Journal of Chemical Ecology, Vol. 31, No. 4, April 2005 (©2005) DOI: 10.1007/s10886-005-3615-z

RAPID COMMUNICATION

SURVEY OF THE CHEMICAL DEFENCE POTENTIAL OF DIATOMS: SCREENING OF FIFTY ONE SPECIES FOR $\alpha,\beta,\gamma,\delta$ -UNSATURATED ALDEHYDES

THOMAS WICHARD,¹ SERGE A. POULET,² CLAUDIA HALSBAND-LENK,³ AITOR ALBAINA,^{4,6} ROGER HARRIS,⁴ DONGYAN LIU,⁵ and GEORG POHNERT^{1,*}

¹Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany

²Station Biologique de Roscoff, CNRS, FRE 2775 (Mer et Santé), Place Georges Teissier F-29682, Roscoff, France

³School of Oceanography, Box 357940, University of Washington, WA 98195-7940 Seattle, USA

⁴Plymouth Marine Lab, Plymouth, Devon PL1 3DH, England ⁵Department of Environmental Science, University of Wollongong, NSW, 2522 Australia

(Received December 22, 2004; accepted February 10, 2005)

Published Online March 23, 2005

Abstract—In recent years a negative influence of diatom-derived $\alpha,\beta,\gamma,\delta$ unsaturated aldehydes (PUA) on the reproductive success of copepods and invertebrates has been suggested. Since adverse chemical properties of diatoms would question the traditional view of the marine food web, this defense mechanism has been investigated in detail, but the PUA-release by test organisms has only been determined in a few cases. The observed effects were nevertheless frequently discussed from a general point of view often leading to contradictory conclusions. We have examined the PUA-production of 51 diatom species (71 isolates) in order to provide a basis for the interpretation of laboratory and field results on the influence of diatom food on the reproductive success of their consumers. PUA-production is species and strain dependent. Thirty-six percent of the investigated species (38% of the cultivated isolates) release $\alpha,\beta,\gamma,\delta$ -unsaturated aldehydes upon cell disruption in concentrations from 0.01 to 9.8 fmol per cell. *Thalassiosira rotula* and *Thalassiosira pacifica*, major spring-bloom forming diatoms

^{*}To whom correspondence should be addressed. E-mail: Pohnert@ice.mpg.de ⁶Present address: AZTI, Herrera, Kaia Portualdea, Pasaia 20110, Guipúzcoa, Spain.

isolated from Roscoff (Bretagne, English Channel, France) and Puget Sound (Washington, USA) were among the PUA-producing strains.

Key Words—Alga/herbivore interactions, plankton, pentafluorobenzylhydroxylamin, copepod, reproductive success

INTRODUCTION

Diatom-derived $\alpha, \beta, \gamma, \delta$ -unsaturated aldehydes (polyunsaturated aldehydes, PUA) can interfere with the hatching success and larval development of copepods as well as with the embryonic development of invertebrates (see Ianora et al., 2003 and Pohnert, 2005 for reviews). Diatoms are unicellular algae that contribute substantially to the phytoplankton and are thus an important base of the marine food web. A generally negative impact of diatoms on herbivores would have major implications for the classical concept of plankton ecosystem functioning. Therefore, numerous studies, mainly based on laboratory experiments, have been carried out to clarify this predator-prey relationship. While some authors have proposed a deleterious effect of diatoms (Ianora et al., 2003), others have not found any adverse effects (e.g., Jonasdottir et al., 1998). Moreover, no general negative relationship between copepod egg hatching and diatom biomass was detected in the global field survey by Irigoien et al. (2002). Most of these studies correlated hatching parameters to the presence or absence of diatoms rather than monitoring PUA production of the diet, even if this is the postulated determining factor in these interactions. This is surprising, since only a few marine and fresh water diatoms have been investigated for PUAproduction (Pohnert, 2005). Indeed, some of the controversially discussed results on reproductive parameters (Paffenhöfer et al., 2005) might be explained by variability of PUA production in different diatom species. To overcome this limitation and to provide a basis for further ecological and modelling studies, we conducted a survey of volatile PUA-production from representative diatoms of the major classes by using a protocol based on in situ trapping of the reactive metabolites (Wichard et al., 2005).

METHODS AND MATERIALS

Cultivation. Seventy one diatom-isolates from different sources were investigated (Table 1). All isolates were grown in stationary cultures using 250 ml jars containing 100 ml artificial medium (Table 1). Sylvania (Germany) "Cool white deluxe (F36W 840, 4000K)" tubes provided illumination. A light regime of 16:8 (light/dark) with 30–40 μ E/m²/sec light intensity was used. Generally, the growth temperature was 15.5°C, except for *Thalassiosira*

Species	SPME/ PFBHA ^a	Detected PUA	Medium ^b	Source or culture no.
Actinocyclus subtilis	•/•	_	f ₂	CCAP 1000/1
Amphiphora paludosa	_/•	$+^{c}$	f_2	SAG 15.83
Asterionella formosa	•/•	k	ŴĈ	SAG 8.95
Asterionellopsis glacialis	•/•	+	f2	PLY 607
Chaetoceros calcitrans	•/•	_	f_2	CCAP 1010/11
Chaetoceros compressus	•/•	+	$\tilde{f_2}$	PLY 550
Chaetoceros muelleri	•/•	_	f_2^2	CCMP 1316
Coscinodiscus granii	•/•	_	f_2	Unknown
Coscinodiscus sp.	_/•	_	$\tilde{f_2}$	RCC 773 ^d
Cvclotella meneghiniana	•/•	_	ŴĈ	SAG 1020-1a
Ditvlum brightwellii	•/•	_	f2	PLY 609
Ditvlum brightwellii	•/	_	f2	Fridav Harbor ^e
Ditvlum brightwellii	_/•	_	$\tilde{f_2}$	RCC 775 ^d
Fragilaria capucina	•/•	_	wc	Lake Constance ^f
Fragilaria sp.	•/•	+	WC	Lake Constance ^f
Gomphonema parvulum	•/	k	WC	SAG 1032-1
Guinardia deliculata	_/•	+	K	Roscoff ^d
Guinardia striata	_/•	_	К	Roscoff ^d
Melosira nummuloides	•/•	+	f2	CCAP 1048/6
Melosira sulcata	•/•	+	f2	Jiaozhou Bay, China
Navicula pelliculosa	•/•	_	WC	SAG 1050-3
Navicula sallinicola	_/•	_	fa	SAG 40.96
Navicula sp.	•/•	_	f2	RCC 781 ^d
Navicula sp.	•/	_	K	RCC 457
Navicula transitans	•/•	_	fa	RCC 80
Nitzschia sp.	•/•	_	$\tilde{f_2}$	RCC 782 ^d
Nitzschia closteridium	_/•	_	f_2^2	RCC 81
Nitzschia curvilineata	_/•	_	$\tilde{f_2}$	SAG 48.91
Nitzschia frustulum	_/•	_	br	SAG 1052-2
Odontella regia	•/•	$+^{c}$	f2	RCC 772^d
Odontella sinensis	•/	_	f_2	PLY 606
Paralia sulcata	•/•	_	f_2^2	DML ^g
Phaeodactvlum tricornutum	•/•	_	br	UTEX 646
Phaeodactvlum tricornutum	•/•	_	br	SAG 1090-1a
Phaeodactvlum tricornutum	_/•	_	br	SAG 1090-1b
Phaeodactvlum tricornutum	•/•	_	f2	PLY 100
Pleurosigma normanii	•/	_	f2	MBA ^g
Pseudonitzschia sp.	•/•	_	f2	PLY 611
Rhizosolenia setigera	_/•	_	K	Roscoff ^d
Rhizosolenia setigera	_/•	_	fa	CCMP 1820
Skeletonema costatum	•/•	+	-2 f2	RCC 75
Skeletonema costatum	_/•	+	f_2	SAG 19.99
Skeletonema costatum	•/	+	f_2	CCMP 781
Skeletonema costatum	•/	+	$\tilde{f_2}$	CCMP 784

TABLE	1.	OVERVIEW	OF	THE	ISOLATES	INVESTIGATI	D BY	SOLID	PAHSE	MICROEXTR	ACTION	AND
					PFE	BHA-Deriva	TISA	ΓION				

	I ABLE I	. CONTINUED		
Species	SPME/ PFBHA ^a	Detected PUA	Medium ^b	Source or culture no.
Skeletonema costatum	•/	+	f_2	CCMP 2092
Skeletonema pseudocostatum	•/•	+	f_2	See reference ^h
Skeletonema subsalsum	_/•	+	WC	SAG 8.94
Stephanodiscus hantzschii	•/•	_	WC	Lake Constance ^f
Stephanodiscus minutulus	•/•	_	WC	SAG 49.91
Stephanophyxis turris	•/•	_k	f_2	DML ^g
Thalassionema nitzschioides	_/•	_	K	RCC 785 ^d
Thalassiosira aestivalis	•/•	+	f_2	Dabob Bay (779) ^e
Thalassiosira anguste-lineata	•/•	+	f_2	Dabob Bay (779) ^e
Thalassiosira eccentrica	•/•	_	f_2	CCAP 1085/6
Thalassiosira minima	•/•	+	f_2	CCAP 1085/8
Thalassiosira nordenskioeldii	•/•	+	f_2	Dabob Bay (748) ^e
Thalassiosira pacifica	•/•	+	f_2	Dabob Bay (779) ^e
Thalassiosira pseudonana	•/•	_	f_2	CCAP 1085/12
Thalassiosira pseudonana	•/•	_	f_2	CCMP 1335
Thalassiosira pseudonana	_/•	_	br	SAG 1020-1b
Thalassiosira punctigera	•/	_	f_2	Point Wells (748) ^e
Thalassiosira rotula	•/•	+	f_2	CCMP 1018
Thalassiosira rotula	•/•	+	f_2	CCMP 1647
Thalassiosira rotula	•/•	+	f_2	CCMP 1812
Thalassiosira rotula	_/•	+	f_2	RCC 776 ^d
Thalassiosira rotula	_/•	+	f_2	Point Wells (805) ^e
Thalassiosira rotula	•/	+	K	RCC 290
Thalassiosira sp.	•/	+	K	RCC 349
Thalassiosira weissflogii	•/•	_	f_2	Unknown
Thalassiosira weissflogii	_/•	_	br	SAG 122.79
Thalassiosira weissflogii	_/•	_	f_2	RCC 76
Prorocentrum micans ⁱ	•/	_	f_2	Unknown
Prorocentrum minimum ⁱ	•/•	-	f_2	RCC 291

TABLE 1. CONTINUED

aestivalis and *Skeletonema costatum* (CCMP 784), which were grown at 13°C and 23°C, respectively. Cultures reached the stationary phase after 2–3 wk, when 60–90 ml (10^4 - 10^6 cells/ml culture medium, depending on species) were harvested. The cell morphology of each culture was checked prior to harvest with light microscopy. Cells were counted with a Neubauer-improved haemocytometer in four replicates. The counting variance ranged from 10–35%.

Quantitative PUA Analysis. The cultures were harvested by filtration as described in Wichard et al. (2005). For a first rapid screening of the cultivated isolates, solid phase microextraction was performed with a polydimethylsiloxan fiber after wounding by sonication as described in Pohnert et al. (2002). To quantify PUA release upon cell damage, a protocol based on derivatization of PUA with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamin hydrochloride

(PFBHA·HCl) and subsequent GC/MS (EI) analysis was applied (Wichard et al., 2005). The limit of quantification for PUA in concentrated diatom cultures was 5 ng/ml. Each analysis was performed in triplicate.

Quantitative Chlorophyll a + *c analysis.* In cases where PUA were determined, the chlorophyll content of the diatom isolates was quantified as well. The extraction in 90% acetone and quantification was performed in triplicate according to the standardized method No 446.0 (U.S. Environmental protection agency: Microbiological and Chemical Exposure Research and references herein). Jeffrey and Humphrey's trichromatic equations were applied: Chlorophyll a (mg/l) = 11.85 $E_{664} - 1.54 E_{647} - 0.08 E_{630}$ and Chlorophylls $c_1 + c_2$ (mg/l) = $-1.67 E_{664} - 7.60 E_{647} + 24.52 E_{630}$. Each value was corrected by the absorbance at 750 nm. The ratio of PUA to Chl a + c of identical culture batches was calculated as PUA/Chl (ppm) = PUA (µg/ml)/Chl (µg/ml) × 1,000,000.

Determination of Cell Volume. Living cells were measured microscopically in planar view (minimum: 20 cells). Linear measurements were converted to cell volume using different geometric approximations: a cylinder for Chaetoceros compressus, Guinardia deliculata, Melosira spp., Skeletonema subsala-

Footnotes to Table 1

Note. A cross (+) identifies a diatom as PUA-producer. Among those, several strains were selected for quantification (see Table 2).

- ^aApplied analytical method.
- ${}^{b}f_{2}$ = marine enriched medium (artificial seawater) and K = K medium (filtered seawater), see for references Pohnert et al., 2002; WC = fresh water medium; br = brackish water: f_{2} medium diluted with Chu-12 medium (2 + 1), see for references Carotenuto and Lampert, 2004.
- ^cOnly traces of PUA were detected after PFBHA derivatisation.
- ^dStrains were isolated from coastal waters off Roscoff in 2004.
- ^e Strains were isolated (cruise number of research vessel "C.A. Barnes" in parenthesis) from Dabob Bay, Point Wells or Friday Harbour (Puget Sound and San Juan Island, respectively, Washington, USA) in 2001–2003.
- ^fSee Carotenuto and Lampert, 2004.
- ^gNo strain number is available.
- ^hGenetically described in Pohnert et al., 2002.
- ^jDinoflagellates often used as a control diet for copepods.
- ^kAcidic polyunsaturated aldehydes were detected: 12-oxo-dodeca-5,8,10-trienoic acid (*A. formosa, S. turris*) and 9-oxo-nona-5,7-dienoic acid (*G. parvulum*).

Abbreviations: CCAP (DML) Culture Collection of Algae and Protozoa (Dunstaffnage Marine Laboratory, Scotland); CCMP = Centre for Culture of Marine Phytoplankton Main, USA; PLY (MBA) = Marine Biological Association Plymouth, England; RCC = Roscoff Culture Collection, France; SAG = Culture Collection Göttingen, Germany; UTEX = The Culture Collection of Algae, University of Texas at Austin, TX, USA.

tum, and *Thalassiosira* spp.; a cylinder + 2 half spheres for *Skeletonema costatum* and *Skeletonema pseudocostatum*, and a cone for *Asterionellopsis glacialis*. The carbon content was determined by the carbon to volume relationship based on the equation C (pg/cell) = $0.288 \times \text{volume}^{0.811}$ (Menden-Deuer and Lessard, 2000). The PUA to carbon ratio was calculated as PUA/C (ppm) = PUA (fg/cell)/C (fg/cell) × 1,000,000.

RESULTS AND DISCUSSION

Seventy one diatom-isolates were analyzed for PUA-formation upon cell damage by sonication. The diatoms were either obtained from algal collections or freshly isolated from coastal waters off Roscoff (48°45' N and 3°58' W, Bretagne, France) and during several cruises to Dabob Bay, Point Wells and Friday Harbour (47° 46.14'N and 122° 50.10'W/47° 44.63' N and 122° 25.34' W/48.535° N and 123.005° W, Washington, USA). A total of 50 different species was investigated, with an emphasis on the family Thalassiosiraceae and the species *Phaeodactylum tricornutum*, because these diatoms are widely used in bioassays on the reproductive success of copepods (Miralto et al., 1999; Pohnert et al., 2002; Paffenhöfer et al., 2005). Under defined culture conditions (see Method section), 27 PUA-producers were identified among the 71 isolates investigated (Table 1). Out of the PUA producers, two released the unsaturated aldehydes only in trace amounts. The PUA-production upon wounding of 20 selected isolates (18 marine and 2 freshwater) was quantified during the stationary growth phase. PUA-production ranged from 0.01 fmol PUA/cell (Thalassiosira nordenskioeldii) to 9.8 fmol PUA/cell (Thalassiosira pacifica) (Table 2). This wide range over four orders of magnitude, as well as the isolatedependent variability of structurally different unsaturated aldehydes, reflects a high plasticity within the Bacillariophyceae.

Since the calculation of PUA per cell underestimates the aldehyde contribution of species with low cell volume but probably high cell abundance in a typical herbivore diet, the PUA to carbon (PUA/C) and the PUA to chlorophyll a + c (PUA/Chl) ratio were also calculated. With respect to the PUA/Chl and PUA/C ratios, other dominant producers, such as *Skeletonema pseudocostatum* (PUA/Chl = 40,650 ppm) or *Skeletonema costatum* (SAG 19.99, PUA/C = 488 ppm), come to the fore.

Within the Bacillariophyceae, more than half of the investigated species do not produce PUA upon wounding in the stationary growth phase. In the light of the ongoing discussion about the influence of diatoms on herbivores, this result stresses that a general PUA-mediated effect can not be assumed for any given phytoplankton bloom, but that a species and strain-specific analysis is required.

TABLE 2. QU	ANTIFICATION OF	FUA I	PER CELI	, Per (CHLOROPH	ALL A +	c and Per Caf	BON CONTENT (S	TATIONARY	Phase)	
		41 A1	alysis of	PUA			Analysis	of Chl $a + c$	Ana	lysis of car	nod
Producer of	PUA	C7:2	C8:2	C8:3	C10:2	C10:3	Chl $a + c$	PUA/Chl a + c	cell vol.	C/cell	PUA/C
pory unsaturated aldehydes	fmol/cell		%	of total	PUA		$\mu g/10^{6}$ cells	udd	μm ³	pg/cell	mqq
Thalassiosira pacifica	9.81 ± 0.069	70	19	11	0	0^{a}	6.58 ± 0.20	113,368	1,256	94	11,859
Melosira nummuloides	8.68 ± 0.424	7	72	0	2	19	11.7 ± 1.52	95,584	5,011	288	3,717
Thalassiosira rotula (CCMP 1647)	6.35 ± 0.289	S	32	11	7	50	3.36 ± 0.23	255,331	1,574	113	7,364
Thalassiosira rotula (origin: Roscoff)	5.69 ± 0.472	7	16	18	0	58	36.4 ± 0.16	21,573	12,972	624	1,348
Chaetoceros compressus	2.82 ± 0.635	31	12	0	8	49	3.67 ± 0.17	103,668	1,704	120	2,395
Thalassiosira aestivalis	1.54 ± 0.266	78	16	9	0	0	70.6 ± 6.96	2,462	4,630	270	525
Thalassiosira	1.53 ± 0.079	69	17	14	0	0	48.5 ± 7.38	3,597	2,245	150	913
anguste-lineata											
Thalassiosira rotula (origin: Point Wells)	1.27 ± 0.108	24	8	41	0	27	46.6 ± 4.50	3,459	16,406	755	212
Thalassiosira rotula	1.04 ± 0.030	24	28	23	0	24	7.69 ± 0.55	9,672	3,497	215	588
(CCMP 1812)											
Skeletonema	0.38 ± 0.041	50	49	1	0	0	1.10 ± 0.31	40,650	186	20	2,343
pseudocostatum											
Thalassiosira rotula	0.22 ± 0.048	31	45	24	0	0	8.10 ± 0.28	3,179	1,593	114	278
Guinardia deliculata	0.18 ± 0.015	100	0	0	0	0	17.4 ± 1.01	1,122	3,712	226	94
Skeletonema costatum (RCC 75)	0.13 ± 0.016	58	38	ς	0	0	2.21 ± 0.11	6,623	286	28	578
Fragilaria sp.	0.10 ± 0.010	65	32	0	ŝ	0	n.d.	n.d.	452 ^b	41	252
Asterionellopsis glacialis	0.05 ± 0.005	68	28	4	0	0	6.09 ± 0.03	960	176	19	343
Thalassiosira minima	0.05 ± 0.002	23	10	0	0	61	1.16 ± 0.18	5,960	172	19	393
Skeletonema subsalsum	0.04 ± 0.014	0^{a}	80	0	20	0	n.d.	n.d.	227	23	303

SURVEY OF THE CHEMICAL DEFENCE POTENTIAL OF DIATOMS

955

		Anal	ysis of P	NA			Analysis	of Chl a + c	Ana	lysis of car	bon
Producer of	PUA	C7:2	C8:2	C8:3	C10:2	C10:3	Chl $a + c$	PUA/Chl a + c	cell vol.	C/cell	PUA/C
aldehydes	fmol/cell		, %	of total F	NA		µg/10 ⁶ cells	mqq	нт ³	pg/cell	mqq
Thalassiosira nordenskioeldii	0.01 ± 0.004	0^{a}	100	0	0	0	35.2 ± 2.19	121	3,776	229	14
Melosira sulcata	0.01 ± 0.001	0	100	0	0	0	n.d.	n.d.	369	35	36
Skeletonema costatum (SAG 19.99)	0.01 ± 0.001	81	19	0	0	0	3.45 ± 0.13	260	11	7	488
<i>Note</i> . Species sorted by ^a Traces were detected	descending total an	mount of	PUA re	leased (f	mol/cell).	Valuse: r	nean±SD.				
^b See reference (Carot	enuto and Lamp	ert, 200	4); 2001 DI		cicle cicle		m onder bilon		-	T onitions	

See reference (Carotenuto and Lampert, 2004);	While Pohnert et al. (2002) did not detect any PUA in this strain using solid phase microextraction, the more sensitive PFBHA-	derivatisation reveals that this species has to be considered as a weak PUA-producer. Isomeric mixtures of C7:2 = 2,4-heptadienal, C8:2 =	2,4-octadienal, C8:3 = 2,4,7-octatrienal, C10:2 = 2,4-decadienal and C10:3 = 2,4,7-decatrienal were detected.
---	--	---	---

WICHARD ET AL.

956

Recently, the hypothesis that PUA-production could be the reason for poor copepod reproductive success during spring blooms of diatoms was proposed (Ianora et al., 2004). In this context, it is interesting to note that some of the most abundant spring-bloom forming species like Thalassiosira spp. (e.g. Th. rotula and Th. pacifica) release high amounts of PUA. These species were isolated from different habitats, such as the Adriatic Sea (Miralto et al., 1999), the coastal waters off Roscoff (NE Atlantic) and Dabob Bay (NE Pacific). Because the ability to produce PUA is distributed heterogeneously in the major classes of Bacillariophyceae, one cannot predict the defensive potential of certain species. Moreover, PUA-production within different isolates of one species ranges widely, and thus case-specific chemical investigations accompanying bioassays are required. For example, the different Thalassiosira rotula isolates investigated release PUA in a wide range of concentrations from 0.15 to 6.34 fmol/cell. In this study, only cultures in the stationary growth phase were investigated. This culture condition was selected since it is also used in most laboratory investigations. Additional variation of PUA-production during different phases of diatom blooms or growth phases of cultures might have to be taken into account as well.

Based on this survey, we not only recommend performing future bioassays along with chemical analyses, but also urge for a reconsideration of the general conclusions drawn in the past. It is likely, that the observed reduction of hatching success in several studies/regions may not be due to the formation of deleterious PUA, but may have other causes. On the other hand, in regions where major PUA producers are the main constituents of blooms, there might be effects on the reproduction of herbivorous grazers and their population dynamics (Ianora et al. 2004; Halsband-Lenk et al. unpublished). Whether secondary production can be significantly affected by this chemically mediated interaction in such ecosystems requires further investigation.

Acknowledgment—We are grateful to all curators providing for algal collection of scientific usage. The authors acknowledge the financial funding of the Deutsche Forschungsgemeinschaft (T.W., G.P.), the EGIDE-PROCOP exchange program and the French program "Biodeversité et Changement Global". Prof W. Boland is acknowledged for helpful support and discussion during the preparation of this manuscript.

REFERENCES

CAROTENUTO, Y. and LAMPERT, W. 2004. Ingestion and incorporation of freshwater diatoms by *Daphnia pulicaria*: Do morphology and oxylipin production matter? *J. Plankton Res.* 26:563–569.

IANORA, A., POULET, S. A., and MIRALTO, A. 2003. The effects of diatoms on copepod reproduction: a review. *Phycologia* 42:351–363.

- IANORA, A., MIRALTO, A., POULET, S. A., CAROTENUTO, Y., BUTTINO, I. ROMANO, G, CASOTTI, R., POHNERT, G., WICHARD, T., COLUCCI-D'AMATO, L., TERRAZZANO, G., and SMETACEK, V. 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. *Nature* 429:403–407.
- IRIGOIEN, X., HARRIS, R. P., VERHEYE, H. M., JOLY, P., RUNGE, J., STARR, M., POND, D., CAMPBELL, R., SHREEVE, R., WARD, P., SMITH, A. N., DAM, H. G., PETERSON, W., TIRELLI, V., KOSKI, M., SMITH, T., HARBOUR, D., and DAVIDSON, R. 2002. Copepod hatching success in marine ecosystems with high diatom concentrations. *Nature* 419:387–389.
- JONASDOTTIR, S. H., KIORBOE, T., TANG, K. W., ST. JOHN, M., VISSER, A. W., SAIZ, E., and DAM, H. G. 1998. Role of diatoms in copepod production: good, harmless or toxic? *Marine Ecology-Progress Series* 172:305–308.
- MENDEN-DEUER, S., and LESSARD, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. *Limnol. Oceanogr.* 45:569–579.
- MIRALTO, A., BARONE, G., ROMANO, G., POULET, S. A., IANORA, A., RUSSO, G. L., BUTTINO, I., MAZZARELLA, G., LAABIR, M., CABRINI, M., and GIACOBBE, M. G. 1999. The insidious effect of diatoms on copepod reproduction. *Nature* 402:173–176.
- PAFFENHÖFER, G., IANORA, A., MIRALTO, A., TURNER, J., KLEPPEL, G., RIBERA D'ALCALA, M., CASOTTI, R., CALDWELL, G., POHNERT, G., FONTANA, A., MÜLLER-NAVARRA, D., JONASDOTTIR, S., ARMBRUST, V., BÅMSTEDT, U., BAN, S., BENTLEY, M., BOERSMA, M., BUNDY, M., BUTTINO, I., CALBET, A., CARLOTTI, F., CAROTENUTO, Y., D'IPPOLITO, G., FROST, B., GUISANDE, C., LAMPERT, W., LEE, R., MAZZA, S., MAZZOCCHI, M., NEJSTGAARD, J., POULET, S., ROMANO, G., SMETACEK, V., UYE, S., WAKEHAM, S., WATSON, S., and WICHARD, T. 2005. Colloquium on diatom-copepod interactions. Mar. Ecol., Prog. Ser. 286:293–305.
- POHNERT, G. 2005. Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. *ChemBioChem* in press.
- POHNERT, G., LUMINEAU, O., CUEFF, A., ADOLPH, S., CORDEVANT, C., LANGE, M., and POULET, S. 2002. Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods? *Marine Ecolology-Progress Series* 245:33–45.
- WICHARD, T., POULET, S., and POHNERT, G. 2005. Determination and quantification of α , β , γ , δ unsaturated aldehydes as pentafluorobenzyl-oxime derivates in diatom cultures and natural phytoplankton populations: application in marine field studies. *J. Chromatog. B* 814:155–161.