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Abstract In burying beetles, Nicrophorus spp. (Coleoptera:
Silphidae: Nicrophorinae) mate finding is mediated by male
produced volatile compounds. To date, pheromone compo-
nents of only two species have been identified. In an attempt
to better understand the evolution of male pheromone signal-
ing in burying beetles, we investigated the male released vol-
atiles of ten Nicrophorus species and one closely related
nicrophorine species, Ptomascopus mori. Volatiles emitted
by calling males were collected in the laboratory by means
of solid phase micro extraction and analyzed using gas chro-
matography coupled with mass spectrometry. Identified vola-
tiles included short chain esters of 4-methylcarboxylic acids,
terpenoids, and some other aliphatic compounds. The long-
range volatile signals of the burying beetle species included in
this study are blends of two to seven components. We found
that methyl or ethyl esters of 4-methylheptanoic acid and 4-
methyloctanoic acid are produced by eight of the ten investi-
gatedNicrophorus species. These esters may play a key role in
chemical communication. Their widespread occurrence

suggests that these compounds did not evolve recently, but
appeared relatively early in the phylogeny of the genus.
Although Ptomascopus is considered the sister genus of
Nicrophorus, P. morio males do not produce any of the
Nicrophorus compounds, but release 3-methylalkan-2-ones,
which are absent in Nicrophorus. A better understanding of
the evolution of burying beetle pheromones, however, will
only be possible once more species have been studied.
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Introduction

Burying beetles (Nicrophorus spp., Silphidae: Coleoptera) are
known for their complex brood care behavior, which involves
the search and burying of small vertebrate carcasses, the prep-
aration of the buried carrion for their offspring, and elaborate
care during the time when the larvae are feeding at the carcass.
Mate finding is mediated by volatiles emitted by males
(Pukowski 1933; Bartlett 1987; Eggert and Müller 1989).
Various ecological implications of male pheromonal advertis-
ing in burying beetles have been studied (Eggert 1992;
Trumbo and Egggert 1994; Beeler et al. 1999, 2002; Walling
et al. 2009), however, research on the chemical nature of the
male pheromones in Nicrophorus is still scarce. To date, male
pheromone constituents of only two species are known. The
first components identified were ethyl 4-methylheptanoate
and geranylacetone, emitted by N. vespilloides (Haberer
et al. 2008). A behaviorally active pheromone component,
emitted by N. humator males, was identified to be methyl 4-
methyloctanoate, whereas the role of the second component,
isovaleric acid, found in several but not all samples of this

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10886-017-0892-2) contains supplementary
material, which is available to authorized users.

* Wolf Haberer
wolf.haberer@biologie.uni-freiburg.de

1 Department of Animal Ecology and Evolutionary Biology, Faculty of
Biology, University of Freiburg, Freiburg, Germany

2 Department of Animal Ecology and Tropical Biology, University of
Würzburg, Würzburg, Germany

3 Department of Food Chemistry, University of Würzburg,
Würzburg, Germany

4 School of Biological Sciences, Illinois State University, Normal, IL,
USA

J Chem Ecol (2017) 43:971–977
DOI 10.1007/s10886-017-0892-2

https://doi.org/10.1007/s10886-017-0892-2
mailto:wolf.haberer@biologie.unireiburg.de
http://crossmark.crossref.org/dialog/?doi=10.1007/s10886-017-0892-2&domain=pdf


species, remains to be clarified (Haberer et al. 2011). As call-
ing Nicrophorus males also attract conspecific males (Müller
and Eggert 1987), the corresponding chemical signals are con-
sidered aggregation pheromones rather than sex pheromones.
Cross-attraction of congeneric beetles via long-range phero-
mones is a phenomenon also observed in Nicrophorus males
(Müller and Eggert 1987; Haberer et al. 2011). This
kairomonal response is thought to be adaptive in the context
of interspecific competition (Trumbo and Bloch 2002) for rare
breeding resources.

Nicrophorus males can employ different behavioral tactics
to find a mate (Eggert 1992): Since adults of both sexes are
attracted to carcasses (Kalinová et al. 2009), one option is to
search for a carcass suitable for reproduction, on which a
conspecific female may already be present. If that is not the
case, males will start to release pheromones to attract females,
since males cannot utilize the carcass on their own (Pukowski
1933). An alternative mate-finding tactic for males involves
calling for females without having located a carcass (Müller
and Eggert 1987). On a carcass, the attractiveness of male
pheromones may be synergistically enhanced by odors ema-
nating from the substrate itself; however, calling without a
breeding resource is likely to contribute significantly to repro-
ductive success (Eggert andMüller 1989; Eggert 1992; Beeler
et al. 1999; Müller et al. 2007; Walling et al. 2009).

The aim of our study was to establish an initial inventory of
volatiles released by calling males of several Nicrophorus
species. This was accomplished by collecting headspace vol-
atiles from beetles showing calling behavior by using solid
phase microextraction (SPME) and analyzing the samples by
gas chromatography coupled with mass spectrometry (GC/
MS). The study includes five North American and five
Central European species (Table 1) as well as one species of
the sister genus of Nicrophorus: the Asian Ptomascopus
morio. Unlike burying beetles, P. morio exhibits only

rudimentary brood care behavior and is considered a faculta-
tive brood parasite of Nicrophorus concolor (Trumbo et al.
2001; Suzuki and Nagano 2005). Mate-calling behavior, how-
ever, is similar in Nicrophorus spp. and P. morio (unpublished
observations). At a species-specific time of the day, males
typically perch at elevated locations, extend their hind legs,
raise their abdomen, and release volatiles for about one to
3hrs. Diurnal and crepuscular species like N. defodiens, N.
interruptus, N. pustulatus, N. tomentosus, N. vespilloides,
and N. vespillo exhibit this calling behavior in the late after-
noon and in the evening, at the end of their daily activity
period, in contrast to strictly nocturnal species such as
N. humator and N. orbicollis, which typically signal later,
during the night (Haberer, unpublished observations; Müller
and Eggert 1987; Beeler et al. 1999; Mulrey et al. 2015).

Methods and Materials

Beetles, Origin and Rearing Beetles used in this study were
either caught in the wild or were laboratory-reared (Table 1).
Individuals were maintained separately at 20 °C under a
16:8 h light:dark regime in transparent polystyrene containers
(10x10x6cm) filled with moist peat and fed decapitated meal-
worms twice weekly.

Volatile Collection Headspace sampling was accomplished
using solid phase micro extraction (SPME) fibers (Supelco,
coating: polydimethylsiloxane/divinylbenzene, Sigma-
Aldrich). Volatiles were collected in the plastic containers in
which beetles were housed. An SPME fiber was inserted into
the container through a perforated lid andmounted close to the
beetles. Under laboratory conditions, three main phases of
male behavior can be observed during their active time of
the day (Eggert 1992). First, the beetles appear at the surface

Table 1 Species included in the
headspace analyses. N = number
of individuals of which volatiles
have been collected

Species N Wild-caught or Laboratory-bred Origin

Ptomascopus morio 16 lab Iwakura, Kyoto, Japan
Nicrophorus defodiens 7 lab Powassan, northern Ontario, CAN
N. defodiens 16 lab Moran, Wyoming, USA
N. humator 19 wild, lab Freiburg, Germany
N. interruptus 4 wild Gravières, Ardèche, France
N. interruptus 3 wild Gennetines, Allier, France
N. interruptus 3 wild Illmitz, Austria
N. interruptus 2 wild Freiburg, Germany
N. investigator 2 wild Bielefeld, Germany
N. marginatus 2 wild Lexington, Illinois, USA
N. orbicollis 17 wild, lab Lexington, Illinois, USA
N. pustulatus 14 wild, lab Lexington, Illinois, USA
N. tomentosus 10 wild, lab Lexington, Illinois, USA
N. vespillo 12 wild Freiburg, Germany
N. vespilloides a 11 wild, lab Freiburg, Germany

a data from Haberer et al. 2008
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of the substrate, run around and repeatedly attempt to fly.
Subsequently, the males choose an elevated site, remain there
more or less stationary and show the typical calling behavior:
head down, hind legs extended, and abdomen extended and
raised. The last abdominal segment, otherwise mostly
concealed within the penultimate segment, is extruded and
may appear wet on the surface. After this calling phase, which
typically lasts 1–3 h, the beetles may move around again on
the surface before disappearing into the peat, where they re-
main inactive until the next calling period on the following
day. To identify volatiles emitted only during calling, head-
space samples obtained from calling beetles were compared to
samples taken before or after calling.

Chemical Analysis The SPME-fiber, loaded with volatiles,
was inserted at the injection port of a gas chromatograph
(HP series 6890, Hewlett Packard, Palo Alto, California)
equipped with a DB-5 column (30 m × 0.25 mm × 0.25 μm,
J & W, Folsom, California), coupled to a quadrupole mass
spectrometer (HP series 5973, Hewlett Packard, Palo Alto,
California), which was run at 70 eV. The injection temperature
was 250 °C, and the column temperature was ramped from
50° to 250 °C by 10 °C/min with a final hold of 5 min at
250 °C. Chemical structures of target compounds were in-
ferred from diagnostic fragments and compared to those re-
ported in the literature. Retention times, retention indices, and
fragmentation patterns of the substances detected were com-
pared to those of authentic reference compounds: ethyl (9Z)-
hexadecenoate (Tokyo Chemical Industry Co., Japan),
(2E,6Z)-dodecadienal, ethyl tetradecanoate, geranylacetone,
n-heptadecane, isovaleric acid (Fluka GmbH, Switzerland),
and methyl geranate (Chemos GmbH, Germany). Racemates
of 4-methylheptanoic acid and 4-methyloctanoic acid were
synthesized according to Joung et al. (1998) and esterified
according to laboratory standards - the plotted 70 eV mass
spectrum of the new isoamyl 4-methylheptanoate is shown
in the Supplement, along with its interpretation and a com-
ment. 3-Methylundecan-2-one was synthesized according to
Midgley and Thomas (1987); fuscumyl acetate was synthe-
sized from geranylacetone according to Li et al. (2003); 3-
methyl-2-oxopentanoic acid was obtained by acidification of
sodium 3-methyl-2-oxopentanoate (Aldrich, Gillingham,
Dorset, UK) with acetic acid; (9Z)-octadecenal and
hexadecanal were synthesized by oxidation of the correspond-
ing alcohols (Roth, Germany) according to Corey and Suggs
(1975). (2E)-Dodecenal was provided by Prof. Wittko
Francke, Univ. Hamburg. Methyl (2E,6E)-farnesoate and
(E,E)-farnesylacetone were tentatively identified by compar-
ing their mass spectra with reference data reported in the
Wiley data base of mass spectra (Wiley & Sons Inc., 6th edi-
tion). Structures of 3-methyldodecan-2-one and 3-
methyltridecan-2-one were identifed according to their mass
spectra, which were very similar to that of 3-methylundecan-

2-one, which we had identified by means of a synthetic refer-
ence compound.

Results

Volatiles Detected in theHeadspaces of Calling Beetles and
Proportions in Released Blends Volatiles emitted by males
of Nicrophorus spp. comprise 5 alkyl 4-methylalkanoates, 5
terpenoids, 7 saturated and unsaturated acetogenins, and 2
compounds that may be related to amino acids (Table 2). P.
moriomales do not produce any of the compounds detected in
Nicrophorus spp. but emit three 3-methylalkane-2-ones
(Table 2), among which 3-methylundecan-2-one is quantita-
tively dominant (Fig. 1i).

The number of volatiles released by males range from two
in N. defodiens, N. humator, N. marginatus, N. vespillo, and
N. vespilloides to a maximum of seven components in
N. pustulatus (Table 2, Fig. 1).

Esters of 4-methyl-branched carboxylic acids were detected
in eight of the ten Nicrophorus species included in this study
(Table 2). Ethyl 4-methylheptanoate is released by six species,
and predominant among the volatiles of N. pustulatus,
N. tomentosus, and N. vespilloides (Fig. 1c, d, h).
N. investigator also produces ethyl 4-methylheptanoate, along
with (2E,6Z)-dodecadienal (Table 2), but information on the
ratio of these compounds in the blend cannot be provided here,
because the ratios strongly differed between the two specimens
available. In the three-component blends obtained from two
male N. marginatus (Table 2), we found primarily ethyl 4-
methyloctanoate but also small amounts of ethyl 4-
methylheptanoate and ethyl (9Z)-hexadecenoate. As in
N. investigator, more individuals of this species must be ana-
lyzed to reliably estimate volatile proportions. In all studied
Nicrophorus species, the quantitative composition of blends
was highly variable among individuals (Fig. 1), especially in
N. defodiens, N. tomentosus, N. vespillo, and N. vespilloides
(Fig. 1a, d, g, h). However, P. morio showed little interindivid-
ual variation (Fig. 1i).

With the exception of N. humator and N. vespillo, all
Nicrophorus species released acetogenins or terpenoids
(Table 2). N. vespillo released isoamyl 4-methylheptanoate
as a unique ester.

Discussion

Our study yielded six principal results: (1) None of the species
in the survey releases a single-component signal, but blends,
containing two to seven compounds. (2) The volatiles in-
volved are chemically diverse; they represent different classes
of compounds and, according to their carbon skeletons are
produced via distinct biosynthetic pathways. (3) P. morio

J Chem Ecol (2017) 43:971–977 973



males release a blend of three 3-methylalkan-2-ones, but none
of the compounds found in Nicrophorus. (4) Several of the
compounds present in Nicrophorus are not unique to a single
species, but occur in several species. (5) The blends of some
but not allNicrophorus species include terpenoids. (6) In most
(8 of 10) of the Nicrophorus species studied, male volatiles
inc lude es te rs of 4-methyloctanoic acid and 4-
methylheptanoic acid, which may play a pivotal role in pher-
omone signaling in the genus. N. defodiens and N. orbicollis
do not produce such esters but terpenoids, whereas the two-
component blend of N. vespilloides contains both.

The occurrence of esters of 4-methyloctanoic acid and 4-
methylheptanoic acid is not restricted to Nicrophorus. These
esters have also been identified as male pheromone compo-
nents in several rhinoceros beetles species of the genus
Oryctes (Gries et al. 1994; Hallett et al. 1995; Rochat et al.
2004; Saïd et al. 2015). The terpenoids identified here are also
known as components of male pheromones of a number of
other organisms.Methyl geranate (N. pustulatus) occurs in the
pheromone of male stink bugs in the genus Chlorochroa (Ho
and Millar 2001a, b), as does methyl (2E,6E)-farnesoate

(N. pustulatus). This latter ester is also produced by male
African milkweed butterflies (Schulz et al. 1993) and male
African fruit fly species of the Ceratitis complex, where its
biological activity has been confirmed in electrophysiological
studies (Bř ízová et al . 2015). The nor-terpenoid
geranylacetone (N. interruptus, orbicollis, pustulatus, and
vespilloides), is found in many different organisms, ranging
from microorganisms and plants to insects and even mam-
mals. Fuscumyl acetate, the main volatile in N. defodiens is,
along with the corresponding alcohol, a male produced pher-
omone component of longhorned beetles (Silk et al. 2007;
Fonseca et al. 2010). Farnesylacetone (N. defodiens,
orbicollis, and pustulatus) is less common, but has been iden-
tified among plant seed volatiles attractive to beetles
(Adhikary et al. 2015), the dorsal gland of an antelope
(Burger et al. 1981), and the androgenic glands of male crabs
Carcinus maenas (Ferezou et al. 1977).

Deciphering the biological significance of these terpenes in
Nicrophorus will require more in-depth studies. Laboratory
and field tests are required to assess which of the volatiles
detected in this study are actually perceived by potential

Table 2 Volatiles emitted by calling males of ten Nicrophorus species and Ptomascopus morio

No RI a RI references Substances Species

Alkyl 4-methylacylates
[1] 1071 Methyl 4-methylheptanoate b pus
[2] 1156 Methyl 4-methyloctanoate b hum
[3] 1157 Ethyl 4-methylheptanoate b int, inv, vsp, mar, pus, tom
[4] 1241 Ethyl 4-methyloctanoate b mar, pus
[5] 1403 Isoamyl 4-methylheptanoate b vso

Terpenoids
[6] 1324 1322 (Adams 2007) Methyl geranate pus
[7] 1451 1452 (Babushok et al. 2011) Geranylacetone int, vsp, orb, pus
[8] 1573 1573 (Fonseca et al. 2010) Fuscumyl acetate b def
[9] 1783 Methyl (2E,6E)-farnesoate b, c pus

[10] 1913 1919 (Lazari et al. 2000) (E,E)-Farnesylacetone c def, orb, pus
3-Methylalkan-2-ones

[11] 1346 3-Methylundecan-2-one b P.mor
[12] 1436 3-Methyldodecan-2-one b, c P.mor
[13] 1536 3-Methyltridecan-2-one b, c P.mor

Acetogenins
[14] 1451 1465 (Dharmawan et al. 2009) (2E,6Z)-Dodecadienal int, inv
[15] 1469 1468 (Babushok et al. 2011) (2E)-Dodecenal int
[16] 1700 n-Heptadecane orb
[17] 1792 1795 (Adams 2007) Ethyl tetradecanoate inv
[18] 1970 Ethyl (9Z)-hexadecenoate inv, mar
[19] 1819 1817 (Babushok et al. 2011) Hexadecanal orb, tom
[20] 1999 (9Z)-Octadecenal int, inv, orb, tom

Other
[21] 843 827 (Adams 2007) Isovaleric acid int, inv, hum
[22] 928 3-Methyl-2-oxopentanoic acid b vso, orb

def N.defodiens, hum N.humator, int N.interruptus, inv N.investigator, mar N.marginatus, orb N.orbicollis, pus N.pustulatus, tom N.tomentosus, vsp
N.vespilloides, vso N.vespillo, P.mor Ptomascopus morio
aRI retention index calculated according to Van Den Dool and Kratz (1963) on a DB-5MS column (Agilent Technologies Inc., Santa Clara, California)
b stereochemistry to be clarified
c tentatively identified
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recipients and modify their behavior. To date, only phero-
mones identified from N. vespilloides and N. humator have
been tested in the field (Haberer et al. 2008; Haberer et al.
2011). However, these results must be interpreted with cau-
tion, since the stereochemical configuration of the respective
main components, ethyl 4-methylheptanoate and methyl 4-
methyloctanoate, has not yet been determined. This limitation
applies also to the two other alkyl 4-methylcarboxylates iden-
tified in this study.

The composition of pheromone blends produced by male
Nicrophorus appears to vary greatly between individuals. This
raises an important issue concerning the significance of such
variation: does it convey information about characteristics of
the signaling individual such as size, health, reproductive his-
tory, or nutritional status to the signal recipient? A recent study
on N. vespilloides revealed that such factors substantially af-
fect amounts and proportions in the two-component blend,
which significantly affect attractiveness to females
(Chemnitz et al. 2015). Moreover, it would be particularly
beneficial for females to distinguish between males that have
located a carcass and males that have not. A carcass, buried by
the monopolizing male, is olfactorily “invisible” or at least

difficult to detect (Trumbo and Bloch 2002), and thus, a se-
miochemical advertising ownership could be a way for the
male to communicate the presence of the hidden resource to
the intended receiver only (however, conspecific males and
congeners might be able to intercept this information, see
Eggert and Müller 1989). Candidate compounds for such ad-
vertising are substances derived from carcass material that the
beetles ingest during the first hours on the carcass. Isovaleric
acid, emitted by males of N. humator, N. investigator, and
N. interruptus may be such a candidate compound as it most
probably originates from the amino acid L-leucine. Its produc-
tion may, thus, depend on the access to a protein-rich diet.
Similar considerations apply to 3-methyl-2-oxopentanoic acid
in N. orbicollis and N. vespillo as this compound is the imme-
diate transamination product of isoleucine (Francke and
Schulz 1999). Further studies are necessary to test this
hypothesis.

Several Nicrophorus species show remarkable overlap in
blend constituents. Ethyl 4-methylheptanoate was detected in
six of ten species from Europe and America. Presumably, this
ester and esters of its homologue, 4-methyloctanoic acid, ap-
peared early in the evolution of burying beetles. The
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Fig. 1 Proportions of headspace components collected from calling
Nicrophorus spp. and Ptomascopus morio. Mean and standard error of
the integrated peak areas of the total ion chromatograms. The X-axis

shows relative proportions of volatiles generated by SPME-GC/MS-
analysis (peak areas in ion-chromatograms, data not corrected)
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distribution of species producing these esters across several
different major branches in the phylogenetic tree of
Nicrophorus (Sikes and Venables 2013) supports this hypoth-
esis. Several species appear to have evolved additional pher-
omone constituents that facilitate species-specific recognition.
The recent finding that breeding N. vespilloides females pro-
duce similar esters with as of yet unknown biological function
(Haberer et al. 2014) also suggests a long evolutionary history
of signaling with these esters in Nicrophorus. Apparently,
these substances are used to convey information in very dif-
ferent contexts. More chemical details such as the stereochem-
ical configurations of the compounds involved, but also fun-
damental ecological information about niche differentiation
and mating systems are needed to understand the evolution
of long-range recognition in burying beetles, especially
among sympatric species that share pheromone constituents.

Although P. morio produce 3-methylalkan-2-ones that are
chemically distinct from the compounds found in Nicrophorus
so far, a comparison of the likely biosynthesic pathways of
these ketones and that of the alkyl 4-methylcarboxylates in
Nicrophorus reveals a close relationship. The biosynthesis of
the 4-methylcarboxylates of Nicrophorus and of the 3-
methylalkan-2-ones of P. morio involve the incorporation of
propanoate, similar to the formation of the methyl group in
the 4 position of 4-methylnonan-1-ol, the sex pheromone of
the yellow mealworm, Tenebrio molitor (Islam et al. 1999).
The 4-methylacyl-motif, formed in a propanoate - acetate -
sequence as the final steps during chain formation, would di-
rectly yield 3-methylalkan-2-ones upon β-oxidation and decar-
boxylation of the corresponding 4-methyl-3-oxocarboxlic
acids. Ptomascopus is the sister genus to Nicrophorus (Sikes
and Venables 2013) and has retained some ancestral character-
istics in morphology (Peck 1982) and behavior (Suzuki and
Nagano 2006). Several studies on the breeding behavior of
P. morio have been carried out (Trumbo et al. 2001; Suzuki
et al. 2005; Nagano and Suzuki 2008), but we are just begin-
ning to understand its mating system (Suzuki et al. 2005).
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