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Abstract In most agro-ecosystems the organisms that feed
on plant roots have an important impact on crop yield and
can impose tremendous costs to farmers. Similar to above-
ground pests, they rely on a broad range of chemical cues to
locate their host plant. In their turn, plants have co-evolved a
large arsenal of direct and indirect defense to face these
attacks. For instance, insect herbivory induces the synthesis
and release of specific volatile compounds in plants. These
volatiles have been shown to be highly attractive to natural
enemies of the herbivores, such as parasitoids, predators, or
entomopathogenic nematodes. So far few of the key com-
pounds mediating these so-called tritrophic interactions
have been identified and only few genes and biochemical
pathways responsible for the production of the emitted
volatiles have been elucidated and described. Roots also
exude chemicals that directly impact belowground herbi-
vores by altering their behavior or development. Many of
these compounds remain unknown, but the identification of,
for instance, a key compound that triggers nematode egg
hatching to some plant parasitic nematodes has great poten-
tial for application in crop protection. These advances in
understanding the chemical emissions and their role in eco-
logical signaling open novel ways to manipulate plant exu-
dates in order to enhance their natural defense properties.
The potential of this approach is discussed, and we identify

several gaps in our knowledge and steps that need to be
taken to arrive at ecologically sound strategies for below-
ground pest management.
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Introduction—Belowground Herbivory and Plant
Defense

For decades, plants roots have been mainly considered as
defenseless victims of soil-dwelling pests and a passive sink
for leaf-produced photoassimilates. However, an increasing
number of recent studies emphasize that, instead of being
idle victims, roots play a major role in defending themselves
and aboveground tissues, and in shaping their surrounding
habitat via production and exudation of organic chemicals
(Bais et al., 2006; Erb et al., 2009; van Dam, 2009). In fact,
a large number of soil organisms have been shown to rely on
root exudates as a carbon source (Walker et al., 2003),
dramatically diverging from the formal assumption that the
soil fauna is largely dependent on aboveground litter for
carbon (Huhta, 2006). Beside anchoring the plant in soil and
being the principal channel of nutrient transfer from the soil
to the aboveground tissues of the plants and further trophic
levels, roots are a prime source of carbon in soil. This makes
roots preferential targets for soil-dwelling herbivores such as
insects, nematodes, and other microbes. However, roots
possess defense mechanisms that allow them to resist her-
bivore attacks (see Erb et al., 2012, this issue). Indeed, they
have evolved a broad arsenal of direct defense molecules as
well as indirect defenses that involve finely tuned commu-
nication and chemical interactions of the roots with the soil
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microfauna (Huber-Sannwald et al., 1997; Boff et al., 2001;
van Tol et al., 2001; Mathesius et al., 2003; Callaway et al.,
2004; Rasmann et al., 2005, 2011; Ali et al., 2010). In this
review, we highlight some of these chemically mediated
interactions (Fig. 1), and we argue that the chemical cues
that are involved can be used to improve belowground pest
control and crop production.

Plant–Insect Interactions and Belowground Pest
Management

Rasmann and Agrawal (2008) estimate that about 17 % of all
insect families of North America contain species of root
feeders (including chewers, sap suckers, and gall makers).
Common insect orders such as Orthoptera, Lepidoptera, Dip-
tera, Homoptera, Coleoptera, and Hymenoptera have imma-
ture root-feeding instars (Brown and Gange, 1990). Because
of their direct impact on plant development and fitness, root-
feeding insects play an important role in both agricultural and
natural ecosystems (Blossey and Hunt-Joshi, 2003; Wardle et
al., 2004; Rasmann and Agrawal, 2008). Indeed, as below-
ground herbivory induces changes in the physiology and
morphology of the roots, soil-dwelling herbivores have the
potential to shape the ecosystems at the plant community level

(De Deyn et al., 2003), belowground fauna (Wardle, 2006), as
well as aboveground insect communities (Bezemer and van
Dam, 2005).

Various volatile organic compounds have been identified
as arthropod attractants belowground. A comprehensive
review by Wenke et al. (2010) provides an inventory of a
wide range of compounds used by belowground insect
herbivores to locate their food source. Johnson and Nielsen
(2012, this issue) discuss in detail how insect–plant inter-
actions are mediated by belowground volatiles. The simplest
and most ubiquitous of such signals in the soil is carbon
dioxide (CO2) emitted by respiring roots, but also many
other biotic sources. Johnson and Gregory (2006) listed
more than 20 studies in which CO2 was shown to be a major
attractant for root feeding arthropods. Whereas low concen-
trations are known to trigger chemotaxis and attract insects,
high concentrations of CO2 may actually result in disorien-
tation (Johnson and Gregory, 2006). CO2 is such an ambig-
uous signal that is unlikely to be of great use by itself. We,
therefore, recently argued that CO2 is a response activator
rather than a key attractant per se (Turlings et al., 2012).
This notion is based on the principle that where there are
roots there is CO2, whereas the reverse does not hold; where
there is CO2 there are not necessarily roots. The same idea
holds for hemophagous insects in search of a blood meal
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Fig. 1 Schematic representation of chemically-mediated interactions
between plants and soil-dwelling organisms. (1) Without root signal,
the organisms are either waiting for cues or randomly move around
until they detect a chemical cue. (2) General nonspecific semiochem-
icals emitted by roots may trigger a shift from random movement or
immobility to a biased random movement. (3) More specific chemical
cues may allow the organism (friend or foe) to recognize and locate a
potential partner to establish an interaction with. (4) Subsequent ac-
ceptance or rejection takes place at the surface of roots due to the
presence of contact chemosensory cues, being either feeding stimulants

or deterrents for herbivorous organisms or cues that indicate a partner
for the establishment of a mutually beneficial interaction. (5) Soil
properties have an obvious impact on soil chemically mediated inter-
actions; the clay-humic complex may favor or slow down the diffusion
of the volatiles depending on the chemical interactions taking places at
this interface. Moreover, soil porosity, connectivity, or particle size
distribution impact the mobility and behavior of soil-dwelling organ-
isms. Understanding each of these steps will allow us to manipulate the
system in order to favor or to inhibit beneficial and detrimental inter-
actions, respectively [modified after Johnson and Gregory (2006)]
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and indeed it has been found that the presence of CO2

strongly increases their responsiveness to more specific cues
(Dekker et al., 2005; Turner et al., 2011). Indeed, besides
CO2, there are several compounds that have been identified
as potent specific attractants to root feeders. For instance,
several disulfides and trisulfides attract root-feeding larvae
of the fly Delia antiqua in Allium cepa (Carson and Wong,
1961). Fatty acids in oaks (Quercus sp.) and monoterpenes
in carrots (Daucus carota ssp. sativus) attract larvae of the
forest cockchafer, Melolontha hippocastani (Weissteiner
and Schütz, 2006). Johnson et al. (2005) showed the attrac-
tion of Sitona lepidus to formononetin, a flavonoid emitted
by nodualted roots of white clover Trifolium repens. In
laboratory assays, the scolyt beetle Hylastinus obscurus
was shown to be attracted to volatile exuded by roots of
red clover Trifolium pretense (Quiroz et al., 2005).

Johnson and Gregory (2006) proposed a conceptual mod-
el for chemically mediated plant host location and accep-
tance by belowground insect pests that can readily be
adapted to general belowground chemical signaling path-
ways (Fig. 1). Interfering with any of these steps would
disrupt the insect’s ability to find or accept its host, and thus
offers a way to control pest insects. Following this approach,
Bernklau et al. (2004) managed to interfere with the host-
finding behavior of the larvae of the western corn rootworm
Diabrotica virgifera virgifera. The larvae of this chrysome-
lid beetle are an important pest of maize, and rely, among
other volatile cues, on CO2 to locate the root system of its
host (Bernklau and Bjostad, 1998a, b). In a laboratory assay,
significantly fewer D. v. virgifera larvae were recovered
from maize roots in soil with CO2-producing granules than
from maize roots in control soil, suggesting that the increase
in CO2 prevented the insect larvae from locating the roots of
their host plant (Bernklau et al., 2004). By testing the same
strategy in the field, they found that CO2 application
resulted in a significant decrease in damage done by D. v.
virgifera to the maize root (Bernklau et al., 2004).

In an earlier study, Bjostad and Hibbard (1992) identified
a more specific cue, the 6-methoxy-2-benzoxazolinone
(MBOA), as an attractant for D. v. virgifera larvae. MBOA
is one of several benzoxazinoids that maize seedlings
produce and release as toxic and anti-feedents against
insects in soil (Bjostad and Hibbard, 1992). D. v. virgifera
have evolved resistance to benzoxazinoids (Abou Fakhr et
al., 1994; Robert et al., 2012a) and even rely on this cue to
locate the host plant (Bjostad and Hibbard, 1992) and to
identify the most nutritious maize roots (Robert et al.,
2012a). Knowing the importance of MBOA as a foraging
cue for the pest, Hibbard et al. (1995) employed it to reduce
larval damage on maize roots in the field. They baited a soil
insecticide with MBOA to lure D. v. virgifera larvae to their
death (Hibbard et al., 1995). Similarly, Bernklau and Bjostad
(2005) could reduce the effective dose of the insecticide

thiamethoxan by 50 % when they mixed it with feeding
stimulants. Recently, attempts to lure foraging D. v. virgifera
larvae by using alginate capsules as dispensers of attractants
and feeding stimulants have been undertaken. In the laborato-
ry, larvae of the chrysomelid pest were found to be as much
attracted towards the capsules as towards the roots of a maize
seedling. However, in the field, the attractive coating of the
capsules did not help to further reduce D. v. virgifera damage
on the maize roots (Hiltpold et al., 2012). Hence, this ap-
proach needs to be improved, but it has interesting potential
in pest management, especially because the capsules can be
used to deliver biocontrol agents such as entomopathogenic
nematodes (Hiltpold et al., 2012) into pest-infested fields. By
luring the pests towards the capsules, their efficacy can be
further enhanced.

Even though examples are scarce, it is evident that the
manipulation of chemically mediated host recognition and/or
food acceptance has great potential in controlling insect pests
(Fig. 1). However, basic knowledge on chemical attraction of
pests towards their host and the chemical cues that they use as
host acceptance signals is largely missing. Having such infor-
mation would help breeders to select varieties with the right
chemical profile, or it might even be possible to genetically
engineer plants to make them emit less attractive volatiles or
even repel the pests. Thus, affecting the acceptance of food
sources by an insect herbivore could provide ecologically
sound solutions to pest problems.

Belowground Tritrophic Interactions as an Inspiration for
Insect Pest Control Strategies Plants cannot run away to
escape herbivory, but they have evolved many other
defense traits (Howe and Jander, 2008). One strategy
that appears to provide protection against herbivory is the
release of herbivore induced volatile organic compounds
(Fig. 1), which increases the plant’s attractiveness to the
natural enemies of herbivores (e.g., Dicke and Vet, 1999;
Dicke et al., 2003; Turlings and Wäckers, 2004; Kessler and
Morrell, 2010). Such interactions also take place below-
ground. For instance, females of the predatory mites Neo-
seiulus cucumeris respond to belowground volatiles signals
of tulip bulbs infested by the rust mite Aceria tulipae, but
not to volatiles of untreated or mechanically wounded bulbs
(Aratchige et al., 2004). Single root-emitted chemicals can
have a dual beneficial effect for the plant. For instance,
dimethyl disulfide is emitted from cabbage roots damaged
by the cabbage root fly Delia radicum (Ferry et al., 2007;
Danner et al., 2012, this issue). This volatile both attracts the
main predators of D. radicum (i.e., two staphylinids, Aleo-
chara bilineata and Aleochara bipustulata, and carabid
beetles of the genus Bembidion) and it inhibits oviposition
by cabbage root fly females (Ferry et al., 2009). In a field
experiment, the authors placed dispensers to continuously
release dimethyl disulfide in broccoli plots. The number of
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predators increased in the plots that received the dispensers
(Ferry et al., 2009). In this particular experiment, the increase
in predators did not improve the quality of the harvested plants
at the end of the season, but such approaches should help pest
management at higher pest densities.

Boff et al. (2001) and van Tol et al. (2001) found that the
emission of odorous volatiles by insect damaged roots
results in the attraction of entomopahtogenic nematodes.
These insect-killing microscopic worms are frequently used
in insect–pest management (Grewal et al., 2005), but rarely
in large-scale agriculture. Exploiting their ability to detect
damaged roots might be extremely interesting in the context
of pest control improvement. To date, only few additional
tritrophic interaction that rely on belowground herbivore-
induced volatiles have been described in agricultural eco-
systems (Rasmann et al., 2005; Rasmann and Turlings,
2008; Ali et al., 2010) or in natural ecosystems (Rasmann
et al., 2011). Ali et al. (2010) recently showed that the
entomopathogenic nematode Steinernema diaprepesi is sig-
nificantly more attracted by citrus roots damaged by the
larvae of the curculionid pest Diaprepes abbreviates
than by mechanically damaged roots. However, this
agronomically interesting trait also is abused by pests,
as insect-induced roots of citrus tree also attract the
plant parasitic nematode Tylenchulus semipenetrans
(Ali et al., 2011). Consequently, this may interfere with
the possible exploitation of citrus induced volatiles in
biological control strategies that target Diaprepes abbre-
viates, specifically in cases where rootstocks are not
naturally resistant to this nematode pest.

One of the best studied belowground tritrophic interac-
tions involves maize roots (Rasmann et al., 2005). Upon
attack by the voracious larvae of D. v. virgifera, the roots of
many maize varieties emit the sesquiterpene (E)-β-caryo-
phyllene (Rasmann et al., 2005; Köllner et al., 2008), which
is highly attractive to the entomopathogenic nematode Heter-
orhabidtis megidis in the laboratory as well as in the field
(Rasmann et al., 2005; Köllner et al., 2008; Hiltpold et al.,
2010c). However, most of the American maize varieties have
lost the ability to produce (E)-β-caryophyllene (Rasmann et
al., 2005; Köllner et al., 2008), probably because the herbivore
induced cue also recruits D. v. virgifera larvae (Robert et al.,
2012b), which may have changed breeders to unintentionally
select against this trait. Nevertheless, plants that do not emit
this signal may suffer from more rootworm damage than
plants that are able to recruit the entomopahtogenic nematodes
(Rasmann et al., 2005; Hiltpold et al., 2010c, 2011). To restore
the ability of maize to indirectly protect its roots with the
emission of (E)-β-caryophyllene, the terpene synthase gene
Ovtps6 from Oreganum vulgare (Crocoll et al., 2010) was
introduced to a maize variety that normally is unable to
produce the sesquiterpene (Degenhardt et al., 2009). The
transformation resulted in maize lines that constitutively

emitted (E)-β-caryophyllene (Degenhardt et al., 2009). When
these transformed lines were compared to untransformed
isogenic lines, significantly more nematodes H. megidis were
attracted toward the genetically engineered plants than toward
the controls both in the laboratory and in the field, resulting in
a better protection of the emitting roots (Degenhardt et al.,
2009). This first field demonstration that genetic engineering
can be used to enhance indirect defenses against insect pests
illustrates the potential of exploiting plant mediated signaling
for crop protection. However, such approach is feasible only
in combination with the right species of nematode (Hiltpold et
al., 2010c). In fact, Heterorhabditis bacteriophora, which is
highly virulent againstD. v. virgifera (Kurzt et al., 2009), does
not respond well to (E)-β-caryophyllene (Hiltpold et al.,
2010c). To overcome this drawback, a strain of H. bacterio-
phorawas selected in the laboratory for enhanced responsive-
ness to (E)-β-caryophyllene (Hiltpold et al., 2010a). The
selection resulted in a strain that responded 6-fold better than
the original strain and with equivalent virulence and persis-
tence (Hiltpold et al., 2010a, b). The application of this strain
in the field significantly increased the mortality of D. v.
virgifera larvae feeding on the roots of plants emitting (E)-
β-caryophyllene (Hiltpold et al., 2010a). A recent study on
chemotaxis of H. bacteriophora and Steinernema feltia has
revealed several new compounds that induce movement in the
tested entomopahtogenic nematodes (Hallem et al., 2011).
Further research is needed to determine the full potential of
using these belowground signals for insect pest control.

Only few inducible and constitutively emitted volatiles
involved in belowground tritrophic interactions are known,
but an increasing effort is invested in this field of research.
Little is known also about the impact of abiotic factors in the
soil on the diffusion of these volatiles (Hiltpold and
Turlings, 2008) or about the foraging behavior of the bene-
ficials such as the nematodes (Kruitbos et al., 2010; Wilson
et al., 2012). Understanding more about the complex inter-
actions at each trophic level will not only reveal the intrica-
cies of these fascinating interactions in the rhizosphere, but
may also lead to ecologically sound alternatives in pest
management in agricultural systems.

Management of Plant Parasitic Nematodes
Using Root-Produced Exudates

After insects, the second most important group of root
feeders encompasses the plant parasitic nematodes. All spe-
cies are obligate parasites, feeding exclusively on the cyto-
plasm of living plant cells. The most economically
important groups of nematodes are the sedentary endopar-
asites including the genera Heterodera and Globodera (cyst
nematodes) and Meloidogyne (root-knot nematodes). Cyst
and root-knot nematodes differ in their parasitic life-cycle
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strategies, but they both rely on volatile cues to locate the
host plant. With the exception of ambiguous CO2 emissions,
it is largely unknown what triggers the attraction of plant
parasitic nematode towards host plants (discussed by
Rasmann et al., 2012, this issue). Carbon dioxide has been
shown to attract several nematode species (Klingler, 1963;
Dusenbery, 1980, 1987; Pline and Dusenbery, 1987), but
aggregation and attraction of plant parasitic nematodes also
have been demonstrated in response to plant root exudates
(Prot, 1980; Rolfe et al., 2000; Curtis et al., 2009; Reynolds
et al., 2011). Only recently, has it been found that plant
parasitic nematodes follow gradients of herbivore-induced
terpene volatile organic compounds (Ali et al., 2011). In
their study, a series of terpenoids were identified as possible
attractants for the nematode Tylenchulus semipenetrans,
including α- and, β-pinene, limonene, geijerene, and pre-
geijerene (Ali et al., 2011). The identification of such specific
volatiles offers the possibility of employing a confusion strat-
egy to disrupt nematodes’ host location and acceptance
efforts, analogous to the pheromone confusion technique used
in insect pest control (e.g., Joshi et al., 2011; Levi-Zada et al.,
2011; Vacas et al., 2011, 2012; Schmera and Guerin, 2012).
Further research will be needed to understand fully the mech-
anisms behind nematode attraction in order to develop lures
that can compete with the plant-produced attractants.

On the one hand, root exudates may attract plant parasitic
nematodes, but they are also involved in plant defense
against these pests. For instance, root tip exudates can
trigger a loss of motility, inducing quiescence and thus
reducing the ability of the nematodes to successfully infect
the plant (Zhao et al., 2000). Such temporal alteration of
plant parasitic nematode motility in contact with root exu-
dates has been observed for several plant species (Hubbard
et al., 2005), suggesting that this defense strategy is wide-
spread. Attempts to identify the active compounds have so
far failed (Hubbard et al., 2005). Once identified, synthetic
versions of the active compound(s) might be employed
by spraying them to immobilize plant parasitic nemat-
odes in the field. It is evident that further fundamental
research into possible other ecological roles of such
compounds is essential in order to establish whether or
not they could be ecologically sound alternatives in
plant parasitic nematode control.

Because plant parasitic nematodes rely on plants as food
sources, they not only use plant chemicals to locate roots,
but they also synchronize egg hatching with the phenology
of their host plants. It has been amply demonstrated that
plant parasitic nematode egg hatching is stimulated by root
exudates (e.g., Perry and Clarke, 1981; Perry and Gaur,
1996; Dennijs and Lock, 1992; Gaur et al., 2000; Devine
and Jones, 2001; Wesemael et al., 2006; Pudasaini et al.,
2008; Khokon et al., 2009; Oka and Mizukubo, 2009). For
instance, a key hatch-stimulating substance for soybean cyst

nematode was successfully isolated from soybean roots
(Masamune et al., 1982). Sometime later, solanoeclepin A,
a hatching stimulus for the potato cyst nematodes Globo-
dera rostochiensis and G. pallida Stone, was isolated by
Mulder et al. (1992) and its structure was resolved by
Schenk et al. (1999). It is easy to imagine various applica-
tions of such compounds in crop protection; these com-
pounds can be applied to the field before the plants have
been sown or germinated. This should result in nematode
hatching in the absence of their actual host plants, and
the free-roaming nematode can be expected to die of
starvation or chemical pesticides before damages occur.
However, the challenge of this idealistic plan of attack is
the availability of enough material to treat large crop
fields. Until recently, the hatch-stimulating chemicals
have been isolated only in minute quantities from natural
sources, but Tanino et al. (2011) have developed a potent
laboratory synthesis methodology of solanoeclepin, thus
opening the way to a new management strategy of plant
pathogenic nematodes.

Specific root secondary metabolites or breakdown prod-
ucts also have a direct impact on plant parasitic nematode
survival. For instance, Brassicaceae plants contain various
glucosinolates (McCully et al., 2008) that are released upon
pest damage and degraded into toxic breakdown products
such as (iso)thiocyanates (Halkier and Gershenzon, 2006).
Belowground, glucosinolates and their breakdown products
can efficiently reduce the populations of plant parasitic
nematodes (e.g., Potter et al., 1998, 2000; Lazzeri et al.,
2004; Oliveira et al., 2011). The release of these toxic
compounds into the soil does not alter communities of
beneficial organisms such as earthworms or collembola
(Kabouw et al., 2010), and this approach has been widely
used for the protection of subsequent crops (Matthiessen
and Kirkegaard, 2006; Lazzeri et al., 2010). Moreover,
breeding for increased concentrations of glucosynolates in
roots of Brassica plants has resulted in a better control of
nematode pests (Potter et al., 2000), and can be an effective
way to manipulate belowground chemical ecology to con-
trol plant parasitic nematodes.

Enhancing Plant Production by Exploiting Chemically
Mediated Interactions Between Roots and Microbes

Plants have to face several foes in soil, but they also can
interact with beneficial microbes to increase their biomasses
or, in agriculture, yield. Indeed, there are myriads of micro-
organisms that interact with plants with different levels of
intimacy, ranging from symbionts to co-inhabitants of the
same niche without particular interaction, and each interac-
tion might be of interest in the context of plant protection
and production.
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Plant Interactions with Free-Living Nematodes There are
numerous free-living nematodes in soil that do not need an
insect or a host plant to complete their life cycle. These
nematodes are usually bacterivorous, carnivorous, or fun-
givorous (Neher, 2010). Nonetheless, they can interact with
plant roots in various negative or positive ways. On the
negative side, they transmit viruses or plant pathogenic
bacteria (Raaijmakers et al., 2009). On the positive side,
they also can carry beneficial microorganisms and enhance
root growth. For instance, Caenorhabditis elegans mediates
positive interactions between plant roots and rizhobia, thus
resulting in a increased number of bacterial colonies (Horiuchi
et al., 2005) and potential increases in nodulation. Caeno-
rhabditis elegans are attracted by dimethyl sulfide toward
Medicago truncatula, and thereby transport the beneficial
rizho-bacterium Sinorhizobium meliloti close to the root sys-
tems (Horiuchi et al., 2005). Nematodes also are able to carry
fungal spores that adhere to their cuticular mucilage
(Bonkowski et al., 2009), and thus they serve as potential
vectors for beneficial plant symbiotic fungi. Beside these
transporter activities in the rhizosphere, free-living nematodes
also enhance plant nutrient availability by grazing on micro-
bial communities and increasing their turnover and metabolic
activity (Bonkowski et al., 2009). Obviously, nematodes are
not the only animal feeding on bacteria in the rhizosphere.
Other organisms such as amoeba also positively impact nutri-
ent turnover around roots (Rosenberg et al., 2009). A better
understanding of such interactions and knowledge of the
chemicals that are involved in their establishment could lead
to novel strategies to enhance nutrient availability and uptake
in the rhizosphere. The favoring of natural nutrient cycles in
crop production also will reduce the need for fertilizer input
and can contribute to a more sustainable agriculture and food
production.

Root Volatile Involved in Communication with Symbiotic
Fungi Simple root volatile organic compounds such as car-
bon dioxide play an important generic role in belowground
interactions with other organisms (Johnson and Gregory,
2006). However, CO2 also has been shown to mediate
highly specific interactions. Indeed, carbon dioxide is cru-
cial in the growth of the vesicular-arbuscular fungus Giga-
spors margarita, an obligate biotrophic symbiont (Bécard
and Piché, 1989). A synergistic effect of CO2 and root
exudate factors in the hyphal growth was measured; carbon
dioxide and root exudates taken alone had little or no effect,
but when mixed together, they significantly stimulated hy-
phal growth (Bécard and Piché, 1989). Further experimen-
tation has suggested that, in this particular interaction,
carbon dioxide serves as an essential source of carbon for
fungal growth (Bécard and Piché, 1989). Since then, numer-
ous plant exudates, mainly belonging to the sesquiterpene
lactone family, have been shown to mediate plant–microbe

interactions. For example, the strigolactone 5-desoxy-
strigol, isolated from Lotus japonicus, triggers hyphal
branching in G. margarita (Akiyama et al., 2005). Very
recently, the first component involved in strigolactone root
exudation has been described (Kretzschmar et al., 2012).
The identification of the ABC transporter in Petunia ssp.
opens new opportunities to manipulate strigolactone depen-
dent processes (Badri et al., 2009; Kretzschmar et al., 2012).

Conclusion

This review summarizes our current knowledge of direct
and indirect interactions between soil fauna, rhizosphere
microorganisms, and plant roots, and highlights the impor-
tance of such knowledge for the development of methods to
fight soil pests. Research into belowground chemically me-
diated interactions is drastically increasing, and no longer is
restricted to interactions between roots and microbial sym-
bionts, but involves many other soil-dwelling organisms. It
is increasingly recognized that, similar to aboveground
interactions, a coevolution between plants and herbivores
has taken place belowground that has led to sophisticated
reciprocal adaptations. Microbial communities (see Effmert
et al. 2012, this issue) and bacterivorous fauna jointly have
strong effects on root growth and architecture, even
though plants might only be passive benefiters and not
directly shape these interactions. Conversely, an increas-
ing number of examples suggest that roots are active
players in the rhizosphere and that they are able to
influence and shape their environment, thus ensuring
their protection and optimizing their performance. They
have been shown to chemically influence soil microor-
ganisms and fauna for their own benefit: entomopahto-
genic nematodes are recruited by insect herbivore
damaged roots; plant pathogenic nematodes are immobi-
lized by root tip exudates; and root diffusates can attract
free-living nematodes that carry potentially beneficial
bacteria and initiate symbiosis between plants and bene-
ficial fungi.

In our efforts to exploit root signals in crop protection, it
should be realized that herbivorous insects also may use root
signaling to locate their food source, and that root chemicals
can trigger egg hatching in plant parasitic nematodes. Only a
multidisciplinary approach to disentangle all aspects of root
ecology will allow us to use chemically mediated below-
ground interactions to our benefit. Special effort should be
invested in understanding the role of fungi in belowground
interactions, indeed, as “root extensions”, hyphae must play
a central role in local as well as in long distance below-
ground signaling. Co-evolutionary perspectives are lacking
in rhizosphere ecology and belowground food webs. A good
understanding of these processes would help in approaches
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that conserve well-established beneficial interactions during
domestication and breeding of cultivars. In general, analytic
methodologies that are employed for the description of
aboveground interactions are in part transferable to below-
ground chemical ecology. It is important to note that, before
the techniques that are discussed here can be applied, it is
essential to evaluate the overall consequences of the manip-
ulations. Hundreds of species of microorganisms can be
found in a handful of soil and changing one parameter might
have unexpected consequences on the established ecosys-
tem services and threaten soil sustainability. Because soils
are complex and heterogeneous ecosystems, the application
of various strategies cannot be generalized, and will have to
be carefully assessed in case by case studies. Hence, with
the increasing interest in what might be called a new frontier
in biological sciences, a cooperative and holistic approach
appears crucial to tackle the complexity of the rhizosphere.
This should allow us to benefit optimally from generated
knowledge for sustainable agricultural practices.
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