cal profile in a chemical conspicuousness strategy (sensu 
Lima et al. 2021). This strategy is the most likely since the 
chemical profiles of caterpillars exposed to various condi-
tions remained mainly unchanged, with all groups exhibit-
ing a high degree of similarity. Chemical conspicuousness 
becomes advantageous when interacting with attendant ants, 
increasing the likelihood that ants will associate the reward 
with specific cuticular profiles (Hojo et al. 2014). Studies 
conducted with Neotropical Lycaenidae species have dem-
onstrated that these species possess conspicuous chemical 
profiles (Lima et al. 2021). Additionally, there are studies 
showing that caterpillars or pupae of facultative lycaenid 
butterflies from other regions have unique chemical pro-
files recognized by ants, which helps maintain their attend-
ing behavior (Ômura et al. 2009, 2012; Hojo et al. 2014; 
Mizuno et al. 2018). However, to our knowledge, this is the 
first study to explore cuticular hydrocarbons (CHCs) and 
investigate chemical strategies in a facultative species of the 
Riodinidae family.

In this study, caterpillars and plants shared several com-
pounds when compared to ants. Notably, linear alkanes 
such as C29 and C31 are present in significant proportions 
across all groups, along with some alcohols and aldehydes. 
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Therefore, we cannot rule out the possibility that in cer-
tain instances, caterpillars may employ chemical camou-
flage. Moreover, caterpillars reared on one host plant spe-
cies exhibited a similarity exceeding 80%, which has been 
previously demonstrated as sufficient to serve as chemical 
camouflage strategy in other insect groups (Silveira et al. 
2010). Host plants play a crucial role in providing an effec-
tive background for herbivorous organisms, allowing them 
to avoid detection by visually or chemically resembling their 
surroundings. This strategy is observed in various organ-
isms that have close relationships with ants, enabling them 
to interact with ants without being attacked (von Beeren et 
al. 2012; Barbero 2016; Lima et al. 2024). Consequently, 
we propose that these caterpillars may employ a trade-off 
strategy between camouflage and informing their presence 
to ants, which could vary depending on the presence of 
predators or mutualist ants. Given the presence of numer-
ous non-attendant ant species that visit the host plants, many 
of which have extrafloral nectaries, it is highly likely that 
chemical camouflage has been selected as an efficient strat-
egy for S. calyce caterpillars to avoid attacks from different 
ants (Akino et al. 2004). On the other hand, informing their 
presence to attendant ants also is efficient for the caterpil-
lars. The complexity of CHCs profiles is well-known, and 
it is likely that each chemical trait serves a distinct function 
(Sprenger and Menzel 2020). There may even be conflicts 
or trade-offs among the various functions of the chemical 
profile (Steiger and Stökl 2014; Ingleby 2015). Camouflage 
might be the protagonist during encounters with non-atten-
dant ants, while directly informing their presence becomes 
more prominent with attendant ants, as it aims to induce ants 
to associate caterpillars’ chemical profile with the chemical 
reward, consequently securing ant protection (Hojo et al. 
2014).

We suggest that specific compounds such as some alde-
hydes present in both plants and caterpillars or methylated 
alkanes present in caterpillars, play a role in making the cat-
erpillars blend with the background or informing their pres-
ence to attendant ants respectively. For instance, in studies 
conducted on Lycaeides argyrognomon (Bergsträsser, 1779) 
(Lepidoptera: Lycaenidae), pupal cuticular lipids were found 
to contain various long-chain aliphatics aldehydes, includ-
ing 1-octacosanal and 1-triacontanal, which were found to 
suppress ant aggression (Mizuno et al. 2018). Interestingly, 
these two compounds were found in all groups of S. cal-
yce caterpillars and host plants, suggesting their potential 
importance in the interaction between S. calyce caterpillars 
and ants.

Studying tri-trophic relationships can present challenges 
when analyzing the results. For instance, in the PCA results, 
we observed a low percentage for PC1 and PC2. We sus-
pect that these low percentages values may be linked to the 
number of groups included in the analysis, comprising five 

caterpillars, three plants, and two ant groups. The low exist-
ent variation within each main group (e.g. ant, caterpillar, 
and plant) may have contributed to an overall lower dissimi-
larity percentage when comparing all the groups at once. 
Thus, to elucidate our findings, we employed more than one 
type of analysis. Using multiple approaches to analyze the 
data stands out as a useful strategy when working with com-
plex systems.

Ants exert strong selection pressure on myrmecophilous 
caterpillars, leading to the development of multimodal adap-
tations (Pierce and Dankowicz 2022; Marquis and Koptur 
2022). These adaptations include morphophysiological, 
behavioral, chemical, and acoustic traits that caterpillars 
utilize to deceive, attract, alarm, or appease attending ants 
(Fiedler et al. 1996; Casacci et al. 2019). Synargis calyce 
caterpillars possess functional TNOs, which have been 
shown to contribute to the association with ants in other 
riodinids (DeVries 1988; Kaminski and Carvalho-Filho 
2012; Kaminski et al. 2013; Mota et al. 2020; Kaminski et 
al. 2021). To further enhance our understanding of the mul-
timodal signaling in myrmecophile systems, future studies 
should conduct behavioral assays to experimentally confirm 
the chemical strategy employed and investigate the products 
and effects of caterpillars’ ant-organs on attending ants, as 
well as compare them with the products of extrafloral nectar-
ies from plants. This research will contribute to unraveling 
the specific role of these chemical strategies and organs in 
the complex interactions between myrmecophilous caterpil-
lars and ants.
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