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(Gallagher et al. 2017; Moore 2018; Sabal et al. 2021). Con-
sequently, accurate assessments of the immediacy of preda-
tion risk in space and time are crucial to migratory success.

The ability to perceive sensory cues associated with 
predation risk may be innate or acquired. Innate predator 
recognition is unlearnt and exhibited in a variety of prey 
organisms when they share an eco-evolutionary history 
with the predator, or a closely related species (Carthey 
and Blumstein 2018). For example, the Seychelles warbler 
(Acrocephalus sechellensis) will respond to decoy predators 
whether born in populations isolated from predators or not 
(Veen et al. 2000), naïve giant pandas (Ailuropoda melano-
leuca) display defense behaviors when exposed to predator 
urine (Du et al. 2012), and newly hatched Atlantic salmon 
(Salmo salar) show innate antipredator behaviors to pisciv-
orous pike (Esox lucius) (Hawkins et al. 2004). Acquired 
predator recognition typically involves learning (Ferrari 
et al. 2007). Examples include blue tits (Cyanistes caeru-
leus) and great tits (Parus major) that acquire recognition of 

Introduction

Animals perceive and react to predation risk, and they bal-
ance the costs of their responses against other needs, includ-
ing energy acquisition and reproduction (Ferrari et al. 2009; 
Lima and Bednekoff 1999). Migratory species face a par-
ticular challenge, as movement between distant foraging 
and reproductive habitats requires individuals to navigate 
through complex risk landscapes where the location and 
identity of predators are uncertain, and the environmental 
cues that indicate safety may be misaligned with actual risk 
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Abstract
A diversity of aquatic organisms manage predation risk by avoiding waters activated with conspecific alarm cues, a 
chemical mixture released from injuries. The sea lamprey (Petromyzon marinus) is a nocturnal migratory species that 
relies on its alarm cue to navigate around areas of predation risk when moving through river channels. Identification of 
the cue’s chemistry would allow managers to harness this innate behavioral response to guide migrating sea lamprey to 
traps (invasive population in the Laurentian Great Lakes) or to fish passage devices where dams block migrations in their 
native range. We pursued isolation of the sea lamprey alarm cue through behaviorally guided fractionation, fractionating 
the alarm cue into water-soluble and chloroform-soluble fractions, each of which elicited a substantial avoidance response. 
Recombining the two fractions restored full reactivity, suggesting the alarm cue mixture contains components that exhibit 
high solubility in water (e.g., nitrogenous compounds), chloroform (e.g., lipids), or perhaps materials that dissolve readily 
in either solvent. We further screened 13 individual compounds or pure isolates and 6 sub-fractions from the water-soluble 
fraction and found one of the pure isolates, isoleucine, evoked an avoidance response on its own, but not consistently when 
found in other mixtures. In a third experiment, we observed no behavioral response after recombining 32 compounds iso-
lated and identified from the water-soluble fraction. These results confirm other suggestions that the process of elucidating 
alarm cue constituents is challenging. However, we suggest the pursuit is worthwhile given the strong evidence for the 
utility of alarm cues for use in the conservation and management of fishes and other aquatic organisms.
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acoustic predator cues through socially mediated learning 
(Keen et al. 2020), and zebrafish (Danio rerio) that can learn 
to label novel odors as risky when paired with known fear 
cues (Lucon-Xiccato et al. 2020).

Among aquatic organisms, these so-called “fear” cues 
include damage-released alarm cues. Alarm cues are public 
information; substances released from the tissues of injured 
conspecifics that reliably alert receivers to the presence of 
an active predator (Chivers and Smith 1998; Smith 1992; 
Wisenden et al. 2004). Exposure to an alarm cue typically 
elicits antipredator behaviors including increased shelter 
use, decreased activity, and area avoidance (Lawrence and 
Smith 1989; Ferrari et al. 2010; Wisenden 2015). Evidence 
suggests alarm cues unite innate and acquired risk recogni-
tion. Detection of the alarm cue is innate (Lucon-Xiccato 
et al. 2020; Atherton and McCormick 2015; Poisson et 
al. 2017), and patterns in the dispersion of the cue in the 
environment reveal locations of risk for conspecifics and 
closely related species who may share similar predators 
(Døving and Lastein 2009; Ferrari et al. 2010; Hume and 
Wagner 2018). When alarm cues are presented with the odor 
of an unfamiliar predator, the prey may learn to associate 
predator odor with danger and avoid it in the future (Brown 
2003; Ferrari 2005; Kelley and Magurran 2003). Alarm cue 
associated learning is important in the life history of set-
tling coral reef fish, by facilitating predator detection during 
transitional life stages (Holmes & Mccormick, 2010), and 
pairing alarm cue odors with predator odors has been used 
to condition hatchery-reared fish to promote post-release 
survival (Griffin 2004; Hawkins et al. 2008; Kopack et al. 
2016; Sloychuk et al. 2016). This duality makes alarm cues 
particularly useful in mitigating uncertain risk landscapes 
during migration because alarm cue is consistently associ-
ated with a direct risk of injury to conspecifics or closely 
related species.

The sea lamprey (Petromyzon marinus) is a semelparous 
ectoparasitic fish that relies extensively on olfaction to com-
plete its terminal spawning migration from the open waters 
of oceans or large lakes into streams. Migrants are guided 
into streams by the odor of conspecific larvae that labels 
the habitat as suitable for spawning and offspring survival 
(Sorensen et al. 2004; Sorensen and Vrieze 2003; Vrieze et 
al. 2011; Wagner et al. 2006, 2009). Transition from deep 
open waters into narrow shallow streams exposes migrants 
to a suite of difficult to detect predators that patrol the shore-
lines (Imre et al. 2014; Scott and Crossman 1998; Boulêtreau 
et al. 2020). Because this migration is nocturnal, and sea 
lamprey move solitarily (Almeida et al. 2002; Binder and 
McDonald 2007; McCann et al. 2018), they must rely on 
chemical public information to assess predation risk. Con-
sequently, it is unsurprising that exposure to their alarm cue 
elicits immediate antipredator responses in rivers, including 

movement away from the shoreline activated with the cue 
(Hume et al. 2015; Imre et al. 2010; Wagner et al. 2011) 
and acceleration to pass through the risky area more quickly 
(Luhring et al. 2016).

Exploiting the sea lamprey’s behavioral responses to 
the alarm cue is driving the development of innovative 
approaches to control this species in the Laurentian Great 
Lakes where they are invasive, that also could be used to 
conserve them in locations where they are native (Imre et 
al. 2010; Wagner et al. 2022). For example, in the Great 
Lakes, traps are used to capture sea lamprey, and encoun-
ter rates with traps determine their effectiveness (Bravener 
& Mclaughlin, 2013; Miehls et al. 2020). Traps cannot be 
effectively baited, as sea lampreys cease feeding prior to 
the spawning migration, and attempts to bait with attractant 
pheromones have proven insufficient (Johnson, Siefkes, et 
al., 2015; Johnson et al. 2013; Johnson, Tix, et al., 2015). 
Application of the alarm cue to the opposite side of a river 
channel substantially increases encounter rates with traps 
placed near dams and in open river channels (Hume et al. 
2015; Hume, Luhring, & Wagner, 2020). Within their native 
range, migrating sea lampreys are blocked from spawning 
habitat by dams (Hogg et al. 2013; Kynard and Horgan 
2019; Lasne et al. 2015). Here too, conservation outcomes 
could be improved by using the alarm cue to guide migrants 
toward fish passage devices (Byford et al. 2016; Hume et al. 
2020; Pereira et al. 2017). Consequently, there is substan-
tial interest in isolating and identifying the chemical con-
stituents of the odor to support cost-effective synthesis of 
the large quantities needed for use of a repellent to achieve 
conservation goals, and to meet Federal requirements for 
pesticide registration (Ferguson and Gray 1989).

Describing the chemical messengers that constitute fish 
alarm cues is a critical gap in our understanding of alarm 
cues and in being able to employ these for conservation or 
invasive species management (Døving and Lastein 2009; 
Ferrari et al. 2010; Wisenden 2000). Yet, few efforts have 
sought to identify compounds in fish alarm cues, and few 
commonalities in the compounds that may constitute the 
odors have arisen. For example, hypoxanthine-3-N-oxide 
(H3NO) has been hypothesized to be an active molecule in 
alarm cues from teleost fishes (Pfeiffer et al. 1984). Syn-
thesized H3NO elicits consistent alarm responses in zebraf-
ish (Parra et al. 2009), fathead minnows (Brown, Adrian, & 
Shih, 2001), and black tetra (Pfeiffer et al. 1984), but exhib-
ited conflicting responses in salmonids and cichlids (Brown 
et al. 2003). This led to the suggestion that the nitrogen 
oxide functional group is important in initiating antipreda-
tor behavior, but is anchored to purine rings that differ in 
structure across taxa, allowing for species specificity in the 
cue (Brown et al. 2003). Another compound, chondroitin 
sulfate, elicits alarm responses in zebrafish (Mathuru et al. 
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2012) and fathead minnows (Faulkner et al. 2017), but the 
activity is less than the cue produced by injured tissue from 
the same species, suggesting the alarm cue is a mixture. 
One common pattern that has arisen is the response to alarm 
cues obtained from closely related taxa, where the magni-
tude of the alarm response declines with increasing phylo-
genetic distance between the cue donor and the responding 
species (Mirza and Chivers 2001; Mitchell, Cowman, & 
Mccormick, 2012; Schoeppner and Relyea 2009; Mathis 
and Smith 1993). In previous studies, sea lamprey exhibit 
the phylogenetic relatedness pattern when responding to 
the cues from other lampreys, but did not respond to alarm 
cues extracted from bluegill sunfish (Lepomis macrochirus) 
or white sucker (Catastomus commersoni), suggesting little 
or no overlap between lampreys of the Petromyzontiformes 
and the distantly related clades in the Teleostei (Bals and 
Wagner 2012; Hume and Wagner 2018).

The most common method used to isolate olfactory cues 
in aquatic organisms is behaviorally guided fractionation, a 
stepwise iterative process that partitions an odor into frac-
tions, typically by molecular weight, and uses a behavioral 
bioassay to identify the reactive fractions (Scott et al. 2018). 
This process has been successful in the identification of key 
components used in chemical communication of aquatic 
and marine systems, including chemical defenses in com-
mon seaweed (Lobophora variegata; Kubanek et al. 2003) 
and reef sponges (Erylus formosus; Kubanek et al. 2000), 
and sex pheromones in a variety of species (Algranati and 
Perlmutter 1981; Yambe et al. 2006; Zielinski et al. 2004) 
including sea lamprey (Li et al. 2002; Scott et al. 2018). 
The chemistry of alarm cues has proven more enigmatic, 
with some species exhibiting reactivity to individual frac-
tions, and others requiring all fractions from a crude odor 
extract in combination to elicit any antipredator response 
(Mirza et al. 2013). The aim of this study was to pursue the 
chemical constituents of the sea lamprey alarm cue using 
behaviorally guided fractionation. We examined the reactiv-
ity to two major subfractions of the full alarm cue extract 
(chloroform- and water-soluble) and examined responses to 
32 compounds that have been previously identified from the 
highly reactive water-soluble fraction (Dissanayake et al. 
2016, 2019), alone and in combination, in a standard labo-
ratory assay.

Methods and Materials

Study Design. To begin isolation of the alarm cue, we frac-
tionated crude skin extract and tested the activity of indi-
vidual sub-fractions and isolated compounds in a behavioral 
assay through a series of three experiments. The assay 
involves independent replicates, each consisting of a group 

of ten unique migratory sea lamprey used in only a single 
trial in a large raceway with a standard two-choice test 
where an odor is pumped into one side of flow and animals 
are free move throughout the arena. Avoidance or prefer-
ence is ascertained from the distribution of fish on the two 
sides of the raceway (with or without the test odor), and the 
side receiving the odor (left or right) is alternated across 
replicates. A fish is used only once in a single replicate. 
The first experiment evaluated the sea lamprey’s behav-
ioral response to a solvent control (N = 20), crude alarm 
cue extracts derived from the whole body (N = 20) or the 
skin (N = 20), a water-soluble (WS) fraction derived from 
the skin alarm cue (N = 20), a chloroform-soluble (CS) frac-
tion derived from the skin extract (N = 20), and the WS and 
CS extracts combined (N = 20). Prior reports have indicated 
that the WS fraction from skin exhibited full behavioral 
reactivity when compared to whole-body extracts, with 
indications of partial and highly variable reactivity to the 
CS fraction (Dissanayake et al. 2019). The second experi-
ment screened (sample sizes listed below) a series of six 
sub-fractions, 13 isolated compounds, and one compound 
mixture derived from the WS fraction to ascertain whether 
the behavioral reactivity was contained within one or a few 
sub-fractions. Another compound, chondroitin-sulfate, was 
not isolated from the WS extract, but was also screened, as 
previous studies found it played a role in the teleost fish 
alarm response (Farnsley et al. 2016; Faulkner et al. 2017; 
Mathuru et al. 2012). Because screening failed to identify a 
clear set of highly reactive candidate sub-fractions, the third 
experiment sought to determine whether partial or full reac-
tivity was contained in the set of individual compounds that 
had been isolated and identified from these sub-fractions to 
date. We created a mixture of the 32 identified compounds 
that represented 98% (dry weight) of the material contained 
in the WS fraction and compared the behavioral reactivity 
of the mixture (N = 20) to the crude WS extract (N = 20) and 
solvent (N = 20).

Odor Collection.
Whole body extract- Alarm cue was obtained from 

Soxhlet extraction of sea lamprey carcasses that naturally 
senesced in captivity per the method of Wagner et al. 2011. 
Odor extracted from recently deceased animals elicit alarm 
responses equivalent to those from live donors (Bals and 
Wagner 2012). In short, odor was derived through Soxhlet 
extraction from nine male and female sea lamprey weigh-
ing 1,496.5 g total. All carcasses were kept at -20° C before 
being used in extractions. Soxhlet extractors (2.08 m, Ace 
Glass Inc., Vineland, New Jersey, USA) were mounted to 
six-bulb water-cooled Allihn condensers. Solvent reservoirs 
(12  L capacity) were loaded with 50:50 solution of 200 
proof ethanol and deionized water and heated to 75–80° C 
with a hemispherical mantle for a minimum of three cycles 
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and held in 1385 L round tanks that received a continuous 
flow of Lake Huron water (100% exchange every 4 h) with 
supplemental aeration until use. Fish were held under natu-
ral day-night light cycles. Only males were used in the study 
as female lamprey decrease their reactivity to alarm cue dur-
ing sexual maturation, whereas males do not (Bals and Wag-
ner 2012). Prior studies with sexually immature migrants 
indicated no difference in response to alarm cue between 
sexes (Bals and Wagner 2012). All animal procedures were 
approved by the Michigan State University Institutional 
Animal Care and Use Committee via permits AUF 02/16-
015-00 and PROTO201900060.

Behavioral Assay. Experimental trials were conducted in 
two laboratory raceways at HBBS (Fig. 1). Each raceway 
measured 1.44 m x 12.2 m, with a 3.1 m long reach isolated 
with block nets to form the experimental arena. The experi-
mental arenas were lined with white plastic paneling (1/16in 
PLAS-TEX, Parkland Plastics, Inc., Middlebury, Indiana, 
USA) to increase visual contrast between lampreys and 
their background. Experiments took place in full darkness 
and were recorded with overhead infrared sensitive video 
cameras (Axis Communications, Q1604 Network Camera), 
each illuminated by an array of six infrared lights (Wildlife 
Engineering; Model IRLamp6). Water flowed into flumes 
from a head tank supplied directly from Lake Huron. Water 
temperature ranged from 6 to 18 °C over the course of trials, 
in accordance with seasonal changes in lake temperature. 
Discharge was maintained at 0.02–0.03 m3 sec-1 in each 
channel.

Because the sea lamprey is a nocturnal migrant, all tri-
als were conducted between 18:00 and 02:00 h during the 
spring migratory season. Two hours before experimen-
tal trials began subjects were visually inspected to ensure 
immature status and transferred to holding baskets with 
ten animals per basket, constituting trial groups. Each trial 
group represented a single independent sample, and each 
fish was only used once in a single trial. As such, each 
independent trial group represented a single replicate, with 
1,200 fish total used for experiment 1, 1,800 fish total used 
for experiment 2, and 600 fish used for experiment 3. Each 
trial began by carefully releasing the ten animals from their 

(approximately six hours), creating ~ 10.2  L of alarm cue 
extract. Extractions were cooled overnight before being 
decanted and filtered through muslin and were kept in a 
-20 °C freezer until use in behavioral assays.

Crude skin extract, fractionation, and identification 
of individual compounds- Experimental details of collec-
tion of alarm cue from sea lamprey skin, solvent-solvent 
partitioning of aqueous ethanolic skin extract in to chloro-
form-soluble and water-soluble fractions, and MPLC frac-
tionation (normal and reverse phase) of chloroform-soluble 
and water-soluble fractions are fully described in Dissanay-
ake et al. (2016, 2019, 2021). Purification of the MPLC sub-
fractions of chloroform-soluble fraction was accomplished 
by preparative thin layer chromatography (Dissanayake 
et al. 2016). Purification of the MPLC subfractions of the 
water-soluble fraction was carried out by preparative HPLC 
(Dissanayake et al. 2019, 2021), respectively. The chemical 
identity of all pure isolates from the chloroform-soluble and 
water-soluble fractions was determined by NMR (1D and 
2D) and HRESIMS experiments as described in Dissanay-
ake et al. (2016, 2019, 2021). Chondroitin sulfate used in 
experiment 2 screening was sourced from shark cartilage 
(Sigma-Aldrich, CAS-No. 9082-07-9).

Mixture of known compounds in the water-soluble 
fraction- We mixed the 32 previously identified compounds 
from the water-soluble fraction (Dissanayake et al. 2019) at 
observed ratios and concentrations found in the water-solu-
ble fraction, based on mass (Table 1). Each compound (dry 
material) was weighed and then dissolved in 10 mL stock 
solvent solution (50:50 DI H2O: EtOH). Solutions were 
combined and brought up to the final volume with solvent. 
The mixture was refrigerated until use, within 48 h.

Test Subjects. All sea lamprey used in experiments were 
migratory sub-adults obtained via the U.S. Fish and Wild-
life Service’s trapping operations in the Cheboygan and 
Ocqueoc Rivers (tributaries to Lake Huron in Michigan, 
USA), and the St. Mary’s River connecting channel between 
Lakes Superior and Huron. Actively migrating sea lamprey 
were collected in large traps arrayed near dams and trans-
ported to the Hammond Bay Biological Station (HBBS) in 
tanks receiving continuous aeration. Fish were sorted by sex 

Table 1  List of the identified compounds in the water-soluble fraction and the percent of the whole fraction each compound constitutes. The water-
soluble fraction is 48.70% of the entire crude skin extract and the chloroform-soluble fraction is 51.30%
Compound % Compound % Compound % Compound %
Creatine 36.95% Histidine 0.18% Serine 0.02% Putrescine 0.04%
Arginine 1.92% Tryptophan 0.53% Aspartic acid 0.19% Spermine 0.02%
Valine 0.24% Threonine 1.25% Inosine 0.22% 3-Phenyllactic acid 0.10%
Leucine 0.51% Asparagine 1.17% Adenine 0.17% Pyruvic acid 0.03%
Tyrosine 0.08% Methionine 0.41% Xanthine 0.36% β-Hydroxybutyric acid 0.06%
Isoleucine 0.17% Glycine 0.24% Hypoxanthine 0.85% α-Ketobutyric acid 0.07%
Phenylalanine 1.29% Cysteine 0.84% Adenosine 0.48% α-Ketoisovaleric acid 0.06%
Glutamic acid 0.09% Proline 0.07% Petromyzonacil 0.04% α-Ketovaleric acid 0.01%
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total length (TL, cm) and wet weight (g) were recorded for 
each individual.

Analyses.
Video analysis- Behaviors were quantified for each trial, 

representing independent samples, during the final 10 min 
of the observation period (post-stimulus period) to ensure 
the odor reached the end of the raceway and allow for the 
distribution of animals to stabilize after the addition of the 
odor (approximately 5 min per Wagner et al. 2011). Each 
video recording was examined by pausing each 30s and tal-
lying the number of fish on each side of the channel (stimu-
lus side or non-stimulus side), based on position of the head, 
as an indication of channel preference. Distribution (propor-
tion on the stimulus side) was calculated as follows:

	
Σ (numberoffishonthestimulusside)

Σ (numberoffishonthestimulusside) +Σ(numberoffishonthenon− stimulusside)

The distribution for each treatment was computed by taking 
the mean of all trials in each treatment group. A proportion 
of fish significantly greater than 50% on the stimulus side 
indicated attraction, a proportion not significantly different 
from 50% indicated no preference, and a proportion signifi-
cantly less than 50% indicated avoidance.

holding basket into the middle of the experimental arena. 
Trials lasted 30 min including a 10 min acclimation period 
and a 20 min observation period, during which test odors 
were introduced. During a trial, test odors were introduced 
into one-half of the experimental arena (left or right side), 
with the side receiving the odor alternating on subsequent 
replicates. All odors were pumped into the channels from 
a beaker at the rate necessary to achieve a 1 000 000:2 DI 
water:odor extract dilution. To achieve this dilution, 88mL 
of odor extract was placed in a beaker and brought up to a 
total 524mL odor solution by adding 436mL of DI water 
(calculations of odor extract dilutions were done based on 
activated channel width, depth, and velocity). The odor 
solution was then transferred to a 1 L Nalgene bottle and 
continuously stirred with a 2 cm magnetic stir bar to ensure 
a homogenous mixture. Odors were pumped into the system 
at a fixed rate of 20mL min-1 with peristaltic pumps (Mas-
terFlex model 7533-20) through PVC tubing. A separate set 
of tubing was used for each odor or odorant to ensure no 
cross contamination occurred. Visual rhodamine dye tests 
were conducted to confirm the odor plume was confined to 
the target half of the experimental arena. At the conclusion 
of each trial, subjects were removed from the arenas, and 

Fig. 1  Schematic of laboratory raceway. Fish were introduced into 
middle of either south (S1 and S2) or north (N1 and N2) raceways 
at beginning of trial. Odor was introduced via one peristaltic pump 

during the “stimulus” period of the trial, and pump sides were switched 
between each trial to account for side bias
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means comparisons of each treatment. Here, the mean of 
the mixture of the identified compounds from the water-
soluble fraction was compared to the whole-body alarm cue 
extract, the water-soluble fraction, and the solvent control to 
determine whether the alarm cue was contained within these 
identified components.

Results

Experiment 1: Comparison of Water- and Chloroform- 
Soluble Fractions. Model results (ANOVA, F5,114 = 12.76, 
p < 0.001) showed clear evidence that the type of odor 
introduced into the raceway significantly influenced the 
sea lamprey’s use of space. Both alarm cue extracts (skin, 
whole-body) showed significant avoidance when compared 
to the solvent control (Tukey HSD, all solvent comparisons 
p < 0.05; Fig.  2). The response to the whole-body extract 
was not significantly different from that of the crude skin 
extract (Tukey HSD, p = 0.99; Fig.  2). Avoidance of the 
water-soluble fraction was 33% less than the whole-body 
extract (Tukey HSD, p < 0.01; Figs. 2) and 28% lower than 
the crude skin extract (Tukey HSD, p < 0.05; Fig. 2), and 
was not significantly different from the chloroform-soluble 
fraction (Tukey HSD, p = 0.98; Fig.  2). Avoidance of the 
chloroform-soluble fraction was not significantly different 

Statistical analysis- All analyses were conducted in R 
(Version 1.4.1103). A one-way ANOVA was performed for 
each experiment with the response variable as proportion 
of animals on the stimulus side and stimulus (odor) type as 
fixed effect. In experiment 1, data were transformed using 
log transformations and normality was confirmed with a 
Shapiro-Wilk’s test (α = 0.05). Tukey’s Honestly Significant 
Difference (HSD) (α = 0.05) was completed as a post-hoc 
means comparisons for each treatment. The mean propor-
tion of fish on the stimulus side for the water-soluble and 
chloroform-soluble fractions were compared to the whole 
body and crude skin alarm cue extracts, and the solvent con-
trol, to determine whether the alarm cue was partially, com-
pletely, or not significantly contained in either fraction. In 
experiment 2, data were transformed with an arcsine (square 
root) transformation, and normality was confirmed with a 
Shapiro-Wilk’s test (α = 0.05). The means of a whole-body 
extract treatment, solvent treatment, 14 individual com-
pounds, one mixture of individual compounds, and 6 sub-
fractions (Table 2) were compared to a null hypothesis of 
50:50 proportion of fish on the stimulus side with separate 
paired t-tests for each odor (two-tailed, α = 0.05) to screen 
for any attractant or repulsive response. In experiment 3, 
data were log-transformed and normality was confirmed 
with Shapiro-Wilk’s test (α = 0.05). Tukey’s Honestly Sig-
nificant Difference (HSD) (α = 0.05) was used for post-hoc 

Treatment P-value Mean N
Solvent 0.725 0.517 20
Whole Body Alarm Cue 3.6e-07 *** 0.323 37
Arginine 0.417 0.408 5
Valine 0.731 0.537 5
Isoleucine 0.036 * 0.371 10
Leucine 0.456 0.582 5
Hypoxanthine 0.062 0.381 10
Tyrosine 0.222 0.441 10
Phenylalanine 0.785 0.431 5
Inosine 0.121 0.582 5
Tryptophan 0.090 0.651 5
Glutamic acid 0.374 0.610 5
Histidine 0.528 0.465 5
Creatine 0.933 0.483 5
Isoleucine + Tyrosine + Hypoxanthine 0.886 0.487 5
Pure Compound 1 (Petromyzonicil) 0.700 0.46 5
Chondroitin Sulfate 0.351 0.578 5
Subfraction SL-3 (Creatine + Arginine) 0.336 0.546 10
Subfraction SL-4 
(Creatine + Arginine + Valine + Leucine + Isoleucine)

0.034* 0.319 5

Subfraction SL-5 (Hypoxanthine + Inosine) 0.333 0.439 10
Subfraction SL-6 (Adenine + Tyrosine + Xanthine) 0.869 0.491 10
Subfraction SL-7 (Histidine + Phenylalanine + Glutamic 
Acid + Tryptophan + Threonine)

0.860 0.514 10

Subfraction SL-8 
(Asparagine + Methionine + Cysteine + Adenosine + Glycine)

0.430 0.566 5

Table 2  List of individual 
compounds and subfractions 
tested in screenings of individual 
compounds and subfractions. 
P-values are derived from one-
way two-sided T-tests comparing 
proportion of sea lamprey on the 
stimulus side after introduction 
of odorant to a null-hypothesis of 
50:50 proportion of sea lamprey 
on the stimulus side (*p < 0.05; 
**p < 0.01; ***p < 0.001)
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avoidance response (t9 = -2.13, p = 0.06, Table 2). Similarly, 
only one of the six screened subfractions, SL-4, elicited 
avoidance (t4 = -3.15, p = 0.03, Table 2), and contained cre-
atine, arginine, valine, and isoleucine. Other than isoleucine, 
none of these compounds showed an avoidance response 
when tested alone (creatine, t4 = -0.09, p = 0.93; arginine, t4 
= -0.90, p = 0.42; valine, t4 = 0.37, p = 0.73; Table 2). Addi-
tionally, a mixture of isoleucine, tyrosine, and hypoxanthine 
(t4 = -0.15, p = 0.89, Table 2) showed no evidence of behav-
ioral reactivity. Chondroitin-sulfate also showed no evi-
dence of behavioral reactivity (t4 = 1.06, p = 0.35, Table 2).

Experiment 3: Testing the Mixture of Identified Com-
pounds from the Water-Soluble Fraction. Odorant type 
significantly influenced sea lamprey avoidance behavior 
(ANOVA, F2,58 = 8.99, p < 0.001).

Here, a mixture of the 32 identified compounds from the 
water-soluble fraction exhibited no avoidance response, 
indicated by no significant difference in response when com-
pared to the negative solvent control (Tukey HSD, p = 0.59; 
Fig. 3), and a significantly lower avoidance response com-
pared to the water-soluble fraction (Tukey HSD, p < 0.001; 
Fig. 3).

from the whole-body extract (Tukey HSD, p = 0.05; Fig. 2), 
the crude skin extract (Tukey HSD, p = 0.18; Fig. 2), or the 
water-soluble fraction (Tukey HSD, p = 0.98; Fig. 2). The 
behavioral response to the water-soluble fraction appeared 
more consistent (variance = 0.006; Fig. 2) than the response 
to the chloroform-soluble fraction (variance = 0.02; Fig. 2). 
Avoidance of a mixture of the water-soluble and chloro-
form-soluble fractions was not significantly different than 
observed for the whole-body extract (Tukey HSD, p = 0.99; 
Fig.  2) or the crude skin extract (Tukey HSD, p = 0.99; 
Fig. 2).

Experiment 2: Screening of Sub-Fractions and Com-
pounds in the Water-Soluble Fraction. Odor introduced into 
the channel significantly influenced sea lamprey behavior 
in the screenings of individual compounds and subfrac-
tions (ANOVA, F22,173 = 2.12, p < 0.01). As predicted, the 
observed response to the solvent control was not signifi-
cantly different from the null expectation of a 50:50 distribu-
tion (t19 = 0.36, p = 0.73, Table 2), and subjects significantly 
avoided the whole-body alarm cue (t36 = -6.21, p < 0.001, 
Table 2). Only one of the 13 individual compounds screened 
from the water-soluble fraction elicited significant avoid-
ance, isoleucine (t9 = -2.47, p = 0.04, Table 2). Another com-
pound, hypoxanthine, exhibited a marginally non-significant 

Fig. 2  Boxplots representing the proportion of sea lamprey on the 
stimulus side after the addition of odorants. The middle quartile of 
boxes represents treatment median, and upper and lower quartiles are 
the 75th and 25th percentile of the range, respectively. Upper and lower 
whiskers represent the minimum and maximum spread of the data. 

Violin plots demonstrate the frequency of proportion values for each 
treatment. WS = water-soluble and CS = chloroform soluble. Dashed 
line at 0.50 represents the null hypothesis of a true neutral response to 
introduced stimulus. Treatments with different letters are significantly 
different from one another based on Tukey HSD (α = 0.05). N = 20 for 
each bar
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Consistent with previous reports (Byford et al. 2016; 
Hume et al. 2015; Hume and Wagner 2018; Imre et al. 2014, 
2016; Luhring et al. 2016; Wagner et al. 2011, 2016), we 
observed a predator avoidance response to extracts from sea 
lamprey skin tissue that is consistent with the hypothesis 
that certain components of the cue exhibit substantial water 
solubility and are nonvolatile. Specifically, the water-solu-
ble fraction of Soxhlet-extracted skin invoked 72% of the 
avoidance response observed from the crude extract.

Sea lamprey did not exhibit consistent avoidance 
responses to the 13 individual compounds, one compound 
mixture, or six sub-fractions from the water-soluble fraction 
subset in the screening experiment (Experiment 2, Table 2). 
While isoleucine exhibited an avoidance response on its 
own, other treatments where it was mixed with other com-
pounds (namely tyrosine and hypoxanthine), exhibited no 
avoidance response (Table 2). One possibility is that tyro-
sine or hypoxanthine could act as an antagonist for isoleu-
cine. However, it has been shown that leucine and valine 
act antagonistically with isoleucine (amino acids found in 
the avoidant SL-4 fraction), whereas tyrosine (found in the 
neutral mixture of isoleucine, tyrosine, and hypoxanthine) 
does not (Kajikawa et al. 2005). It is also possible that the 
compounds were run at a sample size too small to accurately 
detect a significant response. Thus, none of the compounds 
that were evaluated was sufficient on its own to elicit consis-
tent predator avoidance across all included treatments, but 
further investigation on the role of isoleucine at higher repli-
cation is needed to understand if it elicits a robust avoidance 
response.

Discussion

Recent research has revealed several potential uses for the 
sea lamprey alarm cue as a species-specific repellent that 
can aid in the management of both invasive and threatened 
populations. We report the behavioral responses of migra-
tory sea lamprey to two major odor fractions derived from 
Soxhlet extraction of the skin; a tissue known to contain the 
animal’s alarm cue. We found that both the water-soluble 
and chloroform-soluble fractions elicited substantial avoid-
ance responses, with the water-soluble fraction exhibiting 
a significantly lower avoidance response than the crude 
skin extract and the chloroform-soluble fraction exhibiting 
an avoidance response no different than either the water-
soluble or the crude skin. When the two fractions were 
recombined, the full response was restored. There were six 
sub-fractions derived from the water-soluble fraction, from 
which 32 compounds were isolated and identified, repre-
senting 98% of the dry mass of extracted material. Only 
one individual compound, isoleucine, evoked an avoidance 
response during initial screening; however, this was not 
consistent across all treatments containing the compound. 
Finally, to test for synergistic effects, we examined the 
behavioral response of sea lamprey to a mixture of the 32 
identified compounds combined at the ratios and quantities 
observed in the water-soluble fraction. The mixture failed 
to evoke an alarm response. Together, these results indicate 
that the active components of the sea lamprey alarm cue are 
contained in two chemically dissimilar fractions from skin 
but were not fully contained in the mixture of compounds 
identified to date.

Fig. 3  Boxplots representing the 
proportion of sea lamprey on the 
stimulus side after the addition 
of odorants. The middle quartile 
of boxes represent treatment 
median, and upper and lower 
quartiles are the 75th and 25th 
percentile of the range, respec-
tively. Upper and lower whiskers 
represent the minimum and 
maximum spread of the data. 
Violin plots demonstrate the 
frequency of proportion values 
for each treatment. Dashed line 
is null hypothesis of 50% of 
animals on the stimulus side 
after the introduction of the odor. 
Treatments with different letters 
are significantly different from 
one another based on Tukey HSD 
(α = 0.05). N = 20 for each bar
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acids, with the lateral bulb responding solely to amino acids 
and the dorsal and medial regions responding dually to 
amino acids and steroids, noting that these regions do not 
act redundantly but rather react to different types of infor-
mation. Amino acids are associated with feeding behavior 
in sea lamprey (Kleerekoper and Mogenson, 1963). The 
concentration of combined amino acids from the water-
soluble fraction was 0.023 mol l-1, and the range of indi-
vidual compounds was between 10− 5 mol l-1 and 0.536 mol 
l-1. All but six amino acids in the extract were individually 
above the probable threshold of detection for sea lamprey 
(10− 3 mol l-1, (Green et al. 2017)). Putrescine (10− 4 mol l-1), 
pyruvic acid (10− 4 mol l-1), serine (10− 5 mol l-1), adenosine 
(10− 5 mol l-1), spermine (10− 5 mol l-1), and α-ketovaleric 
acid (10− 5 mol l-1), were below this threshold. The molarity 
of the recombined water-soluble fraction should therefore be 
well above the detection threshold. Migratory sea lamprey 
are non-feeding, relying on lipids stored during the para-
sitic life stage to spawn and complete their lifecycle before 
death (William and Beamish 1979). It would be reasonable 
for responses to food cues to cease prior to the spawning 
migration to focus olfactory efforts on avoiding predation 
and finding mates. Life-stage dependent olfactory sensitiv-
ity has been cited in the Pacific lamprey, where reactivity to 
migratory and sex pheromones remained high and constant 
throughout the spawning migration before dropping sig-
nificantly at spawning and maturation, and it is noted that 
Pacific and sea lampreys share remarkable similarities in 
odor responses both ecologically and physiologically (Rob-
inson et al. 2009).

We observed a substantial avoidance response to the 
chloroform-soluble fraction that was similar in magnitude 
to the water-soluble fraction, but statistically indistinguish-
able from the crude extract due to higher variance in the 
behavioral responses. This finding contrasts somewhat with 
Dissanayake et al. (2016) who reported a partial (61% of the 
crude skin extract response) but statistically non-significant 
avoidance response to a similar fraction. A balanced one-way 
ANOVA power calculation for the data in Dissanayake et al. 
(2016) revealed that a sample size greater than or equal to 17 
was needed to detect a significant response (power = 0.80, 
α = 0.05), which was surpassed in the current study (N = 20), 
but not in the 2016 screening (N = 10). There are at least 
two plausible explanations for these observations. First, the 
chloroform-soluble fraction may contain one or more com-
ponents of the alarm cue that are reactive and not found in 
the water-soluble fraction at concentrations sufficient to be 
detected by the olfactory organ. The major components of 
this fraction were previously identified as four cholesterol 
esters, five tri- and di-glycerides, a cholesterol, 13 free fatty 
acids, and two environmental pollutants (Dissanayake et al. 
2016), but not tested individually for behavioral responses. 

When all 32 identified compounds from the water-sol-
uble fraction (Experiment 3, Table  1) were combined at 
the observed ratio found in the crude skin extract, a neu-
tral response similar to the solvent treatment was observed 
(Fig. 3). One plausible explanation for why we saw no anti-
predator responses to individual compounds, sub-fractions, 
or recombined identified compounds within the water-solu-
ble fraction is that the alarm cue may consist of a blend of 
compounds, all of which need to be present in order to elicit 
a behavioral response. Previous studies have noted singular 
compounds can be potent in eliciting alarm responses and 
are hypothesized to contain a component of the active ingre-
dients of alarm cue, such as hypoxanthine 3-N-Oxide in 
zebrafish (Parra et al. 2009), fathead minnows (Brown et al. 
2001), and black tetra (Pfeiffer et al. 1984), and chondroitin 
sulfate in zebrafish (Mathuru et al. 2012) and fathead min-
nows (Faulkner et al. 2017). Other studies suggest the full 
mixture needs to be present (larval grey tree frog Hyla vesi-
color, Mirza et al. 2013), sea hare Aplysia californica, Kick-
lighter et al. 2007)). Our findings, along with the observed 
diminishing reactivity with increasing phylogenetic distance 
between donor and receiver in sea lamprey (Bals and Wag-
ner 2012; Hume and Wagner 2018) align to suggest the sea 
lamprey alarm cue is a mixture of active components, with 
some shared compounds across species and species-specific 
labeling compounds (i.e., the multicomponent pheromone 
hypothesis). Another possible explanation is that the active 
compounds of the alarm cue degraded or were otherwise lost 
during the separation and purification process. Extractions 
of chemical defense compounds from one vascular plant 
(Micranthemum umbrosum) led to significant degradation 
and inefficient yields, which may have degraded potentially 
active compounds below a detection threshold (Parker et al. 
2006). In the present study, bioassay guided isolation and 
purification were conducted under mass balance at every 
step, and there was no noticeable loss of material during the 
purification based on mass balance of the original extract or 
fraction to the isolated compounds. However, given the lack 
of activity elicited by the major components of the active 
fractions, the alarm cue components may reside in the 2% 
of unidentified material remaining in the crude extract. It 
is also possible that the process of separation and isolation 
led to degradation of the active molecules after extraction if 
components in the crude extract functioned as stabilizers for 
the active material. Future research should focus on iden-
tifying the minor compounds of the water-soluble fraction 
to understand if they complete the cue and play a role in 
mediating antipredator behavior.

The compounds identified from the water-soluble frac-
tion consisted of 32 amino acids, primarily creatine (Dis-
sanayake et al. 2019; Green et al. 2017) demonstrate that all 
regions of the sea lamprey olfactory bulb respond to amino 
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alarm response was observed in wild fathead minnows 
(Pimephales promelas) that were introduced to chondroitin 
sulfate sourced from bovine trachea (Faulkner et al. 2017). 
Zebrafish exhibited a full suite of alarm behaviors when 
exposed to chondroitin sulfate sources from shark cartilage 
and an intermediate response when exposed to chondroitin 
sulfate from sturgeon notochord, and these differences are 
likely due to source differences in sulfation which affect 
signaling properties of chondroitin (Mathuru et al. 2012). 
Because of the observed differences in fish response to 
chondroitin sulfate sources, more research into the sea lam-
prey behavioral response to differently sulfated forms of 
chondroitin may be warranted. However, as noted above, 
given the apparent lack of response by sea lamprey to alarm 
cues of teleost fishes, they may be chemically distinct.

In summary, this study represents the first major steps 
towards identifying the sea lamprey alarm cue. Our work 
provides evidence in support of previous studies that 
hypothesized the sea lamprey alarm cue contains a mixture 
of stable molecules (Bals and Wagner 2012; Dissanayake et 
al. 2019; Hume and Wagner 2018), and suggests for the first 
time that the active constituents are not solely contained in 
the water-soluble fraction of the crude skin extract. Thus, 
questions remain regarding the active components of the sea 
lamprey alarm cue. Future work should include investigat-
ing the role of isoleucine and focus on discovering the iden-
tity of minor compounds within the water-soluble fraction, 
testing individual and combined compounds identified from 
the chloroform-soluble fraction, targeting areas of potential 
overlap. Additional research is needed to explore the evo-
lution of olfactory roles in predator-prey dynamics, and to 
understand how alarm cues can be synthesized and thus 
applied towards conservation goals and the management of 
aquatic invasive species. We argue that the pursuit of the 
alarm cue’s chemical identity is crucial to answer questions 
on the evolution of chemosensory cues in predator-prey 
dynamics and can lead to important information on how 
wildlife managers and conservation professionals can use 
such cues for applied work in aquatic systems.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s10886-
022-01384-0.

Acknowledgements  Funding for this project was provided by the 
Great Lakes Fishery Commission. Thank you to staff at US Geologi-
cal Survey’s Hammond Bay Biological Station for providing access to 
the raceway laboratory, supplying sea lamprey, and technical aid. We 
give special thanks to Dr. Nicholas Johnson and Christopher Wright 
for creating safety protocols that allowed us to work safely at HBBS 
during the Covid-19 pandemic. Mikaela Hanson, Kandace Griffin, 
Taylor Haas, Anna Tursky, Madison Perry, Kristopher Rygiel, Emily 
Suominen, Grace Forthaus, Tyler Welklin, Sydney Tieman, Allie 
Yackley, Michael Nolan-Tamariz, and Alana Barton provided invalu-
able laboratory and video analysis assistance. We thank Dr. Brian Roth 

Fatty acids have been shown to be behaviorally relevant in 
migrating sea lamprey; an active compound, (+)-petromyric 
acid, of the attractant cue emitted by larvae is a fatty-acid 
derivative (Li et al. 2018). More broadly, three olfactory 
sensory neuron (OSN) morphotypes have been identified in 
teleost fishes (Hamdani and Døving 2007), and the struc-
ture of these morphotypes are strikingly similar to those 
observed in the more primordial sea lamprey (Laframboise 
et al. 2007). In teleost fishes, the ciliated OSN activates the 
medial olfactory tract and responds to compounds impor-
tant in both migration and alarm responses (Hamdani and 
Døving 2007; Døving and Lastein 2009). The medial bulbar 
region of the sea lamprey olfactory bulb responds to amino 
acids, bile salts, and components of the larval cue (Green et 
al. 2017). If the overlap in sensory pathways among migra-
tory and alarm cues is present in lampreys, further testing 
of OSN pathway activation may help to discern the identity 
of the alarm cue component(s) contained in the chloroform-
soluble fraction.

Reactivity in the chloroform-soluble fraction could also 
be attributed to incomplete separation of the mixture, with 
one or more behaviorally reactive compounds occurring 
in both major fractions. Interestingly, when the water-sol-
uble and chloroform-soluble fractions were re-combined, 
the magnitude of the avoidance response increased to that 
observed from the crude skin extract. Recombination may 
have restored the correct ratios of alarm cue compounds. 
Studies on alarm cue phylogenetic patterning in Ostari-
ophysan fishes have suggested that reactivity is dependent 
on observed ratios of compounds, and that such ratios are 
species-specific. For example, the purine ratio hypothesis 
posits the existence of a common set of purine carriers for 
a nitrogen-oxide alarm trigger in Ostariophysan fishes, with 
ratios of the carrier molecules differing among related spe-
cies, and larger differences between more distantly related 
species (Brown et al. 2001, 2003; Kelly et al. 2006). Alter-
natively, or in addition, recombination may have restored 
the full concentration of alarm cue components, eliciting a 
stronger behavioral reaction. The threat-sensitive response 
hypothesis predicts that prey who modulate their antipreda-
tor behavior in response to the perceived intensity of the 
threat will have a selective advantage (Helfman 1989). 
Fishes (Brown et al. 2006; Lönnstedt & Mccormick, 2011), 
amphibians (Ferrari et al. 2009; Fraker 2008), and aquatic 
insects (Roux and Diabate 2014) are known to respond 
to varying concentrations of alarm and predator cues in a 
threat-sensitive manner.

Previous studies have demonstrated that chondroitin 
fragments play an active role in fish alarm cue chemistry 
(Faulkner et al. 2017; Mathuru et al. 2012). During screen-
ing, sea lamprey failed to respond to chondroitin sulfate 
derived from shark cartilage (Table  2). An intermediate 
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