
Abstract Bark beetles that colonize living conifers and their
microbial associates encounter constitutive and induced
chemical defenses of their host. Monoterpene hydrocarbons
comprise a major component of these allelochemicals, and
many are antibiotic to insects, fungi, and bacteria. Some bark
beetle species exhaust these defenses by killing their host
through mass attacks mediated by aggregation pheromones.
Others lack adult aggregation pheromones and do not engage
in pheromone-mediated mass attacks, but rather have the
ability to complete development within live hosts. In the
former species, the larvae develop in tissue largely depleted of
host terpenes, whereas in the latter exposure to these
compounds persists throughout development. A substantial
literature exists on how monoterpenes affect bark beetles and
their associated fungi, but little is known of how they affect
bacteria, which in turn can influence beetle performance in
various manners. We tested several bacteria from two bark
beetle species for their ability to grow in the presence of a
diversity of host monoterpenes. Bacteria were isolated from

themountain pine beetle,Dendroctonus ponderosae Hopkins,
which typically kills trees during colonization, and the red
turpentine beetle, Dendroctonus valens LeConte, which
often lives in their host without causing mortality.
Bacteria from D. ponderosae were gram-positive Actino-
bacteria and Bacilli; one yeast also was tested. Bacteria
from D. valens were Actinobacteria, Bacilli, and γ-
Proteobacteria. Bacteria from D. valens were more tolerant
of monoterpenes than were those from D. ponderosae.
Bacteria from D. ponderosae did not grow in the presence
of α-pinene and 3-carene, and grew in, but were inhibited
by, β-pinene and β-phellandrene. Limonene and myrcene
had little inhibitory effect on bacteria from either beetle
species. Tolerance to these antibiotic compounds appears
to have resulted from adaptation to living in a terpene-rich
environment.
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Introduction

Bark beetles are major sources of conifer mortality, in scales
ranging from localized pockets (Klepzig et al., 1991) to entire
landscapes (Aukema et al., 2006; Bentz et al., 2010).
Individual trees within a beetle’s host range and preferred
size class can often resist attack by utilizing terpenoid-based
defenses (Lewinsohn et al., 1991; Brignolas et al., 1995;
Keeling and Bohlmann, 2006). In particular, monoterpenes
can kill or repel bark beetles, and inhibit growth of their
fungal symbionts (Smith, 1963; Raffa and Smalley, 1995;
Wallin and Raffa, 2000). These compounds are present in
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constitutive resin and undergo enhanced production in
response to biotic injury, and to a lesser extent to mechanical
wounds (Raffa and Berryman, 1983; Raffa and Smalley,
1995). These terpene-based defenses play an important
role in constraining populations of eruptive species from
transitioning from endemic to epidemic population densities
(Boone et al., 2011).

The largest insect outbreak in recorded history currently
is underway in western Canada and the U.S. Rocky
Mountains (Bentz et al., 2009). Here the mountain pine
beetle, Dendroctonus ponderosae Hopkins, is causing high
rates of mortality to lodgepole pine, Pinus contorta var.
latifolia Dougl., including vigorously growing and well-
defended trees (Boone et al., 2011). Elsewhere, they also
kill large numbers of ponderosa pines, Pinus ponderosa
Dougl. Ex Laws, and several other species, including high
elevation pines like whitebark pine, Pinus albicaulis
Engelmann (Logan et al., 2010). Once outbreaks have
exhausted preferred hosts, D. ponderosae also may attack
and kill spruce trees (Furniss and Schenk, 1969; Huber et
al., 2009). The ability of these beetles to coordinate
pheromone-mediated mass attack allows them to exhaust
the resistance of vigorous, well-defended trees, and thereby
provide their brood with a substrate with relatively low
allelochemical concentrations. The resin content declines
rapidly during successful mass attacks (Raffa et al., 1993).
These mass attacks typically kill the tree, or in some cases
result in strips of dead tissue (Rasmussen, 1974).

Recent warming trends are facilitating range expansion
by populations of D. ponderosae into new regions and hosts
(Carroll et al., 2003). On the east side of the Rocky
Mountains in Alberta, mature stands of P. contorta are
sympatric and hybridize with jack pine, Pinus banksiana
Lamb. (Critchfield, 1985). Historically, P. banksiana has not
been exposed to this insect due to the physical barrier of the
Rocky Mountains and the cold climate in this region. In
2001, D. ponderosae breached this barrier and colonized P.
contorta, P. contorta-P. banksiana hybrid, and later P.
banksiana pines (Nealis and Peter, 2008; Cullingham et
al., 2011). The extent to which D. ponderosae will impact
this region and subsequently the boreal and eastern forests
of North America is unknown (Carroll et al., 2003; Logan
et al., 2003; Bentz et al., 2010; Safranyik et al., 2010).
Similarly, P. albicaulis to a large extent historically escaped
exposure to sustained D. ponderosae populations due to
low temperatures of its subalpine habitat, but current
warming trends are now facilitating continuous mortality
by D. ponderosae (Bentz et al., 2010; Logan et al., 2010).

Some stem-colonizing bark beetle species do not engage in
pheromone-mediated mass attacks or cause tree death, but
rather have the ability to develop within living hosts without
killing them (Coulson and Witter, 1984; Berryman, 1986).
For example, the black turpentine beetle, Dendroctonus

terebrans (Oliver) shows evidence of a mating, but not an
aggregation, pheromone (Phillips et al., 1990). The red
turpentine beetle, Dendroctonus valens LeConte, is native to
much of North America, and colonizes a large number of
pine species (Kelley and Farrell, 1998), and to a lesser extent
Abies, Larix, and Picea (Wood, 1982). In the midwestern
United States, its major hosts are red pine, Pinus resinosa
Ait., and P. banksiana. A long-term study demonstrated that
in Wisconsin, D. valens more commonly attacks living red
pines prior to lethal attack by Ips pini (Say) than the opposite
sequence (Aukema et al., 2010). Trees not attacked by I. pini
the following year continued to live, and did not die until
being attacked eventually by this stem-colonizing herbivore
(Aukema et al., 2010). Fifty seven percent of these trees
were attacked by only one pair of D. valens within a year,
and 93% of the trees had four or fewer colonizing pairs.
Unlike species that must mass attack and kill their hosts prior
to reproducing, these beetles appear capable of surviving
high monoterpene concentrations in living hosts throughout
their development. This is evidenced by descriptions of D.
valens that complete development in live trees without
killing them, and the larvae remain in contact with large
amounts of resin in such hosts (Hopkins, 1909; Smith, 1961;
Schmid and Mata, 1991; Randall, 2006). In addition to live
trees that are often stressed, and whose colonization can lead
to subsequent lethal attack by tree-killing species, D. valens
also colonize stumps from recently cut trees (Furniss and
Carolin, 1977; Aukema et al., 2010; Owen et al., 2010). In
the late 1990s, D. valens invaded parts of China, where it is
attacking a new host, Chinese red pine, Pinus tabuliformis
Carr., in higher numbers, and has become a primary
mortality agent (Yan et al., 2005).

Beetles that colonize a diversity of hosts encounter
variable monoterpene environments (Seybold et al., 2006).
For example, the volatile fraction of P. contorta oleoresin is
comprised primarily of β-phellandrene and to a lesser
extent β-pinene (Zavarin et al., 1969; Raffa and Berryman,
1982a; Pureswaran et al., 2004). β-Phellandrene is rare or
absent in other hosts of D. ponderosae (Smith, 2000). Pinus
ponderosa oleoresin contains a more diverse monoterpene
profile with relatively equal proportions of 3-carene and β-
pinene, and substantial amounts of α-pinene, myrcene, and
limonene (Sturgeon, 1979; Hobson et al., 1993). Pinus
albicaulis oleoresin contains substantial amounts of 3-carene
and myrcene (Smith, 2000). Pinus banksiana oleoresin
contains primarily α-pinene, β-pinene, and 3-carene (Wallin
and Raffa, 1999), whereas P. resinosa oleoresin contains
primarily α-pinene and β-pinene (Raffa and Smalley, 1995).

Bark beetles are associated with a diversity of micro-
organisms that facilitate their ability to exploit the subcortical
environment (Whitney, 1982; Paine et al., 1997). Of these,
fungi have been most thoroughly studied. Conifer mono-
terpenes can strongly inhibit some of these fungi, although
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toxicity varies among compounds and some fungi are
relatively tolerant (Raffa et al., 1985; Paine and Hanlon,
1994; Klepzig et al., 1996; Hofstetter et al., 2005; DiGuistini
et al., 2011). Recent studies have shown that some bacterial
taxa are frequently associated with bark beetles (Adams et
al., 2010; Hulcr et al., 2011) and fulfill important ecological
functions. For example, Actinomycete bacteria associated
with two beetle species inhibit the beetles’ fungal antagonists
(Cardoza et al., 2006; Scott et al., 2008), and Proteobacteria
stimulate the growth and reproduction of beetle symbiotic
fungi in the presence of the host compound α-pinene
(Adams et al., 2009). Bacteria inhabiting guts of other
wood-feeding insects, such as termites and cerambycid
beetles, degrade plant-cell wall components, such as
cellulose and lignin, and contribute to acquisition of
nutrients from these generally recalcitrant woody-
substrates (Warnecke et al., 2007; Geib et al., 2008).
Some bacteria associated with bark beetles tolerate
myrcene (Skrodenyte-Arbaciauskiene et al., 2006) and α-
pinene (Adams et al., 2009), but their tolerance to other
monoterpene components of conifer defense is unknown.

In this study, we tested how bacteria isolated from two
bark beetle species that exhibit different host defense
tolerances associated with their different host colonization
behaviors (i.e., killing trees by mass attack vs. colonizing
live trees without mass attacks or causing mortality) are
affected by a diversity of monoterpenes from pine oleoresin.
Specifically, we isolated bacteria from D. ponderosae and D.
valens and exposed these bacteria to monoterpenes that
comprise the major resin and phloem constituents of P.
contorta, P. banksiana, P. resinosa, and P. albicaulis. We
hypothesized that bacteria from both beetle species will grow
in the presence of many monoterpenes, and that bacteria
associated with D. valens will be more capable of tolerating
these compounds given its life history.

Methods and Materials

Isolation of Microorganisms Dendroctonus ponderosae
adults were collected in July 2008 from under the bark of
naturally attacked trees in a stand of P. contorta and P.
contorta—P. banksiana hybrid pines, near Grande Prairie,
Alberta, Canada (54°43′N, 119°39′W). Beetles of both
sexes were actively tunnelling in the egg gallery at the time
of collection. Dendroctonus valens adults of both sexes
were collected in May 2008 from under the bark of
naturally colonized P. resinosa stumps in a spring-thinned
plantation in Black River State Park, Black River Falls, WI,
USA (44°14’57 N, 90°34’07”W). These beetles were
actively tunnelling in egg galleries as well. For all beetles
collected in this study, galleries were clear of resin and
appeared to represent successful colonization of the host.

During sampling, each adult was placed into individual,
sterile vials, placed on ice, and transferred to the lab and
stored at 4°C.

Within 24 hr, at least 25 beetles from each species were
surface washed in phosphate buffered saline, pH 7.4
(Sigma-Aldrich Co., St. Louis, MO, USA) (PBS) with 1%
Tween 20 (ICI America Inc., Wilmington, DE, USA) by
vortexing for 30 sec, and rinsed in PBS. Bacteria were
isolated by crushing beetles in PBS and plating serially
diluted aliquots of the samples on 10% tryptic soy agar
(TSA; Difco, Sparks, MD, USA). Petri dishes were stored
at room temperature for up to 2 week, and colonies from a
diversity of morphologies were selected from multiple
beetles and obtained in pure culture for bioassay.

All bacteria were identified by direct sequencing of
regions V5 of the rRNA 16S gene. Polymerase chain
reaction (PCR) was used to amplify partial ribosomal RNA
(rRNA) gene sequences (Holben et al., 2002), with the
exception that PCR amplicons were used in direct sequenc-
ing reactions rather than for cloning. The primers 27f (5'-
GAGAGTTTGATCCTGGCTCAG-3') and 1492r (5'-
GGTTACCTTGTTACGACTT-3') (based on the Escheri-
chia coli numbering system) were used for PCR. PCR
reaction mixtures contained 25 μl GoTaq Green Mastermix
(Promega, Madison, WI, USA), 2 μl of each primer 20 μl
of water, and 1 μl of culture. PCR reactions were performed
by using an initial denaturation of 5 min at 94°C, followed
by 30 cycles of denaturation for 1 min at 94°C, primer
annealing for 1 min at 55°C, and primer extension at 72°C
for 2 min. This was followed by a final extension reaction
at 72°C for 10 min. Sequencing of PCR products was
performed by the University of Wisconsin Biotechnology
Center (Madison, WI, USA). Sequences were deposited in
GenBank (Table 1). National Center for Biotechnology
Information (NCBI) similarity scores were obtained by
using the NCBI search of previously deposited sequences
in GenBank (www.ncbi.nlm.nih.gov).

Effects of Monoterpenes on Growth of Bacteria We
quantified the effects of monoterpenes on growth of
bacteria by using methods described by Middelbeek et al.
(1992) and Adams et al. (2009). Briefly, 10 μl of actively
growing culture were inoculated into 200 μl of 10% tryptic
soy broth in 96-well plates (Becton Dickinson and Co.,
Franklin Lakes, NJ, USA). Wells were amended with 0%,
1%, or 5% concentrations (v/v) of one of 6 monoterpenes
for isolates from D. ponderosae, and 5 monoterpenes for
isolates from D. valens. The monoterpenes were racemic α-
pinene (98%, Aldrich, Milwaukee, WI, USA), (−)-β-pinene
(technical grade, approx. 86%, Aldrich), (R)-(+)-limonene
(98%, Aldrich), myrcene (tech. grade, approx. 78%,
Aldrich), and (+)-3-carene (90%, Aldrich), which were
tested against all isolates, and β-phellandrene (Glidco
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Organics Corp., Jackson, MS, USA), which was tested
against isolates from D. ponderosae. Individual wells were
sealed by using VIEWseal pressure sensitive adhesive
(Greiner Bio-one, Maybachstraße, Germany). Cultures
were shaken at medium speed (500 revolutions per min)
and orbital directionality at 24°C, and optical density was
measured every hour for up to 48 h by using a DXT 880
Multimode Detector (Beckman Coulter, Corona, CA, USA)
at absorbance of 595 nm. Each isolate was exposed to each
monoterpene and tested an average of two times to verify
consistent growth patterns (Table 2).

Data Analysis We compared the doubling times of bacteria
with and without monoterpene addition during the expo-
nential phase of growth (Middelbeek et al., 1992). To
determine the time period in which the exponential phase
took place, growth of bacteria were monitored for up to
48 h, a period that encompassed the growth phase. Next,
absorbance values were log transformed and the time
interval with the most linear log-transformed absorbance
values was selected by calculating the r2 values of each
possible time interval (StatView version 4.57, Abacus
Concepts, Inc., Berkeley, CA, USA). During this period of
exponential growth, an index of monoterpene impact on
bacterial growth rate was calculated by using methods
described by Middelbeek et al. (1992): the difference in
absorbance values at the beginning and end of the
exponential growth phase (representing the number of cell
divisions) was divided by the log2 of the duration (number
of hours) of the exponential growth phase. The reciprocal
of this value is then taken to provide the number of hours
per generation, or doubling time. The doubling time of each
bacterium growing in each terpene concentration was
calculated relative to controls by subtracting the doubling
time of the isolate growing without terpene from the

doubling time of the isolate growing with the terpene, and
dividing this value by the doubling time of the isolate
growing without terpene, x 100. Relative doubling times
were grouped into five categories: −75% to −25%,
stimulated growth; −25% to 25%, growth not affected;
25% to 100%, growth inhibited; > 100%, growth strongly
inhibited; and no growth, complete inhibition.

Results

Isolation and Identification of Microorganisms Bacteria
closely related to gram-positive actinobacteriumMicrococcus
terreus (isolate A7-1a), and Bacillales Paenibacillus spp.
(isolates A3-1a and A5-1) and Bacillus simplex (isolate
A3-1b) were isolated from D. ponderosae and tested in
this study (Table 1). One yeast isolate (A9-4) most closely
related to Candida piceae, also was obtained in culture
and used in bioassays (Table 1).

Bacteria most closely related to an actinobacterium Frigor-
ibacterium sp. (isolate Dv26) and Bacillales Paenibacillus
provencensis (isolate Dv34) were isolated from D. valens and
tested (Table 1). Three other isolates were most closely
related to gram-negative γ-Proteobacteria Enterobacter spp.
(isolates Dv3 and Dv6) and Pseudomonas sp. (isolate Dv25)
(Table 1).

Effects of Monoterpenes on Growth Monoterpenes had
substantial effects on bacterial growth (doubling time),
and these varied with compound, isolate, and insect host
(Table 2). Overall, growth of bacteria was most inhibited by
(+)-3-carene and (±)-α-pinene, and was least inhibited by
myrcene and limonene. Six of the ten isolates grew in the
presence of α-pinene (Table 2, Fig. 1). The four isolates that

Table 1 GenBank accession numbers for bacteria isolated from Dendroctonus ponderosae and D. valens

Isolate source Isolate
name

Class of closest match
in GenBank

Closest named match in
GenBank (accession #)

Sequence
length (bp)

Percent
similarity

Accession No.
of isolate

D. ponderosae A7-1a Actinobacteria Micrococcus terreus (HQ009859) 1216 99 HQ728081

A3-1a Bacilli Paenibacillus xylanexedens (HM439462) 758 100 HQ728079

A5-1 Bacilli Paenibacillus sp. (GQ920787) 383 99 HQ728082

A3-1b Bacilli Bacillus simplex (FJ544333) 551 98 HQ728080

A9-4a Saccharomycetes Candida piceae (EU011713) 526 100 HQ728083

D. valens Dv3 γ-Proteobacteria Enterobacter sp. (AY082447) 1320 98 HQ728086

Dv6 γ-Proteobacteria Enterobacter amnigenus (DQ481471) 1320 100 HQ728087

Dv25 γ-Proteobacteria Pseudomonas sp. (AM913961) 942 99 HQ728088

Dv26 Actinobacteria Frigoribacterium sp. (AF157479) 1350 100 HQ728084

Dv34 Bacilli Paenibacillus provencensis (EF212893) 849 100 HQ728085

a Fungus

J Chem Ecol (2011) 37:808–817 811



Ta
b
le

2
D
ou

bl
in
g
tim

e
(h
)
of

m
ic
ro
bi
al

is
ol
at
es

fr
om

D
en
dr
oc
to
nu

s
po

nd
er
os
ae

(M
P
B
)
an
d
D
.
va
le
ns

(R
T
B
)
ad
ul
ts
in

th
e
pr
es
en
ce

an
d
ab
se
nc
e
of

m
on

ot
er
pe
ne
s

D
ou

bl
in
g
tim

e
±
90

%
C
.I
.
(N
)

S
ou

rc
e

is
ol
at
e

C
on

c.
(%

)
α
-P
in
en
e

β
-P
in
en
e

L
im

on
en
e

M
yr
ce
ne

3-
C
ar
en
e

β
-P
he
lla
nd

re
ne

M
P
B

A
7-
1a

0
4.
7
±
0.
03

(2
)

8.
8
±
0.
71

(4
)

5.
2
±
0.
63

(4
)

5.
5
±
0.
27

(2
)

6.
9
±
0.
56

(4
)

6.
9
±
0.
73

(3
)

1
11
.1
±
0.
48

(4
)

12
.7
±
0.
24

(3
)

8.
7
±
2.
54

(3
)

4.
0
±
0.
01

(2
)

C
I
(4
)

6.
6
±
0.
51

(3
)

5
13

.3
±
1.
67

(2
)

40
.4
±
11
.3
1
(4
)

8.
3
±
2.
90

(3
)

4.
4
±
0.
25

(2
)

C
I
(4
)

9.
4
±
0.
64

(3
)

A
3-
1a

0
5.
3
±
0.
07

(2
)

6.
6
±
0.
09

(4
)

5.
0
±
0.
16

(2
)

3.
6
±
0.
10

(2
)

4.
9
±
0.
49

(3
)

14
.9
±
2.
37

(4
)

1
C
I
(2
)

31
.3
±
3.
11

(2
)

3.
5
±
0.
12

(2
)

3.
8
±
0.
34

(2
)

C
I
(3
)

20
.0
±
1.
80

(3
)

5
C
I
(2
)

20
.6
±
1.
13

(2
)

3.
1
±
0.
03

(2
)

2.
8
±
0.
25

(2
)

C
I
(3
)

21
.7
±
3.
52

(4
)

A
3-
1b

0
5.
1
±
0.
18

(2
)

6.
7
±
0.
01

(3
)

7.
2
±
1.
00

(4
)

15
.5
±
0.
01

(2
)

10
.3
±
0.
17

(2
)

13
.4
±
0.
50

(2
)

1
C
I
(2
)

9.
1
±
0.
02

(3
)

8.
1
±
0.
19

(3
)

17
.7
±
0.
45

(2
)

17
.8
±
0.
06

(2
)

17
.5
±
1.
81

(2
)

5
C
I
(2
)

C
I
(3
)

7.
8
±
1.
03

(3
)

16
.3
±
0.
71

(2
)

C
I
(2
)

19
.4

(1
)

A
5-
1

0
4.
7
±
0.
08

(2
)

6.
7
±
0.
28

(2
)

4.
8
±
0.
11

(2
)

5.
3
±
0.
25

(2
)

8.
2
±
0.
11

(2
)

9.
9
±
0.
48

(4
)

1
C
I
(2
)

10
.3
±
0.
37

(2
)

4.
9
±
0.
01

(2
)

5.
3
±
0.
20

(2
)

C
I
(2
)

17
.4
±
2.
10

(2
)

5
C
I
(2
)

10
.5
±
0.
45

(2
)

5.
1
±
0.
03

(2
)

7.
6
±
0.
56

(2
)

C
I
(2
)

14
.4
±
1.
18

(2
)

A
9-
4

0
3.
9
±
0.
02

(2
)

8.
4
±
0.
05

(2
)

5.
6
±
0.
52

(4
)

11
.0
±
0.
48

(2
)

10
.5
±
0.
04

(2
)

9.
4
±
0.
62

(4
)

1
C
I
(2
)

8.
2
±
0.
69

(2
)

6.
4
±
0.
42

(3
)

4.
7
±
0.
23

(2
)

13
.2
±
0.
71

(2
)

13
.3
±
0.
91

(4
)

5
C
I
(2
)

7.
6
±
0.
38

(2
)

7.
7
±
0.
53

(2
)

7.
6
±
0.
64

(2
)

C
I
(2
)

16
.5
±
1.
75

(3
)

R
T
B

D
v3

0
5.
0
±
0.
31

(2
)

3.
3
±
0.
12

(2
)

no
da
ta

3.
1
±
0.
12

(2
)

4.
1
±
0.
02

(2
)

1
6.
6
±
0.
80

(2
)

5.
0
±
1.
17

(2
)

3.
3
(1
)

3.
3
±
0.
80

(2
)

3.
7
±
0.
20

(2
)

5
26

.4
±
4.
45

(2
)

3.
1
±
0.
43

(2
)

3.
3
±
0.
24

(2
)

2.
5
±
0.
09

(2
)

8.
9
±
1.
02

(2
)

D
v6

0
4.
1
±
0.
02

(2
)

4.
2
±
0.
08

(2
)

3.
4
±
0.
17

(2
)

4.
0
(1
)

4.
3
±
0.
05

(2
)

1
3.
5
±
0.
01

(2
)

5.
4
(1
)

3.
3
±
0.
34

(2
)

3.
5
(1
)

5.
7
±
0.
02

(2
)

5
4.
8
±
0.
00

(2
)

4.
4
±
0.
38

(2
)

3.
7
±
0.
42

(2
)

4.
9
±
0.
22

(2
)

5.
7
±
0.
31

(2
)

D
v2

5
0

3.
7
±
0.
09

(2
)

3.
5
±
0.
03

(2
)

4.
7
±
0.
01

(2
)

3.
1
±
0.
12

(2
)

4.
7
±
0.
04

(2
)

1
3.
8
±
0.
25

(2
)

5.
4
±
0.
49

(2
)

5.
1
±
0.
23

(2
)

2.
6
±
0.
14

(2
)

3.
9
±
0.
01

(2
)

5
4.
3
±
0.
17

(2
)

4.
7
±
0.
03

(2
)

5.
9
±
0.
58

(2
)

3.
1
±
0.
06

(2
)

4.
5
(1
)

D
v2

6
0

2.
9
±
0.
10

(2
)

3.
0
±
0.
23

(2
)

5.
1
±
0.
22

(2
)

3.
5
(1
)

3.
0
±
0.
14

(2
)

1
3.
3
±
0.
17

(2
)

4.
4
±
0.
25

(2
)

3.
6
(1
)

3.
2
(1
)

3.
0
±
0.
10

(2
)

5
4.
8
±
0.
19

(2
)

3.
8
±
0.
00

(2
)

8.
6
±
0.
52

(2
)

3.
4
±
0.
26

(2
)

4.
5
(1
)

D
v3

4
0

5.
4
±
0.
00

(2
)

4.
6
±
0.
15

(2
)

3.
4
±
0.
17

(2
)

3.
3
±
0.
14

(2
)

4.
7
±
0.
02

(2
)

1
5.
0
±
0.
23

(2
)

5.
2
±
0.
13

(2
)

3.
3
±
0.
34

(2
)

3.
2
±
0.
47

(2
)

4.
0
±
0.
28

(2
)

5
2.
9
±
0.
08

(2
)

4.
0
±
0.
01

(2
)

4.
0
±
0.
40

(2
)

3.
8
±
0.
24

(2
)

4.
6
±
0.
02

(2
)

F
or

ta
bl
e
en
tr
ie
s
la
be
le
d
“C

I”
,
th
e
is
ol
at
es

w
er
e
co
m
pl
et
el
y
in
hi
bi
te
d

812 J Chem Ecol (2011) 37:808–817



did not grow in any concentration of (±)-α-pinene were all
isolated from D. ponderosae. One isolate, A7-1a, from D.
ponderosae grew in, but was strongly inhibited by, both
concentrations of α-pinene. All isolates from D. valens
grew at 1% α-pinene, with no effect on four isolates and
inhibition of one, isolate Dv3. All isolates also grew at 5% α-
pinene, with an increase in growth of Dv34, no effect on Dv6
and Dv25, inhibition of Dv26, and strong inhibition of Dv3.

All isolates grew in the presence of (S)-(−)-β-pinene
(Table 2, Fig. 1). All isolates from D. ponderosae grew at
1% β-pinene, and all but one isolate, A3-1b, grew at 5% β-
pinene. Three isolates, A7-1a, A3-1b, and A5-1, were
inhibited and isolate A3-1a was strongly inhibited at 1%.
Isolate A5-1 was inhibited and isolates A7-1a and A3-1a
were strongly inhibited at 5%. Growth of isolate A9-4 was
not affected, and isolate A3-1b did not grow at 5%. All
isolates from D. valens grew in both concentrations of β-
pinene. All but isolate Dv34 were inhibited at 1%. At 5%,
three isolates were unaffected, and Dv25 and Dv26 were
inhibited.

All isolates grew in the presence of (R)-(+)-limonene
(Table 2, Fig. 1). Isolate A3-1a from D. ponderosae was
stimulated at both concentrations, isolate A7-1a was
inhibited at both concentrations, and isolate A9-4 was
inhibited at 5%. Three isolates from D. valens were
unaffected by either concentration, and growth of isolate
Dv26 was stimulated at 1%, and growth of isolates Dv25
and Dv26 was inhibited at 5%.

All bacterial isolates grew in the presence of myrcene
(Table 2, Fig. 1). Isolates A7-1a and A9-4 from D.
ponderosae were stimulated at both concentrations, and
growth of isolates A3-1a and A3-1b was not affected at
either concentration. Isolates A3-1a and A3-1b were
unaffected at either concentration of myrcene and isolate
A5-1 was inhibited at 5%. Growth of all isolates from D.
valens was unaffected by myrcene.

All but two isolates were inhibited by (+)-3-carene under
some condition (Table 2, Fig. 1). Isolates A7-1a, A3-1a, and
A5-1 from D. ponderosae did not grow at either concen-
tration, and isolates A3-1b and A9-4 were inhibited at 1%
and did not grow at 5%. All bacteria from D. valens grew at
both concentrations of (+)-3-carene. Isolate Dv6 was
inhibited at 1% and 5%, and isolate Dv26 was inhibited
and isolate Dv3 was strongly inhibited at 5%.

β-Phellandrene inhibited the growth of all bacteria from
D. ponderosae, and all but isolate A7-1a were inhibited at
1%. However, no bacteria were totally or even strongly
inhibited at either concentration (Table 2, Fig. 1).

Discussion

Bacteria isolated from D. ponderosae were more strongly
inhibited by exposure to monoterpenes than those isolated
from D. valens. This appears to correspond with a major
difference in their life histories, namely that D. ponderosae
deplete host monoterpene concentrations by mass attack,
whereas D. valens in Wisconsin often conduct single or low
density attacks and complete development within a terpene-
rich environment. This pattern occurred even though
similar bacterial taxa were tested. For example, Actino-
bacteria and Bacillales isolates from D. valens were more
tolerant than those from D. ponderosae (Table 1). Actino-
bacteria occur in associations with both pine phloem
(Adams et al., 2008; Hulcr et al., 2011) and bark beetles
(Cardoza et al., 2006, 2009; Scott et al., 2008), so some
tolerance to monoterpenes would seem necessary for their
survival. Some bacteria in the Bacillales are capable of
degrading various monoterpenes (Chang and Oriel, 1994;
Savithiry et al., 1998) and similar hydrocarbons synthesized
by plants (Wright et al., 1986; Jiménez et al., 2010). Unlike
the isolates from D. ponderosae, three of the isolates from
D. valens were γ-Proteobacteria.

Fig. 1 Heat map representing the growth of bacterial isolates growing
in the presence of monoterpenes relative to growing in the absence of
monoterpenes. Percentages listed in the legend represent doubling

time of each isolate growing with monoterpenes at 1% and 5%
concentrations relative to each isolate growing in culture without
terpenes
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The tolerance to monoterpenes by the yeast isolate from
D. ponderosae is not entirely unexpected, given associa-
tions of yeasts with bark beetles (Shifrine and Phaff, 1956;
Boone et al., 2008b; Davis et al., 2011). The adaptation of
yeasts to the terpenoid-rich environment may be particularly
beneficial for some species of bark beetles, as yeasts have
been proposed to contribute to pheromone synthesis (Brand et
al., 1977) and favor advantageous fungi (Davis et al., 2011).
However, the extent to which yeasts contribute to
pheromone communication in nature is uncertain, and
some Ips-associated yeasts are relatively sensitive to some
terpenes (Leufvén et al., 1988; Seybold et al., 2000). Yeast
survival also could adversely affect larvae, as some natural
enemies of bark beetles are attracted to yeast metabolites
(Boone et al., 2008b).

Bacteria from D. ponderosae were more tolerant of β-
phellandrene than (±)-α-pinene and (S)-(−)-β-pinene. β-
Phellandrene is the predominant monoterpene of the
primary host of D. ponderosae, whereas α- and β-pinene
are the predominant monoterpenes of P. banksiana, which is
the host into whose range populations of D. ponderosae are
expanding. Further, these bacteria were highly tolerant of,
and their growth was stimulated by, myrcene, which D.
ponderosae exploits as a synergist of its aggregation
pheromone to mass attack trees (Miller and Lindgren,
2000; Boone et al., 2008a; Borden et al., 2008). This
compound also is an important component of P. albicaulis
resin (Smith, 2000).

The antibacterial activity of 3-carene is particularly
noteworthy. Specifically, this compound is correlated with
resistance of conifers to D. ponderosae and the white pine
weevil, Pissodes strobi (Peck) (Coleoptera: Curculionidae)
(Ott, 2009; Robert et al., 2010), yet paradoxically frequently
proves to be among the least bioactive in insect and fungal
assays (Raffa et al., 1985; Klepzig et al., 1996; Lu et al.,
2010). The antibacterial activity of 3-carene may be a
mechanism that assists in tree resistance. Although 3-carene
has a strong antibiotic effect on bacteria isolated from D.
ponderosae, it caused little inhibition of bacteria isolated
from D. valens. 3-Carene is a major volatile attractant
(kairomone) for the flight response of D. valens adults
(Hobson et al., 1993; Erbilgin et al., 2007). It is possible that
bacteria closely associated with D. valens have adapted to be
tolerant of this compound, given their inevitable exposure
once the beetle penetrates the host.

α-Pinene, which occurs in P. contorta at low concen-
trations (Zavarin et al., 1969; Raffa and Berryman, 1983) but
is a more predominant monoterpene in other hosts of D.
ponderosae such as P. ponderosa and P. albicaulis (Sturgeon,
1979; Smith, 2000), was strongly antibiotic to microbes from
D. ponderosae. In another study, however, D. ponderosae-
associated bacteria tolerated α-pinene (Adams et al., 2009).
This distinction may be due to difference among bacterial

taxa tested, specifically Pseudomonas sp. that are tolerant of
a diversity of aromatic compounds (Jiménez et al., 2010). α-
Pinene also inhibits growth and germination of fungi
associated with D. valens (Klepzig et al., 1996).

Two monoterpenes that all microbes tolerated were
limonene and myrcene. These monoterpenes are found in
relatively low concentrations in volatile profiles of many
conifers, with an exception in P. albicaulis in which
myrcene is a dominant component (Smith, 2000). Myrcene
increases the attraction of the aggregation pheromone of D.
ponderosae (Miller and Lindgren, 2000; Boone et al.,
2008a; Borden et al., 2008) but has no or very little
significant effect on the flight response of D. valens
(Hobson et al., 1993; Sun et al., 2004). No evidence exists
for a role of limonene in communication in Dendroctonus,
but it is an attractant of Ips typographus (Reddemann and
Reinhard, 1996). Myrcene and limonene inhibit growth of
several bark beetle-associated fungi that colonize P. jeffreyi
and P. contorta and grand fir, Abies grandis (Raffa et al.,
1985; Paine and Hanlon, 1994), hosts with low concen-
trations of myrcene (Raffa and Berryman, 1982a,b, 1983;
Smith, 2000). Myrcene also inhibits growth of fungi
associated with D. frontalis Zimmerman to some extent;
however, limonene has little effect on the same fungi
(Hofstetter et al., 2005). Further work is necessary to fully
characterize the antibiotic effects of limonene and myrcene
on bark beetle-associated microorganisms.

Two of the most frequently reported bacteria associated with
Dendroctonus beetles include Bacillus spp. and γ-
Proteobacteria such as Enterobacter spp. and Pseudomonas
spp., which have been detected with D. valens, D. ponderosae,
spruce beetle (D. rufipennis Kirby), and D. frontalis (Cardoza
et al., 2009; Morales-Jiménez et al., 2009; Adams et al.,
2010). The other bacteria used in this study also have been
detected in bark beetles, including Micrococcus spp. from D.
rufipennis and D. ponderosae (Adams et al., 2008; Cardoza et
al., 2009), and Paenibacillus sp. and Frigoribacterium sp.
from I. pini (Delalibera et al., 2007; Cardoza et al., 2009).
Yeasts such as Candida spp. previously have been isolated
from a diversity of bark beetles, including D. ponderosae
(Adams et al., 2008). Future studies are needed to determine
the activities of blends of compounds, better quantify the
frequencies of association of various bacterial taxa with
bark beetles, better partition geographic ranges and life
history strategies, and construct comparisons with outlier
groups to improve our evolutionary understanding. With
increasing focus on bacteria associated with bark beetles
and insects in general, and new tools such as next-generation
sequencing, our understanding of these ecological relation-
ships will likely improve.

The chemical defenses of conifers provide strong
resistance mechanisms to colonization by biotic agents, as
is evident from the relatively few insects and pathogens that
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colonize the phloem of living trees. We hypothesized that
the ability of bark beetles that colonize living hosts to
establish in new environments and hosts, which are
facilitated by climate warming trends and human-
facilitated transportation (Sun et al., 2004; Yan et al.,
2005; Logan et al., 2010), may be in part due to activities of
their microbial symbionts. Microbial symbionts perform a
variety of functions important to the success of their animal
hosts (Zilber-Rosenberg and Rosenberg, 2008), so their
ability to survive a harsh environment, such as within trees,
likely is critical to their animal host. In this study, we show
that microbes associated with two species of bark beetle
survived and grew in the presence of antimicrobial
components of the chemical defense of conifers. Future
studies are needed to investigate the metabolic capabilities
of bacteria growing in the presence of individual resin
components and blends.

Acknowledgments We thank N. Erbilgin (University of Alberta,
Edmonton, AB) and K. Bleiker (Canadian Forest Service, Victoria,
BC, Canada) for assistance in collecting mountain pine beetles. C.
Currie (University of Wisconsin, Madison, WI, USA) for use of the
microplate reader and S. Adams (University of Wisconsin, Madison,
WI, USA) for sequencing. This research was supported by funding
from the USDA National Research Initiative (2003-3502-13528) and
the Natural Sciences and Engineering Research Council of Canada,
Genome Canada and Genome British Columbia. Helpful critiques by
three anonymous reviewers improved the quality of our paper and are
much appreciated.

References

ADAMS, A. S., ADAMS, S. M., CURRIE, C. R., GILLETTE, N. E., and
RAFFA, K. F. 2010. Geographic variation in bacterial communities
associated with the red turpentine beetle (Coleoptera: Curculionidae).
Environ. Entomol. 39:406–414.

ADAMS, A. S., CURRIE, C. R., CARDOZA, Y. J., KLEPZIG, K. D., and
RAFFA, K. F. 2009. Effects of symbiotic bacteria and tree
chemistry on the growth and reproduction of bark beetle fungal
symbionts. Can. J. For. Res. 39:1133–1147.

ADAMS, A. S., SIX, D. L., ADAMS, S. M., and HOLBEN, W. E. 2008. In
vitro interactions between yeasts and bacteria and the fungal
symbionts of the mountain pine beetle (Dendroctonus ponderosae).
Microb. Ecol. 56:460–466.

AUKEMA, B. H., CARROLL, A. L., ZHU, J., RAFFA, K .F., SICKLEY, T.
A., and TAYLOR, S. W. 2006. Landscape level analysis of
mountain pine beetle in British Columbia, Canada: spatiotemporal
developments and spatial synchrony within the present outbreak.
Ecography 29:427–441.

AUKEMA, B. H., ZHU, J., MØLLER, J., RASMUSSEN, J. G., and RAFFA,
K. F. 2010. Predisposition to bark beetle attack by root herbivores
and associated pathogens: roles in forest decline, gap formation,
and persistence of endemic bark beetle populations. For. Ecol.
Manag. 259:374–382.

BENTZ, B. J., LOGAN, J., MACMAHON, J., ALLEN, C. D., AYRES, M.,
BERG, E., CARROLL, A., HANSEN, M., HICKE, J., JOYCE, L.,
MACFARLANE, W., MUNSON, S., NEGRÓN, J., PAINE, T., POWELL,
J., RAFFA, K., RÉGNIÈRE, J., REID, M., ROMME, B., SEYBOLD, S.
J., SIX, D., TOMBACK, D., VANDYGRIFF, J., VEBLEN, T., WHITE,

M., WITCOSKY, J., and WOOD, D. 2009. Bark Beetle Outbreaks in
Western North America: Causes and Consequences. University of
Utah Press, Chicago, IL.

BENTZ, B. J., RÉGNIÈRE, J., FETTIG, C. J., HANSEN, E. M., HAYES, J.
L., HICKE, J. A., KELSEY, R. G., NEGRÓN, J. F., and SEYBOLD, S.
J. 2010. Climate change and bark beetles of the western United
States and Canada: direct and indirect effects. BioScience
60:602–613

BERRYMAN, A. A. 1986. Forest Insects: Principles and Practice of
Population Management. Plenum Press, New York.

BOONE, C. K., AUKEMA, B. H., BOHLMANN, J., CARROLL, A. L., and
RAFFA, K. F. 2011. Efficacy of tree defense physiology varies
with bark beetle population density: a basis for positive feedback
in eruptive species. Can. J. For. Res. 41:1174–1188.

BOONE, C. K., SIX, D. L., and RAFFA, K. F. 2008a. The enemy of my
enemy is still my enemy: competitors add to predator load of a
tree-killing bark beetle. Agric. For. Entomol. 10:411–421.

BOONE, C. K., SIX, D. L., ZHENG, Y., and RAFFA, K. F. 2008b.
Exploitation of microbial symbionts of bark beetles by parasitoids
and dipteran predators. Environ. Entomol. 37:150–161.

BORDEN, J. H., PURESWARAN, D. S., and LAFONTAINE, J. P. 2008.
Synergistic blends of monoterpenes for aggregation pheromones
of the mountain pine beetle (Coleoptera: Curculionidae). J. Econ.
Entomol. 101:1266–1275.

BRAND, J. M., SCHULTZ, J., BARRAS, S. J., EDSON, L. F., PAYNE, T. L.,
and HEDDEN, R. L. 1977. Bark beetle pheromones: enhancement
of Dendroctonus frontalis (Coleoptera: Scolytidae) aggregation
pheromone by yeast metabolites in laboratory assays. J. Chem.
Ecol. 3:657–666.

BRIGNOLAS, F., LACROIX, B., LIEUTIER, F., SAUVARD, D., DROUET, A.,
CLAUDOT, A. C., YART, A., BERRYMAN, A. A., and CHRISTIANSEN,
E. 1995. Induced responses in phenolic metabolism in two Norway
spruce clones after wounding and inoculations with Ophiostoma
polonicum, a bark beetle-associated fungus. Plant Physiol.
109:821–827.

CARDOZA, Y. J., KLEPZIG, K. D., and RAFFA, K. F. 2006. Bacteria in
oral secretions of an endophytic insect inhibit antagonistic fungi.
Ecol. Entomol. 31:636–645.

CARDOZA, Y. J., VASANTHAKUMAR, A., SUAZO, A., and RAFFA, K. F.
2009. Survey and phylogenetic analysis of culturable microbes in
the oral secretions of three bark beetle species. Entomol. Exp.
Appl. 131:138–147.

CARROLL, A., TAYLOR, S. W., RÉGNIÈRE, J., and SAFRANYIK, L. 2003.
Effects of climate change on range expansion by the mountain
pine beetle in British Columbia, pp. 223–232, in T. L. Shore, J. E.
Brooks, and J. E. Stone (eds.). Mountain Pine Beetle Symposium:
Challenges and Solutions, Nat. Res. Ca., Can. For. Serv., Victoria,
Report No. BC-X-399.

CHANG, H. C. and ORIEL, P. 1994. Bioproduction of perillyl alcohol and
related monoterpenes by isolates of Bacillus stearothermophilus. J.
Food Sci. 59:660–662.

COULSON, R. N. and WITTER, J. A. 1984. Forest Entomology:
Ecology and Management. Wiley & Sons, New York.

CRITCHFIELD, W. B. 1985. The late Quaternary history of lodgepole
and jack pines. Can. J. For. Res. 15:749–772.

CULLINGHAM, C. I., COOKE, J. E. K., DAND, S., DAVIS, C. S., COOKE,
B. J., and COLTMAN, D. W. 2011. Mountain pine beetle host-
range expansion threatens the boreal forest. Mol. Ecol.
20:2157–2171.

DAVIS, T. S., HOFSTETTER, R. W., FOSTER, J. T., FOOTE, N. E., and
KEIM, P. 2011. Interactions between the yeast Ogataea pini and
filamentous fungi associated with the western pine beetle.
Microb. Ecol. 61:626–634.

DELALIBERA, I. JR., VASANTHAKUMAR, A., BURWITZ, B. J., SCHLOSS,
P. D., KLEPZIG, K. D., HANDELSMAN, J., and RAFFA, K. F. 2007.
Composition of the bacterial community in the gut of the pine

J Chem Ecol (2011) 37:808–817 815



engraver, Ips pini (Say) (Coleoptera) colonizing red pine.
Symbiosis 43:93–104.

DIGUISTINI, S., WANT, Y., LIAO, N. Y., TAYLOR, G., TANGUAY, P., FEAU,
N., HENRISSAT, B., CHAN, S. K., HESSE-ORCE, U., MASSOUMI

ALAMOUTI, S., TSUI, C. K. M., DOCKING, R. T., LEVASSEUR, A.,
HARIDAS, S., ROBERTSON, G., BIROL, I., HOLT, R. A., MARRA,
M. A., HAMELIN, R. C., HIRST, M., JONES, S. J. M., BOHLMANN,
J., and BREUIL, C. 2011. Genome and transcriptome analyses of
the mountain pine beetle-fungal symbiont Grosmannia clavigera,
a lodgepole pine pathogen. Proc. Natl. Acad. Sci. U.S.A.
108:2504–2509.

ERBILGIN, N., MORI, S. R., SUN, J. H., STEIN, J. D., OWEN, D. R.,
MERRILL, L. D., CAMPOS BOLAÑOS, R., RAFFA, K. F., MÉNDEZ

MONTIEL, R., WOOD, D. L. and GILLETTE, N. E. 2007. Response
to host volatiles by native and introduced populations of
Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in
North America and China. J. Chem. Ecol. 33:131–146.

FURNISS, M. M. and SCHENK, J. A. 1969. Sustained natural infestation
by the mountain pine beetle in seven new Pinus and Picea hosts.
J. Econ. Entomol. 62:518–519.

FURNISS, R. L. and CAROLIN, V. M. 1977. Western Forest Insects.
USDA For. Serv. Misc. Publ. No. 1339. Washington, D.C.
654 pp.

GEIB, S. M., FILLEY, T. R., HATCHER, P. G., HOOVER, K., CARLSON, J.
E., DEL MAR JIMENEZ-GASCO, M., NAKAGAWA-IZUMI, A.,
SLEIGHTER, R. L., and TIEN, M. 2008. Lignin degradation in
wood-feeding insects. Proc. Nat. Acad. Sci. U.S.A. 105:12932–
12937.

HOBSON, K. R., WOOD, D. L., COOL, L. G., WHITE, P. R., OHTSUKA,
T., KUBO, I., and ZAVARIN, E. 1993. Chiral specificity in response
by the bark beetle Dendroctonus valens to host kairomones. J.
Chem. Ecol. 19:1837–1846.

HOFSTETTER, R. W., MAHFOUZ, J. B., KLEPZIG, K. D., and AYRES, M.
P. 2005. Effects of tree phytochemistry on the interactions among
endophloedic fungi associated with the southern pine beetle. J.
Chem. Ecol. 31:539–560.

HOLBEN, W. E., WILLIAMS, P., SAARINEN, M., SÄRKILAHTI, L. K., and
APAJALAHTI, J. H. A. 2002. Phylogenetic analysis of intestinal
microflora indicates a novel mycoplasma phylotype in farmed
and wild salmon. Microb. Ecol. 44:175–185.

HOPKINS, A. D. 1909. Contributions toward a monograph of the
scolytid beetles. I. The genus Dendroctonus. USDA Bur.
Entomol. Technol. Ser. 17, Part I.

HUBER, D. P. W., AUKEMA, B. H., HODGKINSON, R. S., and
LINDGREN, B. S. 2009. Successful reproduction and brood
production in live, standing interior hybrid spruce, Picea
engelmannii x glauca, by mountain pine beetle, Dendroctonus
ponderosae (Coleoptera: Curculionidae). Agric. For. Entomol.
11:83–89.

HULCR, J., ADAMS, A. S., RAFFA, K., HOFSTETTER, R. W., KLEPZIG,
K. D., and CURRIE, C. R. 2011. Presence and diversity of
Streptomyces in Dendroctonus and sympatric bark beetle galleries
across North America. Microb. Ecol. 61:759–768.

JIMÉNEZ, J. I., NOGALES, J., GARCÍA, J. L., and DÍAZ, E. 2010. A
genomic view of the catabolism of aromatic compounds in
Pseudomonas, pp. 1297–1325, in K. N. Timmis (ed.). Handbook
of Hydrocarbon and Lipid Microbiology. Springer-Verlag,
Heidelberg, Germany.

KEELING, C. I. and BOHLMANN, J. 2006. Diterpene resin acids in
conifers. Phytochemistry 67:2415–2423.

KELLEY, S. T. and FARRELL, B. D. 1998. Is specialization a dead end?
The phylogeny of host use in Dendroctonus bark beetles
(Scolytidae). Evolution 52:1731–1743.

KLEPZIG, K. D., RAFFA, K. F., and SMALLEY, E. B. 1991. Association
of an insect-fungal complex with red pine decline in Wisconsin.
For. Sci. 37:1119–1139.

KLEPZIG, K. D., SMALLEY, E. B., and RAFFA, K.F. 1996. Combined
chemical defenses against an insect-fungal complex. J. Chem.
Ecol. 22:1367–1388.

LEUFVÉN, A., BERGSTRÖM, G., and FALSEN, E. 1988. Oxygenated
monoterpenes produced by yeasts, isolated from Ips typographus
(Coleoptera, Scolytidae) and grown in phloem medium. J. Chem.
Ecol. 14:353–362.

LEWINSOHN, E., GIJZEN, M., SAVAGE, T. J., and CROTEAU, R. 1991.
Defense mechanisms of conifers. Plant Physiol. 96:38–43.

LOGAN, J. A., RÉGNIÈRE, J., and POWELL, J. A. 2003. Assessing the
impacts of global warming on forest pest dynamics. Front. Ecol.
Environ. 1:130–137.

LOGAN, J. A., MACFARLANE, W. W., and WILLCOX, L. 2010.
Whitebark pine vulnerability to climate change induced mountain
pine beetle disturbance in the Greater Yellowstone Ecosystem.
Ecol. Appl. 20:895–902.

LU, M., WINGFIELD, M. J., GILLETTE, N. E., MORI, S. R., and SUN, J. -H.
2010. Complex interactions among host pines and fungi vectored by
an invasive bark beetle. New Phytol. 187:859–866.

MIDDELBEEK, E. J., JENKINS, R. O., and DRIJVER-DE HASS, S. J.
1992. Growth in batch culture, pp. 79–106, in T. G. Cartledge
(ed.). In vitro Cultivation of Micro-organisms. Butterworth-
Heinemann Ltd., Oxford, U.K.

MILLER, D. R. and LINDGREN, B. S. 2000. Comparison of α-pinene
and myrcene on attraction of mountain pine beetle, Dendroctonus
ponderosae (Coleoptera: Scolytidae) to pheromones in stands of
western white pine. J. Entomol. Soc. Brit. Col. 97:41–46.

MORALES-JIMÉNEZ, J., ZÚÑIGA, G., VILLA-TANACA, L., and HERNÁNDEZ-
RODRÍGUEZ, C. 2009. Bacterial community and nitrogen fixation in
the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera:
Curculionidae: Scolytinae). Microb. Ecol. 58:897–891.

NEALIS, V. and PETER, B. 2008. Risk assessment of the threat of
mountain pine beetle to Canada’s boreal and eastern pine forests.
Natural Resources Canada, Canadian Forest Service, Information
Report BC-X-417, 31 pp.

OTT, D. S. 2009. Genetic variation of lodgepole pine Pinus contorta
chemical and physical defenses that affect mountain pine beetle
Dendroctonus ponderosae attack and tree mortality. Thesis, M.S.,
Univ. Northern British Columbia, Prince George, B.C., Canada.

OWEN, D. R., SMITH, S. L., and SEYBOLD, S. J. 2010. The red
turpentine beetle. USDA Forest Service, Forest Insect & Disease
Leaflet No. 58, June 2010, 9 pp.

PAINE, T. D. and HANLON, C. C. 1994. Influence of oleoresin
constituents from Pinus ponderosa and Pinus jeffreyi on growth of
mycangial fungi from Dendroctonus ponderosae and Dendroctonus
jeffreyi. J. Chem. Ecol. 20:2551–2563.

PAINE, T. D., RAFFA, K. F., and HARRINGTON, T. C. 1997. Interactions
among scolytid bark beetles, their associated fungi, and live host
conifers. Annu. Rev. Entomol. 42:179–206.

PHILLIPS, T. W., NATION, J. L., WILKINSON, R. C., FOLTZ, J. L.,
PIERCE, H. D., and OEHLSCHLAGER, A. C. 1990. Response
specificity of Dendroctonus terebrans (Coleoptera: Scolytidae) to
enantiomers of its sex pheromones. Annu. Entomol. Soc. Am.
83:251–257.

PURESWARAN, D. S., GRIES, R., and BORDEN, J. H. 2004. Quantitative
variation in monoterpenes in four species of conifers. Biochem.
System. Ecol. 32:1109–1136.

RAFFA, K. F. and BERRYMAN, A. A. 1982a. Physiological differences
between lodgepole pines resistant and susceptible to the
mountain pine beetle and associated microorganisms. Environ.
Entomol. 11:486–492.

RAFFA, K. F. and BERRYMAN, A. A. 1982b. Accumulation of
monoterpenes and associated volatiles following fungal inocula-
tion of grand fir with a fungus transmitted by the fir engraver,
Scolytus ventralis (Coleoptera: Scolytidae). Can. Entomol.
l14:797–810.

816 J Chem Ecol (2011) 37:808–817



RAFFA, K. F. and BERRYMAN, A. A. 1983. Physiological aspects of
lodgepole pine wound responses to a fungal symbiont of the
mountain pine beetle, Dendroctonus ponderosae (Coleoptera:
Scolytidae). Can. Entomol. 115:723–734.

RAFFA, K. F., BERRYMAN, A. A., SIMASKO, J., TEAL, W., and WONG,
B. L. 1985. Effects of grand fir monoterpenes on the fir engraver,
Scolytus ventralis (Coleoptera: Scolytidae), and its symbiotic
fungus. Environ. Entomol. 14:552–556.

RAFFA, K. F., PHILLIPS, T. W., and SALOM, S. M. 1993. Strategies and
mechanisms of host colonization by bark beetles, pp. 103–128,
in T. O. Schowalter and G. Filip (eds.). Beetle-pathogen
Interactions in Conifer Forests. Academic Press Ltd., London,
UK.

RAFFA, K. F. and SMALLEY, E. B. 1995. Interaction of pre-attack and
induced monoterpene concentrations in host conifer defense
against bark beetle-fungal complexes. Oecologia 102:285–295.

RANDALL, C. B. 2006. Red Turpentine Beetle: Ecology and
Management. Forest Health Protection and State Forestry
Organizations. 7 pp.

RASMUSSEN, L. A. 1974. Flight and attack behavior of mountain pine
beetles in lodgepole pine of northern Utah and southern Idaho.
USDA For. Serv., Intermountain Forest and Range Exp. St.,
Ogden, UT, Research Note INT-180. 7 pp.

REDDEMANN, J. and REINHARD, S. 1996. The importance of
monoterpenes in the aggregation of the spruce bark beetle
(Coleoptera: Scolytidae: Ipini). Entomol. Gen. 21:69–80.

ROBERT, J. A., MADILAO, L. L., WHITE, R., YANCHUK, A., KING, J.,
and BOHLMANN, J. 2010. Terpenoid metabolite profiling in Sitka
spruce identifies association of dehydroabietic acid, (+)-3-carene,
and terpinolene with resistance against white pine weevil. Botany
88:810–820.

SAFRANYIK, L., CARROLL, A. L., RIEL, W. G., SHORE, T. L., PETER,
B., NEALIS, V. G., and TAYLOR, S. W. 2010. Potential for range
expansion of mountain pine beetle into the boreal forest of North
America. Can. Entomol. 142:415–442.

SAVITHIRY, N., GAGE, D., FU, W., and ORIEL, P. 1998. Degradation of
pinene by Bacillus pallidus BR425. Biodegr. 9:337–341.

SCHMID, J. M. and MATA, S. A. 1991. Red turpentine beetles in
partially cut stands of ponderosa pine. USDA Forest Service
Rocky Mountain Research Station, Research Note RM-505, Fort
Collins, CO, 3 pp.

SCOTT, J. J., OH, D. -C., YUCEER, M. C., KLEPZIG, K. D., CLARDY, J.,
and CURRIE, C. R. 2008. Bacterial protection of beetle-fungus
mutualism. Science 322:63.

SEYBOLD, S. J., BOHLMANN, J., and RAFFA, K. F. 2000. Biosynthesis
of coniferophagous bark beetle pheromones and conifer isopre-
noids: Evolutionary perspective and synthesis. Can. Entomol.
132:697–753.

SEYBOLD, S. J., HUBER, D. P. W., LEE, J. C., GRAVES, A. D., and
BOHLMANN, J. 2006. Pine monoterpenes and pine bark beetles: A
marriage of convenience for defense and chemical communication.
Phytochem. Rev. 5:143–178.

SHIFRINE, M. and PHAFF, H. J. 1956. The association of yeasts with
certain bark beetles. Mycologia 48:41–55.

SKRODENYTE-ARBACIAUSKIENE, V., BUDA, V., RADZIUTE, S., and
STUNZENAS, V. 2006. Myrcene-resistant bacteria isolated from
the gut of phytophagous insect Ips typographus. Ekologija 4:1–6.

SMITH, R. H. 1961. Red turpentine beetle. USDA For. Serv., Forest
Pest Leaflet 55. 8 pp.

SMITH, R. H. 1963. Toxicity of pine resin vapors to three species of
Dendroctonus bark beetles. J. Econ. Entomol. 56:827–831.

SMITH, R. H. 2000. Xylem monoterpenes of pines: distribution,
variation, genetics, function. USDA For. Serv., Gen. Tech. Rep.
PSW-GTR-177.

STURGEON, K. B. 1979. Monoterpene variation in ponderosa pine
xylem resin related to western pine beetle predation. Evolution
33:803–814.

SUN, J., MIAO, Z., ZHANG, Z., ZHANG, Z., and GILLETTE, N. E. 2004.
Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera:
Scolytidae), response to host semiochemicals in China. Environ.
Entomol. 33:206–212.

WALLIN, K. F. and RAFFA, K. F. 1999. Altered constitutive and
inducible phloem monoterpenes following natural defoliation of
jack pine: implications to host mediated interguild interactions
and plant defense theories. J. Chem. Ecol. 25:861–880.

WALLIN, K. F. and RAFFA, K. F. 2000. Influences of host chemicals and
internal physiology on the multiple steps of postlanding host
acceptance behavior of Ips pini (Coleoptera: Scolytidae). Environ.
Entomol. 29:442–453.

WARNECKE, F., LUGINBUHL, P., IVANOVA, N., GHASSEMIAN, M.,
RICHARDSON, T., STEGE, J., CAYOUETTE, M., MCHARDY, A.,
DJORDJEVIC, G., ABOUSHADI, N., et al. 2007. Metagenomic and
functional analysis of hindgut microbiota of a wood-feeding
higher termite. Nature 450:560–565.

WHITNEY, H. S. 1982. Relationships between bark beetles and
symbiotic organisms, pp. 183–211, in J. B. Mitton and K. B.
Sturgeon (eds.). Bark Beetles in North American Conifers.
University of Texas Press, Austin, TX.

WOOD, S. L. 1982. The bark and ambrosia beetles of North and Central
America (Coleoptera: Scolytidae), a taxonomic monograph. Great
Basin Nat. Mem. 6. Brigham Young University, Provo, UT.

WRIGHT, S. J., CAUNT, P., CARTER, D., and BAKER, P. B. 1986.
Microbial oxidation of alpha-pinene by Serratia marcescens.
Appl. Microbiol. Biotech. 23:224–227.

YAN, Z., SUN, J., OWEN, D., and ZHANG, Z. 2005. The red turpentine
beetle, Dendroctonus valens LeConte (Scolytidae): an exotic
invasive pest of pine in China. Biodivers. Conserv. 14:1735–1760.

ZAVARIN, E., CRITCHFIELD, W. B., and SNAJBERK, K. 1969. Turpentine
composition of Pinus contorta x Pinus banksiana hybrids and
hybrid derivatives. Can. J. Bot. 47:1443–1453.

ZILBER-ROSENBERG, I. and ROSENBERG, E. 2008. Role of micro-
organisms in the evolution of animals and plants: the hologenome
theory of evolution. FEMS Microbiol. Rev. 32:723–735.

J Chem Ecol (2011) 37:808–817 817


	Responses of Bark Beetle-Associated Bacteria to Host Monoterpenes and Their Relationship to Insect Life Histories
	Abstract
	Introduction
	Methods and Materials
	Results
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


