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Abstract Root volatile organic compounds (VOCs), their
chemistry and ecological functions have garnered less atten-
tion than aboveground emitted plant VOCs. We report here on
the identification of VOCs emitted by barley roots (Hordeum
vulgare L.). Twenty nine VOCs were identified from isolated
21-d-old roots. The detection was dependent on the medium
used for root cultivation. We identified 24 VOCs from 7-d-old
roots when plants were cultivated on sterile Hoagland gelified
medium, 33 when grown on sterile vermiculite, and 34 on
non-sterile vermiculite. The major VOCs were fatty acid de-
rived compounds, including hexanal, methyl hexanoate, (E)-
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hex-2-enal, 2-pentylfuran, pentan-1-ol, (£)-2-(pentenyl)-furan,
(Z)-pent-2-en-1-ol, hexan-1-ol, (Z)-hex-3-en-1-ol, (E)-hex-2-
en-1-ol, oct-1-en-3-ol, 2-ethylhexan-1-ol (likely a contami-
nant), (E)-non-2-enal, octan-1-ol, (2E,6Z)-nona-2,6-dienal,
methyl (E)-non-2-enoate, nonan-1-ol, (Z)-non-3-en-1-ol, (E)-
non-2-en-1-ol, nona-3,6-dien-1-ol, and nona-2,6-dien-1-ol. In
an olfactometer assay, wireworms (larvae of Agriotes sordidus
Illiger, Coleoptera: Elateridae) were attracted to cues emanat-
ing from barley seedlings. We discuss the role of individual
root volatiles or a blend of the root volatiles detected here and
their interaction with CO, for wireworm attraction.

Keywords Volatile organic compound - Barley - Roots -
Solid-phase-micro-extraction - Agriotes sordidus -
Root - insect interactions

Introduction

A complex blend of volatile organic compounds (VOCs) is
emitted by plants, ranging from fatty acid derivatives, terpe-
noids, and sulfur compounds to phenylpropanoids (Qualley
and Dudareva 2009). The emission can be constitutive and/or
induced by environmental or physiological stresses (Maffei
2010). Depending on the stress type (wounding, herbivory,
pathogen attack, dehydration, (UV) light, heat, etc.), the com-
position and amounts of released VOCs can vary (Ferry et al.
2004; Filella et al. 2009; Jansen et al. 2011; Kuhn et al. 2004).

Plant VOCs are emitted by various organs (seeds, flowers,
leaves, stems, and roots). The rhizosphere provides a nutrient-
rich environment for many organisms, as up to 20 % of the
photosynthetically fixed carbon is released by roots (Barber
and Martin 1976). Vertebrates, invertebrates, plants, fungi,
and bacteria all share the same underground space in which
VOC-mediated interactions can take place and even affect
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aboveground plant insect interactions (Effmert et al. 2012;
Johnson et al. 2009; Soler et al. 2012; Wenke et al. 2010);
however, the belowground VOCs potentially responsible for
such interactions have to date been partially neglected, due to
technical limitations. The release of root VOCs can mediate
various interactions: direct or indirect defense of roots against
herbivores (Ali et al. 2011; Rasmann et al. 2005, 2012a), plant
— plant competition (Ens et al. 2009; Jassbi et al. 2010; Viles
and Reese 1996), resistance of roots against pathogens (Cobb
et al. 1968; Kalemba et al. 2002; Vilela et al. 2009), and
symbiotic interactions (Asensio et al. 2012; Paavolainen
et al. 1998). Root derived compounds can also attract herbi-
vores (Wenke et al. 2010), and their emission tends to decrease
in unattacked conditions (Piesik et al. 2011b), thus limiting the
energy costs incurred by their synthesis (Herms and Mattson
1992; Rasmann et al. 2012a, b). Carbon dioxide gradients are
an ubiquitous belowground herbivore attractant, but other
volatile and non-volatile semiochemicals also are involved
in directing herbivores towards roots (Johnson and Nielsen
2012; Reinecke et al. 2008; Weissteiner et al. 2012). Several
studies have shown the attractive role of root-emitted VOCs
towards arthropods. For example, di- and trisulfides produced
by Allium cepa are potent attractants of the larvae of the fly
Delia antiqua (Matsumoto 1970); VOCs released by damaged
oak roots are perceived by the larvae of the forest cockchafer
Melalontha hippocastani and attract the larvae in natural soil
(Weissteiner et al. 2012); volatiles of ryegrass roots attracted
the larvae of Costelytra zealandica (Sutherland and Hillier
1972). Arthropods can differentiate between root VOCs re-
leased from plants that differ with respect to physical or
physiological traits (Aratchige et al. 2004; Tapia et al. 2007;
Witcosky et al. 1987); they also can differentiate between root
VOCs released by different varieties of plants (Guerin and
Ryan 1984).

In this study, we characterized VOCs emitted by isolated
barley roots. Root emissions from barley cultivated under
sterile and non-sterile conditions were compared in order to
characterize root emission in the absence of microorganisms.
Moreover, the development of an orientation test with the
larvae of the click beetle Agriotes sordidus llliger
(Coleoptera: Elateridae) led us to investigate the potential
semiochemical role of the VOC blend emitted by isolated
barley roots. The general working questions were: (i) How
complex is the volatile blend of isolated barley roots? (ii)
What is the impact of microorganisms on the volatile blend
released by barley roots? (iii) How attractive is this volatile
blend of barley roots to wireworms?

Larvae of Agriotes are polyphagous wireworms that feed
on the roots of a variety of crops, including cereals (Johnson
et al. 2009; van Herk and Vernon 2013). Baits based on
germinating wheat and barley seeds have been proven to be
efficient (Parker 1996). However, few studies of wireworm -
barley interactions are available, although barley is the
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second most important crop in Europe (production, 2010,
FAOstat). As for most of the root herbivores, the CO, gra-
dient is the general search trigger for wireworms. (Doane
et al. 1975; Johnson and Nielsen 2012). Plant-derived VOCs
can affect the behavior of root-feeding insects, while their
identity and role in wireworms’ chemical ecology still has to
be revealed (Barsics et al. 2013; Johnson and Nielsen 2012).
Since such signals could be potent wireworm attractants or
repellents, we focused on the release of VOCs from barley
roots and tested the attraction of wireworms to barley roots.

Methods and Materials
Plant Material

Growth Conditions Barley plants (var. Quench, Jorion, Bel-
gium) were grown at 22 °C under LED light (95 pmol m %
sec ') with a 20/4 h L/D photoperiod and 65 % RH.

Cultivation of 21-d-Old Plants Caryopses were sown at a
density of 10 plants per pot (7 1) in vermiculite (Sibli,
Belgium). Plants were watered daily and fertilized x 3 per
week with aqueous Hoagland’s solution (Hoagland’s NO.2
basal salt mixture, Sigma, Belgium).

Aseptical Cultivation of 7-d-Old Plants Barley caryopses
(28 g) were sterilized as described by Lanoue et al. (2010).
Briefly, caryopses were incubated in 50 ml HSOy4 (50 % v/v)
for 1 h and washed x 5 in 150 ml sterile bidistilled water.
Caryopses then were shaken for 20 min in 80 ml AgNO;
(1 % w/v) and washed successively with 150 ml sterile NaCl
(1 %, w/v), 150 ml sterile bidistilled water, 150 ml sterile
NaCl (1 %, w/v) and x 5 with 150 ml sterile bidistilled water,
before sowing: (a) on 124 cm? Petri dishes filled with
Hoagland medium (Hoagland’s NO.2 basal salt mixture,
Sigma, Belgium), solidified with 0.8 % agar (w/v; Plant agar,
Duchefa Biochemie, Belgium) or (b) on vermiculite with
Hoagland solution (Hoagland’s NO.2 basal salt mixture,
Sigma, Belgium).

(a) Sterile caryopses were placed on Hoagland’s medium
with the ventral furrow underneath and left to grow for 7 d
vertically in a growth chamber. (b) Sterile caryopses were sown
aseptically in 2 1 jars (le Parfait, Villeurbanne, France), filled
with 600 ml sterile vermiculite humidified with 300 ml sterile
Hoagland solution. Jars were closed and sealed with plastic film
and left for 7 d in a growth chamber. On the sampling day,
vermiculite isolated in the vicinity of the roots was incubated on
tryptic soy agar (Fluka, Belgium) for 1 wk at 37 °C to check
sterility. All glass, media and jars were sterilized.

As controls, non-sterile plants were grown for 7 d in 600 ml
vermiculite humidified with 300 ml Hoagland solution in 2 1
open jars.
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Analyses of Volatile Organic Compounds

Head-Space Solid-Phase-Microextraction (HS-SPME) Roots
were isolated from the substrate by shaking the plant gently
and were separated from the upper part of the plant by cutting
just below the caryopsis. Then 3 g+0.1 g of fresh entire roots
were placed in 20 ml SPME vials (Filter Service, Belgium)
fitted with a sealed cap (white silicone/blue PTFE, Filter
Service). Roots were not cut into pieces, and the sampling
conditions were the same for all samples. An internal stan-
dard (1 pl of a methanolic solution of butyl benzene (> 99 %,
Sigma-Aldrich (S.-A.), Belgium) at 0.86 mgl™") was added
on the surface of the vial without touching the roots. The
fiber (divinylbenzene/carboxen/polydimethylsiloxane
(DVB/CAR/PDMS (50/30 um); S.-A.) was the same for all
repetitions of the same experiment. The fiber was condi-
tioned before first use at 270 °C for 1 h. After equilibration
of the vial for 15 min at 30 °C, the fibre was inserted into the
headspace for 30 min at the same temperature.

Gas Chromatography—Mass Spectrometry (GC-MS) Analysis
After extraction, the volatile compounds were desorbed in
pulsed splitless mode for 10 min at 250 °C. GC-MS analyses
were performed on an Agilent Technologies 7890A GC
System coupled to an Agilent Technologies 5975C Mass
Spectrometer equipped with Wax factor four (Agilent tech-
nologies USA; 30 m x 0.250 mm L.D, 0.25 pm film thick-
ness). Helium was used as the carrier gas at a flow rate of
1.5 ml/min. The inlet temperature was 250 °C. Pulsed splitless
injection mode was used in a 1.5 mm HS-liner (injection pulse
pressure of 30 psi for 1 min). The following temperature pro-
gram was used: 40 °C for 4 min; 15 °C/min to 160 °C; 20 °C/
min to 250 °C; and 250 °C for 5 min; 30 °C/min to 300 °C; and
final hold at 300 °C for 15 min.

The MS was carried out in EI mode at 70 eV, source
temperature, 230 °C; quadrupole temperature, 150 °C; scanned
mass range: from 20 to 350 amu, threshold of 150 amu; scan
speed, 4.27 scans/s.

Chemical Identification Components were identified by com-
paring recorded mass spectra with the NIST and Wiley spectral
databases. Further identification was carried out by calculating
non-isothermal Kovats retention indices by injecting saturated
n-alkane standard solution (C;-Cs¢ 1,000 pg/ml in hexane,
Supelco, Belgium) under the same chromatographic condi-
tions, using the definition of Van den Dool and Kratz (1963).
Whenever possible, identifications were confirmed by
injection of available commercial standards. References of
commercial standards are listed in the supplemental text. As
the same chromatographic conditions with the same column
were used for the analyses of the standards, identification of
the detected compounds in the headspace of barley roots was
confirmed by comparing their retention data and mass

spectra with those of the commercially available reference
compounds.

Peaks which showed a signal/noise ratio of three com-
pared to the blank controls were identified and integrated
manually with the Agilent MSD Chemstation. The relative
area of a target compound was calculated by dividing the
peak area of this compound by the total peak area of the
sample. Statistical analysis was performed on the relative
area with a two-tailed paired t-test after having checked that
the data were normally distributed with Kolmogorov-
Smirnov test.

Concentration Estimation Samples were extracted using an
autosampler (MPS2, Gerstel) equipped with a sample tray
holder and a needle heater for heating the vials. Gerstel
Maestro software was used for autosampler control. Standards
and dilutions were always handled with a Hamilton syringe
with a volume of 1 pl. The molecules identified by GC-MS
were grouped into the following classes: alkanes, aldehydes,
alcohols, esters, sulfur, and furan compounds. In each class, a
representative compound was selected as the basis of the cali-
bration curves: n-tetradecane (S.-A.; 99 %), (£)-non-2-enal
(SAFC; > 93 %), (E)-non-2-en-1-ol (SAFC; > 96 %), methyl
benzoate (Fluka; > 99.5 %), dimethyl sulfoxide (S.-A.; >
99,9 %), and 2-pentylfuran (SAFC; 97 %). The calibration
curves included at least four points and were performed in
triplicate (Supplemental Table S1). For each measurement,
the experiment was carried out according to the following
process. A stock solution was diluted in methanol by using
volumetric glassware. One microliter of each dilution then was
placed in a vial (20 ml) with 1 pl of the internal standard
(butylbenzene 0.86mgl ' in methanol). After an equilibration
period of 15 min at 30 °C, the fiber was exposed for 30 min (at
30 °C) before analysis as described above.

Wireworms Olfactory Orientation Bioassay

Wireworms were collected in November 2011 in Montardon
(Pau, France), from the soil of grass edging a fallow plot and an
untreated wheat field. Morphological criteria described in the
keys of Cocquempot et al. (1999) and Pic et al. (2008) allowed
Agriotes sordidus individuals to be identified. Each larva was
kept individually in an 80 ml capped vial, with a mix of leaf mold
and vermiculite (1/1 v/v, 16.5 % water) and a mix of meadow
seeds (0.130-0.160 g, Prelac Bio, SCAR, Belgium). All vials
were kept in the dark at 21.2+0.7 °C. Seven days before being
tested, wireworms greater than 10 mm in length were individu-
ally isolated in vermiculite (16.5 % water). Wireworms were
selected for testing from the isolated individuals according to
their apparent activity: those visibly in the pre-molting or post-
molting phases were excluded from the tests. In total, 60 larvae
were submitted to the olfactometry bioassay.
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Table 1 SPME analysis of VOCs emitted by excised 21-d-old barley roots

CAS number (V' TUPAC Name Identification @  Sample RT®  Reference RT® A B
Relative area Estimation
(%) £SD; n=5 (ng/g RFW + SD, n=5) ®
75-18-3 Dimethyl sulfide STD N.D. 844° 25,8+6,3 38.8+9.1
66-25-1 Hexanal STD 1075 1074° 22+04 9.9£1.0
106-70-7 Methyl hexanoate STD 1179 1185° 1.1+£0.9 0.13£0.07
6728-26-3 (E)-Hex-2-enal STD 1206 1207* 0.59+0.32 1.7£0.7
3777-69-3 2-Pentylfuran STD 1213 1229% 27.9+5.0 42+0.5
71-41-0 Pentan-1-ol STD 1246 12444 1.23+0.48 0.52+0.11
70424-13-4 2-(Pentenyl)furan” MS 1287 - 1.01+0.22 0.46+0.03
1576-95-0 (2)-Pent-2-en-1-ol STD 1311 13134 0.33£0.06 0.15+0.02
110-93-0 6-Methyl-hept-5-en-2-one  STD 1325 1319° 0.55+0.44 -
111-27-3 Hexan-1-ol STD 1345 1351° 9.27+1.94 3.8+0.5
928-96-1 (Z)-Hex-3-en-1-0l STD 1374 1351% 0.55+0.14 0.24+0.02
928-95-0 (E)-Hex-2-en-1-ol STD 1389 1400" 2.26+0.75 0.9+0.2
3391-86-4 Oct-1-en-3-ol STD 1438 1420* 0.22+0.04 0.09+0.02
104-76-7 2-Ethylhexan-1-ol STD 1483 1504# 2.59+1.71 1.0£0.3
18829-56-6 (E)-Non-2-enal STD 1524 1540* 1.71+0.93 7.6£2.0
67-68-5 Dimethyl sulfoxide STD 1551 1553" 0.91+0.58 1.4£0.5
111-87-5 Octan-1-ol STD 1552 1557 0.51£0.25 0.22+0.04
557-48-2 (2E,6Z)-Nona-2,6-dienal ~ STD 1575 1597 0.66+0.20 2.4+0.4
111-79-5 Methyl (E)-non-2-enoate ~ STD 1602 - 0.41+0.16 0.09+0.02
93-58-3 Methyl benzoate STD 1614 1600* 3.75+2.12 0.92+0.27
143-08-8 Nonan-1-ol STD 1656 1678¢ 0.58+0.08 0.26+0.03
10340-23-5 (Z2)-Non-3-en-1-ol STD 1680 1682" 4.44+2.98 1.8+0.5
31502-14-4 (E)-Non-2-en-1-o0l STD 1710 1722 3.29+2.61 1.3+0.5
76649-25-7 Nona-3,6-dien-1-ol" MS, RI 1733 1759* 0.79+0.46 0.33+£0.07
7786-44-9 Nona-2,6-dien-1-ol* MS, RI 1764 1776' 1.18%0.61 0.49+£0.10
124-25-4 Tetradecanal STD 1968 1940™ 0.62+0.16 2.2+0.5
112-53-8 Dodecan-1-ol STD 1971 1970" 0.30+0.07 0.14£0.02
104-61-0 Dihydro-5-pentyl-2(3H)-  STD 2022 2024 0.71+£0.38 0.16+0.05
furanone
629-80-1 Hexadecanal” MS, RI 2052 2020° 1.94+1.09 8.3+2.3

' CAS number of compounds listed in order of elution from a WAX factor 4 polar column. Source CAS: Scifinder® (Chemical Abstracts Service,
Colombus, USA); @ Identification methods: MS, comparison of mass spectra with those of Nist08 and Wiley 275 libraries; RI, comparison of
retention indices with those reported in the literature (sources in section ); STD, comparison of retention time and mass spectra of available
standards; @ Retention indices on WAX factor 4 column, experimentally determined using a saturated n-alkane standard solution C7-C30;
Retention indices taken from * Jennings and Shibamoto 1980; ®Sanchez-Ortiz et al. 201 2; the others are taken from Pherobase : © Varming et al. 2004,
9'Umano et al. 2002, € Chung et al. 1993, "Ruther 2000, € Weingart et al. 2011, " Wei et al. 2001, ' Valim et al. 2003, I Ferreira et al. 2001, * Hayata
et al. 2003, ' Weckerle et al. 2001, ™ Chisholm et al. 2003, " De Marques et al. 2000; ° Kohara et al. 2006, ® Estimation of the concentration was
based on the response curves calculated for one representative molecule of the chemical family. This approach involved performing six calibration
curves linear in the concentration ranges tested (correlation coefficients, always>0.99) # Compounds tentatively identified. Columns A and B
represent respectively the relative area and concentration estimation of the VOCs

The bioassay set up (Fig. S1) consisted of a glass pipe
(32 cm long, 3.6 cm internal diameter), with both extremities
closed with GL45 caps (Duran, Belgium), which allowed the
set-up to be filled and emptied with substrate. Two GL14
holes (Duran, Belgium) were present at a distance of 3 cm
from both extremities to allow the introduction of stimuli
from both sides. The entry point for the larvae was provided
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by a third lateral hole in the middle of the pipe, diametrically
opposite to both lateral connections.

The set-up was filled with wet vermiculite, which was
removed to a depth of 4 cm at the two ends of the equipment
to leave room for the bait and control compartments (final
vermiculite content: 64.4+0.9 g, 53.0+0.4%water). In each
of the pipes, the bait consisted of the roots of 10 developed
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barley seedlings gently removed from growth medium be-
fore they were introduced into the bait zone. The roots were
positioned through one of the lateral tubular perforations at
the distal end of the olfactometer. Plants were held in posi-
tion with both aluminum foil and PTFE tape (EGEDA,
Belgium). Thus, roots were the only plant material exposed
to wireworms, as the rest of the plant was isolated out of the
bioassay. Blank culture medium (240 mg — the average
amount of medium still upon the roots after extraction from
the medium) was introduced into the opposite side of the bait
compartment. To prevent any contact between a wireworm
and the roots, a gauze (3.6 cm diam., stainless steel; width:
0.042 mm; mesh: 0.036 mm; Haver, Belgium) was used to
separate the substrate from the bait and control compart-
ments. Tests were performed in batches of 10 olfactometers
at a room temperature of 21.9+0.5 °C.

Bioassays were performed in the dark. Each wireworm
was introduced individually 40 min after the bait was set in
the system, and a red plastic sheet was placed on each
bioassay during the test in order to suppress light biases.
The position (left or right) of the baits on the laboratory
bench was randomly assigned and noted, as was the position
of the baits with respect to the side by which the olfactom-
eters had been filled with substrate.

The position of the wireworms was recorded after 60 min.
Any wireworm located within a distance of 3 cm from the
entry point was considered as non-responding. We performed
replicates until 50 responses were recorded, which took a total
of 60 tested individuals. All material was cleaned with water
and norvanol (VWR, Belgium) between each test. Observed
frequencies relating to the choice of wireworm larvae in dual
choice bioassays were compared to corresponding theoretical
frequencies by applying a x> goodness-of-fit test, using
Minitab® release 14.2. Potential sources of bias (bait position
on the laboratory bench and bait position with regard to the
entry side of the substrate) were tested with Fisher’s exact test
for count data (one factor, four modalities) using R software,
version 2.14.1 (2011-12-22; Development Core Team 2008).
The orientation bioassay also was performed ‘blank-to-blank’,
i.e. without baits and controls, in order to assess the nature of
wireworm behavior in an odor-free testing environment. The
results were treated with a x> goodness-of-fit test with regard
to wireworm position. The potential impact of the entry side of
the substrate on the results was tested with a x> test for
independence, using Minitab® release 14.2.

Results

Identification of Volatile Organic Compounds in 21-d-Old
Barley Roots We detected 29 volatile compounds in the
headspace of isolated 21-d-old barley roots (Table 1, N=5
replicates). Confirmation of the occurrence of 24 VOCs was
possible by comparison with the NIST 08 and Wiley 275 k

databases, the library retention index, and standards. The reten-
tion index (RI) of dimethyl sulfide could not be precisely
calculated as it was eluted in the very early phase of the
chromatogram. Relative experimental RI deviations from the
database’s RI ranked from —1.4 to 1.7 %. Relative quantities
were determined by determining the area of the compound peak
relative to the total peaks area. In order to estimate the amounts of
the 29 compounds listed in (Supplemental Table S1), response
curves were calculated for major chemical families present in the
list by using one representative compound of each family. This
approach involved performing six linear calibration curves linear
in the concentration ranges tested, as evidenced by the values of
correlation coefficients, always>0.99 (Table 1).

In Figure S2 and the supplemental text, the development
of the SPME-GC-MS method is described. An optimized
protocol for SPME analysis of root volatiles was developed.
An important point was the use of the DVB/CAR/PDMS
fiber with a 50/30 um coating, and a fixed equilibration and
sampling time. Exactly 3 g root material were used, and a
wax column proved to be suitable for separation of the
volatiles. Figure S3 shows a total ion current chromatogram
of a headspace sample of 21-d-old isolated barley roots.

Barley Root VOCs After Seven Days of Culture on Hoagland
Gelified Medium Table 2 provides a list of the compounds
that were emitted by 7-d-old barley roots cultivated on
Hoagland gelified medium. Confirmation of the occurrence
of 16 VOCs was possible by the injection of a standard, and 4
VOCs could be tentatively identified by their theoretical RI.
Estimation of the amount of VOCs released was performed
in the same way as described for the data shown in Table 1.

Barley Root VOCs After Seven Days of Culture in Sterile/
Non-Sterile Conditions The potential contribution of micro-
organisms present in the environment of the roots in the
degradation or emission of the VOCs was assayed by culti-
vating plants for 7 d in sterile vermiculite (ST) and in non-
aseptic (NS) vermiculite fertilized with Hoagland solution.
Thirty-three VOCs were identified from the roots of ST
plants, 34 were detected as emitted from the roots of NS
plants (Table 3, Fig. S4).

Statistical analysis of the relative area of VOCs emitted by ST
and NS roots showed that six VOCs (pentan-3-one, pent-1-en-3-
ol, 2-ethylhexan-1-ol, dodecan-1-ol, dihydro-5-pentyl-2(3H)-
furanone, hexadecanal) were differentially detected (two-tailed
paired t-test; P<0.05) in NS compared to ST conditions
(Table 3), whereas (E)-pent-2-en-1-ol and methyl-dodecanoate
were found only in the headspace of roots of NS plants.

Wireworms Olfactory Orientation Bioassay Seven-day-old
barley roots grown in axenic conditions were used as volatile-
emitting sources (10 plantlets/olfactometric test) for an orienta-
tion bioassay of the belowground pest insect Agriotes sordidus.
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Table 2 SPME analysis of VOCs emitted by excised 7-d-old barley roots cultivated on Hoagland gelified medium

CAS number V' TUPAC name Identification @  Sample RI® Reference RI® A B
Hoagland gelified Hoagland gelified
medium medium
Relative area Estimation
(% £SD,n=5)  (ng/g RFW £ SD, n=5) ®

75-18-3 Dimethyl sulfide STD 712 844° 5,03£1,03 13,55+4,51

3777-69-3 2-Pentylfuran STD 1212 1229% 24,33+2,89 7,39+£2,61

100-42-5 Ethenylbenzene” MS, RI 1237 1273™ 12,86+0,88 -

70424-13-4 2-(Pentenyl)furan” MS 1284 - 0,98+0,30 1,22+0,16

1576-95-0 (2)-Pent-2-en-1-ol STD 1305 13134 0,66+0,10 0,56+0,16

- Oct-6-en-2-one” MS 1313 - 0,98+0,25 -

111-27-3 Hexan-1-ol STD 1339 1351F 4,81+0,25 3,68+1,27

928-95-0 (E)-Hex-2-en-1-ol STD 1391 1400° 0,93+0,03 0,77+0,25

3391-86-4 Oct-1-en-3-ol STD 1437 1420* 1,86+0,52 1,42+0,42

1569-60-4 6-Methylhept-5-en-2-0l*  MS 1451 - 1,68+0,43 1,28+0,36

104-76-7 2-Ethylhexan-1-ol STD 1447 15042 1,16+0,17 0,92+0,24

1731-84-6 Methyl nonanoate” MS, RI 1479 1487° 1,62+0,37 0,66+0,16

18829-56-6 (E)-Non-2-enal STD 1519 1540% 2,86+0,36 23,35+7,53

67-68-5 Dimethyl sulfoxide STD 1543 15530 0,45+0,15 —

111-87-5 Octan-1-ol STD 1547 1557 0,94+0,15 0,77+0,26

557-48-2 (2E,6Z)-Nona-2,6-dienal STD 1550 1597 1,05+0,21 7,55+5,32

111-79-5 Methyl (E)-non-2-enoate  STD 1592 - 4,50+0,92 1,95+0,47

93-58-3 Methyl benzoate STD 1603 1600* 2,93+1,01 1,19+0,24

143-08-8 Nonan-1-ol STD 1651 1678 1,94+0,27 1,55+0,55

10340-23-5 (Z2)-Non-3-en-1-ol STD 1673 1682% 1,91+0,40 1,57+0,73

31502-14-4 (E)-Non-2-en-1-o0l STD 1704 1722! 11,81+3,84 9,68+5,86

7786-44-9 Nona-2,6-dien-1-ol* MS, RI 1758 1776 3,27+0,76 2,67+1,36

124-10-7 Methyl tetradecanoate STD 1974 2034° 2,05+0,22 0,92+0,92

104-61-0 Dihydro-5-pentyl-2(3H)- STD 2010 2024 0,90+0,33 0,32+0,05

furanone

M CAS number of compounds listed in order of elution from a WAX factor 4 polar column. Source CAS: Scifinder® (Chemical Abstracts Service,
Colombus, USA); @ Identification methods: MS, comparison of mass spectra with those of Nist08 and Wiley 275 libraries; RI, comparison of
retention indices with those reported in the literature (sources in section ®); STD, comparison of retention time and mass spectra of available
standards; @ Retention indices on WAX factor 4 column, experimentally determined using a saturated n-alkane standard solution C7-C30;
Retention indices taken from * Jennings and Shibamoto 1980; ® Tressl et al. 1978; © Varming et al. 2004, 4Umano et al. 2002, € Choi 2003, fRuther
2000, & Weingart et al. 2011, " Wei et al. 2001, * Valim et al. 2003, Ferreira et al. 2001, ¥ Hayata et al. 2003, ' Weckerle et al. 2001, ™ Sanz et al. 2001,
) Estimation of the concentration was based on the response curves calculated for one representative molecule of the chemical family. This approach

involved performing six calibration curves linear in the concentration ranges tested (correlation coefficients, always>0.99). tr: trace; N.D.: not
determined; # Compounds tentatively identified. Columns A and B represent respectively the relative area and concentration estimation of the VOCs

We tested N=60 larvae; 10 larvae did not respond (16.5 %),
35 oriented towards barley roots, and 15 towards the control
(*=8; P=0.005).

The bait position with regard to both the substrate entry
side and the left or right position of the roots on the labora-
tory bench did not significantly affect the response of the
wireworms (Fisher’s test of exact count, (P=0.861). The
blank-to-blank experimentation confirmed the absence of
biases in the experimental set-up. Fifteen wireworms orien-
tated to the left, eleven to the right (x*=0.615; P=0.433),
and nine did not respond (26 % of the tested individuals).

@ Springer

The x test for independence showed that the entry side of the
substrate had no impact on the results (x*=1.418; P=0.214).

Discussion

We developed an SPME method that enabled us to detect a
wide range of VOCs released by barley roots. Furthermore,
our method allowed the estimation of the amounts of VOCs
emitted from roots. The physicochemical properties of a



1135

J Chem Ecol (2013) 39:1129-1139

1T°0F9%°0 01°0F2T0 LTOFLS0 LT'0FIE0 w0L6T  L961 ars [0-1-ue0opo@  8-€S-TI1

#00FLI0 LOOFIT0 80°0F1C°0 0T'0FLED (€61 €681 ars [oueyIR[AuaYd-g 8-C1-09

£0°0F€0°0 - €1°0FFE0 - L£181  voLI SN ,VeoUBdPOP [APON  0-78-111

8¥ IFE0°T I TF6H €0°CF86'E Y0TFISE OLLT  8SLI IS 40-1-USIP-9°T-BUON  6-7H-98LL

ST0FLE O 9%°0F 6¥°0 TI'0F€9°0 I IF0I°T 4OSLI IvL1 SN 410-1-USIP-9°C-BUON  €-€T-S089S

SPSFIVL ISTEFIFS 66°LF10°ST LT SFY6°CI CTLT YOLI ars [0-]-Ud-Z-UON-(F)  #-+1-C0STE

6L°0FT61 PEOFEET 89°0F€6°E 0€°0F6T°E 4C891 €91 ars [0-1-U-¢-UON-(Z) ~ S-€T-0¥€01

SI'0F9L0 0€0FI80 TI0FEST LEOF88] 58L91 1591 ars [o-]-UBUON  8-80-€¥1

LT0OF8H0 1T°0F0t°0 TS0F06°T YE0FLO 0091 €091 ars areozuaq (AR €-85-€6

90°0F¥C0 80°0F81°0 0Z°0F90°T STOF00°T - T6SI airs 91eoUS-Z-UOU~(F]) [APON  G-6L-T11

0€TFLEE 8F 1F0ET LTOFIT y1°0F€0°] (L6ST  0SSI ars [BUSIP-9°Z-BUON~(Z9'HT)  T-8%-LSS

STOFES0 L6'0FSI°T €€°0FTO1 96T¥89°C WLSST  L¥SIT ars [o-]-ue100 G-L8-TT1

- - €8°0F06°0 9P IFIET 4ESST  €¥ST ars aprxojns [Ayouiq 6-89-L9

S6°LFLYTI SO'YFSLII 16°0F¥9°C 77 0F€0°E OPST 6161 ars [BUS-Z-UON~(7)  9-95-67881

67 0FI16°1 1S°0F66°0 WIFLIY 80°1F9C°C sP0ST  Lbbl airs [0-T-UeXUIAPH-T  L-9L-+0T

TI0FTE0 0 0FLS0 SE0F09°0 LT1FI] - Iswl airs S10-T-u0-G1dYIAMOIN-9  $-09-69S T

¥0°0FTT0 [1°0FST0 60°0F€E0 LY 0FFS 0 - ol airs [o-1-ueidol  €-LT-T11

80°0F8€E0 €1°0F0¥0 90°0FL9°0 €€0FLS0 0CTPT LEVI airs [0-€-U-1-P0  $-98-16€€

6T°0FL80 LT0F08°0 8TOFEL'T 1T°0F98°1 ;00%1 16€1 ars [0-]-Ud-T-X0H-(7)  0-56-8C6

89°0FLTC LS'0F80°C 8E0FOLY 9 0FETS SIS€l 6€€1 ars [0-[-UBXSH €LT111

- - 8TOFILO 0€°0F69°0 - €Il SN ,AU0-Z-U3-9-100 -

€I'0F6C°0 60°0FLE0 0£°0F0S°0 LI'0OF6L0 pEIET  SOE1 ars [0-1-U2-Z-1Udd~(Z)  0-S6-9LST

SO°0FTE0 - 80°0F¥S°0 - wlOET  L6TI SN [0-1-U2-ZUed~(7)  1-96-9LS1

PO OFIT°T £0°0F90°1 SI°0F86°0 9T0F6L0 - $8C1 SN Juemy(jAuanuad)-z-(z)  #-€1-¥TH0L

0€°0F00°T 6T0FFI‘T LS'0FS0C 1S°0¥28°C PPl ovel ars [o-T-uejuag 0-1¥-1L

TTIFTES 9 TFILY €TOFTLLT TT°8F81°8C 6CC1  TITI ars uemy[Ajued-g  €-69-LLLE

- - 9T°0FTH0 YTOFLS0 LLOTL 6611 airs [eUd-Z-XoH-(7)  €-9T-8TLY

80°0FSE0 [T°0FLEO €1°0F09°0 60°0FLLO - €SIl SN JO-g-U-[ud  1-$T-919

€0°0FHC0 €0°0F81°0 EI°0F6£0 01°0FI€0 - ovll airs [o-1-ueing €-9€-1L

- TSIF6S'S - 6€°0F08°1 wPLOT 8901 airs [eUBXoH 1-§2-99

- - 0Z°0FS6°0 01°0F19°0 qlL6 $96 airs QUO-€-UBUdJ 0-22-96

68 TIFE8HT 8 CIFHE0T 6L LFOTY] 66°LFYE Y] VP8 TIL ars opyns [Aypow( €-81-SL
© (S=u‘as¥ © (§=u‘asF (s=u
MY 8/3u) uonewnsgy MY 3/8u) uonewmnsy  (S=U ‘QSFY) BAIR 9ANRIY  ‘dSFY) Bl dAIR[OY
Q[119)S UON] 9[NOTULIOA Q[1I9)S ANOTUWLIOA Q[LI9)S UON] I[NOTULIOA Q[1I9)S ANOTULIOA
pazi[iey pueSeoq pazi[ie) puejSeoq pazi[io) pue[Seoy  Pazi[ie) pue[Seoy

wd I (p Tequmd

q Vv Qouoigjoy ordweg (o) UONBOYNUIP] dweu DVJNI SVD

SNINOTULIOA UT PAJRANIND S)00I AJ[Ieq P[O-P-/ PISIOXd Aq papruo sOOA JO SIsA[eue JINIS € dqEL

pringer

As



J Chem Ecol (2013) 39:1129-1139

1136
m
<
o
Q
=
[
—_~
bl
O =
[~7l-4
2
e
Ch
n &
g
=
2
=
Q
b=
=
=
Q
k=)
=
g
IS
S|
3|2
51
= [N
S| 2
g1 =2
a
15}
2 =
on [
2| 2
2| <E
=] O &
@Springer

Hoagland fertilized

Hoagland fertilized

vermiculite Sterile
5) Estimation (ng/g RFW  Estimation (ng/g RFW

Hoagland fertilized

Hoagland fertilized
vermiculite Sterile

vermiculite Non Sterile

vermiculite Non Sterile
Relative area (%=SD, n

Relative area (%=SD,

5©®

+SD, n

5) (5)

+SD, n

5)

0,15+0,06
0,10+0,04

0,05+0,09
0,0240,01

0,73+0,24
0,55+0,11

0,24+0,12
0,3540,12
0,390,19

2034¢
2024
2020°

1974
2010

STD

Methyl tetradecanoate

124-10-7

STD

Dihydro-5-pentyl-2(3 H)-furanone

Hexadecanal”

104-61-0

1,03+0,34

2023

MS, RI

629-80-1

M CAS number of compounds listed in order of elution from a WAX factor 4 polar column. Source CAS: Scifinder® (Chemical Abstracts Service, Colombus, USA); @ Identification methods: MS,

comparison of mass spectra with those of Nist08 and Wiley 275 libraries; RI, comparison of retention indices with those reported in the literature (sources in section “); STD, comparison of retention

time and mass spectra of available standards; @) Retention indices on WAX factor 4 column, experimentally determined using a saturated n-alkane standard solution C7-C30; (4)_ Retention indices
taken from * Jennings and Shibamoto 1980; ° Binder et al. 1990, Varming et al. 2004, ¢ Umano et al. 2002, © Choi 2003, "Ruther 2000, & Weingart et al. 2011, " Wei et al. 2001, ' Valim et al. 2003,

I Ferreira et al. 200 1, kHayata et al. 2003, ' Weckerle et al. 2001, ™ Sanchez-Ortiz et al. 2012, ™ De Marques et al. 2000, ° Kohara et al. 2006; ® Egtimation of the concentration was based on the

response curves calculated for one representative molecule of the chemical family. This approach involved performing six calibration curves linear in the concentration ranges tested (correlation

coefficients, always>0.99) tr: trace; N.D.: not determined; # Compounds tentatively identified. Columns A and B represent respectively the relative area and concentration estimation of the VOCs

VOC depend significantly on its chemical family. The sorp-
tion of a volatile compound on the SPME fiber depends on
the functional groups, vapor pressure, and constitution of the
headspace of the sample. This needs to be taken into account
when considering the quantitative values presented in Tables 1,
2, and 3 (columns B). These quantitative values are just esti-
mations based on calibration curves obtained from the analyses
of compounds that are considered representative for the re-
spective detected root volatile. Exact quantification of VOCs in
a mixture of approximately thirty compounds is quite difficult
as many VOCs have to be quantified simultaneously in the
volatile blend.

The major volatiles emitted by barley aerial parts were
described by Bukovinszky et al. (2005), Piesik et al. (2010,
2011a), and Wenda-Piesik et al. (2010), whereas VOCs
emitted by barley roots have not been reported previously
in the literature, nor has any description of their biological
activity been published. In our research reported herein, a
total of 29 compounds were identified from excised roots
after 21 days of growth. Estimation of the concentration of
barley VOCs on a fresh weight basis revealed a similar range
of emission when compared to that reported for barley leaves
under controlled conditions or for (3-caryophyllene in maize
roots (Hiltpold et al. 2011; Piesik et al. 2010). In our study,
VOC profiling was performed on roots separated from the
aerial parts of the plant. In order to validate the working
conditions, roots were wounded manually and changes in the
profile of VOCs were analyzed. This additional wounding of
roots resulted in a dramatic increase in the amount of VOCs
emitted with no major changes in the qualitative VOC profile
(data not shown).

VOC:s derived from polyunsaturated fatty acids constituted
the largest number of VOCs of the barley root blend. These
comprise hexanal, methyl hexanoate, (E)-hex-2-enal, 2-
pentylfuran, pentan-1-ol, (2)-2-(pentenyl)-furan, (Z)-pent-2-
en-1-ol, hexan-1-ol, (Z)-hex-3-en-1-ol, (E)-hex-2-en-1-ol,
oct-1-en-3-o0l, 2-ethylhexan-1-ol, (E)-non-2-enal, octan-1-ol,
(2E,6Z)-nona-2,6-dien-al, methyl (E)-non-2-enoate, nonan-1-
ol, (Z)-non-3-en-1-ol, (E)-non-2-en-1-ol, nona-3,6-dien-1-ol,
nona-2,6-dien-1-o0l, and dihydro-5-pentyl-2(3H)-furanone
(Min et al. 2003; Shiojiri et al. 2006). Most of these com-
pounds have been largely described in leaves as direct or
indirect defense molecules, produced in response to herbivory
or wounding (Arimura et al. 2000). Similarly to our study,
barley aerial volatiles emitted under unwounded conditions
were mainly C18 fatty acid derived volatile compounds, such
as (E)-2-hexenal and (Z)-hex-3-en-1-ol (Piesik et al. 2010;
Wenda-Piesik et al. 2010). Fatty acid derived VOCs might
have a basal level of emission under unattacked conditions.
With respect to root VOCs, quite similar compounds (hexanal,
(E)-2-hexenal, 2-pentylfuran, 2-ethylhexan-1-ol, octan-1-ol,
(E)-non-2-enal) were identified in grapevine ground roots
(Lawo et al. 2011). As these VOCs have been described in



J Chem Ecol (2013) 39:1129-1139

1137

the wound response, they are interesting candidates in the
study of root - wireworms interactions. As 2-ethylhexan-1-ol
has never been clearly demonstrated to be of plant origin, this
compound might be regarded as a plastifying contaminant
(Yi et al. 2009).

Apart from fatty acid derived VOCs, two sulfur-containing
volatile molecules (dimethyl sulfide and dimethyl sulfoxide)
were constituents of the volatile blend. These two compounds
have not previously been described as emitted by barley.
Dimethyl sulfide is released from wounded citrus and guava
leaves (Rouseff et al. 2008). Sulfur compounds have been
shown to be attractants of the fly Delia antiqua (Matsumoto
1970).

Surprisingly, we did not identify any terpenes, such as [3-
caryophyllene. Nevertheless, we detected exogenously ap-
plied monoterpenes and sesquiterpenes when using our
method (data not shown). This means either that barley roots
do not emit terpenes or emit them below detection limits.
This result is in agreement with the measurement of VOCs
emitted by barley leaves; no terpene was detected in the
headspace of non-wounded barley leaves; however, terpenes
were detected after wounding (Piesik et al. 2010; Wenda-
Piesik et al. 2010).

The impact of microorganisms in the measured volatile
blend of barley roots was low since 32 VOCs out 34 were the
same between the NS and ST roots (Table 3). Similarly, 28
VOCs were present in similar amounts in the headspace of
roots kept under the two conditions.

The orientation bioassay showed that wireworms exploit
the emission of VOCs from 7-d-old barley roots and use it for
location of host roots. The percentages of non-responding
individuals in the blank-to-blank bioassay and in the root-
baited bioassay tended to show a slightly increased activity
of wireworms in the presence of a stimulus. As roots were still
respiring, CO, obviously formed part of the blend. Its involve-
ment in the attraction of Ctenicera destructor (Brown) and
other wireworms has been demonstrated (Doane et al. 1975).
However, CO, emission from roots is probably not a reliable
cue for host root location by rhizophagous insects, since CO,
is emitted from numerous sources in the soil and thus, lacks
specificity. Nevertheless, it probably acts as a general signal or
a search trigger. Moreover, chemically-mediated orientation
due to volatile or non-volatile compounds of the rhizosphere
often is proposed whenever root location by subterranean
insects is investigated (Johnson and Gregory 2006; Reinecke
et al. 2008;,Weissteiner et al. 2012; Wenke et al. 2010). Such
cues could be considered within an integrated management
perspective, which will never be the case for CO, which is
present in all soils.

Future studies need to elucidate whether each of the barley
root volatiles detected in our study serves as an attractant to a
rhizophagous insect. The VOCs identified using the protocol
described for 7-d-old sterile roots (Table 2) need to be tested

alone and in combination in the olfactometers, in order to
assess both their potential attractive properties and their pos-
sible synergistic interactions with each other and with CO,.
This can be achieved by using slow release systems such as
alginate beads (Heuskin et al. 2011), with the advantage of
suppressing carbon dioxide gradients.

The assessment of the role of volatile compounds in the
chemical ecology of wireworms is promising, especially re-
garding the developed bioassay. Further experiments involving
the natural enemies of wireworms, such as entomopathogenic
nematodes, could lead to a higher trophic level and could also
provide useful information. Such tri-trophic interactions have
already been studied between the root pest Diabrotica virgifera
virgifera LeConte (Coleoptera: Chrysomelidae), maize (Zea
mays, L. Poaceae), and the entomopathogenic nematode
Heterorhabditis megidis (Hiltpold et al. 2011).

Acknowledgments The authors thank Marc Camerman and Franck
Michels for research assistance, Dr. Marie Fiers for providing standards.
Gembloux Agro-Bio Tech (University of Liége) funded the present
project (Rhizovol project).

References

Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced
subterranean plant volatiles attract both entomopathogenic and
plant parasitic nematodes. J Ecol 99:26-35

Aratchige NS, Lesna I, Sabelis MW (2004) Below-ground plant parts
emit herbivore-induced volatiles: Olfactory responses of a predatory
mite to tulip bulbs infested by rust mites. Exp Appl Acarol 33:21-30

Arimura G, Ozawa R, Shimoda T, Nishloka T, Boland W, Takabayashi J
(2000) Herbivory-induced volatiles elicit defence genes in lima
bean leaves. Nature 406:512-515

Asensio D, Rapparini F, Pefiuelas J (2012) AM fungi root colonization
increases the production of essential isoprenoids vs. nonessential
isoprenoids especially under drought stress conditions or after
jasmonic acid application. Phytochemistry. 77:149—161

Barber DA, Martin JK (1976) The release of organic substances by
cereal roots into soil. New Phytol 76:69-80

Barsics F, Haubruge E, Verheggen FJ (2013) Wireworms’ management:
an overview of the existing methods, with particular regards to
Agriotes spp. (Coleoptera: Elateridae). Insects 4:117-152

Binder RG, Turner CE, Flath RA (1990) Volatile components of purple
starthistle. J Agric Food Chem 38:1053-10556

Bukovinszky T, Gols R, Posthumus MA, Vet LEM, Van Lenteren JC
(2005) Variation in plant volatiles and attraction of the parasitoid
Diadegma semiclausum (Hellén). J Chem Ecol 31:461-480

Chisholm MG, Wilson MA, Gaskey GM (2003) Characterization of
aroma volatiles in key lime essential oils (Citrus aurantifolia
Swingle). Flavour Frag J 18:106-115

Choi H-S (2003) Character impact odorants of citrus hallabong [(C.
unshiu Marcov x C. sinensis Osbeck) x C. reticulata Blanco] cold-
pressed peel oil. J Agric Food Chem 51:2687-2692

Chung TY, Eiserich JP, Shibamoto T (1993) Volatile compounds iso-
lated from edible Korean chamchwi (4ster scaber Thunb). J Agric
Food Chem 41:1693-1697

Cobb FW Jr, Krstic M, Zavarin E, Barber HW Jr (1968) Inhibitory
effects of volatile oleoresin components on Fomes annosus and
four Ceratocystis species. Phytopathology 58:1327-1335

@ Springer



1138

J Chem Ecol (2013) 39:1129-1139

Cocquempot C, Martinez M, Courbon R, Blanchet A, Caruhel P (1999)
Nouvelles données sur I’identification des larves de taupins (Co-
leoptera: Elateridae): une aide a la connaissance biologique et a la
cartographie des espéces nuisibles. In: ANPP - 5¢me conférence
internationale sur les ravageurs en agriculture, Montpellier, 7-8-9
décembre 1999, Paris: ANPP, 477-486

De Marques FA, Mcelfresh JS, Millar JG (2000) Kovats retention
indexes of monounsaturated C12, C14, and C16 alcohols, acetates
and aldehydes commonly found in lepidopteran pheromone
blends. J Braz Chem Soc 11:592-599

Doane JF, Lee YW, Klingler J, Westcott ND (1975) Orientation re-
sponse of Ctenicera destructor and other wireworms (Coleoptera:
Elateridae) to germinating grain and to carbon dioxide. Can
Entomol 107:1233-1252

Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated
interactions between bacteria and fungi in the soil. J Chem Ecol
38:665-703

Ens EJ, Bremner JB, French K, Korth J (2009) Identification of volatile
compounds released by roots of an invasive plant, bitou bush
(Chrysanthemoides monilifera spp. rotundata), and their inhibi-
tion of native seedling growth. Biol Invasions 11:275-287

FAOstat, Food and Agriculture Organization of the United Nations,
http://faostat.fao.org/

Ferreira V, Aznar M, Lopez R, Cacho J (2001) Quantitative gas
chromatography-olfactometry carried out at different dilutions of
an extract. Key differences in the odor profiles of four high-quality
Spanish aged red wines. J Agric Food Chem 49:4818-4824

Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-
insect interactions: Molecular approaches to insect resistance. Curr
Opin Biotechnol 15:155-161

Filella I, Pefuelas J, Seco R (2009) Short-chained oxygenated VOC
emissions in Pinus halepensis in response to changes in water
availability. Acta Physiol Plant 31:311-318

Guerin PM, Ryan MF (1984) Relationship between root volatiles of
some carrot cultivars and their resistance to the carrot fly, Psila
rosae. Entomol Exp Appl 36:217-224

Hayata Y, Sakamoto T, Maneerat C, Li X, Kozuka H, Sakamoto K
(2003) Evaluation of aroma compounds contributing to muskmel-
on flavor in Porapak Q extracts by aroma extract dilution analysis.
J Agric Food Chem 51:3415-3418

Herms DA, Mattson WJ (1992) The dilemma of plants - to grow or
defend. Q Rev Biol 67:283-335

Heuskin S, Verheggen FJ, Haubruge E, Wathelet JP, Lognay G (2011)
The use of semiochemical slow-release devices in integrated pest
management strategies. Biotechnol Agron Soc Environ 15:459—
470

Hiltpold I, Erb M, Robert CAM, Turlings TCJ (2011) Systemic root
signalling in a belowground, volatile-mediated tritrophic interac-
tion. Plant Cell Environ 34:1267-1275

Jansen RMC, Wildt J, Kappers IF, Bouwmeester HJ, Hofstee JW, Van
Henten EJ (2011) Detection of diseased plants by analysis of volatile
organic compound emission. Annu Rev Phytopathol 49:157-174

Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic vola-
tiles in the roots and shoots of Artemisia tridentata as detected by
headspace solid-phase microextraction and gas chromatographic-
mass spectrometry analysis. J] Chem Ecol 36:1398-1407

Jennings W, Shibamoto T (1980) Qualitative Analysis of Flavor and
Fragrance Volatiles by Glass Capillary Gas Chromatography. Ac-
ademic, New York

Johnson SN, Nielsen UN (2012) Foraging in the dark — chemically
mediated host plant location by belowground insect herbivores. J
Chem Ecol 38:604-614

Johnson SN, Hawes C, Karley AJ (2009) Reappraising the role of plant
nutrients as mediators of interactions between root- and foliar-
feeding insects interactions between root- and foliar-feeding in-
sects. Funct Ecol 23:699-706

@ Springer

Kalemba D, Kusewicz D, Swider K (2002) Antimicrobial properties of
the essential oil of Artemisia asiatica Nakai. Phytother Res 16:
288-291

Kohara K, Kadomoto R, Kozuka H, Sakamoto K, Hayata Y (2006)
Deodorizing effect of coriander on the offensive odor of the
porcine large intestine. Food Sci Technol Res 12:38-42

Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P,
Brancaleoni E, Frattoni M, Tavares TM, Kesselmeier J (2004) Sea-
sonal differences in isoprene and light-dependent monoterpene emis-
sion by amazonian tree species. Global Change Biol 10:663-682

Lanoue A, Burlat V, Schurr U, Rése USR (2010) Induced root-secreted
phenolic compounds as a belowground plant defense. Plant Signal
Behav 5:1037-1038

Lawo NC, Weingart GJF, Schuhmacher R, Forneck A (2011) The volatile
metabolome of grapevine roots: First insights into the metabolic re-
sponse upon Phylloxera attack. Plant Physiol Biochem 49:1059-1063

Maffei M (2010) The plant volatilome, essay 13.7 in L. Taiz and E.
Zeiger. Plant physiology, fifth edition online. Sinauer associates,
Sunderland, Massachusetts. http://5e.plantphys.net/article.php?
ch=e&id=520

Matsumoto Y (1970) Volatile organic sulfur compounds as insect
attractants with special reference to host selection. In: Wood DL,
Silverstein RM, Nakajima M (eds) Control of insect behavior by
natural products. Academic, New York, pp 133-160

Min DB, Callison AL, Lee HO (2003) Singlet oxygen oxidation for 2-
pentylfuran and 2-pentenyfuran formation in soybean oil. J Food
Sci 68:1175-1178

Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrifica-
tion in forest soil Fby monoterpenes. Plant Soil 205:147—154

Parker WE (1996) The development of baiting techniques to detect
wireworms (Agriotes spp., Coleoptera: Elateridae) in the field, and
the relationship between bait-trap catches and wireworm damage
to potato. Crop Prot 15:521-527

Pic M, Pierre E, Martinez M, Genson G, Rasplus JY, Albert H (2008) Les
taupins du genre Agriotes démasqués par leurs empreintes génétiques.
AFPP - 8¢me conférence internationale sur les ravageurs en agricul-
ture. Montpellier 22-23 Octobre 2008, Paris: ANPP, 23-32

Piesik D, Lyszczarz A, Tabaka P, Lamparski R, Bocianowski J, Delaney
KJ (2010) Volatile induction of three cereals: Influence of mechan-
ical injury and insect herbivory on injured plants and neighbouring
uninjured plants. Ann Appl Biol 157:425-434

Piesik D, Panka D, Delaney KJ, Skoczek A, Lamparski R, Weaver DK
(2011a) Cereal crop volatile organic compound induction after
mechanical injury, beetle herbivory (Oulema spp.), or fungal in-
fection (Fusarium spp.). J. Plant Physiol 168:878-886

Piesik D, Wenda-Piesik A, Kotwica K, Lyszczarz A, Delaney KIJ
(2011b) Gastrophysa polygoni herbivory on rumex confertus: Sin-
gle leaf VOC induction and dose dependent herbivore attraction/
repellence to individual compounds. J Plant Physiol 168:2134-2138

Qualley AV, Dudareva N (2009) Metabolomics of plant volatiles.
Methods Mol Biol 553:329-343

R Development Core Team (2008) R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

Rasmann S, Kéllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann
U (2005) Recruitment of entomopathogenic nematodes by insect-
damaged maize roots. Nature 434:732-737

Rasmann S, Ali JG, Helder J, van der Putten WH (2012a) Ecology and
evolution of soil nematode chemotaxis. J Chem Ecol 38:615-628

Rasmann S, Hiltpold I, Ali J (2012b) The role of root-produced volatile
secondary metabolites in mediating soil interactions. In: Advances
in selected plant physiology aspects. Tech Open Access Publisher,
Croatia, pp 269-290

Reinecke A, Miiller F, Hilker M (2008) Attractiveness of CO, released
by root respiration fades on the background of root exudates. Basic
Appl Ecol 9:568-576


http://faostat.fao.org/
http://5e.plantphys.net/article.php?ch=e&id=520
http://5e.plantphys.net/article.php?ch=e&id=520
http://www.r-project.org

J Chem Ecol (2013) 39:1129-1139

1139

Rouseff RL, Onagbola EO, Smoot JM, Stelinski LL (2008) Sulfur
volatiles in guava (psidium guajava L.) leaves: Possible defense
mechanism. J Agric Food Chem 56:8905-8910

Ruther J (2000) Retention index database for identification of general
green leaf volatiles in plants by coupled capillary gas chromatog-
raphy—mass spectrometry. J Chromatogr A 890:313-319

Sanchez-Ortiz A, Romero-Segura C, Sanz C, Perez AG (2012) Synthe-
sis of volatile compounds of virgin olive oil is limited by the
lipoxygenase activity load during the oil extraction process. J
Agric Food Chem 60:812-822

Sanz C, Ansorena D, Bello J, Cid CC (2001) Optimizing headspace
temperature and time sampling for identification of volatile com-
pounds in ground roasted Arabica coffee. J Agric Food Chem
49:1364-1369

Shiojiri K, Ozawa R, Matsui K, Kishimoto K, Kugimiya S, Takabayashi
J (2006) Role of the lipoxygenase/lyase pathway of host-food
plants in the host searching behavior of two parasitoid species,
Cotesia glomerata and Cotesia plutellae. J Chem Ecol 32:969—
979

Soler R, Van der Putten WH, Harvey JA, Vet LE, Dicke M, Bezemer
TM (2012) Root herbivore effects on aboveground multitrophic
interactions: patterns, process and mechanisms. J Chem Ecol 38:
755-767

Sutherland ORW, Hillier JR (1972) Olfactory responses of Costelytra
zealandica (Coleoptera: Melolonthinae) larvae to grass root
odours. N Z J Sci 15:165-172

Tapia T, Perich F, Pardo F, Palma G, Quiroz A (2007) Identification of
volatiles from differently aged red clover (7rifolium pratense) root
extracts and behavioural responses of clover root borer (Hylastinus
obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochem
Syst Ecol 35:61-67

Tressl R, Friese L, Fendesack F, Koppler H (1978) Studies of the
volatile composition of hops during storage. J Agric Food Chem
26:1426-1430

Umano RP, Hagi Y, Shibamoto T (2002) Volatile chemicals identified in
extracts from newly hybrid citrus, Dekopon (Shiranuhi mandarin
Suppl. J.). J Agric Food Chem 50:5355-5359

Valim MF, Rouseff RL, Lin J (2003) Gas chromatographic-olfactometric
characterization of aroma compounds in two types of cashew apple
nectar. J Agric Food Chem 51:1010-1015

Van den Dool H, Kratz PD (1963) A generalization of the retention
index system including linear temperature programmed gas—liquid
partition chromatography. J Chromatogr 11:463—471

van Herk W, Vernon R, (2013) Wireworm damage to wheat seedlings:
effect of temperature and wireworm state. J Pest Sci 86:63—75

Varming C, Petersen MA, Poll L (2004) Comparison of isolation
methods for the determination of important aroma compounds in
blackcurrant (Ribes nigrum L.) juice, using nasal impact frequency
profiling. J Agric Food Chem 52:1647-1652

Vilela GR, de Almeida GS, D’ Arce MABR, Moraes MHD, Brito JO, da
Silva MFGF, Silva SC, de Stefano Piedade SM, Calori-Domingues
MA, da Gloria EM (2009) Activity of essential oil and its major
compound 1,8-cineole, from Eucalyptus globulus Labill., against
the storage fungi Aspergillus Xavus Link and Aspergillus
parasiticus Speare. J Stored Prod Res 45:108-111

Viles AL, Reese RN (1996) Allelopathic potential of Echinacea
angustifolia D.C. Environ Exp Bot 36:39-43

Weckerle B, Bastl-Borrmann R, Richling E, Hor K, Ruff C, Schreier P
(2001) Cactus pear (Opuntia ficus indica) flavour constituents -
chiral evaluation (MDGC-MS) and isotope ratio (HRGC-IRMS)
analysis. Flavour Frag J 16:360-363

Wei A, Mura K, Shibamoto T (2001) Antioxidative activity of volatile
chemicals extracted from beer. J Agric Food Chem 49:4097—4101

Weingart G, Kluger B, Forneck A, Krska R, Schumacher R (2011)
Establishment and application of a metabolomics workflow for
identification and profiling of volatiles from leaves of Vitis vinifera
by HS-SPME-GC-MS. Phytochem Anal. doi:10.1002/pca.1364

Weissteiner S, Huetteroth W, Kollmann M, Weillbecker B, Romani R,
Schachtner J, Schiitz S (2012) Cockchafer larvae smell host root
scents in soil. PLoS One 7(10)

Wenda-Piesik A, Piesik D, Ligor T, Buszewski B (2010) Volatile
organic compounds (VOCs) from cereal plants infested with
crown rot: Their identity and their capacity for inducing produc-
tion of VOC:s in uninfested plants. Int J Pest Manag 56:377-383

Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate in-
teractions between plant roots and soil organisms. Planta 231:499-506

Witcosky JJ, Schowalter TD, Hansen EM (1987) Host-derived attractants
for the beetles Hylastes nigrinus (Coleoptera: Scolytidae) and
Steremnius carinatus (Coleoptera: Curculionidae). Environ Entomol
16:1310-1313

Wu S, Krings U, Zorn H, Berger RG (2005) Volatile compounds from the
fruiting bodies of beefsteak fungus Fistulina hepatica (Schaefter:
Fr.) Fr. Food Chem 92:221-226

Yi HS, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009)
Airborne induction and priming of plant defenses against a bacte-
rial pathogen. Plant Physiol 151:2152-2161

@ Springer


http://dx.doi.org/10.1002/pca.1364

	Characterization...
	Abstract
	Introduction
	Methods and Materials
	Plant Material
	Analyses of Volatile Organic Compounds
	Wireworms Olfactory Orientation Bioassay

	Results
	Discussion
	References


