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Abstract
In the N -body problem, it is classical that there are conserved quantities of center of mass,
linear momentum, angular momentum and energy. The level setsM(c, h) of these conserved
quantities are parameterized by the angular momentum c and the energy h, and are known
as the integral manifolds. A long-standing goal has been to identify the bifurcation values,
especially the bifurcation values of energy for fixed non-zero angular momentum, and to
describe the integralmanifolds at the regular values.AlainAlbouy identified two categories of
singular values of energy: those corresponding to bifurcations at relative equilibria; and those
corresponding to “bifurcations at infinity”, and demonstrated that these are the only possible
bifurcation values. This work completes the identification of bifurcations for the four-body
problem with equal masses, confirming that, in this setting, Albouy’s necessary conditions
for bifurcation are also sufficient conditions: bifurcations of the integral manifolds occur at
all of the singular values of energy. A recent study examined the bifurcations at infinity; this
work evaluates the four bifurcations at relative equilibria. To establish that the topology of
the integral manifolds changes at each of these values, and to describe the manifolds at the
regular values of energy, the homology groups of the integral manifolds are computed for the
five energy regions on either side of the singular values. The homology group calculations
establish that all four energy levels are indeed bifurcation values, and allows some of the
global properties of the integral manifolds to be explored.
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1 Introduction and Results

Thiswork continues the investigation of the integralmanifolds of the spatial N -body problem.
The integralmanifolds are the level sets of the classical conservedquantities of energy, angular
momentum, linear momentum and center of mass. In the spatial problem, they form a family
of (6N − 10)-dimensional manifolds. Their structure depends on the values m1, . . .mN of
the masses, the angular momentum �c ∈ R

3 and energy h. Typically, the dependence on the
masses is not displayed explicitly, and the integral manifolds are viewed as a parameterized
family M(c, h).

The integral manifolds for c = 0 have been characterized in [3]. The focus of this work
is on c �= 0. Without loss of generality, a global change of coordinates can be made that
sets �c = k̂, reducing the problem to studying the level sets of energy on the level sets
of angular momentum, linear momentum and center of mass, for a fixed set of masses.
Once that orientation is fixed, the problem’s SO3 symmetry reduces to an SO2-symmetry
of rotations about the z-axis. The equations of motion and the conserved quantities are all
preserved by rotation, so there are well-defined dynamics on the reduced integral manifold
MR(c, h) = M(c, h)/SO2.

In this setting, the questions of interest for the global behavior are:

• Identify the bifurcation values of h—the values at which the topology of M(c, h) and
MR(c, h) change.

• At the regular values of h between those bifurcation values, describe M(c, h) and
MR(c, h).

• Use that global description to provide insights into the global dynamics of the N -body
problem.

The starting point for this program is [1]. There, Albouy produced necessary and sufficient
conditions for an energy level h to be a singular value for M(c, h), and an algorithm for
identifying those values. This is formulated in detail in Sect. 2. At the moment, it suffices to
make two observations:

• Singular values arise in two very distinct ways: either at critical points, which we will
refer to as bifurcations at relative equilibria or more colloquially as finite bifurcations
or as limiting behavior as configurations diverge to infinity, which we will refer to as
bifurcations at infinity.

• For a given set of massesm1, . . .mN , the ability to identify the full set of singular values
requires knowledge of the full set of planar central configurations [14], both for that set
of masses and for all of its subsets.
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Table 1 Singular Values of Energy for Four Equal Masses

Parameter label Configuration hi c
2 δi = −2hi Multiplicity

h0 Zero energy 0 0

h1 One binary collinear − 1
4

1
2 6

h2 Two binary collinear −2 4 3

h3 Equilateral cluster − 9
2 9 8

h4 Triple collinear − 25
4

25
2 12

h5 Square −18 − 8
√
2 58.6274 6

h6 Isosceles −34.3017 67.1757 24

h7 Equilateral −18 − 9
√
3 67.1769 8

h8 Collinear −46.8416 93.6832 12

Of course, singular values are not necessarily bifurcation values. At present, there are no
results on sufficient conditions analogous to Albouy’s necessary condition for bifurcation.
That is, there is no formula or algorithm that produces a set of energy levels that are guaranteed
to be bifurcation values. Instead, a brute force approach has been taken. Given an energy
level h0 that meets Albouy’s necessary condition, we consider h− < h0 < h+ such that h0
is the only candidate value in the interval [h−, h+]. Then calculate a topological invariant
such as the homology groups at h− and h+. If those topological invariants are different, then
the integral manifolds underwent bifurcation at h0.

While a change in any topological invariant is sufficient to detect bifurcation, computing
the homology groups speaks to the next goal as well, by providing a description of sorts of
the global structure of the manifolds. Moreover, methods such as Morse theory have a long
tradition of deriving insights into global dynamics from homological information. While the
non-compactness ofM(c, h) andMR(c, h) limits the opportunity to apply such techniques,
[11] and [12] allow some dynamical information to be obtained.

An important limiting factor in this work is the need to identify all of the planar central
configurations. At present, the identification of complete set of central configurations has only
been rigorously established for three arbitrary masses, or four, five, six or seven equal masses
[2, 13]. The case of three arbitrary masses has been analyzed in [6], with a correction for the
case of positive energy provided in [11]. The need for a correction arose from our incomplete
understanding of the complexities generated by the behavior at the collinear configurations.

Those complexities motivated the development in [9] of a blow-up construction B of the
configuration space. By adapting themethods of [6] and [17] to this blow-up, the complexities
at collinear were controlled, and formulae describing H∗(M(c, h)) and H∗(MR(c, h)) were
developed.

The obvious situation to apply the reduction formulae is that of the four-body problem
with equal masses. The full set of central configurations is known [2]. Albouy’s algorithm for
identifying singular values produces the set of energy levels shown inTable 1. Themultiplicity
refers to the number of SO2-orbits of central configurations that differ by a permutation of
the masses.

These eight values, together with h = 0, define ten energy regions. These will be denoted

P = (0,∞) I = (h1, 0) II = (h2, h1) III = (h3, h2) IV = (h4, h3)
V = (h5, h4) VI = (h6, h5) VII = (h7, h6) VIII = (h8, h7) IX = (−∞, h8)
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The singular values of Table 1 fall naturally into three groups: h0 = 0, the singular values
at infinity h1, . . . h4 and the singular values corresponding to relative equilibria h5, . . . h8.
The homology groups of M(c, h) and MR(c, h) for h > 0 were identified in [4]; those of
Region I were identified in [9], which in turn established that h0 = 0 is a bifurcation value.

The goal is to compute the homology groups of M(c, h) and MR(c, h) for regions II
through IX. This divides itself naturally into two sets of computations: one for the singular
values at infinity; another for the singular values at relative equilibria. The first half was
addressed in [10]; the second half is addressed here. The results can be tabulated as follows.

Theorem 1.0.1 For four equal masses, the spatial integral manifoldsM(c, h) with non-zero
angular momentum have the following homology groups in the intervals between the singular
values of h:

k 0 1 2 3 4 5 6 7 8 9 10 11 12
P Z 0 Z

6 0 Z
11

Z
18 0 0 0 0 0 0 0

I Z 0 Z
6 0 Z

11
Z
18 0 Z

23
Z
6 0 Z

11 0 Z
6

I I Z 0 Z
6 0 Z

11
Z
18 0 0 Z

13
Z
30

Z
11 0 Z

6

I I I Z 0 Z
6 0 Z

11
Z
18 0 0 Z

7
Z
18

Z
5 0 Z

6

I V Z 0 Z
6 0 Z

11
Z
18 0 0 0 Z

20
Z
14 0 Z

6

V Z 0 Z
6 0 Z

11
Z
18 0 0 0 Z Z

6
Z
11

Z
6

V I Z 0 Z
6

Z
6
Z
16

Z
17 0 0 0 0 Z

10
Z
16

Z
6

V I I Z 0 Z
25

Z
20

Z
11

Z
17 0 0 0 0 0 Z

20
Z
20

V I I I Z 0 Z
17

Z
12

Z
11

Z
17 0 0 0 0 0 Z

12
Z
12

I X Z 0 Z
17

Z
6
Z
11

Z
17 0 0 0 0 0 0 0

and the reduced integral manifolds MR(c, h) have homology groups

k 0 1 2 3 4 5 6 7 8 9 10 11 12
P Z 0 Z

7 0 Z
18 0 0 0 0 0 0 0 0

I Z 0 Z
7 0 Z

18 0 0 Z
23 0 Z

17 0 Z
6 0

I I Z 0 Z
7 0 Z

18 0 0 0 Z
13

Z
17 0 Z

6 0
I I I Z 0 Z

7 0 Z
18 0 0 0 Z

7
Z
11 0 Z

6 0
I V Z 0 Z

7 0 Z
18 0 0 0 0 Z

20 0 Z
6 0

V Z 0 Z
7 0 Z

18 0 0 0 0 Z Z
5

Z
6 0

V I Z 0 Z
7
Z
5
Z
17 0 0 0 0 0 Z

10
Z
6 0

V I I Z 0 Z
26 0 Z

17 0 0 0 0 0 0 Z
20 0

V I I I Z 0 Z
18 0 Z

17 0 0 0 0 0 0 Z
12 0

I X Z Z
6
Z
12 0 Z

17 0 0 0 0 0 0 0 0

Inspection of the table shows that at each singular value, the homology groups change.

Corollary 1.0.1 For four equal masses and non-zero angular momentum, the bifurcation
values of energy are h0 - h8, with both the integral manifold M(c, h) and reduced integral
manifold MR(c, h) changing their homotopy type at those values, and at no others.

That is the first use of the table: to demonstrate changes in the topology. We can go further
and use the specific values in the table to draw conclusions about the integral manifolds.

Corollary 1.0.2 For all h, the following hold:

• The reduced integral manifold MR(c, h) does not admit a geodesic flow.
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• The flowon the reduced integralmanifoldMR(c, h) does not admit a global cross section.
• The full integral manifold M(c, h) is an orientable S1-bundle over MR(c, h), but does

not admit a product structure MR(c, h) × S1.

Proof The are negative conclusion, asserting that something does not happen. Each conclu-
sion follows from the failure of a necessary homological condition.

In order for a (2n−1)-manifoldP to admit a geodesic flow structure, it must first admit the
topological structure as the unit tangent bundle of an n-manifold. In [12], it was shown that,
if the (2n−1)-manifoldP is non-compact and orientable, with torsion-free homology, then a
necessary condition to admit such a topological structure is that Hn−1(P) �= 0. Applying this
to the 13-dimensional non-compact orientable manifoldMR(c, h), we see that its homology
is torsion-free, with H6(MR(c, h)) = 0.

Similarly, it was shown in [11] that, forMR(c, h) to admit a global cross-section and has
finitely-generated homology, then the Euler characteristic must satisfy χ(MR(c, h)) = 0.
From the table, we see that in each region, χ(MR(c, h)) �= 0.

Finally, if M(c, h) admitted a product structure as MR(c, h) × S1, then H∗(M(c, h)) ∼=
H∗(MR(c, h)) ⊗ H∗(S1). This clearly fails to hold in any region. 
�

Beyond those specific negative conclusions, the table displays patterns that are suggestive
of additional structural issues. The most obvious of these is that the changes in the homology
groups associated with the bifurcations at infinity (e.g. regions II - V) are quite different than
those associated with the finite bifurcations (regions V - IX).

In the former, the changes occur only in dimensions k ≥ 7. This signals that the changes in
the structure of the manifold have more to do with the changes in the structure of momentum
fibers over the set of allowable positions, rather than being generated by changes in the set of
allowable positions. The most striking of these changes was noted in [9]: for positive energy,
the momentum fibers are hyperplanes; as h passes from positive to negative; these fold over
to form spheres. This is reflected in the homology, with non-trivial homology appearing in
dimensions 7 to 12.

In contrast, in regions VI - IX, the changes in the homology groups confirm that the set of
allowable positions (i.e. the Hill’s region) undergoes changes at the bifurcations at relative
equilibria, which did not occur at the various bifurcations at infinity. At the same time, as the
energy level progressed through the finite bifurcations, we see the higher homology groups
progressively simplifying, so that once all of the bifurcation values have been passed, all of
the homology groups above dimension 5 have become trivial.

There are two other aspects to the distinction between the bifurcations at infinity and the
bifurcations at the relative equilibria. Namely, for four equal masses, we can observe that
both the Hill’s regions and the planar integral manifolds undergo bifurcation at the relative
equilibria energy levels h5, . . . h8 but not that the bifurcation at infinity values h1, . . . h4.

The Hill’s region H(c, h) is the image of the integral manifold under the projection onto
position space. A corollary of the homology reduction formula of [9] is

Corollary 1.0.3 For any set of N masses, the projection � : M(c, h) → H(c, h) yields an
isomorphisms�∗ : Hk(M(c, h)) → Hk(H(c, h)) andπ∗ : Hk(MR(c, h)) → Hk(HR(c, h))

for k ≤ 3N − 6, while Hk(H(c, h)) = Hk(H(c, h)) = 0 for k > 3N − 6.

The planar integral manifolds, denoted m(c, h), are the analogous 4N − 6 dimensional
manifolds in which all of the positions and momenta are confined to a common plane orthog-
onal to the angular momentum vector. It is well-known that the bifurcations of the planar
manifolds can occur only at the energy levels corresponding to the relative equilibria [15, 16].

123



Journal of Dynamics and Differential Equations

Wewill see that, not only do the bifurcations of the planar manifolds occur in tandemwith the
finite bifurcations of the spatial manifolds; for the problem at hand (four equal masses), we
will exploit the topological structure of the planar bifurcations to obtain needed information
about the spatial finite bifurcations.

This relationship between the planar and spatial manifolds at the finite bifurcations is
useful, but may not generalize. The two types of bifurcationsmake use of different techniques
of analysis. The analysis of the bifurcations at infinity proceeded by bootstrapping from
region I step-by-step to region V. On the other hand, we will see that the analysis of the
finite bifurcations proceeds by anchoring the two ends of the spectrum, regions V and IX,
and filling in the intermediate regions by the reduction to the planar manifolds. For both the
bifurcations at infinity and the finite bifurcations, the analysis is simplified by the fact that
the two types of analysis do not need to be intermingled. That is, for four equal masses, all
of the bifurcations at infinity occur at energy levels that are closer to zero than the energy
levels of any of the finite bifurcations. It seems clear that either of those processes would be
complicated if the two types of bifurcations were interleaved. Unfortuantely, that interleaving
occurs. As described in [5], for four unequal masses, there are instances where bifurcations
at infinity occur at energy levels between those of finite bifurcations. The same occurs for
nine or ten equal masses, and is conjectured to persist for equal masses for all N ≥ 9.

This work takes [1] and [9] as its starting point. The framework established by those
works is briefly summarized in Sect. 2. That framework reduces to the study of a real-
valued function D on a space B associated with the 8-dimensional mass ellipsoid, with the
homology groups ofM(c, h) andMR(c, h) computed from those of the super-level sets of D
on B, denotedB(d), together with various subspaces of those super-level sets. As mentioned
above, the analysis from there will rest on two pillars: establishing the topology of B(d)

in Regions V and IX, and establishing the relation between the spatial configuration spaces
and corresponding planar configuration spaces to fill in the information for the regions in
between.We examine the planar configuration spaces and planar integral manifolds in Sect. 3
and take the opportunity in Sect. 3.2 to correct the error in the homology group tables for
H∗(m(c, h)) and H∗(mR(c, h)) in [8]. Section4 completes the preliminaries: the topology
and homology ofB(d) is established in Sect. 4.1 and the relationship between the homology
of the planar and spatial configuration spaces is established in Sect. 4.3.

These two steps (Sects. 4.1 and 4.3) represent the most complex elements of the argument.
The challenges they present are indicative of the differences between the spatial and planar
problems. In the planar case, the analogue of the setB(d9) is simply the super-level set of the
potential function approaching infinite energy. This is simply a neighborhood in the planar
configuration space around the collision set. As such, a topological description that lends
itself to homological calculations is readily obtained for any collection of masses (cf. [8]).
For the spatial problem, in contrast, the interplay between the behavior near collinear and the
behavior near collision complicates the topological description. Section4.1 works through
these complications to produce the needed homological information: the space is decomposed
into manageable elements, then assembled via a series of Mayer–Vietoris arguments. With
the homology groups “above” in B(d9) and “below” in B(d5) established, it is natural to
look for a Morse-theoretic handlebody approach to constructing the homology groups of the
intermediate level sets. This approach works in the planar case, and Sect. 4.3 examines the
extent to which those results may be lifted to the spatial case. With all of that established, the
calculations of the homology groups required to identify H∗(M(c, h)) and H∗(MR(c, h))

are carried out in Sect. 5.
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2 Singular Values and Level Sets of Energy

This section summarizes the results of [1, 9] that provide the framework for the current
analysis. As noted, Albouy’s work in [1] identifies the singular values of energy on level set
of angular momentum, center of mass and linear momentum. In the intervals between those
singular values, [9] provides a reduction formula for computing the homology of the integral
manifolds. Section2.1 introduces the framework, while Sects. 2.2and 2.3 review the core
results from [1] and [9] required for the present work. The essence of this is a reduction from
level sets of energy on the (6N−9)-dimensional angular momentummanifold to level sets of
a function defined on a (3N −4)-dimensional configuration space. Sects. 2.4,2.5 present new
results, the former establishing that the reduction produces a 1 : 1 correspondence between
singular values of the functions; the latter identifying the homology of the Hill’s regions.

2.1 Integral Manifolds

The approach to analyzing the integral manifolds follows the decomposition approach
deployed in [6, 9, 17]. As that approach is described in detail in those works, we will only
sketch it here. As we are examining the 4-body problemwith equal masses, the masses are all
set to mi = 1. Except for the identification of central configurations (where the assumption
of four equal masses is critical), neither the assumption of equal masses nor the restriction
to four masses plays a role in the analysis.

Let �x1, �x2, �x3, �x4 ∈ R
3 denote the positions of the four particles, and let �yi = d �xi

dt ∈ R
3

be the corresponding velocities. There are four well-known constants of motion: center of
mass; linear momentum; angular momentum and energy, as well as a rotational symmetry.

4∑

i=1

�xi = �0 Center of Mass (2.1.1a)

4∑

i=1

�yi = �0 Linear Momentum (2.1.1b)

4∑

i=1

�xi × �yi = �c Angular Momentum (2.1.1c)

4∑

i=1

|�yi |2 −U (X) = h Energy (2.1.1d)

where U (X) is the self potential

U =
∑

i< j

1

‖ �xi − �x j ‖ . (2.1.2)

The potential function is undefined at collisions (i.e. when �xi = �x j for some i �= j), so
the state space for the spatial four-body problem is R12\� × R

12, where

� = {(�x1, �x2, �x3, �x4) ∈ R
12|�xi = �x j ∃ i �= j

}

is the collision set.
When �c = �0, there is an SO3 symmetry. We will focus on the case of non-zero angular

momentum, which has �c as a preferred direction, and admits SO2 symmetry under rotations
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around �c. There is no loss of generality in assuming that �c = ck̂. The spatial integral manifold
is defined formally as

M(c, h) =
{
(�x, �y) ∈ R

3N \ � × R
3N | equations 2.1.1 hold

}

When �c = �0, the reduced integralmanifold is defined asMR(c, h) = M(c, h)/SO3,while for
�c �= �0,MR(c, h) = M(c, h)/SO2 For the spatial problemwith non-zero angularmomentum,
there are ten integrals and the spatial integral manifolds are 14 dimensional spaces, while
MR(c, h) is 13-dimensional.

With the angular momentum vector oriented along k̂, the planar N -body problem can be
embedded in the spatial problem by setting all xi3 = yi3 = 0. It is a simple calculation to see
that this planar submanifold is invariant under the equations of motion. The planar integral
manifold is the subset

m(c, h) = {(�x, �y) ∈ M(c, h)|xi3 = yi3 = 0 ∀ i = 1, . . . , N } .

This is invariant under the SO2 action, so there is a well-defined reduced planar manifold
mR(c, h). The planar 4-body manifold has dimension 9, while mR(c, h) is 8-dimensional.

While the integral manifolds present themselves as parameterized by c and h, for non-
zero angular momentum, all manifolds with ν = hc2 constant are diffeomorphic. We will
view this as holding c fixed, which allows us to treat the angular momentum manifold as
a one-parameter family of energy surfaces parameterized by h. That is, integral manifolds
M(c, h) are level sets of H on the angular momentum manifold

A(c) =
{
(�x, �y) ∈ R

3N × R
3N | equations 2.1.1a − 2.1.1c hold

}
.

The analysis of the integral manifolds proceeds through projection onto the configuration
spaces. The spatial configuration space is

S =
{

(�x1, . . . , �xN ) ∈ R
12 \ � |

∑

i

�xi = �0,
∑

i

�x2i = 1

}

The spatial configuration space has various subspaces that will be of interest to us. The
planar configuration space

P =
{

(�x1, �x2, �x3, �x4) ∈ R
8 \ � |

∑

i

�xi = �0,
∑

i

�x2i = 1

}

can also be defined by P = {(�x1, �x2, �x3, �x4) ∈ S | xi3 = 0 ∀i}. The collinear configuration
space

C = {(�x1, �x2, �x3, �x4) ∈ S | ∃ x0 ∈ S2 �: xi = λi x0 ∀i}

consists of all configurationswith all of the particles lying on a single line. Note that we do not
assume collinear configurations to lie in the x − y plane. The set of collinear configurations
that lie in the x − y plane, C0 = C ∩ P , will be of particular interest to us. For these or any
other X ⊂ S, we will denote � ∩ X by �X .

The spatial configuration space S is a dense open subset of the sphere S8, while the planar
configuration space is a dense open subset of a 5-sphere. These spaces clearly admit rotational
symmetries, and have the obvious corresponding reduced quotient spaces SR = S/SO2 and
PR = P/SO2.
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Fig. 1 The collision set in CL

To remain consistent with the notation in previous works, the sets C and C0 do not contain
collisions. However, in the present work, we will want to consider sets that contain both
collisions and non-collisional collinear configurations, and to be more explicit about the
inclusion or exclusion of collisions. We will therefore make frequent use of the full set of
collinear configurations (including collisions) along a single line L:

CL ∼= {(x1, x2, x3, x4) ∈ R
4|
∑

i

xi = 0,
∑

i

x2i = 1}.

This set, which contains collisions, is clearly homeomorphic to S2. The collision set �L =
� ∩ CL consists of six circles �i j L , one for each binary intersection xi = x j . These meet
in three pairs of double binary points �i j,klL and four pairs of triple collisions �i jk , as
shown in Fig. 1. The union of the six circles forms a graph with 14 vertices and 36 edges, so
χ(�L ) = −22. The complement CL\�L is homeomorphic to 24 open disks.

The full set of collinear configurations C∪�C , including collisions, fibers overRP2 with
fiber CL , and similarly, C0 ∪ �C0 fibers over RP1 with fiber CL .

Let 
 : M(c, h) → S be the projection (�x, �y) �→ 1
||�x || �x . The projection is equivariant

with respect to the SO2 symmetries, so there is a well-defined projection θ : HR → SR . The
configuration spaces are defined as the images of 
 in S:

Spatial Configurations K(c, h) = {�x ∈ S| (λ�x, �y) ∈ M(c, h) ∃ λ > 0, �y ∈ R
12
}

Planar Configurations
{�x ∈ P| (λ�x, �y) ∈ m(c, h) ∃ λ > 0, �y ∈ R

8
}

Collinear Configurations K ∩ C.

There is a commutative diagram

M(c, h) MR(c, h)

H(c, h) HR(c, h)

K(c, h) KR(c, h)




�M

�

θ

π

�H

 ω

�K

and a corresponding planar diagram.
At this point,we introduce a shift in notation, to reflect a shift in perspective. Thedefinitions

of the integral manifolds and related spaces were formulated in terms of the positions �xi =
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(xi1, xi2, xi3) and velocities �yi = (yi1, yi2, yi3) of the individual particles. Moving forward,
we will focus instead on the component vectors q j = (x1 j , x2 j , x3 j , x4 j ) consisting of the
projections of �x onto the x−, y− and z−axis. The notation for configurations in S will be

S = {(q1, q2, q3) ∈ R
12 \ �|(1, 1, 1, 1) · qi = 0, q21 + q22 + q23 = 0}

with P consisting of configurations with q3 = 0, and CL viewed as configurations with
q2 = q3 = 0. Note that, in this notation, rotations in SO3 intertwine q1, q2 and q3.

2.2 The Reduction Framework

As noted, [9] describes a process for reducing the calculation of H∗(M) to calculations on
the configuration space S. Or, nearly so. The reduction process encounters irregularities at
the collinear configurations. These are resolved by deleting some collinear configurations,
while introducing a blow-up construction at those that remain.

The projection 
 : M → S naturally invites a description of M(c, h) in terms of the
image K(c, h) and the pre-images
−1(q). Examination of
 shows that this description can
be encoded via the potential function U (q) and a function Y : S → R

+ that measures the
square of the distance from the origin to the affine space J (q)p = ck̂. For negative energy, we

find that q ∈ K(c, h) if and only ifU 2(q)+2hY (q) ≥ 0. We therefore define D(q) = U2(q)
Y (q)

,

so that K(c, h) = {q ∈ S|D(q) ≥ −2 h}. The pre-image 
−1(q) consists of a single point
for when D(q) = −2h and is a sphere when D(q) > −2h.

While the properties of the potential function have been extensively studied, the func-
tion Y does not occupy the same central role, so there has been less occasion to record
its properties. For fixed angular momentum ck̂ and position vector q , Y (q) is defined by
Y (q) = min{p2|J (q)p = ck̂}. There are a variety of ways to express this:

• If q = (q1, q2, q3) is non-collinear, then the moment of inertia tensor

I (q) =
⎡

⎣
q22 + q23 −q1 · q2 −q1 · q3
−q1 · q2 q21 + q23 −q2 · q3
−q1 · q3 −q2 · q3 q21 + q22

⎤

⎦

is invertible, and Y (q) = k̂ I−1(q)k̂ is the 3 − 3 entry of I−1(q).
• If q has q1 · q2 = q1 · q3 = q2 · q3 = 0 and q21 ≥ q22 ≥ q23 , we refer to q as a standard

configuration. For standard configurations,

I (r) =
⎡

⎣
q22 + q23 0 0

0 q21 + q23 0
0 0 q21 + q22

⎤

⎦

and Y (q) = c2

q21+q22
.

• An arbitrary position vector q is a rotation of a standard configuration: there is a stan-
dard configuration r = (r1, r2, r3) and an R ∈ SO3 acts component-wise on each
(r1i , r2i , r3i ) so that q = Rr . Then I (q) = RI (r)RT , so I−1(q) = RI−1(r)RT and
Y (q) = k̂T R I−1(r)RT k̂.

• I (q) is positive semi-definite with non-negative eigenvalues α1(q) ≤ α2(q) ≤ α3(q) that
are invariant under rotation.At a standard configuration,α1(q) = r22+r23 ,α2(q) = r21+r23
and α3(q) = r21 + r22 . If v = (v1, v2, v3) ∈ S3 has Rv = k̂ (or alternatively, RT k̂ = v),
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then

Y (q) = c2v1
α1(q)

+ c2v2
α2(q)

+ c2v3
α3(q)

This formulation of Y displays the dependence on the shape of the configuration through
the eigenvalues α1(q), α2(q), α3(q) and the dependence on the orientation through the
components of the vector v1, v2, v3.

While the characterization of the integral manifolds in terms of the super-level sets of a
single function on a sphere has a certain elegance to it, there are some complexities within this
formulation. Implicit in the definition of D(q) is that both U (q) and Y (q) must be defined
at q . The potential function is undefined at collisions, and the function Y is undefined for
collinear configurations that do not lie in the invariant plane. The domain of definition is
therefore not the full mass ellipsoid S, but rather the dense subset

S0 = S \ (� ∪ (C \ C0))

An added complexity is that Y , and hence D, is discontinuous at C0. Related to that discon-
tinuity, for points q with D(q) > −2h, the pre-image 
−1(q) in M(c, h) is the sphere S6

for non-collinear configurations, while for collinear configurations, the pre-image is S7.
Those complexities are addressed by introducing a blow-up construction. The space B

is formed from S0 be replacing each collinear configuration in the invariant plane q ∈ C0
with a set of the form S4 \ S0. As S has dimension 8 and C0 has dimension 3, the 4-sphere
can be viewed as the sphere of directions normal to C0 in S. The deleted antipodal points
correspond to the direction of approach to q from C \ C0. Removing those directions of
approach reflects the fact that collinear configurations outside of the invariant plane are
excluded. The punctured sphere attached at q ∈ C0 is denoted B0(q). The union of those sets
is B0 and the space resulting from attaching B0 to S0\C0 is B.

While somewhat awkward, this blow-up set proves to be precisely what is needed to define
Y continuously. The intuition is that, if the deleted antipodal points in the 4-sphere attached
at q0 ∈ C0 are viewed as the poles and the corresponding S3 as the equator, then it is the
latitude that measures the proximity to the “forbidden” collinear configurations that are not
orthogonal to the angular momentum vector. This captures the different limiting values of
Y (q) as q → q0. This allows Y to be extended continuously to B. We can clearly extend U
to B by assigning value U (q) at every point in B0(q), and so extend D continuously to B.

Moreover, when the blow-up � : B → S is pulled back to produce N(c, h) → M(c, h),
the discontinuity in the dimension of the fiber is eliminated. The projection
 : N(c, h) → B
then has the properties that 
(N(c, h)) = {q ∈ B|D(q) ≥ −2 h}, with 
−1(q) ∼= S3N−6

for all q with D(q) > −2h and 
−1(q) collapsing to a single point when D(q) > −2h.
The impact on homology groups of the pull-back fromM(c, h) toN(c, h) and projection

onto B can be traced. The pull-back requires us to distinguish behavior at the collinear blow-
up set, while the projection distinguishes behavior on {D(q) = −2h} vs. {D(q) > −2 h}.
In the end, the following subsets of B are found to play a role in computing the homology
groups ofM(c, h) andMR(c, h):

B(d) = {q ∈ B|D(q) ≥ d}
∂B(d) = {q ∈ B|D(q) = d}
B0(d) = {q ∈ B0|D(q) ≥ d}
∂B+(d) = ∂B(d) ∪ B0(d)
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These sets will emerge as our primary objects of study. We will also make frequent use of
some related sets

B(di , d j ) = {q ∈ B|di ≤ D(q) ≤ d j }
P(d) = {q ∈ P|D(q) ≥ d}
∂P(d) = {q ∈ P|D(q) = d}
P(di , d j ) = {q ∈ P|di ≤ D(q) ≤ d j }

Note that, while the sets P(d), ∂P(d), P(di , d j ) are clearly related to the corresponding sets
B(d), ∂B(d),B(di , d j ), the various planar sets are not simply subsets of the corresponding
spatial sets, as P is not a subset of B. The relationship between the planar and spatial sets
will be an important component of the analysis, and will be explored below.

For N = 4, it was shown in [9] that the homology groups of H∗(M) are given by

Hk (M) ∼=

⎧
⎪⎨

⎪⎩

im ( j∗ : H3(B) → H3(B,B0)) k = 3

Hk (B,B0) ⊕ Hk−6
(
B, ∂B+) k = 4, 5, 6, 10, 11, 12

Hk (B) ⊕ Hk−6 (B, ∂B) k = 0, 1, 2, 7, 8, 9, k > 12

All of these constructions are invariant under the SO2 rotation around the z-axis (i.e.
around �c). The homology groups of H∗(MR) are given by

Hk (MR) ∼=
{
Hk (BR,BR0) ⊕ Hk−6

(
BR, ∂B+

R

)
k = 3, 4, 5, 10, 11

Hk (BR) ⊕ Hk−6 (BR, ∂BR) otherwise

2.3 Singular Values of Energy on the Angular MomentumManifold

Albouy [1] provides necessary conditions for an energy level h to be a bifurcation value of
H |A. As a smooth function on a non-compact manifold, bifurcation values of the level sets
of H onA can occur only at singular values of H |A, which can arise in one of two ways. The
most straightforward is h = H(q, p) for a critical point (q, p). Critical point occur when
∇H(q, p) = λx∇Cx (q, p)+ λy∇Cy(q, p)+ λz∇Cz(q, p) for some � = (λx , λy, λz), and
are well-known to correspond to relative equilibria: planar central configurations uniformly
rotating around the center of mass. If A were compact, those would be the only singular
values. However, A has two sources of non-compactness: the collision set has been deleted,
and momenta are not bounded. Albouy demonstrated that the former does not generate
singular values of H , but the latter can. Namely, singular values also occur when there exists
a sequence {(qn, pn)} ⊂ A and sequence �n = (λnx , λny, λnz) such that ∇H(qn, pn) −
λnx∇Cx (qn, pn) − λny∇Cy(qn, pn) − λnz∇Cz(qn, pn) tends to zero and H(qn, pn) tends
to a finite limit hs . Albouy refers to such a sequence as a horizontal critical sequence and
produces necessary and sufficient conditions for a value hs to be associated with a horizontal
critical sequence. These are referred to as bifurcations at infinity.

The result of Albouy’s analysis is that, for non-zero angular momentum c, the singular
values of H |A can be identified by the following algorithm:

(1) Identify all planar central configurations of the N -body problemwithmassesm1, . . .mN .
(2) For each N -body central configuration q , normalized so that q2 = 1, the corresponding

singular value is H = − 1
2 p

2 = −U2(q)

2c2
.

(3) The set of finite singular values of H is the set of values −U2(q)

2c2
as q varies over all

planar central configurations with q2 = 1.

123



Journal of Dynamics and Differential Equations

(4) Identify all planar central configurations for all subsets of the masses mi1 , . . . ,miK .
(5) Take all possible non-trivial partitions of the index set {1, . . . , N }.
(6) For any non-trivial partition σ1, . . . σl , associate with each non-trivial cluster σ j =

{i1, . . . ik} in the partition a planar central configuration qσ j of the k-body problem with
masses mi1 , . . . ,mik . Normalize each qσ j = 1, and let Uσ j (qσ j ) denote the potential
energy of the configuration within the k-body problem.

(7) If σ1, . . . σl are the non-trivial clusters of a partition, and qσ1 , . . . qσl are the corre-
sponding normalized planar central configurations, then the resulting singular value is

H = −1
2c2

(∑
j U

2
3
σ j (qσ j )

)3

.

(8) The set of singular values at infinity of H is the set of values −1
2c2

(∑
j U

2
3
σ j (qσ j )

)3

,

ranging over all possible non-trivial partitions of the massesm1, . . . ,mN and all possible
planar central configurations associated with the non-trivial clusters of those partitions.

Applying the algorithm to four equal masses, there are four planar central configurations
[2]: the square, isosceles, equilateral and collinear configurations. For sub-clusters with three
equal masses, there are two central configurations: the equilateral and collinear configura-
tions. For sub-clusters with two equal masses, there is only the collinear configuration. This
produces the following cases, summarized in Table 1:

• Six distinct partitions into a two-body cluster and two trivial clusters. All occur at the
same energy level h1.

• Three distinct partitions into two two-body clusters, with one collinear configuration for
each partition. All occur at the same energy level h2. This is the only instance in which
two non-trivial clusters occur.

• Eight distinct partitions into a three-body cluster and a trivial cluster, with the three
masses forming a Lagrange configuration. All occur at the same energy level h3.

• Twelve distinct partitions into a three-body cluster and a trivial cluster, with the three-
body cluster forming an Euler configuration. All occur at the same energy level h4.

• Six square configurations, corresponding the six cyclical orderings of the masses, which
are all distinct relative to the preferred direction of the angular momentum vector, but all
occurring at the same energy level h5.

• Twenty-four isosceles configurations, corresponding to distinct ordering of the masses.
All occur at the same energy level h6.

• Eight equilateral triangle configurations, corresponding to the four choices for the center
mass and two cyclical orderings of the remaining three masses. All occur at the same
energy level h7.

• Twelve distinct collinear central configurations (corresponding to the 24 possible order-
ings of the masses, modulo the rotational symmetry that identifies pairs whose orderings
are reversed). All occur at the same energy level h8.

Note that, except for the case of h2, there is only one non-trivial cluster, with one central
configuration qi . With qi normalized to q2i = 1, then the corresponding singular energy level

is hi = − 1
2c2

U 2
0 (qi ). At h2, where we have two binary clusters, h2 = − 1

2c2
(2U

2
3
0 (qi ))3 =

− 4
c2
U 2
0 (qi ). This produces the results displayed in Table 1. Properly speaking, for given

non-zero angular momentum c, it is the quotient of the values in the table by c2 that are the
singular values. Also, while it is clearly redundant to list both hi and δi = −2hi , we list both
for the convenience of the reader: on the one hand, it is the values of hi that are shown to be
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the bifurcation values of the integral manifolds; on the other hand, as outlined in Sect. 2.2, all
of the calculational effort will be organized around a function D on the configuration space
whose singular values are −2hi . We will use di to signify a value of d with δi−1 < di < δi
(i.e. a value in region i). Finally, note that the energy level for the isosceles configurations is
incorrectly stated in [8, 9]. This impacts the ordering of the bifurcation levels, reversing the
order of the isosceles and equilateral bifurcation levels.

2.4 Global Analysis of the Functions

The first goal is to show that there is a one-to-one correspondence between bifurcations of D
on S0 and bifurcations of H on the angular momentum manifold A(c). This correspondence
holds for both finite bifurcations and bifurcations at infinity. More precisely, we show that
there is a one-to-one correspondence between singular values of D and singular values of H ,
and likewise, that there is a one-to-one correspondence between critical sequences of D and
critical sequences of H . This validates the reduction approach by establishing that no new
singular values are created by the projection onto B.

For H on A(c), a horizontal critical sequence consists of a sequence of points (qn, pn)
and a sequence of values λ1n, λ2n, λ3n such that:

(1) H(qn, pn) is bounded and converges to hs with −∞ < hs < 0.
(2) ∇H(qn, pn) − λ1n∇C1(qn, pn) − λ2n∇C2(qn, pn) − λ3n∇C3(qn, pn) → 0 as n → ∞
(3) J (qn)pn = ck̂

The analogue for D on S0 is a sequence of points qn such that:

(1) D(qn) is bounded and converges to ds with 0 < ds < ∞.
(2) ∇D(qn) → 0 as n → ∞.

Both singular values and critical sequences are detected by the vanishing of ∇T D(q), the
tangent component of ∇D. However, as D is homogeneous of degree 0, ∇D(q) = ∇T D(q).
As

∇D(q) = 2U (q)

Y (q)
∇U (q) − U 2(q)

Y 2(q)
∇Y (q),

∇D(q) can only vanish when ∇U (q) and ∇Y (q) are parallel.

If ri j = |�xi − �x j | =
√

(q1i − q1 j )2 + (q2i − q2 j )2 + (q3i − q3 j )2, then

∇U (q) =
⎡

⎣
�(q) 0 0
0 �(q) 0
0 0 �(q)

⎤

⎦

⎡

⎣
q1
q2
q3

⎤

⎦

where

�(q) =

⎡

⎢⎢⎢⎢⎢⎢⎣

− 1
r312

− 1
r313

− 1
r314

1
r312

1
r313

1
r314

1
r312

− 1
r312

− 1
r323

− 1
r324

1
r323

1
r324

1
r313

1
r323

− 1
r313

− 1
r323

− 1
r334

1
r334

1
r314

1
r324

1
r334

− 1
r314

− 1
r324

− 1
r334

⎤

⎥⎥⎥⎥⎥⎥⎦
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To formulate the comparable expression for Y , we introduce the following quantities. For
i �= j , let qi j = qi · q j denote the inner product, and let

κ1 = q13(q21 + q23 ) + q12q23
κ2 = q23(q22 + q23 ) + q12q13
κ3 = (q21 + q23 )(q

2
2 + q23 ) − q212

� = κ3(q21 + q22 ) − q213(q
2
1 + q23 ) − q223(q

2
2 + q23 ) − 2q12q13q23

then Y (q) = c2κ3
�

and

∇Y (q) = −2c2

�2

⎡

⎣
(κ2

2 + κ2
3 )I −κ1κ2 I −κ1κ3 I

−κ1κ2 I (κ2
1 + κ2

3 )I −κ2κ3 I
−κ1κ3 I −κ2κ3 I (κ2

1 + κ2
2 )I

⎤

⎦

⎡

⎣
q1
q2
q3

⎤

⎦ . (2.4.1)

The eigenvalues are 0 with multiplicity 4 and
−2c2(κ21+κ22+κ23

�2 with multiplicity 8.
We want to identify the points at which ∇Y and ∇U are parallel. The expression above

for ∇Y is a bit difficult to work with in general. However, we can significantly restrict the
values at which we need to evaluate ∇Y , and the expression simplifies considerably at those
values.

To see this, take a standard configuration r = (r1, r2, r3). We will focus on non-collinear
configurations. Consider the family Rr for R ∈ SO3. As U is invariant under rotation, its
directional derivative along this family is 0, so ∇U (q) and ∇Y (q) can be parallel only if the
directional derivative of Y also vanishes. We can sweep out such a familiy by rotating first
about the z-axis, then about the y-axis, then again about the z-axis. As Y is invariant under
this last rotation, we restrict attention to the two parameter family swept out by rotations of
the form

R(φ, θ) =
⎡

⎣
cos(φ) cos(θ) − cos(φ) sin(θ) − sin(φ)

sin(θ) cos(θ) 0
sin(φ) cos(θ) − sin(φ) sin(θ) cos(φ)

⎤

⎦

If r has α1 = r22 + r23 , α2 = r21 + r23 , α3 = r21 + r22 , then as a function of φ and θ ,

Y (φ, θ) = c2 sin2(φ) cos2(θ)

α1
+ c2 sin2(φ) sin2(θ)

α2
+ c2 cos2(φ)

α3
.

Lemma 2.4.1 If r is a non-collinear standard configuration, then the critical points of Y on
the two-parameter family R(φ, θ)r occur at the following values of φ, θ and αi ’s:

• α1 = α2 = α3

• α1 = α2 and φ = nπ
2• φ = nπ

2 and θ = nπ
2• φ = nπ

The first of these situations, when α1 = α2 = α3, is easily dealt with:

Lemma 2.4.2 The unique O3-orbit with α1 = α2 = α3 is the tetrahedral central configura-
tion.

Proof If a standard vector r has α1(r) = α2(r) = α3(r), then I (r) = 2
3 Id, and any rotation

q = Rr has I (q) = RI (r)RT = 2
3 Id. That is, q1 · q2 = q1 · q3 = q3 · q3 = 0 and

q21 = q22 = q23 = 1
3 . Solving the system of six equations qi · q j = 1

3δi j in the nine unknowns

yields a three-parameter family of solutions in which all of the mutual distances equal
√

2
3 .
�
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Two valuable results follow from Lemma 2.4.1.

Proposition 2.4.1 The restriction of Y to S0 has critical point set consisting of all points in
the invariant plane P .

Proof As Y is invariant under rotation about the z-axis, the critical point set is invariant. If q
is a critical point, then up to rotation about the z-axis, q = R(φ, θ)r for some φ, θ and r . If q
is a critical point of the restriction of Y to S0, then it is a critical point of the restriction of Y
to the (φ, θ)-family. We can therefore restrict to evaluating ∇Y under each of the conditions
identified in Lemma 2.4.1.

At the tetrahedral configuration q0, ∇Y (q0) = − 3
2q0, so the tetrahedral configuration is

not a critical point of Y .
For all of the other cases (α1 = α2 and φ = nπ

2 ; φ = nπ
2 and θ = nπ

2 ; or φ = nπ),

∇Y (q) = − 2c2

(q21+q22 )2
(q1, q2, 0), which is only equal to its normal component if either q3 = 0

or q1 = q2 = 0. The latter corresponds to a collinear configuration along the z-axis, which
is forbidden, leaving only the case q3 = 0. Conversely, if q is an arbitrary non-collinear
configuration in the invariant plane, then κ1 = κ2 = 0 and � = κ3, in which case ∇Y (q) =
−2c
k23

(q1, q2, 0), which is its normal component. 
�

Proposition 2.4.2 OnS0, the set of pointswhere the gradients ofU andY are parallel consists
of the invariant plane P and at the the tetrahedral configuration.

Proof To identify when these vectors are parallel, first note that ∇TU (q) = 0 is precisely
the condition for q to be a central configuration, while ∇T Y (q) = 0 if and only if q3 = 0.
We can therefore focus on the situation when both ∇TU (q) and ∇T Y (q) are non-zero and
∇TU (q) = λ∇T Y (q) with λ �= 0.

We consider two cases:

I. The configuration lies in a plane: there is a vector �v ∈ S
2 such that each particle position

vector �xi has �v · �xi = 0.
II. The position vectors span R3.

Case I
In the first case, if all of the position vectors satisfy �v · �xi = 0, then �v · ∇iU (q) = 0. We

show that, in order for �v ·∇i Y (q) = 0 for all i , we must have �v = ±k̂. Since both Y andU are
invariant under rotation about k̂, we may assume without loss that �v = (− sin(t), 0, cos(t)).
Further, for �v �= ±k̂, there is no loss in assuming that the position vectors xi span the
orthogonal complement to �v, as otherwise the configurationwould be a collinear configuration
that does not lie in the invariant plane.

Observe that ∇i Y (q) = K (q)xi for the symmetric matrix K (q), so the condition �v ·
∇i Y (q) = 0 for all i is equivalent to K (q)�v = 0. The kernel of K (q) is spanned by
�κ = (κ1, κ2, κ3). Under the assumption that q1 = cos(t)q0, q3 = sin(t)q0 for some q0, the
quantities κi simplify to

κ1 = q20 cos(t) sin(t)(1 − q22 sin
2(θ))

κ2 = |q0||q2| sin(t) cos(θ)

κ3 = q20 (q
2
2 (1 − cos2(t) cos2(θ)) + q20 sin

2(t)

where q0 · q2 = |q0||q2| cos(θ). In order for κ2 to vanish, we can set aside either q0 = 0 or
q2 = 0 (as either corresponds to collinear), while sin(t) = 0 corresponds to �v = ±k̂. We can
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therefore focus on cos(θ) = 0, in which case

κ1 = q20 cos(t) sin(t)(1 − q22 )
κ2 = 0
κ3 = q20 (q

2
2 + q20 ) sin

2(t)

from which we can see κ1
κ3

�= tan(t).
Case II

Consider once again a standard configuration r with 0 < r23 ≤ r22 ≤ r21 and the two
parameter family of configurations R(φ, θ)r . The potential U is invariant under rotation, so
U (R(φ, θ)) is constant on this family, so the directional derivatives ofU along this family are
zero. But if ∇TU (q) is a non-zero scalar multiple of ∇T Y (q) at some point q in this family,
then the directional derivative of Y along the family must also be zero at q . This limits
us once again to the configurations identified in Lemma 2.4.1. Setting aside the tetrahedral
configuration, in all other cases,

∇T Y (q) = − 2c2

(q21 + q22 )
2
(q23q1, q

2
3q2, (q

2
1 + q22 )q3).

If ∇TU (q) = λ∇T Y (q), then

�(q)q1 = −2λc2q23−U (q)(q21+q22 )2

(q21+q22 )2
q1 = λ1q1

�(q)q2 = −2λc2q23−U (q)(q21+q22 )2

(q21+q22 )2
q2 = λ1q2

�(q)q3 = −2λc2(q21+q22 )−U (q)(q21+q22 )2

(q21+q22 )2
q3 = λ3q3

In particular, each of the component vectors qi is either zero or an eigenvector of �(q); and
if q1 and q2 are both non-zero, then they have a common eigenvalue. If q21 + q22 �= q23 , then
q3 is either zero or an eigenvector with distinct eigenvalue, and so is orthogonal to q1 and q2.

This implies q = (q1, q2, q3) is a balanced configuration [14]. One characterization of
balanced configurations is that XT X�(q) = �(q)XT X , where X is the 3× 4 matrix whose
rows are qi . If each qi has �i qi = λi qi , then

�(q)XT = [λ1q1 λ2q2 λ3q3
]

and (�(q)XT X)i j = λi qi · q j . On the other side,

X�(q) =
⎡

⎣
λ1q1
λ2q2
λ3q3

⎤

⎦

and (XT X�(q))i j = λ j qi · q j . As λ1 = λ2, λ1q1 · q2 = λ2q1 · q2. Similarly, since we either
have λ3 = λ1 = λ2 or q1 · q3 = q2 · q3 = 0, we have λi qi · q3 = λ3qi · q3 for i = 1, 2. We
can thus conclude that that XT X�(q) = �(q)XT X and q is a balanced configuration.

Another characterization of balanced configurations is that �(q) + μŜq = 0, where
Ŝ = diag(S, S, S, S) with S = −α2 and α a 3 × 3 anti-symmetric matrix. That is,
diag(λ1, λ1, λ3) + S = 0, which is only possible if λ3 = 0 and S = diag(λ1, λ1, 0).
This implies that the configuration is a planar central configuration. 
�

In addition to demonstrating the one-to-one correspondence between singular values of
H on A(c) and singular values of D on B, we will proceed a bit further, and show that both
are equivalent to the potentially weaker condition that ∇U (q) and ∇Y (q) are parallel (or
become parallel in the limit as qn → q0 ∈ �C
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Proposition 2.4.3 ∇U and ∇Y are parallel at q ∈ S if and only if q ∈ P is the projection
onto S of a critical point of H onA(c). A point q0 ∈ S8\S admits a sequence {qn} ⊂ S0\C0
that limits to q0 with D(qn) → δ0 and ∇U (qn), ∇Y (qn) limiting to parallel if and only if
{qn} is the projection of a horizontal critical sequence of H on A(c).

Proof For H on A(c), the quantity of interest is

∇H(Qn, Pn) −∑3
i=1 λin∇Ci (Qn, Pn) =

⎡

⎢⎢⎢⎢⎢⎢⎣

−∇1U (Qn) + cλ3n P2n − cλ2n P3n
−∇2U (Qn) + cλ1n P3n − cλ3n P1n
−∇3U (Qn) + cλ2n P1n − cλ1n P2n

P1n + cλ2nQ3n − cλ3nQ2n

P2n + cλ3nQ1n − cλ1nQ3n

P3n + cλ1nQ2n − cλ2nQ1n

⎤

⎥⎥⎥⎥⎥⎥⎦

=
[−∇U (Qn) + cJ T (Pn)�n

Pn − J T (Qn)�n

]

For D on S0, the homogeneity of D implies that the normal component of ∇D is always

zero, so we consider ∇D(qn) = 2U (qn)
Y (qn)

∇U (qn) − U2(qn)
Y 2(qn)

∇U (qn).
Albouy [1] shows that if there is a horizontal critical sequence associated with energy

level h, then there is a model sequence (Qn, Pn) with the following properties:

• When the particles are partitioned so that particles with the same z-value form a partition,
the resulting sub-clusters have (x, y)-coordinates that form a central configuration. In
particular, the center of mass of the configuration is located on the z-axis, which implies
Q1 · Q3 = Q2 · Q3 = 0.

• The z-coordinates diverge to infinity, so that the between-cluster contributions to U
diminish to 0 while the within-cluster contributions remain constant.

• Themomenta all have Pz = 0, while (Px , Py) are those of a relative equilibrium.Namely,
Pn = cJ T (Qn)�n , where �n = cI−1(QN )k̂. The conditions Qi · Q3 = 0 imply
that �n = (0, 0, c

Q2
1+Q2

2
), and P2

n = c2k̂ I−1(Qn)J (Qn)J T (Qn)I−1(Qn)k̂, which we

recognize as Y (Qn).

Inserting this into the expressions for H(Q, P) and ∇H(Q, P)−∑i λi∇Ci , we see that
H(Qn, Pn) = 1

2Y (Qn) −U (Qn) → hs , with U (Qn) = Y (Qn) = −2hs . Further,

−∇U (Qn) + cJ T (J T (Qn)�n)�n → 0
Pn − J T (Qn)�n = 0

Applying Eq. 2.4.1, this implies that 2∇U (qn) − ∇Y (qn) converges to 0.
Now, let μn = |Qn | and qn be the projection qn = 1

μn
Qn . Note that model critical

sequences of H have μn → ∞. By the homogeneity, 2∇U (Qn) − ∇Y (Qn) converging to
0 implies that 2

μ2
n
∇U (qn) − 1

μ3
n
∇Y (qn) converges to 0.

1
2Y (Qn) − U (Qn) → hs . At the same time U2(qn)

Y (qn)
= D(qn) → −2hs . Taken together,

these imply U (Qn) and Y (Qn) converge to a common finite value −2hs as n → ∞. That
in turn implies U (Qn)

Y (Qn)
→ 1, so by homogeneity, μn

U (qn)
Y (qn)

→ 1. This allows us to rewrite
2

μ2
n
∇U (qn) − 1

μ3
n
∇Y (qn) as

2U (qn)
Y (Qn)

∇U (qn) − U (qn)
Y 2(qn)

∇Y (qn). This establishes the result in

one direction.
To prove the other direction, first suppose that there exist sequences an and bn such

that an∇U (qn) − bn∇Y (qn) → 0. Then anqn∇U (qn) − bnqn∇Y (qn) = (−anU (qn) +
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2bnY (qn))qn → 0, so the sequences must have an
bn

→ 2Y (qn)
U (qn)

. We may then, without loss,
take an = 2Y (qn) and bn = U (qn).

Now, take Qn = μnqn , with μn = an
2bn

= Y (qn)
U (qn)

. As qn (and hence Qn) are not collinear,

J (Qn) has rank 3 and I (Qn) = J (Qn)J T (Qn) is invertible. We can then define �n =
cI−1(Qn)k̂ and Pn = J T (Qn)�n = cJ T (Qn)I−1(Qn)k̂. To show that {(Qn, Pn)} is a
horizontal critical sequence for H on the angular momentum manifold A(c), we must show
that

• H(Qn, Pn) is bounded.
• ∇H(Qn, Pn) −∑i λi∇Ci (Qn, Pn) → 0.

For the first point, note that Pn was chosen so that P2
n = Y (Qn). The homogeneity of Y

and U therefore implies that

H(Qn, Pn) = 1
2Y (Qn) −U (Qn)

= 1
2μ2

n
Y (qn) − 1

μn
U (qn)

= U2(qn)Y (qn)
2Y 2(qn)

− U2(qn)
Y (qn)

= − 1
2D(qn)

which has finite limit − δ0
2 .

For the second point, direct calculation shows that

∇H(Qn, Pn) −∑3
i=1 λin∇Ci (Qn, Pn) =

[−∇U (Qn) + cJ T (Pn)�n

Pn − J T (Qn)�n

]

=
[−∇U (Qn) + cJ T (J T (Qn)�n)�n

0

]

=
[−∇U (Qn) + 1

2∇Y (Qn)

0

]

Focusing on −∇U (Qn) + 1
2∇Y (Qn) and once again using the homogeneity, we see

−∇U (Qn) + 1
2∇Y (Qn) = − 1

μ2
n
∇U (qn) + 1

2μ3
n
∇Y (qn)

= −U2(qn)
Y 2(qn)

∇U (qn) + U3(qn)
2Y 3(qn)

∇Y (qn)

= − U2(qn)
2Y 3(qn)

(2Y (qn)∇U (qn) −U (qn)∇Y (qn))

The scalar multiple U2(qn)
2Y 3(qn)

= D(qn)
Y 2(qn)

is bounded above by D(qn), which converges to a
finite limit, so the sequence converges to 0, as required. 
�

Wemay focus henceforth on the behavior of D on B. To do so, the first observation is that
D is a decreasing function of the “vertical” component q3. This will allow us to make contact
with the bifurcations of U on the planar manifold P , which is a much better understood
problem.

Lemma 2.4.3 D is a decreasing function of |q3|. That is, for fixed (q1, q2) ∈ P and q3 with
q23 = 1, D(

√
1 − t2q1,

√
1 − t2q2, tq3) is a decreasing function of t for 0 < t < 1.

Proof For fixed q1, q2, q3 with q21 + q22 = q23 = 1, let q(t) = (
√
1 − t2q1,

√
1 − t2q2, tq3).

Then

d

dt
D(q(t)) = (

−t√
1 − t2

q1,
−t√
1 − t2

q2, q3) · ∇D(
√
1 − t2q1,

√
1 − t2q2, tq3)
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As D is homogeneous of degree 0, −t√
1−t2

(
√
1 − t2q1,

√
1 − t2q2, tq3) · ∇D(q(t)) = 0, so

d
dt D(q(t)) = 1

1−t2
(0, 0, q3) ·∇D(q(t)). That is, it suffices to show (0, 0, q3) ·∇D(q(t)) < 0

for 0 < t < 1.

(0, 0, q3) · ∇D(q) = 2U (q)

Y (q)
(0, 0, q3) · ∇U (q) − U 2(q)

Y 2(q)
(0, 0, q3) · ∇Y (q)

. The inner product (0, 0, q3) · ∇U (q) has well-known form:

(0, 0, q3) · ∇U (q) = −
∑

i �= j

(q3i − q3 j )2

r3i j
< 0.

From Eq. 2.4.1, we see

(0, 0, q3) · ∇Y (q) = −2c2

�2

(
(κ2

1 + κ2
2 )q23 − κ1κ3q1 · q3 − κ2κ3q2 · q3

)

Evaluating this expression, and writing ci j qi q j for qi · q j , we find

(0, 0, q3) · ∇U (q) = 2c2q21q
2
2q

2
3

�2

(
q43 (c

2
13 − 2c12c13c23 + c223)

+(1 − c212)(c
2
13q

4
1+2c12c13c23q21q

2
2+c223q

4
2+2q23 (c13q

2
1 + c23q22 ))

)

The quantity (c213 −2c12c13c23 + c223) is bounded between (c13 − c23)2 and (c13 + c23)2, and
the quantity (c213q

4
1 + 2c12c13c23q21q

2
2 + c223q

4
2 ) is bounded between (c13q21 − c23q22 )

2 and
(c13q21 + c23q22 )

2, so (0, 0, q3) · ∇Y (q) is non-negative for all q . 
�

2.5 The Hills Region

We conclude this section with a proof of Corollary 1.0.3. The arguments for N = 3 involve
somewhat tedious special cases, and were already treated in [6], so we focus on N ≥ 4
bodies. As the projection  : H(c, h) → S0 to the configuration space simply collapses
intervals to points, H(c, h) has the same homotopy type as its image under , K(c, h). It
suffices then to prove the following:

Lemma 2.5.1 For N > 4 masses,

Hk(K) ∼=

⎧
⎪⎨

⎪⎩
Hk(B,B0) k = 2N − 5, 2N − 4, 2N − 3

3N − 8, 3N − 7, 3N − 6

Hk(B) otherwise

while for N = 4 masses,

Hk(K) ∼=

⎧
⎪⎨

⎪⎩

im( j∗ : H3(B) → H3(B,B0) k = 3

Hk(B,B0) k = 4, 5, 6

Hk(B) otherwise

.

For all N ≥ 4,

Hk(KR) ∼=

⎧
⎪⎨

⎪⎩
Hk(BR,B0) k = 2N − 5, 2N − 4

3N − 8, 3N − 7

Hk(B) otherwise

.
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Proof The sets B(d) and K(d) differ only at the blow-up of collinear configurations, with
B0(d) � C(d) × S2N−5, and

C ∼=
⎛

⎝
⊔

α

DN−2 × S1 �
⊔

β

SN−3 × [0, 1) × S1

⎞

⎠

Examining the commutative diagram of the map of pairs � : (B(d),B0(d)) →
(K(d), C0(d))

Hk+1(B(d),B0(d)) Hk (B0(d)) Hk (B(d)) Hk (B(d),B0(d)) Hk−1(B0(d))

Hk+1(K(d),C0(d)) Hk (C0(d)) Hk (K(d)) Hk (K(d),C0(d)) Hk−1(C0(d))

∼= ∼=

the five lemma implies that Hk(B(d)) → Hk(K(d)) is an isomorphism when Hk(B(d)) →
Hk(K(d)) and Hk−1(B(d)) → Hk−1(K(d)) are, namely, all k outside the range from 2N −5
to 2N − 3 and 3N − 8 to 3N − 6. In that range, Hk(C0(d)) = 0 for all d , so we have
isomorphisms Hk(K(d)) → Hk(K(d), C0(d)) ← Hk(B(d),B0(d)).

The one special case is k = 3, N = 4. There, we have

H4(B(d),B0(d)) H3(B0(d)) H3(B(d)) H3(B(d),B0(d)) H2(B0(d))

H4(K(d),C0(d)) 0 H3(K(d)) H3(K(d),C0(d)) H2(C0(d))

∼=

j∗

∼= ∼=

A simple diagram chase yields the result.
The arguments for Hk(K(d)) are similar. 
�

Comparisonwith the formulae in [9, Theorem 7.1, Theorem 7.2] provides the last step needed
to prove Corollary 1.0.3.

3 The Planar Manifold

While the results of [1, 6, 10] show that the the bifurcations of the spatial manifolds involve
more than just the structure of the planar manifold, it is still the case that the planar manifold
and its bifurcations play a critical role in understanding the behavior of the spatial manifolds.
In this section, we focus on the planar configuration space P and the behavior of D on it.
We record the results here for two purposes: to establish the baseline of planar results that
will be needed for our subsequent analysis of the spatial configurations; and to correct the
erroneous values in [8] for the homology of the planar integral manifolds.

3.1 Planar Configuration Spaces

The behavior of D on the planar manifold is simplified by the observation that Y (q) = 1
for planar configurations, so the level sets and super-level sets of D are the same as those
of U , and the bifurcation points are the critical points of U, i.e. the central configurations.
The local structure is well-known: on the reduced manifold P , the central configurations are
all non-degenerate, with potential levels, multiplicities and Morse indices in P as shown in
Table 2.
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Table 2 Planar Central
Configurations Configuration δi = U2 Multiplicity Morse Index

Square 58.6274 6 0

Isosceles 67.1757 24 1

Equilateral 67.1769 8 2

Collinear 93.6832 12 2

Given regular values di < d j , it will be useful to identify the homology groups of pairs of
the form (P(di , d j ), ∂P(di )) and (P(di , d j ), ∂P(d j )). To do so, we use a Morse-theoretic
approach:

• Given d5 < δ5 < δ8 < d9, there is a maximal set I that is invariant under �U and
contained in PR(d5, d9), which has the homotopy type of PR \ �RP .

• The critical points of U form a Morse decomposition of I. That is, I consists of the
critical points and connecting orbits between them.

• For every i < j in {5, 6, 7, 8}, let C+
i j = ⊕ j−1

k=i H∗(PR(dk, dk+1), ∂PR(dk+1)) and

C−
i j = ⊕ j−1

k=i H∗(PR(dk, dk+1), ∂PR(dk)) There exist degree −1 maps χ+ : C+
58 → C+

58

and χ− : C−
58 → C−

58 with (χ±)2 = 0 such that if χ± is restricted to C±
i j ,

then the resulting homology H∗(χ+
i j )

∼= H∗(PR(di , d j ), ∂PR(d j )) and H∗(χ−
i j )

∼=
H∗(PR(di , d j ), ∂PR(di )).

To compute these connection matrices χ±, we observe that the values forC±
58 are determined

by the multiplicity and Morse indices of the critical points. Further, (P(d5, d9), ∂P(d5)) �
(P\�P ) and H∗(P(d5, d9), ∂P(d9)) ∼= H∗(P,�P ) by excision. These are well-known
values:

k 0 1 2 3 4 k 0 1 2 3 4
C−
56 Z

6 0 0 0 0 C+
56 0 0 0 0 Z

6

C−
67 0 Z

24 0 0 0 C+
67 0 0 0 Z

24 0
C−
78 0 0 Z

8 0 0 C+
78 0 0 Z

8 0 0
C−
89 0 0 Z

12 0 0 C+
89 0 0 Z

12 0 0
C−
59 Z Z

5
Z
6 0 0 C+

59 0 0 Z
6

Z
5

Z

That is, there are chain complexes Z20 χ−
−→ Z

24 χ−
−→ Z

6 and Z
6 χ+

−→ Z
24 χ+

−→ Z
20 χ−

−→
0

χ−
−→ 0 whose homology groups are (Z,Z5,Z6, 0, . . .) and (0, 0,Z6,Z5,Z, 0, . . .) respec-

tively. These requirements constrain χ− : Z20 → Z
24 to have rank 14 and χ− : Z24 → Z

6

to have rank 5, with χ+ dual.
This leaves undetermined the rank of χ−

67. To determine that, we observe that the collinear
manifoldC0 is repelling inP , sowe can considerC0∪�P to be a repeller in S5. The dual attrac-
tor has the homology ofP\C0 = S5\ (�P ∪ C0). The homology groups of (P\C0) /SO2 have
been calculated in [8] as (Z,Z11, 0 . . .). If we view the non-collinear central configurations

as a Morse decomposition of the attractor, we have a chain complex Z
8 χ−

67−→ Z
24

χ−
56−→ Z

6

whose homology groups generate H∗(PR\C0R). This implies Z8 χ−
67−→ Z

24 is injective.
From this, we can compute all of the values of the pairs H∗(P(di , d j ), ∂P(di )) and

H∗(P(di , d j ), ∂P(d j ))
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Lemma 3.1.1 For regular values di < d j , we have the following homology groups

P(d) PR(d)

k 0 1 2 3 0 1 2
(P(d5, d6), ∂P(d5)) Z

6
Z
6 0 0 Z

6 0 0
(P(d6, d7), ∂P(d6)) 0 Z

24
Z
24 0 0 Z

24 0
(P(d7, d8), ∂P(d7)) 0 0 Z

8
Z
8 0 0 Z

8

(P(d8, d9), ∂P(d8)) 0 0 Z
12

Z
12 0 0 Z

12

(P(d5, d7), ∂P(d5)) Z Z
20

Z
19 0 Z Z

19 0
(P(d6, d8), ∂P(d6)) 0 Z

16
Z
16 0 0 Z

16 0
(P(d7, d9), ∂P(d7)) 0 0 Z

20
Z
20 0 0 Z

20

(P(d5, d8), ∂P(d5)) Z Z
12

Z
11 0 Z Z

11 0
(P(d6, d9), ∂P(d6)) 0 Z

10
Z
16

Z
6 0 Z

10
Z
6

(P(d5, d9), ∂P(d5)) Z Z
6
Z
11

Z
6

Z Z
5

Z
6

and

P PR

k 0 1 2 3 4 5 0 1 2 3 4
(P(d5, d6), ∂P(d6)) 0 0 0 0 Z

6
Z
6 0 0 0 0 Z

6

(P(d6, d7), ∂P(d7)) 0 0 0 Z
24

Z
24 0 0 0 0 Z

24 0
(P(d7, d8), ∂P(d8)) 0 0 Z

8
Z
8 0 0 0 0 Z

8 0 0
(P(d8, d9), ∂P(d9)) 0 0 Z

12
Z
12 0 0 0 0 Z

12 0 0
(P(d5, d7), ∂P(d7)) 0 0 0 Z

19
Z
20

Z 0 0 0 Z
19

Z

(P(d6, d8), ∂P(d8)) 0 0 0 Z
16

Z
16 0 0 0 0 Z

16 0
(P(d7, d9), ∂P(d9)) 0 0 Z

20
Z
20 0 0 0 0 Z

20 0 0
(P(d5, d8), ∂P(d8)) 0 0 0 Z

11
Z
12

Z 0 0 0 Z
11

Z

(P(d6, d9), ∂P(d9)) 0 0 Z
6
Z
16

Z
10 0 0 0 Z

6
Z
10 0

(P(d5, d9), ∂P(d9)) 0 0 Z
6
Z
11

Z
6

Z 0 0 Z
6

Z
5

Z

Proof The values for the reduced spaces follow immediately from χ±. The values for
the total spaces follow from the Gysin sequences, except for (P(d5, d9), ∂P(d5)) and
(P(d5, d9), ∂P(d9)). There, (P(d5, d9), ∂P(d5)) � (P\�P ,∅) and (P(d5, d9), ∂P(d9)) �
(P,�P ), whose values are known. 
�

3.2 Planar Integral Manifolds

As noted in Sect. 2, the energy levels and Morse indices of the isosceles configurations are
incorrectly stated in [7]. The homology calculations that follow are therefore incorrect as
well. Before considering the bifurcations of the spatial manifolds, we correct the calculation
of the planar manifolds. To do so, we make use of the formulae from [8], restated in the
notation of the current work:

H∗(m(d)) = H∗(mR(d)) ⊗ H∗(S1)
Hk(mR(d)) = Hk(PR(d)) ⊕ Hk−5(PR(d), ∂PR(d))

Inserting the values fromLemma 3.1.1, we obtain immediately the homology of the planar
integral manifolds:
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Theorem 3.2.1 planar integralmanifold homology For four equalmasses, the planar integral
manifolds m(h, c) and reduced manifolds mR(h, c) undergo bifurcation at values hi for
i = 0, 5, 6, 7, 8, corresponding to zero energy and energy levels of the planar relative
equilibria. At regular values, the homology of the planar integral manifolds is

Region 0 1 2 3 4 5 6 7 8
0 Z Z

6
Z
11

Z
6 0 0 0 0 0

I − V Z Z
6
Z
11

Z
6 0 Z Z

6
Z
11

Z
6

V I Z Z
6
Z
11

Z
12

Z
6 0 Z

10
Z
16

Z
6

V I I Z Z
6
Z
30

Z
26

Z 0 0 Z
20

Z
20

V I I I Z Z
6
Z
22

Z
18

Z 0 0 Z
12

Z
12

I X Z Z
12

Z
22

Z
12

Z 0 0 0 0

while the homology of the reduced planar manifolds is

Region 0 1 2 3 4 5 6 7
0 Z Z

5
Z
6 0 0 0 0 0

I − V Z Z
5

Z
6 0 0 Z Z

5
Z
6

V I Z Z
5

Z
6
Z
6 0 0 Z

10
Z
6

V I I Z Z
5
Z
25

Z 0 0 0 Z
20

V I I I Z Z
5
Z
17

Z 0 0 0 Z
12

I X Z Z
11

Z
11

Z 0 0 0 0

Proof The values for Hk−5(PR(d), ∂PR(d)) are read off directly from Lemma 3.1.1. To
obtain the values for Hk(PR(di )), we consider the exact sequences of pairs (PR(di ),PR(d9)).
The homology groups of PR(d9) are known to be (Z,Z11,Z11,Z, 0, . . .) (see [8, Sect.
3]), and by excision, H∗(PR(di ),PR(d9)) ∼= H∗(PR(di , d9), ∂PR(d9)). It suffices to deter-
mine the boundary operator Hk+1(PR(di ),PR(d9)) → Hk(PR(d9)). To do so, we first
consider the exact sequence of the pair (P(d5, d9), ∂P(d9)). Inserting the known val-
ues for H∗(P(d9)), H∗(P(d5)) and H∗(P(d9),P(d5)), we see that the boundary operator
Hk+1(P(d9),P(d5)) → Hk(P(d5)) is injective.

In the exact sequence of the pair (PR(di ),PR(d9)), the boundary operator ∂i9 :
Hk(PR(di ),PR(d9)) → Hk−1(PR(d9)) factors as Hk(PR(di ),PR(d9))

ιi5→ Hk(PR(d5),

PR(d9))
∂59→ Hk−1(PR(d9)). As ∂59 is injective, the rank of ∂i9 is that of ιi5. This can be

computed from the exact sequence of the triple (P(d5, d9),P(di , d9), ∂P(d9)). Inserting the
known values into the exact sequences yields the following information

k 0 1 2 3 4
ι69 0 0 6 5 0
ι79 0 0 6 0 0
ι89 0 0 6 0 0

rk(ιi5)

The values for H∗(P(di )) for i = 6, 7, 8 follow from this. 
�

4 Topological Descriptions

In this section, we work through some of the topological preliminaries needed to set the
stage for the homological calculations. A key step in identifying the changes in topology at
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the relative equilibria will be to ground the computations of H∗(B(d)) by first identifying
the homology groups at the two ends d5 < δ5 and δ8 < d9. At the lower end, H∗(B(d5))
has been established (see [10, Sect. 4.5]). At the upper end, δ8 < d9 < ∞, we produce
a topological description of B(d9), then translate it into a homological description. The
identification of H∗(B(d9)) and H∗(BR(d9)) is the most intricate calculation in this work.
This is in contrast with the planar case, where the corresponding set is a tubular neighborhood
of the planar collision set, and as such is relatively simple to understand. In the spatial case,
the interplay of U 2(q) and Y (q) near collinear collision adds a layer of complexity. We
know from Sect. 2.4 that there are no bifurcations of ∂B(d) for d > δ8, which will facilitate
approximating B(d9) � ∂B(d9) and computing its homology. This analysis will pave the
way for the results that follow. In addition, in Sect. 4.2, the changes in the structure of D on the
boundary B0 are recorded. Completing the topological preliminaries, the relations between
the topology of the planar configuration sets P(d) and corresponding spatial configuration
sets B(d) are established in Sect. 4.3.1.

4.1 The Topology ofB(d9)

In this section, we develop the topological description of B(d9)). We do so by separately
characterizing the behavior near collinear and away from collinear. To do so, note that since
D(q) = U 2(q)Y−1(q) ≤ U 2(q), we have B(d9) ⊂ U−1(

√
d9). In particular, for d9 � δ8,

the setB(d9) lies in an ε-collar of �.
For the four-body problem, the binary collision sets �i j intersect only in �C . That is,

�\�C = ⊔
i �= j �i j\�i jC . While the collision sets �i j are disjoint in S8\C, the ε-collars

around them intersect near C. Sandwiched between the two, we manage the description
of B(d9) by first taking a set of disjoint collars Gi j around the sets �i j\�i jC . Let G =⊔

i �= j Gi j .Wenext identify a set F near collinear that containsB(d9)\G, so that if J = F∩G,
then we have a decompositionB(d9) = F ∪J G.

We make use of a construction deployed in [9, 10]. For q0 ∈ CL , define

T 0(q0, τ ) = �−1
({

(
√
1 − t2q0, tq2, tq3) | q2 · q0 = q3 · q0 = 0, q22 + q23 = 1, t ≤ τ

})
,

X 0(q0) = {(q0, q2, q3, t = 0) ∈ T 0(q0)} and for rotation R(φ) by φ around the y-axis,
define

T (q0, τ ) =
{
R(φ)q(t) | −π

2
≤ φ ≤ π

2
, q(t) ∈ T 0(q0, τ )

}
.

and

T 1(q0, τ ) =
{
R(

π

2
)q(t) | q(t) ∈ T 0(q0, τ )

}
.

For any A ⊆ CL , let T (A, τ ) and T i (A, τ ) denote the obvious unions over q0 ∈ A of
the appropriate sets. Then rotation around the z-axis of T (CL , τ ) forms neighborhood of a
blow-up at C. Two useful observations about the behavior of D in this framework are

• D(R(φ)q) is a decreasing function of |φ|.
• For q(t) = (tq1, tq2,

√
1 − t2q3) ∈ T 1(C, τ ), D(q(t)) = ( tcU (q(t))

)2

So, if we define Iτ = T 1(CL , (0, τ ]) ∩ D−1([d9,∞)), then

123



Journal of Dynamics and Differential Equations

Iτ = {q = (tq1, tq2,
√
1 − t2q3)|q1 · q3 = q2 · q3 = 0, q21 + q22 = 1,

U (q) ≥
√
d9
t

, 0 < t ≤ τ }

Given ε > 0, there is a sufficiently large d9 such that {U (
q
t ) ≥ √

d9} ⊂ ⋃
i �= j {ri j < ε}, or

{U (
q
t ) ≥ √

d9} ⊂⋃i �= j {
∣∣∣ qi−q j

t

∣∣∣ < ε}, or

Iτ ⊂
⋃

i �= j

{q = (tq1, tq2,
√
1 − t2q3)|q1 · q3 = q2 · q3 = 0, q21 + q22 = 1,

ri j < εt, 0 < t ≤ τ }
The point is, these sets are mutually disjoint, with each contained in a collar of �i j .

Next, for τ0 sufficiently small, there is aφ0 such that for all |φ| > |φ0|, the sets R(φ− π
2 )Ii j

remain disjoint. Further, for |φ2| < |φ1| ≤ |φ0|, there is containment

R(φ2 − φ1)
(
B(d9) ∩ R(φ1)T 0(CL , τ0)

) ⊂ B(d9) ∩ R(φ2)T 0(CL , τ0)

so B(d9) ∩ T (CL , τ0) admits a retraction onto B(d9) ∩ T 0(CL , τ0).

It suffices then to identify a neighborhood ofB(d9) ∩ T 0(CL , τ0). We do so as follows:

• Let K be the intersection of X 0(�C ) with cl(�\�C )

• Let J be a neighborhood around K in X 0(C0) (i.e. the rotation of X 0(CL) around the
z-axis).

• Let N be a neighborhood of X 0(�C ) in X 0(C0) that contains cl(J ) in its interior.
This is initially described as the rotation of �C ∪U−1([√d9,∞))

• Let F be the complement of K in N .
• Let G be the closure in B of a collar in S0 around � \ �C , chosen so that G ∩ S0 is the

disjoint union of collars around the sets �i j \ �i jC .

Properly speaking, to form a collar around B0(d9), we should consider (L \ K ) × [0, ε].
However, the [0, ε] factor does not change the homotopy type, and so can be eliminated.

Lemma 4.1.1 For d9 > δ8,B(d9) � ∂B(d9). There is a τ0 > 0 such thatB(d9) is homotopic
to (F × [0, τ0]) ∪J G, with

G ∼= ⊔
6 SO3 × D̄2 × (D3 \ {0})

J ∼= ⊔
6 T

3 × (D3 \ {0})
K ∼= (⊔

6 S
1 × S1 × S1

)
/Z2 ∼= ⊔

6 T
3

N ∼= (�L × S1 × S3)/Z2 ∼= (
∨

12 S
1) × S1 × S3

Proof By the discussion obove, we may approximate B(d9) by a collar around the com-
ponents of � \ �C together with a neighborhood in B of B0(d9). Further, as D(q) is a
decreasing function of q3 · q0 on the boundary B0, we may further simplify by focusing on
the behavior near X 0(CL) in T 0(CL).

We have noted that the non-collinear binary collision sets�i j \�i jC are disjoint and each
homeomorphic to D2 × SO3. While in the configuration space S8, their closures intersect,
the analysis in [9, 10] showed that the closure of each�i j \�i jC inX 0(�C ) formed a 2-torus
over the circle �CL , and that these tori do not intersect each other. When rotated around the
z-axis, these sweep out six disjoint 3-tori.

Turning next to the behavior near collinear, the behavior of D onX 0(CL) iswell-known: D
is undefined on�L × S3 and D(q) ≥ d9 onU−1(

√
d9)× S3, withU−1(

√
d9) a disjoint set of
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twenty-four annuli surrounding�L . Let NL denote�L × S3 together with the neighborhood
surrounding it. Note that the annuli all retract onto �L , so NL � �L × S3.

Moreover, as there are no critical values of U above
√

δ8 on B0, level sets of D = U 2

are transverse to B0. So, for τ0 sufficiently small, on T 0(CL , τ0)\X 0(CL), D−1([d9,∞]) ∼=
N × (0, τ0], with D−1(∞) ∼=⊔6 T

3.
These sets provide a description of the intersection with T 0(CL), that is, near collinear

oriented along the x-axis. The set N is formed by rotation of NL around the z-axis. Taking
into account the antipodal symmetry, we see N = (N × S1)/Z2 and NR = NL/Z2. 
�
Lemma 4.1.2 For δ8 < d9, we have homology groups

B BR

0 1 2 3 4 5 6 0 1 2 3 4 5
B(d9) Z Z

6
Z
17

Z
7 ⊕ Z

5
2 Z

13
Z
18 0 Z Z

6
Z
12

Z
1
Z
18 0

(B(d9), ∂B(d9)) 0 0 0 0 0 0 0 0 0 0 0 0 0

The maps ζ9∗ : H∗(B0(d9)) → H∗(B(d9)) and ιR0∗ : H∗(BR0(d9)) → H∗(BR(d9))
behave as follows:

dim ker(ζ9∗) coker(ζ9∗) ker(ζR9∗) coker(ζR9∗)
5 0 Z

6 0 0
4 Z

11 0 0 Z
6

3 Z
11

Z
6

Z
11 0

2 Z
6

Z
11 0 Z

12

1 Z
18 0 Z

6 0
0 Z

11 0 Z
11 0

Proof This description ofB(d9) � F∪J G lends itself naturally to computing the homology
groups of B(d9) via a Mayer–Vietoris decomposition. As the homology groups of G and
J are immediate from the topological descriptions, our task is to identify H∗(F) and the
inclusion maps ιJ F : H∗(J ) → H∗(F) and ιG : H∗(J ) → H∗(G). The set F = N \ K
is presented as a complement, which is not a construction that lends itself to homological
calculation. We therefore employ yet another Mayer–Vietoris decomposition of F . In order
to also compute the inclusion map ιF , the decomposition of F is intersected with J , and the
maps ιJ Fi on the various components are identified and collated. Once B(d9) is recovered,
the last step will be to identify the map ι0∗ : H∗(B0(d9)) → H∗(B(d9)) by factoring it
through H∗(F).

Beginning with the most straightforward steps, we have:

B BR

0 1 2 3 4 5 6 0 1 2 3 4 5
J Z

6
Z
18

Z
24

Z
24

Z
18

Z
6 0 Z

6
Z
12

Z
12

Z
12

Z
6 0

ιG∗ ↓ ↓∼= � � �

0 ↓∼= ↓ rk 6 ↓ 0
G Z

6
Z
6
2 Z

6
Z
6 ⊕ Z

6
2 0 Z

6 0 Z
6 0 Z

12 0 Z
6 0

The values for H∗(G) and H∗(GR), H∗(J ) and H∗(JR) are immediate from the topological
descriptions. For each of the six components, the product structures for JR → GR are
S1×S1×S2 → S2×D2×S2, which implies H2(JR) → H2(GR) has rank 6 and H4(JR) →
H4(GR) is trivial. To identify H∗(J ) → H∗(G), note that there are two commutative diagram
of Gysin sequences: one with fiber S2, the other with fiber S1. Comparing values between
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the two sequences shows that Hk(J ) → Hk(G) is surjective for k ≤ 2, maps onto the torsion
component of H3(J ) and is trivial for k > 3.

We next consider the groups H∗(F) and H∗(FR) and maps ιF∗ : H∗(J ) → H∗(F) and
ιFR∗ : H∗(JR) → H∗(FR). As a starting point, we know that F = N\K is the rotation
around the z-axis of (NL\KL) × [0, τ0], where

KL = K ∩ X 0(CL) ∩ B0(d9) ∼= ⊔
6 T

2

NL = N ∩ X 0(CL) ∩ B0(d9) ∼= �L (d9) × S3

are double-covers of DR and NR respectively.
For the purposes of computing the homology groups, without loss we suppress the [0, τ0]

factor and view N , K , J and F as subsets of B0.
The set N is an S3 bundle over �C . More precisely, N � (�L × S1 × S3)/Z2, where Z2

acts antipodally on all three factors. Similar to the situation above for J → G, the inclusion
K → N may be factored either as an S1-bundle or as an S3 bundle. The set �̃L = �L/Z2 was
described in [9], and shown to be a wedge of twelve circles. The spaces and corresponding
reduced spaces have the following structures:

K ∼= (⊔
6 S

1 × S1 × S1
)
/Z2 ∼= ⊔

6 T
3

KR ∼= (⊔
6 S

1 × S1
)
/Z2 ∼= ⊔

6 T
2

N ∼= (�L × S1 × S3)/Z2 ∼= (
∨

12 S
1) × S1 × S3

NR ∼= (�L × S3)/Z2 ∼= (
∨

12 S
1) × S3

Next, consider the commutative diagram of pairs (J ∪ K , K ) → (N , F). By excision,
H∗(N , F) ∼= H∗(J ∪ K , J ) ∼= ⊕

6 H∗(T 3) ⊗ H∗(D3, S2), while H∗(J ∪ K ) ∼= H∗(K ) ∼=⊕
6 H∗(T 3).

. . . Hk(J ) Hk(J ∪ D) Hk(J ∪ K , J ) . . .

. . . Hk(F) Hk(N ) Hk(N , F) . . .

∼= (4.1.1)

Note that H∗(J ) → H∗(J ∪ K ) is surjective, so H∗(J ∪ K ) → H∗(J ∪ K , J ) is trivial,
which means that the composition H∗(J ∪ K ) → H∗(N ) → H∗(N , F) is trivial. That is,
the image of H∗(J ∪ K ) → H∗(N ) is contained in the image of H∗(F) → H∗(N ).

Viewing the map K → N as an inclusion of products
⊔

12 S
1×S1×S1 → �̃L ×S1×S3,

the map on the first factor is injective, on the middle factor, it is an isomorphism, on the last
factor it is trivial. We therefore have the following maps:

k 0 1 2 3 4 5
Hk(K ) Hk(S1) ⊗ Hk(S1) ⊗ Hk(S1) Z

6
Z
6 ⊕ Z

6 ⊕ Z
6
Z
6 ⊕ Z

6 ⊕ Z
6
Z
6 0 0

↓ ↓ � � ⊕ � ⊕ 0

� ⊕ 0 ⊕ 0 0
Hk(N ) Hk(�̃L) ⊗ Hk(S1) ⊗ Hk(S3) Z Z

12 ⊕ Z ⊕ 0 Z
12 ⊕ 0 ⊕ 0 Z Z

13
Z
12

While N and K have relatively simply topological descriptions, the complement F is
not as readily described. We rely upon a further Mayer–Vietoris decomposition to compute
H∗(FR), which can then be leveraged to compute H∗(F). If we view �CR as a graph with
18 edges and 7 vertices (4 with valence 6 corresponding to triple collision; 3 with valence 4
corresponding to double binary collision), then we can take FR1 to be the preimage in FR of
the open edges, and FR2 to be the preimage in FR of a neighborhood around the vertices.
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The description of FR1 is fairly straightforward. Over each of the eighteen intervals of
�o

i jC , we have a neighborhood I × I × S3 in X 0(CL), with the limit set

cl(�i j \ �i jC ) ∼= I × {�0} × S1

deleted. Over neighborhoods of the intersections �i j,kl and �i jk , we again have neighbor-
hoods D2 × S3, this time with either two (in the case of �i j,kl ) or three (in the case of �i jk)
non-intersecting limit sets of the form I × {�0} × S1 deleted. That is,

FR1 ∼= ⊔
18(D

2 × S3) \ (I × {0} × S1)
FR2 ∼= (⊔

3 D
2 × S3 \ ((Ii j � I jk � Iik) × S1)

) � (⊔4 D
2 × S3 \ ((Ii j � Ikl) × S1)

)

FR0 ∼= ⊔
18

(
∂I × I × S3

) \ (∂I × {0} × S1
)

where the lines Ii j etc. represent the directions along the collision sets.
Each component of FR1 has the homotopy type of S3×[−1, 1]with S1×{�0} deleted,which

is in turn homotopic to S3 ∪S1 S
3, which has the homology of S3 ∨ S2 ∨ S3. Components of

FR0 have the same structure. Components of F2 corresponding to binary double (resp. triple)
collision are homeomorphic to S3 × D2 with two (resp. three) non-intersecting copies of
S1 ×[−1, 1] deleted. These yield three components with homology groups (Z, 0,Z2,Z3, 0)
and four components with homology groups (Z, 0,Z3,Z4, 0)

The inclusion-induced maps ιR1∗ : Hk(FR0) → Hk(FR1) and ιR2∗ : Hk(FR0) →
⊕Hk(FR2) devolve to careful tracking of which component of FR1 and FR2 each sphere
generating Hk(FR0) maps to. The resulting matrices of 0’s and 1’s has the kernels and cok-
ernels indicated,

k ker(ιR1∗ ⊕ ιR2∗) Hk(FR0) Hk(FR1) ⊕ Hk(FR2) coker(ιR1∗ ⊕ ιR2∗)
3 Z

12
Z
72

Z
36 ⊕ Z

25
Z ⊕ Z

5
2

2 Z
6

Z
36

Z
18 ⊕ Z

18
Z
6

1 0 0 0 0
0 Z

12
Z
36

Z
18 ⊕ Z

7
Z

From this, we see that H∗(FR) ∼= (Z,Z12,Z6,Z7 ⊕ Z
5
2,Z

12, 0, . . .). To complete the
computation of H∗(BR(d9)), we next identify the map H∗(JR) → H∗(FR). The diagram
4.1.1 supplies almost all of the information needed to do so. The one ambiguity is the
intersection of the image of i J FR : H3(JR) → H3(FR) with the torsion subgroup Z

5
2 of

H3(FR).
To understand that intersection, intersect JR with the Mayer–Vietoris decomposition of

FR :

JR1 ∼= ⊔
18 I × S1 × S2 � ⊔

18 S
1 × S2

JR2 ∼= ⊔
4

(
D2 × (Ii j � Ikl) × S1

)� � ⊔
18 S

1 × S2⊔
3

(
D2 × (Ii j � I jk � Iik) × S1

)

JR0 ∼= ⊔
18 S

0 × S1 × S2 � ⊔
36 S

1 × S2

There is commutative diagram

H3(JR0) H3(JR1) ⊕ H3(JR2) H3(JR)

H3(FR0) H3(FR1) ⊕ H3(FR2) H3(FR)

ιJ0

i J

ιJ F1⊕ιJ F2

jJ

ιJ F

iF jF
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with H3(FR1) ⊕ H3(FR2) → H3(FR) mapping onto the torsion subgroup of H3(FR). The
maps H3(JRi ) → H3(FRi ) are determined by the exact sequences of the pairs (FRi , JRi ).
The homology groups of the pairs are obtained by use of excision to fill in the deleted tubes
around K , yielding the following:

H∗(FR1, JR1) ∼= ⊕
18 H∗(S3 × D2, S1 × D4)

H∗(FR2, JR12) ∼= (⊕
4 H∗(S3 × D2, S1 × D2 × (Ii j � Ikl))

)

⊕ (⊕3 H∗(S3 × D2, S1 × D2 × (Ii j � I jk � Iik))
)

H∗(FR0, JR0) ∼= ⊕
36 H∗(S3 × I, S1 × D3)

This shows that, for i = 0, 1, 2, Hk(JRi ) → Hk(FRi ) is injective with torsion-free
cokernel for k = 3, an isomorphism for k = 2 and surjective for k = 0. Inserting the known
values yields

Z
36

Z
18 ⊕ Z

18
Z
6

Z
72

Z
36 ⊕ Z

25
Z ⊕ Z

5
2

Since

im(ιJ F ◦ jJ ) = im( jF ◦ (ιJ F1 ⊕ ιJ F2) = jF (im(ιJ F1 ⊕ ιJ F2))∼= im(ιJ F1 ⊕ ιJ F2)/ (im(ιJ F1 ⊕ ιJ F2) ∩ im(iF ))
∼= 〈im(ιJ F1 ⊕ ιJ F2), im(iF )〉/im(iF )

It suffices to compute the difference between im(ιJ F1 ⊕ ιJ F2), im(iF )〉 and im(iF ). Direct
computation of shows that 〈im(ιJ F1⊕ιJ F2), im(iF )〉/im(iF ) ∼= Z

5
2. Combining that with the

information derived from diagram 4.1.1’s corresponding reduced-space diagram, we obtain
the following for ιJ F : Hk(JR) → Hk(FR):

k 0 1 2 3 4 5
Hk(JR) Z

6
Z
12

Z
12

Z
12

Z
6 0

ιF∗

� ↓ rk 6 ↓ rk 6 ↓ ιF3∗

�

0
Hk(FR) Z Z

12
Z
6

Z
7 ⊕ Z

5
2 Z

12 0

with coker(ιF3∗) ∼= Z.
Note that the only dimension inwhich both ιF∗ : Hk(JR) → Hk(FR) and ιG∗ : Hk(JR) →

Hk(GR) are non-trivial is k = 2. The map ιG is non-trivial only on the factor H2(S2), while
inspection of the commutative diagram 4.1.1 shows that H2(J ) → H2(F) is trivial on that
factor. Thus rk(ιF∗, ιG∗) = rk(ιF∗) + rk(ιG∗). The data for the Mayer–Vietoris diagram of
BR(d9) � FR ∪JR GR is therefore

ker(ιFR∗, ιGR∗) Hk(JR) rk(iFR∗, iGR∗) H∗(FR) ⊕ H∗(GR) coker(ιFR∗, ιGR∗)
6 0 0 0 0 0
5 0 0 0 0 0
4 0 Z

6 6 Z
18

Z
12

3 Z
6

Z
12 6 Z

7 ⊕ Z
5
2 Z

2 0 Z
12 12 Z

18
Z
6

1 Z
6

Z
12 6 Z

12
Z
6

0 0 Z
6 6 Z

7
Z

This yields the values for H∗(BR(d9)).

123



Journal of Dynamics and Differential Equations

To compute H∗(B(d9)), we follow a similar path, computing H∗(F) and the map
H∗(J ) → H∗(F). For the first of these, we exploit the observation that F can be fibered
either as S1 → F → FR or as FC → F → RP1, with FC a double-cover of FR . Both
of these are restrictions of the corresponding fibrations of N . In particular, as the fibration
S1 → N → NR is orientable, the pullback (i.e. restriction) S1 → F → FR is as well. There
is a Gysin braid diagram for the exact sequence of the pair (N , F) (see [10] for discussion
of braid diagrams).

. . . Hk−1(FR) Hk−1(NR) Hk−1(NR, FR) . . .

. . . Hk(F) Hk(N ) Hk(N , F) . . .

. . . Hk(FR) Hk(NR) Hk(NR, FR) . . .

Inserting the known values into the diagram shows that the Gysin sequence for F has
trivial boundary operators, so there are short exact sequences 0 → Hk−1(FR) → Hk(F) →
Hk(FR) → 0. Further, in order for the spectral sequence of the fibration FC → F → RP1

to converge to the same values for H∗(F), that spectral sequence has E2 terms that yield
0 → Hk(FR) → Hk(F) → Hk−1(FR) → 0. That is, the short exact sequences are split
exact, and

H∗(F) ∼= H∗(FR) ⊗ H∗(S1).

As the same is true for H∗(J ), inserting the known values into the commutative diagram for
(J ∪ D, J ) → (N , F), the values for the maps Hk(J ) → Hk(F) follow immediately. The
values are

k 0 1 2 3 4 5 6
Hk(J ) Z

6
Z
18

Z
24

Z
24

Z
18

Z
6 0

iF∗

� ↓ rk 7 ↓ rk 12 ↓ ιF3 ↓ ιF4 ↓ rk 6 0
Hk(F) Z Z

13
Z
18

Z
13 ⊕ Z

5
2 Z

19 ⊕ Z
5
2 Z

12 0

where ιF3 : H3(J ) → H3(F) has cokernel Z and ιF4 : H4(J ) → H4(F) has cokernel Z7.
To compute H∗(B(d9)) from the Gysin braid of the Mayer–Vietoris sequence, first note

that the diagram immediately determines H0(B(d9)) and H5(B(d9)). To determine the other
dimensions, we examine on the sub-diagrams

Hk−1(JR) Hk(J ) Hk(JR)

Hk−1(FR) ⊕ H2(GR) Hk(F) ⊕ Hk(G) Hk(FR) ⊕ Hk(GR)

ιF⊕ιG

Inserting known values into this diagram shows that, for k = 4, ιF ⊕ ιG has kernel Z6 and
cokernel Z7, while for k = 2, the kernel and cokernel are both Z6, while for k = 1, ιF ⊕ ιG
has Z11 and cokernel Z6.
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The determination of ιF ⊕ ιG for k = 3 is more subtle. For that, we turn to the following
diagram.

H4(JR) H4(FR) ⊕ H4(GR) H4(BR(d9)) H3(JR)

H2(JR) H2(FR) ⊕ H2(GR) H2(BR(d9)) H1(JR)

H3(J ) H3(F) ⊕ H3(G) H3(B(d9)) H2(J )

H3(JR) H3(FR) ⊕ H3(GR) H3(BR(d9)) H2(JR)

∂J ∂F⊕∂G ∂B

rk 6

0
6⊕6

Inserting the known values yields

Z
6

Z
12 ⊕ Z

6
Z
18

Z
12

Z
12

Z
6 ⊕ Z

12
Z
12

Z
12

Z
24

Z
13 ⊕ Z

5
2 ⊕ Z

6 ⊕ Z
6
2 H3(B(d9)) Z

24

Z
12

Z
7 ⊕ Z

5 ⊕ 0 Z Z
12

0 0⊕∂G

6⊕6

∂B

rk 6

0

6⊕6 rk 6 rk 6

rk 6

ιFR⊕0 0

Since ∂G has cokernel Z6 ⊕ Z
6
2, the image of ∂G is 2Z6. The diagram then implies that ∂B

likewise has image 2Z6, fromwhichwe conclude H3(B(d9)) ∼= Z
7⊕Z

6
2. This in turn implies

that that cokernel of ιF ⊕ ιG is Z ⊕ Z
6
2 and that the kernel is Z6.

Collating all of the information, the Mayer–Vietoris data for H∗(B(d9)) is

ker(ιF∗, ιG∗) Hk(J ) rk(ιF∗, ιG∗) H∗(F) ⊕ H∗(G) coker(ιF∗, ιG∗)
6 0 0 0 0 0
5 0 Z

6 6 Z
18

Z
12

4 Z
6

Z
18 12 Z

19 ⊕ Z
5
2 Z

7

3 Z
6

Z
24 18 Z

19 ⊕ Z
11
2 Z ⊕ Z

6
2

2 Z
6

Z
24 18 Z

24
Z
6

1 Z
11

Z
18 7 Z

13 ⊕ Z
6
2 Z

6

0 0 Z
6 6 Z

7
Z

This yields the values for H∗(B(d9)).
To complete the proof of Lemma 4.1.2, observe that BR0(d9) ⊂ FR , so we can factor

ι0∗ : H∗(BR0(d9)) → H∗(FR) → H∗(BR(d9)) as

H∗(B0(d9)) → H∗(F) → H∗(B(d9))

We can obtain the maps H∗(F) → H∗(B(d9)) from the exact sequence of the pair
(B(d9), F), making use of the excisive isomorphism H∗(G, J ) → H∗(B(d9), F). This
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yields

B BR

0 1 2 3 4 5 6 0 1 2 3 4 5
F Z Z

13
Z
18

Z
13

Z
19 ⊕ Z

5
2 Z

12 0 Z Z
12

Z
6
Z
7 ⊕ Z

5
Z
12 0

ιF∗ ↓ ↓∼= � ↓ rk 6 ↓ rk 1 ↓ rk 7 ↓ rk 6 ↓∼= � ↓ 0 ↓ rk 1 ↓ rk 6
B(d9) Z Z

6
Z
17

Z
7

Z
13

Z
18 0 Z Z

6
Z
12

Z Z
18 0

It remains to identify H∗(B0(d9)) → H∗(F). We follow the same approach as for
H∗(J ) → H∗(F), appying the Mayer–Vietoris decomposition of FR toB0(d9), then lifting
from the reduced spaces to the total spaces. Let KRi = BR0(d9) ∩ FRi . Then

KR1 ∼= ⊔
18 I × (I \ {0}) × S3 � ⊔

36 S
3

KR2 ∼= (⊔
3(D

2 \ {�1 ∪ �2}) × S3
) � ⊔

36 S
3

� (⊔4(D
2 \ {�1 ∪ �2 ∪ �3}) × S3

)

KR0 ∼= ⊔
18 S

0 × (I \ {0}) × S3 � ⊔
72 S

3

Consider the commutative diagram

Hk+1(BR0(d9)) Hk(KR0) Hk(KR1) ⊕ Hk(KR2) Hk(KR)

Hk+1(FR) Hk(FR0) Hk(FR1) ⊕ Hk(FR2) Hk(FR)

ιK∗ ιK0∗

iK∗

ιK1∗⊕ιK2∗

jK∗

ιK∗
iF∗ jF∗

For both k = 0 and k = 3, the inclusion maps ιK0∗ and ιK1∗ ⊕ ιK2∗ is surjective, with ιK0∗
an isomorphism for k = 3. Since ιK1∗ ⊕ ιK2∗ is surjective, it follows that ιK∗ maps onto the
the image of H3(FR), namely Z⊕ Z

5
2. On the other hand, the restriction of ιK0∗ to ker(iK∗)

is an isomorphism onto ker(iF∗). The same arguments apply at k = 0.
As ιK∗ is surjective for k = 0, 1, 4, it is immediate that Hk(BR0(d9)) → Hk(BR(d9))

has the same image as Hk(FR) → Hk(BR(d9)). For k = 3, im(iK∗ = im(i J∗) maps onto
H3(BR(d9)), so H3(BR0(d9)) → H3(BR(d9)) is surjective.

The values for ι0∗ : H∗(B0(d9)) → H∗(B(d9)) follow in turn from the commutative
diagram of Gysin sequences. While most of the calculations are straightforward, the iden-
tification of ι0∗ : H3(B0(d9)) → H3(B(d9)) merits comment. The relevant portion of the
commutative Gysin sequence diagram is

. . . H2(BR0(d9)) H3(B0(d9)) H3(BR0(d9)) . . .

. . . H2(FR) H3(F) H3(FR) . . .

. . . H2(BR(d9)) H3(B(d9)) H3(BR(d9)) . . .

αR∗ α∗ αR∗

jR∗ j∗ jR∗
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Inserting the known values, this becomes

0 Z
12

Z
12

Z
6

Z
13 ⊕ Z

5
2 Z

7 ⊕ Z
5
2

Z
12

Z
7 ⊕ Z

5
2 Z

∼=

rk1

rk6

The right hand column shows that ι∗ has rank at least one, while the fact that it factors through
j∗ which has rank 1 shows that ι∗ has rank one. 
�

4.2 Behavior atB0

We briefly review the structure of the collinear blow-up B and the behavior of D at collinear.
On B0 itself, we need only consider two levels: above and below δ8, the level of the collinear
central configurations. The sets B0(d), ∂B0(d) above and below δ8 are

B0(d) ∂B0(d)

d < δ8 S3 × S1 × D2 × (−1, 1) S3 × S1 × D2 × S0

d9 > δ8 S3 × S1 × S1 × [0, 1) × (−1, 1) S3 × S1 × S1 × {0} × (−1, 1)

The SO2 symmetry is reflected in each of these as an S1 factor, so the reduced spaces simply
remove that factor.

BR0(d) ∂BR0(d)

d < δ8 S3 × D2 × (−1, 1) S3 × D2 × S0

d9 > δ8 S3 × S1 × [0, 1) × (−1, 1) S3 × S1 × {0} × (−1, 1)

In the 7-manifold SR , each point in the 2-manifold CR0 has been blown up to S3×(−1, 1).
The normal to a point inB0 is then a ray. Bifurcations occur at the equator S3×{0} for collinear
central configurations qc. At those points, the normal lies in the invariant plane, where Y = 1
and D = U 2. Further, we know that, at collinear central configurations, U is decreasing in
the normal direction [14].

So, if we extend from BR0(d9)\BR0(d8) to a neighborhood of BR0(qc) in SR0, that
neighborhood has the form S3×D2×(−1, 1)×[0, 1), whichwewill rewrite as S3×D2×H2,
with half-disk H2 ∼= {(x, y)|x2 + y2 < 1, x ≥ 0}. The function D is constant on S3,
increasing radially on D2, decreasing radially on H2. The intersection of the boundary of
this set with A(d8) is therefore S3 × D2 × {(x, y) ∈ H2|x2 + y2 ≥ 1

2 }. That is,

H∗(BR(d8, d9), ∂BR(d8)) ∼=
⊕

12

H∗(S3 × D2 × H2, S3 × d2 × ∂H+) = 0.

4.3 From Planar Configurations to Spatial Configurations

The key to linking the topology of the spatial super-level setsB(d) and the planar super-level
sets P(d) is Lemma 2.4.3. The planar configurations are attracting in the gradient flow of
∇D, repelling in the reverse flow −∇D, from which we obtain the following relationships:
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Fig. 2 Mayer–Vietoris Decomposition of (B(di , d j ), ∂B(di ))

Corollary 4.3.1 For 5 ≤ i ≤ j ≤ 8, there are isomorphisms

Hk(B(di , d j ), ∂B(di )) ∼= Hk−3(P(di , d j ), ∂P(di ))
Hk(BR(di , d j ), ∂BR(di )) ∼= Hk−3(PR(di , d j ), ∂PR(di ))

Hk(B(di , d j ), ∂B(d j )) ∼= Hk(P(di , d j ), ∂P(d j ))

Hk(BR(di , d j ), ∂BR(d j )) ∼= Hk(PR(di , d j ), ∂PR(d j ))

Proof To show Hk+3(B(di , d j ),B(d5, di )) ∼= Hk(P(di , d j ), ∂P(di )), first note that, since
d j is a regular value of D, B(di , d j ) is homotopic to the half-open set Bo(di , d j ) =
B(di , d j )\∂B(d j ). Similarly, as d j is a regular value for D restricted to P , there is an
ε > 0 such that P(d j , d j + ε) has strong deformation retraction onto ∂P(d j ).

We construct a Mayer–Vietoris decomposition of the pair (Bo(di , d j ), ∂B(di )) with

X1 = {(q1, q2, q3) ∈ Bo(di , d j )|D(q1, q2, 0) < d j + ε}
X2 = {(q1, q2, q3) ∈ Bo(di , d j )|D(q1, q2, 0) > d j }

and X0 = X1 ∩ X2 (See Fig. 2). The pairs (Xi , Xi ∩ ∂B(di ) have homology groups
H∗(X0, X0 ∩ ∂B(di )) ∼= H∗(X2, X02 ∩ ∂B(di )) = 0 and

H∗(X1, X1 ∩ ∂B(di )) ∼= H∗(Po(di , d j ) × D3, ∂P(di ) × D3 ∪ Po(di , d j ) × S2)
∼= H∗(Po(di , d j ), ∂P(di )) ⊗ H∗(D3, S2)

To show Hk(B(di , d j ), ∂B(d j ) ∼= Hk(P(di , d j ), ∂P(d j )) for 5 ≤ i ≤ j ≤ 8, it suffices
to produce a strong deformation retraction of B(di , d j ) onto P(di , d j ) ∪ ∂B(d j ). Define
R : B(di , d j ) × [0, 1] → B(di , d j ) as follows. If q = (q1, q2, q3) ∈ B(di , d j ), define

τ(q) ∈ [0, 1] so that if D(q1, q2, 0) > d j , then D(

√
1−τ 2(q)q23

1−q23
q1,

√
1−τ 2(q)q23

1−q23
q2, τ (q)q3) =

d j , and τ(q) = 0 otherwise. Then define
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R(q1, q2, q3, t) =
(√

1 − (1 − t + tτ(q))2q23
1 − q23

q2,

√
1 − (1 − t + tτ(q))2q23

1 − q23
q2,

(1 − t + tτ(q))q3)


�

From this analysis, we can now read off an array of homology groups of pairs in B(d5)
and BR(d5). We focus on the homology of pairs as this allows us to temporarily set aside
the complicated internal structure ofB(d9) and focus on the ways in which the progression
from P(d5) to (d9) mediate the corresponding changes fromB(d5) to B(d9).

Lemma 4.3.1 For all values δ4 < d5 < . . . δ8 < d9, we have the following homology group
values:

Hk(B(di , d j ), ∂B(di )) Hk(BR(di , d j ), ∂B(di ))
0 1 2 3 4 5 6 0 1 2 3 4 5

(B(d5, d6), ∂B(d5)) 0 0 0 Z
6
Z
6 0 0 0 0 0 Z

6 0 0
(B(d6, d7), ∂B(d6)) 0 0 0 0 Z

24
Z
24 0 0 0 0 0 Z

24 0
(B(d7, d8), ∂B(d7)) 0 0 0 0 0 Z

8
Z
8 0 0 0 0 0 Z

8

(B(d8, d9), ∂B(d8)) 0 0 0 0 0 0 0 0 0 0 0 0 0
(B(d5, d7), ∂B(d5)) 0 0 0 Z Z

20
Z
19 0 0 0 0 Z Z

19 0
(B(d6, d8), ∂B(d6)) 0 0 0 0 Z

16
Z
16 0 0 0 0 0 Z

16 0
(B(d7, d9), ∂B(d7)) 0 0 0 0 0 Z

8
Z
8 0 0 0 0 0 Z

8

(B(d5, d8), ∂B(d5)) 0 0 0 Z Z
12

Z
11 0 0 0 0 Z Z

11 0
(B(d6, d9), ∂B(d6)) 0 0 0 0 Z

16
Z
16 0 0 0 0 0 Z

16 0
(B(d5, d9), ∂B(d5)) 0 0 0 Z Z

12
Z
11 0 0 0 0 Z Z

11 0

and

Hk(B(di , d j ), ∂B(d j )) Hk(BR(di , d j ), ∂B(d j ))

0 1 2 3 4 5 6 0 1 2 3 4 5
(B(d5, d6), ∂B(d6)) 0 0 0 0 Z

6
Z
6 0 0 0 0 0 Z

6 0
(B(d6, d7), ∂B(d7)) 0 0 0 Z

24
Z
24 0 0 0 0 0 Z

24 0 0
(B(d7, d8), ∂B(d8)) 0 0 Z

8
Z
8 0 0 0 0 0 Z

8 0 0 0
(B(d8, d9), ∂B(d9)) 0 0 Z

12
Z
12 0 Z

12
Z
12 0 0 Z

12 0 0 Z
12

(B(d5, d7), ∂B(d7)) 0 0 0 Z
19

Z
20

Z 0 0 0 0 Z
19

Z 0
(B(d6, d8), ∂B(d8)) 0 0 0 Z

16
Z
16 0 0 0 0 0 Z

16 0 0
(B(d7, d9), ∂B(d9)) 0 0 Z

20
Z
20 0 Z

12
Z
12 0 0 Z

20 0 0 Z
12

(B(d5, d8), ∂B(d8)) 0 0 0 Z
11

Z
12

Z 0 0 0 0 Z
11

Z 0
(B(d6, d9), ∂B(d9)) 0 0 Z

6
Z
16

Z
10

Z
12

Z
12 0 0 Z

6
Z
10 0 Z

12

(B(d5, d9), ∂B(d9)) 0 0 Z
6
Z
11

Z
6
Z
13

Z
12 0 0 Z

6
Z
5
Z
1

Z
12

Proof The values for H∗(B(di , d j ), ∂B(di )) and H∗(B(di , d j ), ∂B(d j )) with i < j < 9
follow immediately from Lemma 3.1.1 and Corollary 4.3.1.

Next, to compute H∗(B(di , d9), ∂B(di )), observe that H∗(B(d5, d9), ∂B(d5)) ∼=
H∗(B(d5), ∂B(d5)) was computed in [10]. For i = 6, 7, 8, the exact sequence of the
triple (B(d5, d9),B(d5, di ), ∂B(d5)) may be used to compute H∗(B(d5, d9),B(d5, di )) ∼=
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H∗(B(di , d9), ∂B(di )). This requires determining the map Hk(B(d5, di ), ∂B(d5)) →
Hk(B(d5, d9), ∂B(d5)) We factor this as

Hk(B(d5, di ), ∂B(d5)) → Hk(B(d5, d8), ∂B(d5)) → Hk(B(d5, d9), ∂B(d5)).

Sect. 4.2 demonstrated that Hk(B(d5, d8), ∂B(d5)) → Hk(B(d5, d9), ∂B(d5)) is an iso-
morphism, while the map Hk(B(d5, di ), ∂B(d5)) → Hk(B(d5, d8), ∂B(d5)) is determined
by the exact sequence of the triple (B(d5, d8),B(d5, di ), ∂B(d5)).

Finally, for the pairs (BR(di , d9), ∂BR(d9)), note that the values for i = 8 also follow
from Sect. 4.2. For i = 5, 6, 7, consider the exact sequences of triples (BR(di , d9),BR(d8,
5d9), ∂BR(d9)). For i = 7, the sequence immediately yields the result. For i = 5, 6, it is
necessary to compute the boundary map

∂ : H3(BR(di , d9),BR(d8, d9)) → H2(BR(d8, d9), ∂BR(d9))

To do so, we make use of the projection ρ(q1, q2, q3) = 1
1−q23

(q1, q2) and the following

construction:

• For each of the sets X in the triple (BR(di , d9),BR(d8, d9), ∂BR(d9)), let X ′ = X \BR0.
Note that the inclusion X ′ = X \ BR0 → X is a homotopy equivalence. That is, we can
replace the triple with(B′

R(di , d9),B′
R(d8, d9), ∂B′

R(d9)).
• Similarly, for subsets Y of PR , let Y ′ = Y \ CR0.

This allows us to bridge the gap between the subsets of P , which retain the collinear con-
figurations, and the corresponding subsets of B, where the collinear configurations have
been replaced by the blow-up construction.We then have inclusions (P ′

R(di , d9),P ′
R(d8, d9),

∂P ′
R(d9))

ι→ (B′
R(di , d9),B′

R(d8, d9), ∂B′
R(d9)) andprojections (B′

R(di , d9),B′
R(d8, d9),

∂B′
R(d9))

ρ→ (PR(di ),PR(d8),PR(d9)) such that the composition ρ ◦ ι is simply the

inclusion (P ′
R(di , d9),P ′

R(d8, d9), ∂P ′
R(d9))

ι→ (PR(di ),PR(d8),PR(d9)) There is a com-
mutative diagram

H3(P ′
R(di , d9),P ′

R(d8, d9)) H2(P ′
R(d8, d9), ∂P ′

R(d9))

H3(B
′
R(di , d9),B′

R(d8, d9)) H2(B
′
R(d8, d9), ∂B′

R(d9))

H3(PR(di ),PR(d8)) H2(PR(d8),PR(d9))

ι∗

∂

ρ∗

ρ∗

∂

ρ∗
∂

By excision, the inclusions H3(P ′
R(di , d9),P ′

R(d8, d9)) → H3(PR(di ),PR(d8)) and
H2(P ′

R(d8, d9), ∂P ′
R(d9)) → H2(PR(d8),PR(d9)) can be replaced by H3(P ′

R(di , d9),
P ′
R(d8, d9))→H3(PR(di , d9),PR(d8, d9)) andH2(P ′

R(d8, d9), ∂P ′
R(d9))→H2(PR(d8, d9),

∂PR(d9)). Each of these is in turn part of a long exact sequence of triples (PR(di , d9),
PR(d8, d9)) ∪ P ′

R(di , d9),PR(d8, d9)) and (PR(d8, d9), ∂PR(d9) ∪ P ′
R(d8, d9), ∂PR(d9)).

Focusing for a moment on H3(P ′
R(di , d9),P ′

R(d8, d9)) → H3(PR(di , d9),PR(d8, d9)),
this inclusion is flanked in the exact sequence of the triple by Hk(PR(di , d9),PR(d8, d9)) ∪
P ′
R(di , d9)) for k = 3, 4. The sets PR(di , d9) and PR(d8, d9)) ∪ P ′

R(di , d9) differ
from each other by CR0 ∩ PR(di , d9), that is, by twelve 2-disks. By duality, then,
H3(PR(di , d9),PR(d8, d9)) ∪P ′

R(di , d9)) = 0 and the map H3(P ′
R(di , d9),P ′

R(d8, d9)) →
H3(PR(di , d9),PR(d8, d9)) is surjective. A similar argument shows that H2(P ′

R(d8, d9),
∂P ′

R(d9)) → H2(PR(d8, d9), ∂PR(d9)) is an isomorphism.
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With the values for H∗(BR(di , d9), ∂BR(d j )) established, the values for H∗(B(di , d9),
∂B(d j )) follow from the Gysin braid of the triple (B(di , d9),B(d8, d9), ∂B(d9)). 
�

5 Homology of the Integral Manifolds

In this section, we complete the study by translating the topological information of the
previous section into homological calculations required to compute H∗(M) and H∗(MR).
For N = 4, the homology formulae of [9] yields

Hk (M) ∼=

⎧
⎪⎨

⎪⎩

im ( j∗ : H3(B) → H3(B,B0)) k = 3

Hk (B,B0) ⊕ Hk−6
(
B, ∂B+) k = 4, 5, 6, 10, 11, 12

Hk (B) ⊕ Hk−6 (B, ∂B) k = 0, 1, 2, 7, 8, 9, k > 12

Note that for d < d8, H2(B0(d)) = 0, so H3(M) ∼= H3(B,B0).
For N = 4, the homology groups of H∗(MR(c, h)) are given by

Hk (MR(c, h)) ∼=
{
Hk (BR(d),BR0(d)) ⊕ Hk−6

(
BR(d), ∂B+

R (d)
)

k = 3, 4, 5, 10, 11

Hk (BR(d)) ⊕ Hk−6 (BR(d), ∂BR(d)) otherwise

Starting with the baseline of the homology of the relevant spaces for regions V and IX,
we will use the information from the planar manifold to obtain the homology information
for regions VI, VII and VIII. The identification of H∗(B(di ), ∂B(di )) follows immediately
from the work above. The identification of H∗(B(di )) will come next, and from those, the
computations of H∗(B(di ), ∂B+(di )) and H∗(B(di ), ∂B0(di )).

5.1 The Homology Groups forB(di) and Pairs (B(di),@B(di))

With the homology group values for regions V and region IX (i.e. just below the relative
equilibria and just above) in hand, we can now use the information from Sect. 4.3 to compute
the values for the regions in between. For completeness we include the values for regions V
and IX.

Lemma 5.1.1 For δi−1 < di < δi , i = 5, . . . , 9, we have the following homology groups:

B BR

0 1 2 3 4 5 6 0 1 2 3 4 5

B(d5) Z 0 Z
6

Z ⊕ Z
5
2 0 Z

6 0 Z 0 Z
7 0 Z

6 0
(B(d5), ∂B(d5)) 0 0 0 Z Z

12
Z
11 0 0 0 0 Z Z

11 0

B(d6) Z 0 Z
6

Z
7 ⊕ Z

5
2 Z

6
Z
6 0 Z 0 Z

7
Z
6
Z
6 0

(B(d6), ∂B(d6)) 0 0 0 0 Z
16

Z
16 0 0 0 0 0 Z

16 0

B(d7) Z 0 Z
25

Z
21 ⊕ Z

5
2 Z Z

6 0 Z 0 Z
26

Z Z
6 0

(B(d7), ∂B(d7)) 0 0 0 0 0 Z
8
Z
8 0 0 0 0 0 Z

8

B(d8) Z 0 Z
17

Z
13 ⊕ Z

5
2 Z Z

6 0 Z 0 Z
18

Z Z
6 0

(B(d8), ∂B(d8)) 0 0 0 0 0 0 0 0 0 0 0 0 0

B(d9) Z Z
6
Z
17

Z
7 ⊕ Z

5
2 Z

13
Z
18 0 Z Z

6
Z
12

Z Z
18 0

(B(d9), ∂B(d9)) 0 0 0 0 0 0 0 0 0 0 0 0 0
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Proof The homology groups pf H∗(B(di ), ∂B(di )) and H∗(BR(di ), ∂BR(di )) are provided
directly from Lemma 4.3.1.

Working off of the two known values H∗(BR(d5)) and H∗(BR(d9)), the remaining values
for H∗(BR(di )) are computed from the exact sequences of the pairs (BR(d5),BR(di ))
and (BR(di ),BR(d9)). The Gysin braids of the pairs (B(d5),B(di )) compute H∗(B(di )),
leaving undetermined the torsion subgroup Ti of H3(B(di )). To determine Ti , we begin with
the observation T5 ∼= Z

5
2 and make use of the fact that all of the groups H∗(B(di−1),B(di ))

are torsion-free to conclude that Ti ∼= Z
5
2 for all i .

To illustrate, the computation of H∗(BR(d6)) and H∗(B(d6)) is typical. First, inserting
the known values into the exact sequences of the pair (BR(d5),BR(d6)), we see

H4(BR(d6)) � Z
6 → Z

6 → H3(BR(d6)) → 0 → 0 → H2(BR(d6)) → Z
7 → 0 � H1(BR(d6))

On the other hand, from the exact sequence of the pair (BR(d6),BR(d9)) we have

0 → Z
12 → Z

18 → H4(BR(d6)) → 0

These together determine H∗(BR(d6)). Inserting this into the Gysin braid of the pair
(B(d5),B(d6)), we first see from the exact sequence of (B(d5),B(d6)) that H6(B(d6)) =
H1(B(d6)) = 0. Next, the Gysin sequence ofB(d6) shows that H5(B(d6)) = H2(B(d6)) ∼=
Z
6. Inserting this value for H5(B(d6)) back into the exact sequence of the pair next yields

0 → H5(B(d6)) → Z
6 → Z

6 → H4(B(d6)) → 0

which implies H4(B(d6)) ∼= Z
6, while the sequence

0 → Z
6 → H3(B(d6)) → Z ⊕ Z

5
2 → 0

determines the torsion-free component of H3(B(d6)).
To determine the torsion component, the braid diagram contains the commutative diagram

of exact sequences:

H4(BR(d5),BR(d6)) H3(BR(d6)) H3(BR(d5)) H3(BR(d5),BR(d6))

H5(B(d5),B(d6)) H4(B(d6)) H4(B(d5)) H4(B(d5),B(d6))

H5(BR(d5),BR(d5)) H4(BR(d6)) H4(BR(d5)) H4(BR(d5),BR(d5))

H3(BR(d5),BR(d6)) H2(BR(d6)) H2(BR(d5)) H2(BR(d5),BR(d6))

H4(B(d5),B(d6)) H3(B(d6)) H3(B(d5)) H3(B(d5),B(d6))

H4(BR(d5),BR(d5)) H3(BR(d6)) H3(BR(d5)) H3(BR(d5),BR(d5))

∂6 ∂5
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Inserting the known values, this yields commutative diagram

Z
6

Z
6

Z
7

Z
7

Z
6 H3(B(d6)) Z ⊕ Z

5
2

Z
6 0

∂6

∼=

∂5

∼=

Since ∂5 has cokernel Z ⊕ Z
5
2, so does ∂6, which implies H3(B(d6)) ∼= Z

6 ⊕ Z
5
2.

The arguments for H3(B(di )) for i = 7, 8, 9 are similar. 
�
With the values of H∗(B(d5)), H∗(B(d9)) and H∗(BR(d5),BR(d9)) established, inspec-

tion of the exact sequence of the pair shows that

Corollary 5.1.1 The inclusion-induced maps ι : H∗(B(d9)) → H∗(B(d5)) and ιR :
H∗(BR(d9)) → H∗(BR(d5)) are surjective.

5.2 The Pairs (B(di),B0(di)) and (B(di),@B+(di))

We complete the homology calculations by identifying H∗(B(di ),B0(di )) and H∗(B(di ),
∂B+(di )), along with the corresponding reduced spaces.

Lemma 5.2.1 The homology groups of the pairs (B(di ), ∂B+(di )) and (BR(di ), ∂B
+
R (di ))

are as follows:

H∗(B(di ), ∂B+(di )) (BR(di ), ∂B
+
R (di ))

0 1 2 3 4 5 6 0 1 2 3 4 5 6
d5 0 0 Z

12
Z
13

Z
6
Z
11

Z
6 0 0 Z

12
Z Z

5
Z
6 0

d6 0 0 Z
12

Z
12

Z
10

Z
16

Z
6 0 0 Z

12 0 Z
10

Z
6 0

d7 0 0 Z
12

Z
12 0 Z

20
Z
20 0 0 Z

12 0 0 Z
20 0

d8 0 0 Z
12

Z
12 0 Z

12
Z
12 0 0 Z

12 0 0 Z
12 0

d9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Proof To compute H∗(B(di ), ∂B+(di )), there is the exact sequence

Hk(BR0(di ), ∂BR0(di )) → Hk(BR(di ), ∂BR(di )) → Hk(B(di ), ∂B
+
R (di ))

For any two values of di < d j < δ8, there is no change in structure at B0, so we have

Hk(BR0(di ), ∂BR0(di ))
∼=→ Hk(BR0(d j ), ∂BR0(d j )) and braid diagram

0 Hk (B(di , d j ), ∂B(di )) Hk (B(di , d j ) ∪ B0(di ), ∂B(di )) ∪ B0(di )

Hk (B0(di ), ∂B0(di )) Hk (B(di ), ∂B(di )) Hk (B(di ), ∂B
+(di ))

Hk (B0(d j ), ∂B0(d j )) Hk (B(d j ), ∂B(d j )) Hk (B(d j ), ∂B
+(d j ))

∼=

∼=
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with corresponding reduced braid diagrams.
Using these braid diagrams, we can compute H∗(B(d6), ∂B+(d6)) and H∗(BR(d6),

∂B+
R (d6)) in two stages. The reduced braid diagram for d5 and d6 suffices to compute

the reduced homology; then the Gysin braid of the triple (B(d6), ∂B+(d6), ∂B(d6)) com-
putes the unreduced homology. Proceeding to Region VII, the Gysin braid of the triple
(BR(d7), ∂B

+
R (d7), ∂BR(d7)) computes both the reduced and unreduced homology groups.

For Region VIII, as H∗(B(d8), ∂B(d8)) = 0, the values for H∗(B(d8), ∂B+(d8)) follow
trivially. Finally, for Region IX, both H∗(B(d9), ∂B(d9)) and H∗(B0(d9), ∂B0(d9)) are
trivial, so H∗(B(d9), ∂B+(d9)) is as well.


�
To complete the results, the last step is to identify H∗(B(di ),B0(di )). This will proceed

in two steps, based on the observations that B0(d) bifurcates only at δ8, and that when
Hk(B(di )) �= 0, the inclusion-induced map γi9 : HK (B0(d9)) → Hk(B0(di )) is an iso-
morphism. The map ζ9 was identified in Lemma 4.1.2. Then for all other i , the non-zero
values of Hk(B0(di )) admit factorization

Hk(B0(d9)) Hk(B(d9))

Hk(B0(di )) Hk(B(di ))

γi9∼=

ζ9

ιi9

ζi

so the remaining ζi follow from the compositions ιi9 ◦ ζ9.

Lemma 5.2.2 The homology groups of the pairs (B(di ),B0(di )) and (BR(di ),BR0(di ))
are as follows:

H∗(B(di ),B0(di )) H∗(BR(di ),BR0(di ))
0 1 2 3 4 5 6 0 1 2 3 4 5 6

d5 0 Z
11

Z
18 0 Z

11
Z
18 0 0 Z

11
Z
7 0 Z

18 0 0
d6 0 Z

11
Z
18

Z
6
Z
16

Z
17 0 0 Z

11
Z
7
Z
5
Z
17 0 0

d7 0 Z
11

Z
37

Z
20

Z
11

Z
17 0 0 Z

11
Z
26 0 Z

17 0 0
d8 0 Z

11
Z
29

Z
12

Z
11

Z
17 0 0 Z

11
Z
18 0 Z

17 0 0
d9 0 Z

11
Z
29

Z
12

Z
11

Z
17 0 0 Z

11
Z
18 0 Z

17 0 0

The image im ( j∗ : H3(B(di )) → H3(B(di ),B0(di ))) is

di d5 d6 d7 d8 d9
im( j∗) 0 Z

6
Z
20

Z
12

Z
6

Proof As noted, the values for d9 > δ8 follow immediately from Lemma 4.1.2. For
δ5 < di < δ8, considering first the reduced spaces, the only non-trivial map is ζRi∗ :
H3(BR0(di )) → H3(BR(di )). From the exact sequences of the pairs (BR(di ),BR(d9))
we observe that H3(BR(d9)) → H3(BR(di )) is injective with torsion-free cokernel. This
implies that ζRi∗ : H3(BR0(di )) → H3(BR(di )) has rank 1 with torsion-free cokernel. The
values for H∗(BR(di ),BR0(di )) follow immediately.

Similarly, to compute Hk(B(di ),B0(di )) for δ5 < di < δ8, we need to compute
ζi∗ : Hk(B0(di )) → Hk(B(di )) for k = 3, 4. The same argument as above shows that
H4(B0(di )) → H4(B(di )) has image Z with torsion-free cokernel for all δ5 < di < δ8. For
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k = 3, it suffices to show that ζi∗ has image Z⊕Z
5
2 and torsion-free cokernel. The maps ζi∗

are sandwiched between ζ9∗ and ζ5∗

H3(B0(di ))

H3(B(d9)) H3(B0(di )) H3(B0(d5))
ζ9∗

ζi∗
ζ5∗

γi9 γ5i

with values

Z
12

Z
7 ⊕ Z

5
2 Z

αi ⊕ Z
5
2 Z

7 ⊕ Z
5
2

ζ9∗
ζi∗

ζ5∗

γi9 γ5i

Both ζ9∗ and ζ5∗ have image Z ⊕ Z
5
2 with torsion-free cokernel, and the maps γi j are seen

by Lemma 4.3.1 to be torsion free, so it follows that for all i , ζi∗ has image Z ⊕ Z
5
2 and

torsion-free cokernel.

�
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