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Abstract
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but
are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape
phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur
within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested,
i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in
stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces
a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of
phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity
beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss
how insects cope with the challenge to produce and Bunderstand^ a highly plastic, environmentally dependent CHC pattern that
conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote
speciation in insects that rely on CHCs for mate recognition.
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Self-referent phenotypematching

Introduction

Organisms need to cope with a huge variety of environmental
conditions that may change in space, time, intensity, and qual-
ity. The response of an individual to novel environmental con-
ditions can take many forms, ranging from changes in physiol-
ogy, alterations of morphology to shifts in behavioral responses
(Schlichting and Pigliucci 1998; Wund 2012). This variation in
phenotypic expression is defined as Bphenotypic plasticity^ –
the ability of a single genotype to produce different phenotypes
in response to different abiotic and biotic environmental condi-
tions (Moczek et al. 2011; Pfennig et al. 2010; Pigliucci et al.
2006; Via et al. 1995). Phenotypic plasticity of a certain geno-
type plays a role in many evolutionary processes like selection
within and between species (Salamin et al. 2010), formation of
host races (Drès and Mallet 2002), or the establishment of

reproductive isolation barriers between and within populations
(Coyne and Orr 2004). Thus, phenotypic plasticity may pro-
mote speciation processes (Pfennig et al. 2010), and facilitate or
even speed up the process of (adaptive) evolution (Ghalambor
et al. 2007; West-Eberhard 2003). In order to understand the
mechanisms and adaptive value of phenotypic plasticity, we
need to investigate the responses of an organism to changing
environmental factors and the costs and/or benefits of pheno-
typic changes (Moczek 2010; Snell-Rood 2012).

In this review, we focus on the phenotypic plasticity of
cuticular hydrocarbons (CHCs) in solitary insects, with special
emphasis to herbivorous species (Chung and Carroll 2015;
Thomas and Simmons 2011). We do not consider CHCs of
eusocial insects like termites, ants and bees because the chem-
istry and ecological relevance of their CHC profiles in social
life have been excellently addressed in several recent reviews
(Leonhardt et al. 2016; Oi et al. 2015; Smith and Liebig 2017).

CHCs are of enormous functional significance in insects
which have evolved a wide range of CHCs differing with re-
spect to chain length (typically 20 to about 40 carbons), methyl
branching pattern, and position and number of double bonds
(Geiselhardt et al. 2011; Martin and Drijfhout 2009). CHCs
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are covering the insect’s integument and protect them from abi-
otic and biotic environmental stress, as will be outlined below.
Insects can adjust the chemical composition of their CHC pro-
files to the environmental needs. CHCs do not only
serve as protective device, but are also used by many
insect species for intra- and interspecific communication
(Blomquist and Bagnères 2010). When communicating
by these highly variable chemical cues, insects need to
be able to cope with this environmentally dependent,
flexible chemical information.

A major issue of this review is to outline current knowledge
and resulting ideas on the ecological processes that shape pheno-
typic plasticity of insect CHC profiles which may contribute to
speciation of insects. We first provide a brief overview on factors
influencing insect CHCs and address the dynamics of phenotypic
changes. We further analyze two modes of phenotypic change
and differentiate between saltatory and gradual adaptive changes.
Finally, we critically discuss consequences of phenotypic plastic-
ity in insect chemical communication systems, speciation pro-
cesses and evolutionary biology.We address costs and benefits of
the plasticity of insect CHC profiles with respect to the dynamics
of changes of CHC patterns, the modes of changes, and the
individual and evolutionary consequences of changes.

Phenotypic Plasticity of CHCs – Drivers
and Temporal Dynamics

Several studies suggest that CHC profiles largely depend on the
insect’s genetic background (e.g. Dembeck et al. 2015). In turn,
numerous abiotic and biotic environmental factors (Ingleby
2015; Leonhardt et al. 2016) shape the internal status of an
insect and expression of genes (Ferveur 2005; Martin and
Drijfhout 2009; Menzel et al. 2017) (Fig. 1). The enormous
impact of the environment on an insect’s CHC profile has been
shown long ago by a study of Toolson and Kuper-Simbron
(1989) who transferred Drosophila pseudoobscura from the
field to the laboratory; the flies showed altered CHC profiles
already in the first laboratory generation. However, the cause of
this shift remained unclear. Below, we will outline the impact of
several environmental and insect-internal factors on insect CHC
patterns. Examples are listed in Table 1. Furthermore, the dy-
namics by which insect CHC phenotypes adapt to changing
environmental conditions will be addressed and discussed.

Abiotic Environmental Factors as Drivers of Insect CHC
Phenotypes

When insects are exposed to high temperature and/or low
relative humidity, they face a high risk of desiccation because
of their large surface-to-volume ratio. CHCs act as water-
proofing agents and support prevention of dehydration in in-
teraction with other cuticular compounds and respiratory

regulation. The lipophilic, long-chained CHCs form a protec-
tive film on the insect’s integument which impairs permeation
of water molecules to the outside. In addition, the hydrophobic
CHCs prevent wetting and passage of water into the insect
(Gibbs et al. 1998; Wang et al. 2016, and references therein).
Insects can prevent critical water loss in response to high
temperature and low humidity by a fast change of their CHC
phenotype (Chown et al. 2011). They start to change their
CHC phenotype in response to changing temperature or hu-
midity within a day (Howard et al. 1995; Kwan and Rundle
2010; Savarit and Ferveur 2002; Stinziano et al. 2015). In
general, desiccation stress leads to an adaptive shift towards
increased levels of longer chain CHCs, a higher proportion of
saturated CHCs, and/or greater proportions of straight- versus
branched-chain CHCs.

Furthermore, CHCs can protect from harmful, cytotoxic
sun radiation in combination with other cuticular compounds.
Cockroaches are known to even increase their hydrocarbon
content in the cuticle upon exposure to UV radiation
(Gingrich 1975).

Also the photoperiod or time of day can significantly im-
pact on the CHC phenotype of an insect. In male
D. melanogaster, CHCs are dynamic traits that vary in re-
sponse to time of day, and this diurnal pattern is sensitive to
light (Gershman et al. 2014; Kent et al. 2007; Krupp et al.
2008). However, while trait values of CHC-based attractive-
ness in males are highest during day and low throughout the
dark phase, females show exactly the opposite temporal pat-
tern (Gershman et al. 2014). Jurenka et al. (1998) used short-
day-conditions to induce reproductive diapause in face flies,
Musca autumnalis. Diapausing flies had lower proportions of
alkenes and higher proportions of methyl-branched alkanes
compared to reproductive face flies reared under long-day
conditions.

Biotic Environmental Factors as Drivers of Insect CHC
Phenotypes

CHCs serve a crucial role in protection against pathogen in-
fection. They contribute to formation of a physical barrier
which prevents pathogens to penetrate into the insect.
Especially fungal pathogens which require some water
for germination are impaired by the hydrophobic inter-
action with CHCs (Hajek and St. Leger 1994). However, some
entomopathogenic fungi can rapidly degrade insect CHCs
(Napolitano and Juárez 1997) and thus, significantly alter
the CHC phenotype of its host within a few hours after infec-
tion, depending on the insect species (Lecuona et al. 1991) and
the age of the host (Zurek et al. 2002) (Table 2). In addition,
other ecto- and endoparasites, (e.g. viruses, mites, tapeworms)
or even an artificial immune stimulation may also elicit rapid
modifications of CHC profiles (Beros et al. 2017 and
references therein; Nielsen and Holman 2012).
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Numerous studies have demonstrated a significant role of
diet in phenotypic plasticity of CHCs in various insect orders
(Table 2). For example, caterpillars of several lepidopteran
species (Espelie and Bernays 1989) and grasshoppers
(Blomquist and Jackson 1973) have been shown to incorpo-
rate dietary CHCs into their CHC profiles. Caterpillars of
some polyphagous species use ingested dietary CHCs tomim-
ic the cuticular chemistry of their actual host plant (chemical
phytomimesis) to avoid predation by ants (Akino et al. 2004;
Piskorski et al. 2010; Portugal and Trigo 2005;). Dietary ef-
fects on the CHC phenotype might also be triggered by vary-
ing compositions of CHC precursors in different diet, e.g. fatty
acids (Otte et al. 2015; Pennanec'h et al. 1997; Steiger et al.
2007). When the mustard leaf beetle Phaedon cochleariae
switches to a novel host species, it takes about two weeks until
its novel CHC profile significantly differs from the former one
(Geiselhardt et al. 2012). Not only herbivorous insects, but
also parasitic and predatory insects have been shown to pro-
duce different CHC patterns when developing in different host
species (e.g. Khidr et al. 2013; Kühbandner et al. 2012).

The type of diet affects the gut microbiome which may also
impact on the insect’s CHC pattern. Sharon et al. (2010) have
demonstrated thatD. melanogaster flies (Oregon-R) reared on
different diets show altered gut microbiomes and divergent
CHC phenotypes, which in turn leads to diet-assortative mat-
ing because mating in these flies is mediated by their CHC
patterns. However, follow-up studies led to inconsistent re-
sults about the role of the gut microbiome on mate preference
and CHC phenotype (Leftwich et al. 2017; Ward 2017). Ward
(2017) found a significant effect of diet on the CHC pheno-
type of Canton-S flies, but no effect of the gut microbiome on
the CHC profile. Moreover, Leftwich et al. (2017) failed to
show a significant role of diet or gut microbiome on mate
preferences in two wild-type strains (Dahomey and Oregon-
R). Thus, the significance of the gut microbiome as a trigger

for CHC-mediated behavioral isolation remains ambiguous
and needs further investigations.

Not just the type of diet and the dependingmicrobiome, but
also the quantity of diet significantly affects the insect’s CHC
profile. Starvation leads to a significant change in insect CHC
patterns (Peschke 1987a, b). In earwigs, which show parental
care, the offspring CHC profile signals the nutritional need
and thus, affects foraging and reproductive activities of the
mother (Mas et al. 2009; Mas and Kölliker 2011). The
mother’s CHC profile signals the nutritional provision, and
thus, affects sibling cannibalism (Wong et al. 2014a).

The encounter of conspecifics can trigger rapid changes of
CHC phenotypes. For example, males of D. serrata change
their CHC profiles within a few minutes after exposure to
female flies (Petfield et al. 2005). Moreover, in D. serrata,
the attractiveness of male CHC profiles depends on the pres-
ence and absence of conspecific males and females, and their
sex ratio (Gershman et al. 2014; Gershman and Rundle 2016,
2017). Similarly, the CHC profiles of male D. melanogaster
are also affected upon encounter with conspecifics, and
this in turn infers with the diurnal cycle of CHC expres-
sion (Kent et al. 2008; Krupp et al. 2008). Furthermore, in
orthopteran species, the dominance of rivalling males
(Thomas and Simmons 2011), experience of conspecific song
(Thomas et al. 2011), and population density (Genin et al. 1986;
Heifetz et al. 1998) affect the insect’s CHC profile. Biparental
burying beetles are able to discriminate between breeding and
non-breeding conspecifics based on the CHC profile of their
counterpart (Scott et al. 2008; Steiger et al. 2007).

Mating is also known to trigger changes of the CHC phe-
notype in various insect groups (Table 2). Male rove beetles,
Aleochara curtula, rapidly (within 30 min) change their CHC
profile after onset of copulation (Peschke 1987a). In
D. serrata, courtship results in a very rapid change in the
CHC profile even without physical contact of the partners

Fig. 1 Scheme of biotic and
abiotic environmental triggers
and internal effectors of
phenotypic plasticity of cuticular
hydrocarbons in insects and their
interactions
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Table 1 Environmental (abiotic and biotic) and internal factors affecting cuticular hydrocarbon profiles insects

Factor Insect taxon Mode of CHC change Communicative
function

References

Abiotic environmental factors

Temperature Orthoptera Quantitative – Gibbs and Mousseau 1994

Coleoptera Qualitative/ Quantitative – Hadley 1977; Peschke 1987b;
Geiselhardt et al. 2006

Diptera Quantitative Sex pheromone Toolson 1982; Gibbs et al. 1998; Noorman
and Den Otter 2002; Savarit and Ferveur 2002;
Rouault et al. 2004; Bontonou et al. 2013;
Ingleby et al. 2013; Ingleby et al. 2014;
Rajpurohit et al. 2017

Humidity Diptera Quantitative – Noorman and Den Otter 2002;
Stinziano et al. 2015

UV radiation Blattodea Quantitative Gingrich 1975

Circadian
rhythm/ Light

Diptera Quantitative Sex pheromone Jurenka et al. 1998; Kent et al. 2007;
Kent et al. 2008; Krupp et al. 2008;
Gershman et al. 2014

Biotic environmental factors

Pathogens Coleoptera Qualitative/ Quantitative – Lecuona et al. 1991

Lepidoptera Qualitative/ Quantitative – Lecuona et al. 1991

Diptera Quantitative Sex pheromone Zurek et al. 2002

Type of diet Orthoptera Qualitative/ Quantitative – Blomquist and Jackson 1973;
Espelie et al. 1994; Weddle et al. 2012

Hemiptera Quantitative – Gemeno et al. 2012; Chen et al. 2017

Hymenoptera Qualitative/ Quantitative Sex pheromone Howard 1998; Howard 2001; Howard and
Pérez-Lachaud 2002; Howard and
Baker 2003; Kühbandner et al. 2012;
Khidr et al. 2013;

Coleoptera Qualitative/ Quantitative Sex pheromone Steiger et al. 2007; Geiselhardt et al. 2012;
Fujiwara-Tsujii et al. 2013; Otte et al. 2015;
Otte et al. 2016; Xue et al. 2016

Lepidoptera Qualitative/ Quantitative Phytomimesis Espelie and Bernays 1989; Akino et al. 2004;
Portugal and Trigo 2005; Piskorski et al. 2010

Diptera Quantitative Sex pheromone Pennanec'h et al. 1997; Stennett and Etges 1997;
Etges et al. 2006; Delcourt and Rundle 2011;
Fedina et al. 2012; Ingleby et al. 2013;
Ingleby et al. 2014; Bousquet et al. 2016; Ward 2017

Diet quantity Dermaptera Quantitative Solicitation
pheromone

Mas et al. 2009; Mas and Kölliker 2011;
Wong et al. 2014a

Orthoptera Quantitative Sex pheromone Weddle et al. 2012

Hymenoptera Quantitative Sex pheromone Howard 1998; Howard and Baker 2003

Coleoptera Qualitative/ Quantitative Sex pheromone Peschke 1985; Peschke 1987a, b

Diptera Quantitative Sex pheromone Wicker and Jallon 1995a; Kuo et al. 2012;
Lebreton et al. 2016

Commensal
bacteria

Diptera Quantitative Sex pheromone Sharon et al. 2010

Social environment Orthoptera Quantitative Phase transition/
Dominance status

Genin et al. 1986; Heifetz et al. 1998;
Thomas and Simmons 2009; Thomas et al. 2011;
Thomas and Simmons 2011

Coleoptera Qualitative Partner recognition Steiger et al. 2007; Scott et al. 2008;
Steiger et al. 2008

Lepidoptera Qualitative Chemical mimicry Akino et al. 1999; Elmes et al. 2002;
Schönrogge et al. 2004, Thomas et al. 2013

Diptera Quantitative Sex pheromone

238 J Chem Ecol (2018) 44:235–247



(Petfield et al. 2005). In addition, successful copulation with
sperm transfer has been shown to induce the development of
male CHC phenotypes associated with high mating success in
this species (Gershman and Rundle 2016). Also both sexes of
D. melanogaster show altered CHC profiles immediately after
mating which is most likely caused by reciprocal physical
transfer of CHCs between the sexes (Everaerts et al. 2010).
In contrast, Farine et al. (2012) found only a marginal effect of

sexual interactions on volatile CHCs (≤ n-C23) of
D. melanogaster flies kept in heterosexual groups for 2 h.
However, the sex peptide ACP70A, a component in the sem-
inal fluid of D. melanogaster, is involved in down-regulation
of the biosynthesis of female sex pheromones (Bontonou et al.
2015). So far, in many cases the effects on CHC phenotypes
could not unambiguously be assigned to mating or insemina-
tion because differences in ovary development could not be

Table 1 (continued)

Factor Insect taxon Mode of CHC change Communicative
function

References

Petfield et al. 2005; Kent et al. 2008;
Krupp et al. 2008; Gershman et al. 2014;
Gershman and Rundle 2016;
Gershman and Rundle 2017

Mating status Hymenoptera Quantitative Reproductive
status/ Sex
pheromone

Simmons et al. 2003; Mant et al. 2005;
Polidori et al. 2017

Coleoptera Quantitative Sex pheromone Peschke 1987a; Booksmythe et al. 2017

Diptera Quantitative Sex pheromone Polerstock et al. 2002; Bontonou et al. 2015;
Gershman and Rundle 2016; Gershman
and Rundle 2017

Insect-internal factors

Age/ Ontogeny Plecoptera Qualitative/ Quantitative – Armold et al. 1969

Dermaptera Qualitative/ Quantitative Kin recognition/
Sex pheromone

Wong et al. 2014b

Orthoptera Quantitative – Tregenza et al. 2000

Hemiptera Qualitative/ Quantitative – Jackson 1983; Juárez and Brenner 1985;
Yoon et al. 2012

Hymenoptera Quantitative Sex pheromone Howard 1998; Paulmier et al. 1999; Howard and
Baker 2003; Steiner et al. 2005; Steiner et al. 2007;
Ruther et al. 2011

Coleoptera Quantitative Sex pheromone Mody et al. 1975; Baker et al. 1979a, b;
Peschke 1985, 1987a, b; Hebanowska et al. 1990;
Nelson et al. 2003; Yocum et al. 2011;
Booksmythe et al. 2017

Lepidoptera Quantitative Sex pheromone de Renobales and Blomquist 1983; Sappington
and Taylor 1990

Diptera Quantitative Sex pheromone Armold and Regnier 1975; Jackson and
Bartelt 1986; Trabalon et al. 1988; Pomonis 1989;
Howard et al. 1990; Toolson et al. 1990;
Gibbs et al. 1995; Wicker and Jallon 1995a;
Gibbs et al. 1998; Mpuru et al. 2001;
Polerstock et al. 2002; Nelson and Lee 2004;
Zhu et al. 2006; Roux et al. 2008; Fedina et al. 2012;
Kuo et al. 2012; Etges and de Oliveira 2014;
Braga et al. 2016; Moore et al. 2016

Sexual maturation/
Gonad development

Blattodea Quantitative Sex pheromone
precursor

Schal et al. 1994

Hymenoptera Quantitative Sex pheromone Steiner et al. 2005; Steiner et al. 2007;
Ruther et al. 2011

Coleoptera Quantitative Sex pheromone Peschke 1985; Peschke 1987a, b

Diptera Qualitative/ Quantitative Sex pheromone Dillwith et al. 1983; Wicker and Jallon 1995b;
Jurenka et al. 1998; Bilen et al. 2013;
Fedina et al. 2017
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ruled out as an alternative explanation for altered CHC pro-
files (Booksmythe et al. 2017; Mant et al. 2005; Polidori et al.
2017; Polerstock et al. 2002; Simmons et al. 2003).

Insect-Internal Factors

The composition of the CHC profile of an insect is subjected
to dynamic changes during development and ageing of the
insect (Moore et al. 2017, and references therein) (Table 1).

Interestingly, phenotypic changes in CHC profiles are
not only obvious when comparing different developmen-
tal stages, but also occur within the first days after adult
eclosion. In several flies (Jackson and Bartelt 1986;
Mpuru et al. 2001), parasitic wasps (Ruther et al. 2011;
Steiner et al. 2005; Steiner et al. 2007), and in rove bee-
tles (Peschke 1985), newly emerged adults of both sexes
have similar CHC phenotypes that diverge and become
sex-specific within a week (Table 2). Hence, a change in
CHC phenotype in adults is often correlated with sexual
maturation and development of the gonads (Dillwith et al.
1983; Fedina et al. 2012, 2017; Schal et al. 1994; Wicker
and Jallon 1995b).

Changes in the CHC profile during insect development
may be ascribed to changing CHC biosynthesis by the
insect (Howard and Blomquist 2005). However, also
CHCs of empty dipteran puparia change over time, a pro-
cess which is due to weathering (Moore et al. 2017).
Changes of an insect’s CHC profile may be of quantita-
tive nature when biosynthetic activities and thus quantities
of CHC compounds vary (e.g. Krupp et al. 2008). But
also qualitative changes over time are observed when
novel CHC compounds are added to a CHC pattern by
the insect’s CHC transport activity or CHC biosynthetic
activity (e.g. Schal et al. 1994; Steiner et al. 2007). A
qualitative change of a CHC pattern may also be due to
environmentally dependent changes (weathering) of al-
ready produced compounds on the insect’s surface.

In summary, the switch from one CHC profile to a novel,
adaptive one may take minutes to weeks (Table 2). The dy-
namics and type of changes might depend on the need of a
new CHC phenotype for survival or successful reproduction,
as well as on the mechanisms which mount the insect’s CHC
pattern (Howard and Blomquist 2005). So far, it is difficult to
predict which type of environmental stimulus induces a slow
change of the CHC profile and which one triggers a highly
rapid change.

Mechanisms of Phenotypic Plasticity of CHC
Profiles

Rapid changes in insect CHC profiles are expected when an
insect obtains CHCs from the environmental substrate and/or

from other organisms by physical contact, e.g. during mating
(e.g. Weddle et al. 2012). Nevertheless, fast changes in the
CHC pattern may not only be possible by acquiring novel
CHCs via contact, but may also depend on the dynamics of
the transport of ingested CHCs to the cuticle via lipophorins
(e.g. Schal et al. 1998).

If the change in an insect’s CHC pattern requires a change
in CHC biosynthesis, the dynamics of this change will depend
on the insect’s physiological state (e.g. the dynamics of chang-
es in hormone levels) (Bagnères and Blomquist 2010), the
availability of CHC precursors (Steiger et al. 2007; Otte
et al. 2015), the uptake of compounds affecting biosynthesis
and enzyme activities, and the expression activity of genes
encoding the respective enzymes. Krupp et al. (2008) have
demonstrated that oenocytes have functional molecular clocks
that control the circadian rhythmicity of monoenes by
controlling the expression of desat1, a gene that en-
codes a desaturase involved in pheromone biosynthesis
of D. melanogaster. As mentioned above, several other
studies show that abundance of CHCs on the insect’s cuticle is
dependent on the daytime (or nighttime) when measurements
are taken (Gershman et al. 2014; Kent et al. 2007). So far, it is
unclear how much the 24-h-temporal pattern of CHC profiles
depends on CHC biosynthesis (expression levels of genes,
enzyme bioactivities), transport activity of CHCs to the cuticle
and/or loss of once produced CHCs due to offprint on the
substrate.

Modes of Phenotypic Changes of Insect CHC
Profiles

Exposure to different environmental conditions is suggested
to result in different modes of phenotypic changes. We distin-
guish between (A) a stepwise (saltatory) shift and (B) a con-
tinuous (gradual) one. The stepwise shift from one CHC pat-
tern to another occurs upon a saltatory environmental change
(e.g. switch from one host species to another) and is lacking an
adaptive intermediate CHC profile. In contrast, the continuous
change of a CHC profile occurs in response to gradual chang-
es of environmental conditions (e.g. increasing temperature)
and shows many intermediate, adaptive CHC profiles (West-
Eberhard 2003) (Fig. 2).

The stepwise (saltatory) type of plasticity (A) is character-
ized by a change in the mean CHC phenotype which is pro-
duced in (at least) two distinct environments. For example,
when herbivorous beetles were exposed to a novel host plant
species; they formed a different CHC pattern than conspe-
cifics remaining on the original host plant species. The novel
CHC phenotype enabled the beetles to distinguish between
mates that had fed on the same plant species from mates feed-
ing on the alternative plant species (Otte et al. 2016). This
type-(A)-phenotypic plasticity may be quantified by the mean
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and variance of phenotypes within a population. A shift in a
mean phenotype can occur when all individuals show a sim-
ilar reaction norm, i.e. respond similarly to a change of an
environmental cue. The variance can increase if differ-
ent genotypes within a population respond differently to
the same cue. Hence, type-(A)-phenotypes within a cer-
tain environment can show slight differences (but are
mostly similar), but type-(A)-phenotypes occurring in two
different environments are clearly different and separable
(Ingleby et al. 2010).

The continuous (gradual) mode of phenotypic plasticity
(B) focuses on a functional relationship between environ-
mental conditions and phenotypes. Here organisms that are
exposed to a continuously changing environmental gradi-
ent (e.g. increasing temperatures) express continuously dif-
ferent phenotypes (many intermediate phenotypes between
different environments). For example, the chain length of
CHCs may increase when temperature increases; the
elongation of CHC chain length protects the organism
from water loss (Geiselhardt et al. 2006). Such adapta-
tion of the CHC pattern to temperature requires high
plasticity because changes need to be reversible when temper-
ature decreases again. Indeed, D. melanogaster shows
reversible temperature-dependent cuticle permeability for
an aqueous solution (Wang et al. 2016). However, whether
this reversibility is due to a quick change in the chemical
composition of the CHC profile has not been addressed in this
study.

CHC Phenotypic Plasticity – A Challenge
for Intraspecific Communication Via CHCs

Insects which use their CHCs for mediation of intra- and in-
terspecific interactions are indeed challenged by high pheno-
typic plasticity of the CHC profile because intraspecific chem-
ical communication requires high reliability and compre-
hensibility of the signals. If signals are not reliable, the
receivers will be unable to gain fitness benefits. Moreover, if
an expressed CHC phenotype does not match the receiver’s
preferences or demands, the signal - perceiver system
will collapse.

Thus, how can insects successfully use CHCs for intraspe-
cific communication, although these compounds are pheno-
typically so plastic?

& First, different CHCs or CHC classes might have differ-
ential importance for chemical communication (Dani et al.
2005). Thus, when insects change their behaviorally rele-
vant CHC profiles due to different environmental condi-
tions, these changes might be changes in compounds not
relevant in intraspecific communication.

& Second, when the alteration of a CHC phenotype is a
change in quantities of all behaviorally relevant CHCs,
their ratios may stay the same. Here quantities might
change, but ratios of informative compounds might
be kept the same. Ratios of compounds are well known
to play a role in numerous chemically mediated

Table 2 Dynamics of phenotypic changes in insect cuticular hydrocarbon profiles

Insect species Trigger Dynamics of change References

Drosophila serrata Courtship < 15 mina Petfield et al. 2005

Drosophila melanogaster Courtship/mating < 15 mina Everaerts et al. 2010

Aleochara curtula Mating ≤ 30 min Peschke 1987a

Drosophila melanogaster Humidity < 5.5 h Stinziano et al. 2015; Kwan and Rundle 2010

Ostrinia nubilalis Fungal infection < 6 h Lecuona et al. 1991

Nicrophorus vespilloides Breeding < 16 h Steiger et al. 2008

Drosophila melanogaster Temperature ≤ 1 day Savarit and Ferveur 2002

Drosophila melanogaster Light regime ≤ 1 day Kent et al. 2008

Melolontha melolontha Fungal infection < 1 day Lecuona et al. 1991

Schistocerca gregaria Social environment ≤ 1 day Heifetz et al. 1998

Teleogryllus oceanicus Social environment ≤ 1 day Thomas and Simmons 2011

Tenebrio molitor Immune challenge 1 day Nielsen and Holman 2012

Oryzaephilus surinamensis Humidity 1 day Howard et al. 1995

Dibrachys cavus Sexual maturation 1–2 days Ruther et al. 2011

Drosophila melanogaster Social environment ≤ 2 days Krupp et al. 2008

Lariophagus distinguendus Sexual maturation ≤ 3 days Steiner et al. 2007

Phaedon cochleariae Diet shift 14 days Geiselhardt et al. 2012

Eleodes armata Temperature ≥ 5 weeks Hadley 1977

a time to first contact/mating attempt; estimated based on published courtship behaviors
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intraspecific interactions (Geiselhardt et al. 2012; Weiss
et al. 2013).

& Finally, if qualitative and quantitative changes in the
chemical composition of a CHC profile occur, a mecha-
nism is required to recognize the new CHC phenotype.
The insect may recognize a conspecific individual by
comparing its own chemical phenotype with the profile
of the counterpart (Bself-referent phenotype matching^,
Mateo 2010; Otte et al. 2016; Weddle et al. 2013).
Assuming that insects use phenotype matching for recog-
nition of conspecifics, the organisms exposed to the same
environmental conditions match the chemical template
more exactly than individuals from a different environment
expressing an alternative CHC phenotype. This process
corresponds with the signal matching process of the sen-
sory drive hypothesis (Boughman 2002; Smadja and
Butlin 2009). Thus, Bself-referent phenotype matching^
might help to cope with variable CHC phenotypes if these
are important of intraspecific communication, but will also
promote divergence in behavioral interactions (Geiselhardt
et al. 2012; Otte et al. 2016).

Evolution of Phenotypic Plasticity of Insect
CHC Profiles: Selective Advantages
and Consequences

What are the benefits and costs of phenotypic plasticity of
insect CHC patterns? An insect benefits from its phenotypic
CHC plasticity when a certain phenotype induced by a specif-
ic environment has higher fitness in that environment than
alternative phenotypes (DeWitt et al. 1998; Henneken et al.
2017; Snell-Rood et al. 2010). A CHC phenotype is expected
to show higher fitness

(i) when it has improved abilities to cope with the conditions
in this specific environment. As outlined above, many
insects can change their CHC phenotype in response to
certain abiotic and biotic conditions and thus, improve
their abilities to cope with this environment.

(ii) when the costs for production and maintenance of the
phenotype do not outweigh the benefit (Reylea 2002).
These costs may especially occur when phenotypic plas-
ticity requires continuous availability of the biosynthetic
machinery and the maintenance of sensory and regulato-
ry machinery to respond adequately to changing envi-
ronmental conditions (DeWitt et al. 1998).

(iii) when the dynamics of a change in a CHC profile is fast
enough to follow the dynamics of environmental chang-
es inducing a CHC profile. Otherwise costs arise from
poor phenotype–environment matching resulting from
the time lag between sensing and responding to environ-
mental cues (lag-time limits) (DeWitt et al. 1998).

(iv) when the phenotypic change of the CHC pattern is not
outweighed by ecological costs. Which type of ecolog-
ical costs might an insect need to Bpay^when displaying
phenotypic plasticity? For example, if an insect changes
its CHC profile in response to changing temperatures,
the novel profile might disrupt CHC-mediated commu-
nication systems (Geiselhardt et al. 2006; Peschke
1987b). If a novel CHC profile would no longer convey
reliable and comprehensible information to those insects
which communicate via CHCs, these costs would by far
exceed the benefits of the adjustment of a CHC profile
to a novel environment.

How can phenotypic divergence of CHC profiles affect
speciation? If divergence of CHC profiles that affect sexual
behavior leads to assortative mating, this might promote sex-
ual isolation. For example, studies of the mustard leaf
beetle P. cochleariae revealed that these beetles use
their CHC profiles for mate recognition. They prefer
partners with similar CHC profiles. The beetles show similar
profiles when feeding on the same host plant species
(Geiselhardt et al. 2009, 2012; Otte et al. 2016). Beetles of a
given population of P. cochleariae may use different host
plant species occurring in the population’s habitat; if the bee-
tles show fidelity to a certain host species, their mating pref-
erences for similar CHC phenotypes feeding on the same plant
species is expected to lead to genetic divergence and thus, to
promote ecological speciation. Such diet-induced changes in
CHC profiles that affect mate references have also been ob-
served in other beetle species (Fujiwara-Tsujii et al. 2013; Xue
et al. 2016), inDrosophila flies (Etges et al. 2006; Havens and
Etges 2013; Rundle et al. 2005), and in parasitoid wasps
(Howard 2001; Kühbandner et al. 2012). Hence, in these cases

Fig. 2 Scheme of two modes of phenotypic plasticity: a stepwise
(saltatory) shift from one CHC phenotype to another in individuals
experiencing two distinct environments (e.g. different host
species); no adaptive intermediate phenotype is formed (black
lines) and b a continuous (gradual) change of a CHC phenotype in
individuals experiencing a gradually changing environment (e.g.
increasing temperature); many adaptive intermediate phenotypes are
formed (grey line)
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phenotypic divergence might promote genetic divergence,
and thus finally impact on insect speciation.

Conclusions

A plethora of studies demonstrated the immense plasticity of
insect CHC profiles. Nevertheless, further studies are needed
on the question why insects use so highly variable chemical
signals for intraspecific communication although signal reli-
ability is needed (Henneken et al. 2017; Ingleby 2015; Kather
and Martin 2015). These studies will provide a deeper under-
standing on the evolution of CHC-based mating signals, the
respective recognition systems as well as on ecological speci-
ation processes and the impact of phenotype divergence on
genetic divergence. Furthermore, even though much knowl-
edge is available on how insects biosynthesize their CHCs,
still many questions remain to be answered as to how envi-
ronmental, especially nutritional factors, influence the biosyn-
thesis of CHCs and its dynamics.

Phenotypic plasticity of insect CHC profiles is favored in
changing environments because it allows an individual to
adapt its phenotype to novel environmental conditions.
Furthermore, plastic CHC phenotypes allow organisms to in-
vade multiple, disparate ecological niches, thus extending the
geographic range and decreasing the probability of extinction
caused by habitat loss or environmental stochasticity (Snell-
Rood et al. 2010). Moreover, if insects use their CHCs for
intraspecific communication, phenotypic changes may pro-
mote divergence of individuals within a population. If the
diverging phenotypes are maintained, ecological speciation
will be promoted.

Hence, phenotypic plasticity of insect CHC profiles may
greatly impact on the fitness of an insect species, its ecological
niche and geographical distribution, and thus on the diversity
of insect species that evolve.
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