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Abstract
In this paper, we prove the reducibility for some linear quasi-periodic Hamiltonian derivative
wave and half-wave equations under the Brjuno–Rüssmann non-resonance conditions. This
is an extension of previous results of reducibility on Hamiltonian PDEs that required stronger
(Diophantine) non-resonance conditions.
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1 Introduction andMain Result

The reducibility theory of linear quasi-periodic systems is the generalization of the classi-
cal Floquet theory for linear periodic systems. It is important both in the linear problems
(spectral analysis of operator, growth of Sobolev norms) and in the non-linear case(linear
stability analysis of quasi-periodic solutions of non-linear systems). The first reducibility
result via Kolmogorov–Arnold–Moser (KAM) theory was due to Bogoljubov, Mitropoliskii
and Samoilenko [11], Dinaburg and Sinai [17] for finite degrees of freedom systems. Since
then KAM theory has been a powerful tool to study reducibility theory. In the late 1980s and
early 1990s, KAM theory was extended to non-linear partial differential equations (PDEs) by
Kuksin [33] and Wayne [48]. See also [35, 42, 43] for further developments. As a corollary,
these results imply the reducibility of the variational equations for quasi-periodic solutions
of non-linear PDEs. In fact, “reducibility is not only an important outcome of KAM but also
an essential ingredient in the proof” [20].

The first pure reducibility result for linear quasi-periodic PDEs was given by Bambusi
and Graffi [5]. They proved the reducibility of linear Schrödinger equations with unbounded
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perturbations. Eliasson and Kuksin [19] investigated the reducibility of higher dimensional
linear quasi-periodic Schrödinger equations. Combining the pseudo-differential calculus,
Baldi, Berti andMontalto [1, 2] obtained the reducibility of quasi-linear forced perturbations
of Airy equation and quasi-linear KdV equation. Thereafter, these results are developed and
extended widely. One could refer to [3, 4, 6–9, 28–30, 36, 37, 39] and the references therein.

Consider a linear quasi-periodic PDE of the form

∂t u = (A + P(ωt))u, ω ∈ R
n \ {0}, (1.1)

where A is a positive self-adjoint operator and P is a operator-valued function with the basic
frequencies ω. It is well known that KAM reducibility requires a lower bound on small
divisors of the form

|k · ω + λi (ω)− λi (ω)|, (1.2)

where k · ω = ∑n
i=1 kiωi and {λi } are the eigenvalues of the operator A. In all the above-

mentioned papers, the lower bound of Diophantine type was used. Namely, the following
non-resonance conditions holds: |k · ω + λi (ω) − λi (ω)| ≥ γ

|k|τ , where the constants
γ > 0, τ > n − 1. On the other hand, thanks to the pioneering works of Brjuno [12], the
Diophantine conditions can be weakened to the Brjuno conditions. To make it applicable in
KAMscheme,Rüssmann [44, 45] introduced the notion of an approximation function to char-
acterize the Brjuno conditions. Under such Brjuno–Rüssmann type conditions, Pöschel [40]
proved the persistence of elliptic lower dimensional tori in finite dimensional Hamiltonian
systems. In [41], Pöschel also proved the existence of infinite dimensional invariant tori in
infinite dimensional Hamiltonian systems of the form H = ω · I + P(θ, I ). Later on, Xu
and You [49] and Chavaudret and Marmi [14] proved the reducibility of linear ODEs with
almost periodic coefficients and quasi-periodic cocycles under such Brjuno–Rüssmann type
conditions, respectively. See also [31, 46, 47] for nonlinear forced ODEs. We also mention
some Brjuno type quasi-periodic results of Corsi and Gentile [15] and Gentile [27] for forced
non-Hamiltonian ODEs without using approximation function.

To the best of our knowledge, there has been no Brjuno–Rüssmann type results in KAM
theory for PDEs. In this paper,we establish a reducibility theorem for some linearHamiltonian
PDEs under Brjuno-Rüssmann non-resonance conditions. More precisely, we consider the
following linear quasi-periodic derivative wave equations

∂t t u − ∂xx u + mu + εV (ωt, x)Dmu = 0, m ≥ 0 x ∈ [0, π] (1.3)

and linear quasi-periodic half-wave equations

i∂t u + D0u + εV (ωt, x)u = 0, x ∈ [0, π], (1.4)

under Dirichlet boundary conditions, where the Fourier multiplier Dm := √−∂xx + m. The
basic fequenciesω of the potentialV satisfy theBrjuno–Rüssmann non-resonance conditions.
Thewave Eq. (1.3) covers the variational equation around any small amplitude quasi-periodic
solutions of nonlinearHamiltonian derivativewave equation ∂t t u−∂xx u+mu+ f (Dmu) = 0,
where f (z) = az3+O(z5), a �= 0.Quasi-periodic solutionswithDiophantine frequencies of
this nonlinear wave equation under periodic boundary conditions have been obtained in [10].
Thehalf-waveEq. (1.4) is an important class of PDEs arising in various physical problems [13,
18, 24, 32, 38]. There are two main difficulties when studying the reducibility theory of the
Eqs. (1.3) and (1.4). The first one is the weak dispersion relation since the eigenvalues
λ j ∼ j, j →∞. The second one is the bad smoothness of the perturbations. To overcome
this, we introduce a simplified version of Töplitz–Lipschitz functions and Töplitz–Lipschitz
matrices,whichwere first proposed byEliasson andKuksin [20] inKAMtheory for the higher
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dimensional Schrödinger equations. Such simplified form is more suitable to the Eqs. (1.3)
and (1.4) and it was also used in [25, 26]. Different from that in [25, 26], we characterize
the Töplitz–Lipschitz functions in a way of semi-norm. We also mention the quasi-Töplitz
functions introduced in [10] for nonlinear Hamiltonian derivative wave equations, which is
also an improved version of Eliasson–Kuksin’s Töplitz–Lipschitz functions. Comparing to
the quasi-Töplitz functions, our simplified form is more easy to handle. For further work
on the reduction of linear operators involving weak dispersion relations, please refer to
references [21–23].

To state our main results, we introduce some definitions and assumptions on the potentials
V in the Eqs. (1.3) and (1.4).

Definition 1.1 (Approximation function, [40, 45]). A non-decreasing function


 : [0,∞)→ [1,∞)

is called an approximation function, if

log
(t)

t
↓ 0, 0 ≤ t →∞ (1.5)

and ∞∫

1

log
(t)

t2
dt <∞. (1.6)

in addition, the normalization 
(0) = 1 is imposed for definition.

Remark 1.1 Below we list three typical approximation functions: 
1 = exp(tα/α), 0 <

α < 1, 
2 = exp
(

t
1+logα(1+t)

)
, α > 1 and 
3 = exp

(
t

logα t

)
, α > 1.

Definition 1.2 (Brjuno–Rüssmann frequency) Let 
 be an approximation function. A vector
ω ∈ R

n is called Brjuno–Rüssmann frequency vector if it satisfies

|k · ω| ≥ γ


(|k|) , k ∈ Z
n \ {0} (1.7)

for some constant γ > 0.

Assumption 1 Suppose the function V : Tn × [0, π ] → R is real analytic in (θ, x). For
θ ∈ T

n, V (θ, ·) is a 2π−periodic, even function V (θ, x) = V (θ,−x). Then it can be
written as

V (θ, x) =
∑

j≥0
Ṽ j (θ) cos j x . (1.8)

Moreover, suppose for all θ, the function V (θ, ·) extends to a complex analytic function on
a strip |I mx | < 2a for some a > 0. For all x, the function V (·, x) extends to a complex
analytic function on a strip on |I mθ | < 2r for some r > 0. Then there is a positive constant
CV > 0 such that for p ≥ 0,

‖V ‖D(2r),2a,p := ‖Ṽ0‖D(2r) +
∑

j≥1
j pe2aj‖Ṽ j‖D(2r) ≤ CV , (1.9)

where the norm ‖ · ‖D(2r) is defined in Sect. 2.
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Letφ j (x) =
√

2
π
sin j x, j ≥ 1 be the normalizedDirichlet eigenfunctions of the operator

D2
m := −∂xx + m associated to the eigenvalues λ2j = j2 + m, j ≥ 1. We consider the

Eqs. (1.3) and (1.4) in the following function space

Ha,p
0 =

⎧
⎨

⎩
u =

∑

j≥1
q jφ j : ‖u‖a,p =

∑

j≥1
j peaj |q j | < ∞

⎫
⎬

⎭
. (1.10)

Our main result is stated as follows.

Theorem 1.1 Let m ≥ 0. Under the Assumption 1 on the potential functions V , there is ε0
so that for all 0 < ε < ε0 there exists Oε ⊆ [0, 2π)n of positive Lebesgue measure such
that for all ω ∈ Oε satisfying Brjuno–Rüssmann non-resonance conditions, the above linear
quasi-periodic wave Eq. (1.3) and half-wave Eq. (1.4) reduce to the linear equations with
constant coefficients with respect to the time variable.

In Sect. 5, we prove this theorem by the reducibility Theorem 4.1.
As a corollary of Theorem 1.1, we have the following conclusion concerning the solutions

of the Eqs. (1.3) and (1.4):

Corollary 1.1 Let the initial data u0 ∈ Ha,p
0 , v0 ∈ Ha,p−1

0 . Under the Assumption 1, there is
ε0 so that for all 0 < ε < ε0 and ω ∈ Oε ,

(i) there exists a unique solution (u(t, x), ut (t, x)) ∈ Ha,p
0 ×Ha,p−1

0 of the wave Eq. (1.3)
with (u(0, x), ut (0, x)) = (u0, v0). Moreover, u(t, x) is almost-periodic in time and stable,
i.e.,

(1− εC)(‖u0‖a,p + ‖v0‖a,p−1) ≤ ‖u(t, ·)‖a,p + ‖ut (t, ·)‖a,p−1
≤ (1+ εC)(‖u0‖a,p + ‖v0‖a,p−1),

∀t ∈ R, for some constant C = C(a, p, ω) > 0.
(ii) there exists a unique solution u(t, x) ∈ Ha,p

0 of the half-wave Eq. (1.4) with u(0, x) =
u0. Moreover, u(t, x) is almost-periodic in time and stable, i.e.,

(1− εC)‖u0‖a,p ≤ ‖u(t, ·)‖a,p ≤ (1+ εC)‖u0‖a,p, ∀t ∈ R

for some constant C = C(a, p, ω) > 0.

Remark 1.2 More recently, using the RenormalizationGroupmethod under Brjuno-type con-
ditions without employing an approximation function, Corsi et al. [16] have constructed
almost-periodic solutions with Gevrey regularity for the NLS equation with a convolution
potential of arbitrarily high regularity.

2 Functional Setting

LetO ⊂ R
n be a parameter set of positive Lebesgue measure. Throughout the paper, for any

real or complex valued function depending on parameters ξ ∈ O, its derivatives with respect
to ξ are understood in the sense of Whitney. We denote by C1

W (O) the class of C1 Whitney
differentiable functions on O.

Suppose f ∈ C1
W (O), we define its norm as

| f |O := sup
ξ∈O

(

| f (ξ)| + |∂ f

∂ξ
(ξ)|

)

,
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where | · | denotes the sup-norm of complex vectors.
Given an n-torus Tn = R

n/(2πZ)n and its complex neighborhood

D(r) = {θ ∈ C
n : |Imθ | < r , r > 0}.

Consider a real analytic function f (θ; ξ) on θ ∈ D(r). It is also C1
W on ξ ∈ O. Its Fourier

expansion reads f (θ; ξ) =∑
k∈Zn f̂ (k; ξ)eik·θ , then we define its norm as

‖ f ‖D(r)×O :=
∑

k∈Zn

| f̂ (k; ·)|Oe|k|r ,

where k · θ =∑n
i=1 kiθi and |k| =∑n

i=1 |ki |.
Let K > 0. For f (θ; ξ) above, its K−order Fourier truncation TK f is defined as

(TK f )(θ) :=
∑

k∈Zn , |k|<K

f̂ (k)eik·θ .

The remainderRK f of f is defined by (RK f )(θ) := f (θ)−TK f (θ). Suppose 0 < 2σ < r ,

we have the following estimate for RK f :
‖RK f ‖D(r−2σ)×O ≤ 32σ−2e−Kσ ‖ f ‖D(r)×O. (2.1)

The average [ f ] of f on T
n is defined as

[ f ] := f̂ (0) = (2π)−n
∫

Tn
f (θ)dθ.

Let a, p > 0, we introduce the Banach space �a,p of all real or complex sequences
z = (z j ) j∈Z with

‖z‖a,p =
∑

j∈Z
eaj j p|z j | <∞.

Given r , s > 0, we define the phase space

Pa,p := T
n × R

n × �a,p × �a,p � w := (θ, I , z, z̄)

and a complex neighborhood

D(r , s) = {w : |Imθ | < r , |I | < s2, ‖z‖a,p < s, ‖z̄‖a,p < s}
of T n

0 := T
n × {I = 0} × {z = 0} × {z̄ = 0} in Pa,p

C
:= C

n × C
n × �a,p × �a,p.

Consider a real analytic function f (θ, I , z, z̄; ξ) on D(r , s), which is also C1
W on ξ ∈ O.

Its Taylor–Fourier expansion reads

f (θ, I , z, z̄; ξ) =
∑

l,α,β

flαβ(θ; ξ)I l zα z̄β =
∑

k∈Zn ,l,α,β

f̂lαβ(k; ξ)eik·θ I l zα z̄β,

where we use the multi-index notations l = (l j )
n
j=1, α = (α j ) j≥1, β = (β j ) j≥1

with l j , α j , β j ∈ N. α and β have only finitely many nonzero components. I l zα z̄β =
(
∏n

i=1 I li
i )(

∏
j∈Z z

α j
j z̄

β j
j ).

We define the majorant of f as

� f �D(r)×O ≡ � f (·, I , z, z̄; ·)�D(r)×O :=
∑

l,α,β

‖ flαβ‖D(r)×O|I l ||zα||z̄β |
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and the norm of f as

‖ f ‖D(r ,s)×O := sup
|I |<s2,‖z‖a,p<s,‖z̄‖a,p<s

� f �D(r)×O

= sup
|I |<s2,‖z‖a,p<s,‖z̄‖a,p<s

∑

l,α,β

‖ flαβ‖D(r)×O|I l ||zα||z̄β |.

Consider an infinite dimensional dynamical system on D(r , s) :
ẇ = X(w), w = (θ, I , z, z̄) ∈ D(r , s),

where the vector field

X(w) = (X (θ)(w), X (I )(w), X (z)(w), X (z̄)(w)),

Suppose vector field X(w; ξ) is real analytic on D(r , s) and C1
W smooth onO, we define

the weighted norm of X as follows

‖X‖s;D(r ,s)×O

= sup
|I |<s2,‖z‖a,p<s,‖z̄‖a,p<s

{ n∑

i=1
�X (θi )�D(r)×O + 1

s2

n∑

i=1
�X (Ii )�D(r)×O

+ 1

s

∑

j∈Z
eaj j p(�X (z j )�D(r)×O + �X (z̄ j )�D(r)×O)

}

.

3 Töplitz–Lipschitz Functions

3.1 Definitions

In this section, we introduce a class of real analytic functions with exponentially off-diagonal
decay.

Definition 3.1 Let r , s, ρ > 0. Suppose P(θ, z, z̄; ξ) is real analytic on (θ, z, z̄) ∈ D(r , s)
and C1

W−smooth on parameters ξ ∈ O. We say that P is Töplitz–Lipschitz and write P ∈
T ρ

D(r ,s)×O if
〈P〉ρ,D(r ,s)×O <∞, (3.1)

where the semi-norm 〈P〉ρ,D(r ,s)×O is the smallest non-negative real number that satisfies
the following conditions
(T1) Exponentially off-diagonal decay.

∥
∥
∥
∥

∂2P

∂zi∂z j

∥
∥
∥
∥

D(r ,s)×O
≤ 〈P〉ρ,D(r ,s)×Oe−ρ|i+ j |. (3.2)

∥
∥
∥
∥

∂2P

∂zi∂ z̄ j

∥
∥
∥
∥

D(r ,s)×O
≤ 〈P〉ρ,D(r ,s)×Oe−ρ|i− j |. (3.3)

∥
∥
∥
∥

∂2P

∂ z̄i∂ z̄ j

∥
∥
∥
∥

D(r ,s)×O
≤ 〈P〉ρ,D(r ,s)×Oe−ρ|i+ j |. (3.4)
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(T2) Asymptotically Töplitz. The limits

lim
t∈Z, t→∞

∂2P

∂zi+t∂z j−t
, lim

t∈Z, t→∞
∂2P

∂zi+t∂ z̄ j+t
and lim

t∈Z, t→∞
∂2P

∂ z̄i+t∂ z̄ j−t

exist and are finite for all i, j ∈ Z.

(T3) Lipschitz at infinity. For sufficiently large |t |, t ∈ Z, the following hold.
∥
∥
∥
∥

∂2P

∂zi+t∂z j−t
− lim

t→∞
∂2P

∂zi+t∂z j−t

∥
∥
∥
∥

D(r ,s)×O
≤ |t |−1〈P〉ρ,D(r ,s)×Oe−ρ|i+ j |, (3.5)

∥
∥
∥
∥

∂2P

∂zi+t∂ z̄ j+t
− lim

t→∞
∂2P

∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r ,s)×O
≤ |t |−1〈P〉ρ,D(r ,s)×Oe−ρ|i− j |, (3.6)

∥
∥
∥
∥

∂2P

∂ z̄i+t∂ z̄ j−t
− lim

t→∞
∂2P

∂ z̄i+t∂ z̄ j−t

∥
∥
∥
∥

D(r ,s)×O
≤ |t |−1〈P〉ρ,D(r ,s)×Oe−ρ|i+ j |, (3.7)

Remark 3.1 By the definition of 〈P〉ρ,D(r ,s)×O, it is not difficult to verify that

• 〈P〉ρ,D(r ,s)×O ≥ 0;
• 〈λP〉ρ,D(r ,s)×O = |λ|〈P〉ρ,D(r ,s)×O for all λ ∈ C;
• 〈P + F〉ρ,D(r ,s)×O ≤ 〈P〉ρ,D(r ,s)×O + 〈F〉ρ,D(r ,s)×O.

Note that 〈P〉ρ,D(r ,s)×O = 0 could not imply P = 0. This means 〈·〉ρ,D(r ,s)×O is only a
semi-norm.

Remark 3.2 From (T1) and (T3), the limits in (T3) satisfy
∥
∥
∥
∥ lim

t→∞
∂2P

∂zi+t∂z j−t

∥
∥
∥
∥

D(r ,s)×O
≤ 〈P〉ρ,D(r ,s)×Oe−ρ|i+ j |; (3.8)

∥
∥
∥
∥ lim

t→∞
∂2P

∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r ,s)×O
≤ 〈P〉ρ,D(r ,s)×Oe−ρ|i− j |; (3.9)

∥
∥
∥
∥ lim

t→∞
∂2P

∂ z̄i+t∂ z̄ j−t

∥
∥
∥
∥

D(r ,s)×O
≤ 〈P〉ρ,D(r ,s)×Oe−ρ|i+ j |. (3.10)

Remark 3.3 By the definition of the semi-norm 〈·〉ρ,D(r ,s)×O, it is not difficult to verify that
the following conclusions hold:

(1) 〈P〉ρ,D(r ′,s′)×O ≤ 〈P〉ρ,D(r ,s)×O if 0 < r ′ ≤ r , 0 < s′ ≤ s;
(2) 〈P〉ρ′,D(r ,s)×O ≤ 〈P〉ρ,D(r ,s)×O if 0 < ρ′ ≤ ρ;
(3) Let K > 0, then the Fourier truncation TK P of P satisfies

〈TK P〉ρ,D(r ,s)×O ≤ 〈P〉ρ,D(r ,s)×O
and the remainder RK P of P satisfies

〈RK P〉ρ,D(r ′,s)×O ≤ e−K (r−r ′)〈P〉ρ,D(r ,s)×O
if 0 < r ′ ≤ r .

Definition 3.2 Let �a,p
0 be the unilateral infinite sequences space defined by

�
a,p
0 =

⎧
⎨

⎩
z = (z j ) j≥1 : ‖z‖a,p =

∑

j≥1
|z j || j |pea| j | < ∞

⎫
⎬

⎭
. (3.11)
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Given a real analytic function P(θ, z, z̄) with (z, z̄) ∈ �
a,p
0 × �

a,p
0 , we lift it from �

a,p
0 × �

a,p
0

to �a,p × �a,p by P̃(θ, z̃, ¯̃z) = P(θ, z, z̄), where (z̃, ¯̃z) ∈ �a,p × �a,p and z̃ = z j , ¯̃z = z̄ j for
all j ≥ 1.

We say that the function P is Töplitz–Lipschitz and write P ∈ T ρ

D(r ,s)×O if P̃(θ, z̃, ¯̃z) is
Töplitz–Lipschitz and define

〈P〉ρ,D(r ,s)×O := 〈P̃〉ρ,D(r ,s)×O < ∞. (3.12)

Below we focus on a class of quadratic functions on (z, z̄) of the form

P(θ, z, z̄; ξ) =
∑

|α|+|β|=2
Pαβ(θ; ξ)zα z̄β .

We study the Töplitz–Lipschitz property for these functions under the action of the Poisson
bracket, the flow of linear Hamiltonian system and the canonical transformation.

Proposition 3.1 (Poisson bracket). Let 0 < δ < min{ρ, 1}. Suppose the quadratic functions
R, F ∈ T ρ

D(r ,s)×O, then {R, F} ∈ T ρ−δ

D(r ,s)×O and there exists a constant C > 0 so that

〈{R, F}〉ρ−δ,D(r ,s)×O ≤ C

δ
〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×O. (3.13)

Proof The Poisson bracket {R, F} reads

{R, F} = i
∑

k∈Z

(
∂ R

∂zk

∂ F

∂ z̄k
− ∂ R

∂ z̄k

∂ F

∂zk

)

.

In what follows, it remains to analyze the second derivative ∂2{R,F}
∂zi ∂ z̄ j

with respect to zi , z̄ j ,

and the other second derivatives could be similarly done.
Since the functions R and F are both quadratic on (z, z̄), their third derivatives vanish.

Then we have

∂2{R, F}
∂zi∂ z̄ j

=
∑

k∈Z
i

(
∂2R

∂zk∂ z̄ j

∂2F

∂zi∂ z̄k
+ ∂2R

∂zi∂zk

∂2F

∂ z̄k∂ z̄ j
− ∂2R

∂ z̄k∂ z̄ j

∂2F

∂zi∂zk
− ∂2R

∂ z̄k∂zi

∂2F

∂zk∂ z̄ j

)

.

(3.14)

• We first verify the property (T1) for ∂2{R,F}
∂zi ∂ z̄ j

. It suffices to consider the sums
∑

k≥1 ∂2R
∂zk∂ z̄ j

∂2F
∂zi ∂ z̄k

and
∑

k≥1 ∂2R
∂zi ∂zk

∂2F
∂ z̄k∂ z̄ j

in (3.14), and the others can be similarly done.
Since the functions R and F satisfy the property (T1), then we have
∥
∥
∥
∥
∥
∥

∑

k

∂2R

∂zk∂ z̄ j

∂2F

∂zi ∂ z̄k

∥
∥
∥
∥
∥
∥

D(r ,s)×O
≤

∑

k

∥
∥
∥
∥
∥

∂2R

∂zk∂ z̄ j

∥
∥
∥
∥
∥

D(r ,s)×O

∥
∥
∥
∥
∥

∂2F

∂zi ∂ z̄k

∥
∥
∥
∥
∥

D(r ,s)×O

≤ 〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×O
∑

k

e−ρ(|i−k|+|k− j |)

≤ 〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×Oe−(ρ−δ)(|i− j |) ∑

k

e−δ(|i−k|+|k− j |)

≤ Cδ−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×Oe−(ρ−δ)(|i− j |)
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and
∥
∥
∥
∥
∥

∑

k

∂2R

∂zi∂zk

∂2F

∂ z̄ j∂ z̄k

∥
∥
∥
∥
∥

D(r ,s)×O
≤

∑

k

∥
∥
∥
∥

∂2R

∂zi∂zk

∥
∥
∥
∥

D(r ,s)×O

∥
∥
∥
∥

∂2F

∂ z̄ j∂ z̄k

∥
∥
∥
∥

D(r ,s)×O

≤ 〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×O
∑

k

e−ρ(|i+k|+|k+ j |)

≤ Cδ−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×Oe−(ρ−δ)(|i− j |).

here we use the inequality
∑

k e
−δ(|i−k|+|k− j |) ≤ Cδ−1 ( see Lemma 7.5, Appendix).

•We then verify the property (T2) for ∂2{R,F}
∂zi ∂ z̄ j

. From the above analysis, we know that the

functional series
∑

k≥1 ∂2R
∂zk∂ z̄ j

∂2F
∂zi ∂ z̄k

and
∑

k≥1 ∂2R
∂zi ∂zk

∂2F
∂ z̄k∂ z̄ j

converge uniformly on D(r , s)×
O. Since the limits limt→∞ ∂2P

∂zi+t ∂ z̄ j+t
, limt→∞ ∂2P

∂zi+t ∂z j−t
and limt→∞ ∂2P

∂ z̄i+t ∂z j−t
exist and are

finite, then the limits

lim
t→∞

∑

k

∂2R

∂zk+t∂ z̄ j+t

∂2F

∂zi+t∂ z̄k+t

and

lim
t→∞

∑

k

∂2R

∂zi+t∂zk−t

∂2F

∂ z̄ j+t∂ z̄k−t

also exist and are finite. This implies the property (T2) holds for ∂2{R,F}
∂zi ∂ z̄ j

.

•Finally,weverify the property (T3) for ∂2{R,F}
∂zi ∂ z̄ j

.For the sakeof convenience,we introduce
the notations

P11
i j,∞ := lim

t→∞
∂2P

∂zi+t∂ z̄ j+t
,

P20
i j,∞ := lim

t→∞
∂2P

∂zi+t∂z j−t

and

P02
i j,∞ := lim

t→∞
∂2P

∂ z̄i+t∂z j−t
.

In view of R, F ∈ T ρ

D(r ,s)×O and thanks to the difference equality

AB − ab = (A − a)b + a(B − b)+ (A − a)(B − b), (3.15)

and the inequality in Lemma 7.5, we have
∥
∥
∥
∥
∥

∑

k

∂2R

∂zk+t∂ z̄ j+t

∂2F

∂zi+t∂ z̄k+t
− lim

t→∞
∑

k

∂2R

∂zk+t∂ z̄ j+t

∂2F

∂zi+t∂ z̄k+t

∥
∥
∥
∥
∥

D(r ,s)×O

≤
∑

k

∥
∥
∥
∥

∂2R

∂zk+t∂ z̄ j+t
− R11

k j,∞
∥
∥
∥
∥

D(r ,s)×O

∥
∥F11

ik,∞
∥
∥

D(r ,s)×O

+
∑

k

∥
∥
∥R11

k j,∞
∥
∥
∥

D(r ,s)×O

∥
∥
∥
∥

∂2F

∂zi+t∂ z̄k+t
− F11

ik,∞
∥
∥
∥
∥

D(r ,s)×O
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+
∑

k

∥
∥
∥
∥

∂2R

∂zk+t∂ z̄ j+t
− R11

k j,∞
∥
∥
∥
∥

D(r ,s)×O

∥
∥
∥
∥

∂2F

∂zi+t∂ z̄k+t
− F11

ik,∞
∥
∥
∥
∥

D(r ,s)×O

≤ |t |−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×O
∑

k

e−ρ(|i−k|+|k− j |)

+ |t |−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×O
∑

k

e−ρ(|i−k|+|k− j |)

+ |t |−2〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×O
∑

k

e−ρ(|i−k|+|k− j |)

≤ |t |−1Cδ−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×Oe−(ρ−δ)(|i− j |)

and
∥
∥
∥
∥
∥

∑

k

∂2R

∂zi+t∂zk−t

∂2F

∂ z̄ j+t∂ z̄k−t
− lim

t→∞
∑

k

∂2R

∂zi+t∂zk−t

∂2F

∂ z̄ j+t∂ z̄k−t

∥
∥
∥
∥
∥

D(r ,s)×O

≤
∑

k

∥
∥
∥
∥

∂2R

∂zi+t∂zk−t
− R20

ik,∞
∥
∥
∥
∥

D(r ,s)×O

∥
∥
∥F02

jk,∞
∥
∥
∥

D(r ,s)×O

+
∑

k

∥
∥R20

ik,∞
∥
∥

D(r ,s)×O

∥
∥
∥
∥

∂2F

∂ z̄ j+t∂ z̄k−t
− F02

jk,∞
∥
∥
∥
∥

D(r ,s)×O

+
∑

k

∥
∥
∥
∥

∂2R

∂zi+t∂zk−t
− R20

ik,∞
∥
∥
∥
∥

D(r ,s)×O

∥
∥
∥
∥

∂2F

∂ z̄ j+t∂ z̄k−t
− F02

jk,∞
∥
∥
∥
∥

D(r ,s)×O
≤ |t |−1Cδ−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×Oe−(ρ−δ)(|i− j |).

These imply that
∥
∥
∥
∥

∂2{R, F}
∂zi+t∂ z̄ j+t

− lim
t→∞

∂2{R, F}
∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r ,s)×O
≤ |t |−1Cδ−1〈R〉ρ,D(r ,s)×O〈F〉ρ,D(r ,s)×Oe−(ρ−δ)(|i− j |).

��

3.2 Töplitz–Lipschitz Matrices

Denote by M2(C) the space of 2× 2 complex matrices. Let ‖ · ‖ be any sub-multiplicative
norm on M2(C). Consider a bilateral infinite dimensional M2(C)−valued matrix

A : Z× Z→M2(C) :

(i, j) �→ Ai j =
(

A11
i j A12

i j
A21

i j A22
i j

)

.

The matrix multiplication is defined by (AB)i j =∑
k∈Z Aik Bk j .

Now we consider the matrices depend on (θ, ξ) ∈ D(r)×O.

Definition 3.3 (Matrices with Töplitz–Lipschitz property) Let r , ρ > 0. We say that a matrix
A = A(θ, ξ) on D(r) × O is Töplitz–Lipschitz and write A ∈ M

ρ
r ,O if 〈〈A〉〉ρ,r ,O < ∞,

where the norm 〈〈A〉〉ρ,r ,O is defined by the following conditions:
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(T1′) Exponentially off-diagonal decay

‖A11
i j ‖D(r)×O ≤ 〈〈A〉〉ρ,r ,Oe−ρ|i− j |, (3.16)

‖A12
i j ‖D(r)×O ≤ 〈〈A〉〉ρ,r ,Oe−ρ|i+ j |, (3.17)

‖A21
i j ‖D(r)×O ≤ 〈〈A〉〉ρ,r ,Oe−ρ|i+ j |, (3.18)

‖A22
i j ‖D(r)×O ≤ 〈〈A〉〉ρ,r ,Oe−ρ|i− j |. (3.19)

(T2′) Asymptotically Töplitz The limits

lim
t∈Z, t→∞ A11

i+t, j+t , lim
t∈Z, t→∞ A12

i+t, j−t , lim
t∈Z, t→∞ A21

i+t, j−t and lim
t∈Z, t→∞ A22

i+t, j+t

exist and are finite for all i, j ∈ Z.

(T3′) Lipschitz at infinity For sufficiently large |t |, t ∈ Z, the following hold.

‖A11
i+t, j+t − lim

t→∞ A11
i+t, j+t‖D(r)×O ≤ |t |−1〈〈A〉〉ρ,r ,Oe−ρ|i− j |. (3.20)

‖A12
i+t, j−t − lim

t→∞ A12
i+t, j−t‖D(r)×O ≤ |t |−1〈〈A〉〉ρ,r ,Oe−ρ|i+ j |. (3.21)

‖A21
i+t, j−t − lim

t→∞ A21
i+t, j−t‖D(r)×O ≤ |t |−1〈〈A〉〉ρ,r ,Oe−ρ|i+ j |. (3.22)

‖A22
i+t, j+t − lim

t→∞ A22
i+t, j+t‖D(r)×O ≤ |t |−1〈〈A〉〉ρ,r ,Oe−ρ|i− j |. (3.23)

Definition 3.4 Given a unilateral infinite dimensional M2(C)−valued matrix

A : N× N→M2(C),

we lift it from N× N to Z× Z by

Ãi j =
{

Ai j , i ≥ 1, j ≥ 1,

0, otherwise.
(3.24)

We say that A is Töplitz–Lipschitz and write A ∈ M
ρ
r ,O if Ã is Töplitz–Lipschitz and

define
〈〈A〉〉ρ,r ,O := 〈〈 Ã〉〉ρ,r ,O <∞. (3.25)

The following conclusion indicate that Mρ
r ,O is an algebra. This important property will

be applied to Proposition 3.4.

Proposition 3.2 Let 0 < δ < ρ. Suppose the matrices A, B ∈ M
ρ
r ,O. Then their product

AB ∈M
ρ−δ
r ,O and there exists a constant C > 0 so that

〈〈AB〉〉ρ−δ,r ,O ≤ Cδ−1〈〈A〉〉ρ,r ,O〈〈B〉〉ρ,r ,O.

The proof is given in Sect. 7.2, Appendix.

3.3 Flow of Linear Hamiltonian System

In this section, we study the Hamiltonian flow generated by a quadratic Töplitz–Lipschitz
function F(θ, z, z̄; ξ) ∈ T ρ

D(r ,s)×O.

In the sequel, we use the notations Z = (Z j )
T
j∈Z with Z j = (z j , z̄ j )

T . The Hessian ∂2Z F
of F with respect to Z reads

∂2Z F = (∇Z j∇Zi F
)

i, j∈Z

123



Journal of Dynamics and Differential Equations

where

∇Z j∇Zi F =
⎛

⎝
∂2F

∂zi ∂z j

∂2F
∂zi ∂ z̄ j

∂2F
∂ z̄i ∂z j

∂2F
∂ z̄i ∂ z̄ j

⎞

⎠ .

Denote A = J∂2Z F, where

J = diag

{

J j =
(

0 1
−1 0

)}

j∈Z
,

then

Ai j =
⎛

⎝
∂2F

∂ z̄i ∂z j

∂2F
∂ z̄i ∂ z̄ j

− ∂2F
∂zi ∂z j

− ∂2F
∂zi ∂ z̄ j

⎞

⎠ . (3.26)

By the definitions of Töplitz–Lipschitz function and Töplitz–Lipschitz matrix, they have the
following relation.

Lemma 3.3 Let ρ > 0. Suppose F(θ, z, z̄, ; ξ) is a quadratic function on D(r , s)×O. Then
F ∈ T ρ

D(r ,s)×O if and only if A = J∂2Z F ∈M
ρ
r ,O. Moreover,

〈〈A〉〉ρ,r ,O = 〈F〉ρ,D(r ,s)×O. (3.27)

The Hamiltonian equation associated to the quadratic function F reads
{

(θ̇(t), İ (t), ż(t), ˙̄z(t)) = X F (θ(t), I (t), z(t), z̄(t)),

(θ(0), I (0), z(0), z̄(0)) = (θ0, I 0, z0, z̄0).
(3.28)

Under the new notation Z , the quadratic function F ∈ T ρ

D(r ,s)×O can be rewritten as

F(θ, Z) = 1

2
Z T A(θ)Z = 1

2
Z T ∂2Z F(θ, 0)Z (3.29)

and the Eq. (3.28) reads
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̇ (t) = 0,

İ (t) = −∂θ F(θ(t), Z(t)),

Ż(t) = A(θ(t))Z = J∂Z F(θ(t), 0)Z(t),

(θ(0), I (0), Z(0)) = (θ0, I 0, Z0).

(3.30)

The Jacobian ∂Z0 Z (the derivative of Z(t) with respect to Z0) is

∂Z0 Z =
(
∂Z0

j
Zi

)

i, j∈Z
=

⎛

⎝

⎛

⎝

∂zi
∂z0j

∂zi
∂ z̄0j

∂ z̄i
∂z0j

∂ z̄i
∂ z̄0j

⎞

⎠

⎞

⎠

i, j∈Z
.

Proposition 3.4 Let 0 < δ < min{ρ, 1} and 0 < σ < r/3. Suppose Csσ ≤ ln 2 and
Cs2 ≤ 2 and the quadratic function F ∈ T ρ

D(r ,s)×O and

‖X F‖s;D(r−σ,s)×O + 〈F〉ρ,D(r−σ,s)×O < Cσ. (3.31)

Then the solution (θ(t), I (t), Z(t)) of the Eq. (3.30) with initial condition (θ0, I 0, Z0) ∈
D(r − σ, s

4 ) satisfies (θ(t), I (t), Z(t)) ∈ D(r , s
2 ) for all 0 ≤ t ≤ 1. Moreover, the Jacobian

∂Z0 Z(t) satisfies
〈〈∂Z0 Z(t)− I d〉〉ρ−δ,r−σ,O ≤ C〈F〉ρ,D(r−σ,s)×O. (3.32)
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where the notation I d is the identity mapping.

Proof Since θ̇ (t) = 0, then θ(t) ≡ θ0 ∈ D(r − σ) remains unchanged.
Consider the equation for Z :

{
Ż = A(θ0)Z := J∂Z F(θ0, 0)Z ,

Z(0) = Z0.
(3.33)

It is a linear system with constant coefficients, thus its solution is

Z(t) = et A(θ0) Z0. (3.34)

By (3.26) and (3.31),

‖A‖�a,p→�a,p ≤ s‖X F‖s;D(r−σ,s)×O ≤ Csσ.

Thus thanks to Csσ ≤ ln 2, for all 0 ≤ t ≤ 1,

‖Z(t)‖�a,p ≤ e‖A‖�a,p→�a,p ‖Z0‖�a,p ≤ eCsσ s

4
≤ s

2
.

Consider the equation for I . By (3.30) and (3.34), we have
{

İ (t) = − 1
2 Z T ∂θ A(θ)Z ,

I (0) = I 0.
(3.35)

The integral form of the above Eq. (3.35) is

I (t) = I 0 − 1

2

∫ t

0
Z T (τ )∂θ A(θ)Z(τ )dτ. (3.36)

Then thanks to Cs2 ≤ 2, for all 0 ≤ t ≤ 1,

|I (t)| ≤ |I 0| + 1

2σ
‖A‖�a,p→�a,p‖Z(t)‖2�a,p ≤ s

4
+ Cs3

8
≤ s

2
.

Thus the flow Xt
F exists for all 0 ≤ t ≤ 1 and it maps the domain D(r − σ, s

4 ) to D(r , s
2 ).

Denote the solution (θ(t), I (t), z(t), z̄(t)) = Xt
F (θ0, I 0, z0, z̄0), then for 0 ≤ t ≤ 1 and

(θ0, I 0, z0, z̄0) ∈ D(r − σ, s
4 ), the solution (θ(t), I (t), z(t), z̄(t)) ∈ D(r , s

2 ).

Now we prove the estimate (3.32). Rewrite the solution Z(t) in (3.34) as

Z(t) = (I d + B(t))Z0, (3.37)

where

B(t) = et A(θ) − I d =
∞∑

k=1

tk

k! Ak(θ).

By Proposition 3.2 and Lemma 3.3, for all 0 ≤ t ≤ 1,

〈〈B〉〉ρ−δ,r−σ,O ≤
∞∑

k=1

(k − 1)k−1

k!
(

C

δ

)k−1
〈〈A〉〉kρ,r−σ

≤
∞∑

k=1

ek−1

k

(
C

δ

)k−1
〈F〉kρ,D(r−σ,s)×O

≤ C〈F〉ρ,D(r−σ,s)×O. (3.38)

This completes the proof of the estimate (3.32). ��
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Proposition 3.5 (Canonical transformation). Let 0 < δ < min{ρ/3, 1}, 0 < σ < r and
R, F ∈ T ρ

D(r ,s)×O, where the Hamiltonian F is a quadratic function. Assume that the

Hamiltonian F satisfies (3.31). Then the composition R ◦ X1
F ∈ T ρ−3δ

D(r−σ,s/4)×O and there
exists a constant C > 0 so that

〈R ◦ X1
F 〉ρ−3δ,D(r−σ,s/4)×O ≤ Cδ−2〈R〉ρ,D(r ,s/2)×O. (3.39)

Proof By Proposition 3.4, the time-1 mapping X1
F maps (θ0, I 0, Z0) ∈ D(r − σ, s

4 ) to
(θ, I , Z) := X1

F (θ0, I 0, Z0) ∈ D(r , s
2 ).

Since themapping Z is linear in Z0, the Hessian ∂2
Z0 Z = 0.Then theHessian ∂2

Z0(R◦X1
F )

of R ◦ X1
F with respect to Z0 becomes

∂2Z0(R ◦ X1
F ) = (∂Z0 Z)T ∂2Z R(X1

F )∂Z0 Z .

Note that 〈〈J T (∂Z0 Z)T J 〉〉ρ,r = 〈〈∂Z0 Z〉〉ρ,r and J T = J−1 = −J , then by Lemma 3.3
and Proposition 3.4, we have

〈R ◦ X1
F 〉ρ−3δ,D(r−σ,s/4)×O

= 〈〈J∂2Z0(R ◦ X1
F )〉〉ρ−3δ,D(r−σ,s/4)×O

≤ Cδ−2〈〈J T (∂Z0 Z)T J 〉〉ρ−δ,r−σ 〈〈J∂2Z R〉〉ρ,D(r ,s/2)×O〈〈∂Z0 Z〉〉ρ−δ,r−σ

= Cδ−2〈R〉ρ,D(r ,s/2)×O〈〈∂Z0 Z〉〉2ρ−δ,r−σ

≤ Cδ−2〈R〉ρ,D(r ,s/2)×O. (3.40)

��

4 A Reducibility TheoremUnder Brjuno Condition

Consider the following quadratic Hamiltonian with time quasi-periodic perturbation:

H(ωt, z, z̄) =
∑

j≥1
� j z j z̄ j + P(ωt, z, z̄)

=
∑

j≥1
� j z j z̄ j +

∑

|α|+|β|=2
Pαβ(ωt)zα z̄β, (4.1)

where (z, z̄) ∈ �
a,p
0 × �

a,p
0 , the space �

a,p
0 is the unilateral infinite sequences space defined

in (3.11). The forcing frequency vector ω ∈ [0, 2π)n and the normal frequencies � j ∈ R

for all j ≥ 1. Then the associated linear Hamiltonian system reads
{

ż j = i� j z j + i ∂
∂ z̄ j

P(ωt, z, z̄),

˙̄z j = −i� j z̄ j − i ∂
∂z j

P(ωt, z, z̄), j ≥ 1.
(4.2)

Introducing the angle variables θ = ωt ∈ T
n, and the auxiliary action variables I ∈ R

n,

then we obtain an autonomous Hamiltonian system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż j = i� j z j + i ∂
∂ z̄ j

P(ωt, z, z̄),

˙̄z j = −i� j z̄ j − i ∂
∂z j

P(ωt, z, z̄), j ≥ 1,

θ̇i = ωi , i = 1 · · · n,

İi = − ∂
∂θi

P(θ, z, z̄), i = 1 · · · n.

(4.3)
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on the phase space Pa,p
0 := T

n × R
n × �

a,p
0 × �

a,p
0 with respect to the symplectic form

n∑

i=1
dθi ∧ d Ii + i

∑

j≥1
dz j ∧ dz̄ j .

The new Hamiltonian is

H(θ, I , z, z̄;ω) = N + P(θ, z, z̄;ω)

=
n∑

i=1
ωi Ii +

∑

j≥1
� j z j z̄ j +

∑

|α|+|β|=2
Pαβ(θ;ω)zα z̄β . (4.4)

Given s, r > 0, in the following, we investigate Hamiltonian (4.4) on the domain D(r , s) ⊆
Pa,p
0,C . The forcing frequency ω ∈ [0, 2π)n will play the role of parameters. Suppose

H(θ, I , z, z̄;ω) in (4.4) is real analytic on (θ, I , z, z̄;ω) and C1
W−smooth in compact subset

O ⊆ [0, 2π)n with positive Lebesgue measure. Furthermore, suppose Hamiltonian (4.4)
satisfies the following assumptions.

(A1) Asymptotics of normal frequencies:

� j = j + �̆ j (ω), j ≥ 1, (4.5)

where �̆ j ∈ C1
W (O) and there exist positive constants A0, such that sup j≥1,ω∈O |�̆ j | ≤ A0.

sup j≥1 supω∈O |∂ω�̆ j | ≤ ε0.

(A2) Non-resonance conditions: There exist a constant 0 < γ ≤ 1 and some fixed approx-
imation function 
 such that uniformly on O, for all (k, l) ∈ Z

n × Z
∞\{0},

|k · ω| ≥ γ


(|k|) , k �= 0,

|k · ω + l ·�(ω)| ≥ γ


(|k|) , |l| = 2 (4.6)

where |k| = |k1| + · · · + |kn |, |l| =∑
j |l j |.

(A3) Regularity: The Hamiltonian vector field X P = (0,−Pθ , iPz̄,−iPz)
T of perturbation

P defines a map

X P : D(r , s)×O→ Pa,p
0,C ,

X P (·;ω) is real analytic in D(r , s) for each ω ∈ O, and P(χ; ·) is C1
W−smooth in O for

each χ ∈ D(r , s).

(A4) Töplitz–Lipschitz property: �̆ := diag(�̆ j ) j≥1 ∈ M
ρ
r ,O and P ∈ T ρ

D(r ,s)×O for
some ρ > 0.

Denote
[P]ρs;D(r ,s)×O := ‖X P‖s;D(r ,s)×O + 〈P〉ρ,D(r ,s)×O. (4.7)

Theorem 4.1 Let 
 be an approximation function such that

∑

k∈Zn

1√

(|k|) < +∞. (4.8)
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If the Hamiltonian H = N + P in (4.4) satisfies the above assumptions (A1)–(A4) and there

exists 0 < ε0 < min{ γ4 (
√


(1)− 1), (C∗γ 25)
3
2 , 1

12n } so that

〈〈�̆〉〉ρ,r ,O < ε0 and [P]ρs;D(r ,s)×O < ε0.

Then there exist

(i) a Cantor subset Oγ ⊂ O with Lebesgue measure mes(O \Oγ ) = O(
√

γ ) as γ → 0;
(ii) a C1

W−smooth family of real analytic, symplectic coordinate transformations � = �ω :
Pa,0
0 ×Oγ → Pa,0

0 of the form

�ω

⎛

⎝
θ

I
Z

⎞

⎠ =
⎛

⎝
θ

I + 1
2 Z T Mω(θ)Z
Lω(θ)Z

⎞

⎠ (4.9)

where Z = (Z j )
T
j≥1 with Z j = (z j , z̄ j )

T . Mω(θ) and Lω(θ) are linear bounded opera-

tors on �
a,p
0 × �

a,p
0 for all p ≥ 0, and Lω(θ) is also invertible;

(iii) a C1
W−smooth family of new normal forms

N∞ =
n∑

j=1
ω j I j +

∑

j≥1
�∞j z j z̄ j (4.10)

such that on Pa,0
0 ×Oγ ,

H ◦� = N∞.

Moreover the new normal frequencies are close to the original ones

|�∞ −�|Oγ ≤ cε,

and the the new frequencies satisfy a non-resonant condition: for all ω ∈ Oγ ,

|k · ω| ≥ γ

2
(|k|) , ∀k �= 0,

|k · ω + l ·�∞(ω)| ≥ γ

2
(|k|) , ∀k ∈ Z
n, |l| = 2.

5 Applications to Some Linear Hamiltonian PDEs

We give the proof of Theorem 1.1 by Theorem 4.1.

5.1 The Hamiltonian DerivativeWave Equations

We consider the wave Eq. (1.3). Let
{

w = 1√
2
(Dmu + iut ),

w̄ = 1√
2
(Dmu − iut ).

(5.1)

Then the Eq. (1.3) is written as a non-autonomous Hamiltonian equation
{

wt = −i ∂
∂w̄

H(t, w, w̄) = −iDmw − iε
2 V (ωt, x)(w + w̄),

w̄t = i ∂
∂w

H(t, w, w̄) = iDmw + iε
2 V (ωt, x)(w + w̄).

(5.2)
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with the Hamiltonian

H(t, w, w̄) =
∫ π

0

[
w̄Dmw + ε

2
V (ωt, x)(w + w̄)2

]
dx .

Recall the function space Ha,p
0 in (1.10). Through the inverse discrete Fourier transform

S : �a,p
0 → Ha,p

0 , the space Ha,p
0 can be identified with the space �

a,p
0 .

We expand w(t, x), w̄(t, x) on the eigenfunctions

w(t, x) =
∑

j≥1
q j (t)φ j (x) ∈ Ha,p

0 , w̄(t, x) =
∑

j≥1
q̄ j (t)φ j (x) ∈ Ha,p

0

with q = (q j ) j≥1, q̄ = (q̄ j ) j≥1 ∈ �
a,p
0 . Then the Eq. (4.3) becomes

{
q̇ j = −i ∂

∂q̄ j
H(t, q, q̄) = −iλ j q j − i ∂

∂ q̄ j
G,

˙̄q j = i ∂
∂q j

H(t, q, p) = iλ j q j + i ∂
∂q̄ j

G,
(5.3)

where

H(t, q, p) = �+ G,

� =
∑

j≥1
λ j q j q̄ j , λ j =

√

j2 + m,

G = ε

2

∑

i, j≥1
(qi + q̄i )(q j + q̄ j )

∫ π

0
V (tω, x)φi (x)φ j (x)dx .

Now we introduce the angle variables θ = ωt ∈ T
n, the auxiliary action variables I ∈ R

n

and the complex coordinates z = (z j ) j≥1, z̄ = (z̄ j ) j≥1 via letting z j = −q j , z̄ j = −q̄ j .

Then we obtain an autonomous Hamiltonian system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż j = iλ j z j + i ∂
∂ z̄ j

P(θ, z, z̄) j ≥ 1,

˙̄z j = −iλ j z̄ j − i ∂
∂z j

P(θ, z, z̄) j ≥ 1,

θ̇i = ωi i = 1 · · · n,

İi = − ∂
∂θi

P(θ, z, z̄) i = 1 · · · n.

(5.4)

on the phase space Pa,p
0 with respect to the symplectic form

n∑

i=1
dθi ∧ d Ii + i

∑

j≥1
dz j ∧ dz̄ j .

The Hamiltonian associated to the system (5.4) is

H = N + P (5.5)

where

N =
n∑

j=1
ω j I j +

∑

j≥1
λ j z j z̄ j ,

P = ε

2

∑

i, j≥1
(zi + z̄i )(z j + z̄ j )

∫ π

0
V (θ, x)φi (x)φ j (x)dx . (5.6)
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In the following, we check that the Hamiltonian (5.5) satisfies the assumptions (A1)–
(A4). Let r be that in Assumption 1.1 and s > 0 be a suitable positive number. Take ε0 =
(2p+1 + 24 + 18n

r )CV ε > 0.

(1) Verifying the assumption (A1).
Since λ j =

√
j2 + m = j + m

2 j − m2

8 j3
+ · · · , then we take � j = j + �̆ j = j + O( 1j ).

Note that �̆ j does not depend onω ∈ [0, 2π)n, thus ∂ω�̆ j = 0 and �̆ j ∈ C1
W ([0, 2π)n).

Take A0 = 1+m. Since �̆ j = O( 1j ) and ∂ω�̆ j = 0, then for all j ≥ 1 andω ∈ [0, 2π)n,

we have |�̆ j | ≤ A0 and |∂ω�̆ j | ≤ ε0.

(2) Verifying the assumption (A2).
Take the vector v = (sgn(k1), . . . , sgn(kn)) then k ·v = |k|. Let ω = ωμ = μv+w with
μ ∈ R, w ∈ v⊥. Consider the function f (μ) = k · ωμ + l · � = |k|μ + k · w + l · �.

Thanks to ∂ω� = 0, we have

| f ′(μ)| = |k|.
By Lemma 7.6 in Appendix, we have

mes{μ : μv + w ∈ [0, 2π)n, | f (μ)| ≤ δ} ≤ 4δ

|k| .

It follows that the measure

mes

{

ω ∈ [0, 2π)n : |k · ω + l ·�| ≤ γ


(|k|) , |l| = 0, 2

}

≤ diamn−1([0, 2π)n)mes

{

μ : μv + w ∈ [0, 2π)n, | f (μ)| ≤ γ


(|k|)
}

≤ (2π)n(n−1) 4γ

|k|
(|k|) . (5.7)

Thus there is a subset O ⊂ [0, 2π)n of positive Lebesgue measure with mesO ≥
(2π)n(1− O(γ )) such that the assumption(A2) holds on O.

(3) Verifying the assumption (A3).
The perturbation P in (5.6) reads

P(θ, z, z̄) = ε

2

∑

i j≥1
p20i j (θ)zi z j + ε

∑

i j≥1
p11i j (θ)zi z̄ j + ε

2

∑

i j≥1
p02i j (θ)z̄i z̄ j ,

where

p20i j (θ) = p11i j (θ) = p02i j (θ) =
∫ π

0
V (θ, x)φi (x)φ j (x)dx

=

⎧
⎪⎨

⎪⎩

1
2 (Ṽi− j (θ)− Ṽi+ j (θ)), i > j,

Ṽ0(θ)− 1
2 Ṽ2 j (θ), i = j,

1
2 (Ṽ j−i (θ)− Ṽi+ j (θ)), i < j .

(5.8)

Now we investigate the regularity of the perturbation vector field
X P = (0,− ∂ P

∂θ
, i ∂ P

∂ z̄ ,−i ∂ P
∂z ). Note that the vector field X P does not depend on ω.

For the above r , s > 0, we estimate the vector field norm

‖X P‖s;D(r ,s)×O
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= 1

s2

n∑

h=1

∥
∥
∥
∥

∂ P

∂θh

∥
∥
∥
∥

D(r ,s)×O
+ 1

s
sup

‖z‖a,p<s,‖z̄‖a,p<s

∞∑

i=1
i peai

(∥
∥
∥
∥

∂ P

∂ z̄i

∥
∥
∥
∥

D(r)×O
+

∥
∥
∥
∥

∂ P

∂zi

∥
∥
∥
∥

D(r)×O

)

.

•We first estimate the sum
n∑

h=1

∥
∥
∥
∥

∂ P

∂θh

∥
∥
∥
∥

D(r ,s)×O

= ε sup
‖z‖a,p<s,‖z̄‖a,p<s

n∑

h=1

∑

i, j≥1

(
1

2
‖∂ p20i j

∂θh
‖D(r)|zi ||z j |

+‖∂ p11i j

∂θh
‖D(r)|zi ||z̄ j | + 1

2
‖∂ p02i j

∂θh
‖D(r)|z̄i ||z̄ j |

)

≤ nε

r
sup

‖z‖a,p<s,‖z̄‖a,p<s

⎛

⎝
∑

i, j≥1
‖p20i j ‖D(2r)|zi ||z j |

+
∑

i, j≥1
‖p11i j ‖D(2r)|zi ||z̄ j | +

∑

i, j≥1
‖p02i j ‖D(2r)|z̄i ||z̄ j |

⎞

⎠ .

For this purpose, it suffices to estimate each of three sums on the last line:
∑

i, j≥1
‖p11i j ‖D(2r)|zi ||z̄ j |

=
∑

j≥1
‖p11j j ‖D(2r)|z j ||z̄ j | +

∑

j≥1

∑

1≤i≤ j−1
‖p11i j ‖D(2r)|zi ||z̄ j | +

∑

j≥1

∑

i≥ j+1
‖p11i j ‖D(2r)|zi ||z̄ j |

≤
∑

j≥1
(‖Ṽ0(θ)‖D(2r) + ‖Ṽ2 j (θ)‖D(2r))|z j ||z̄ j |

+
∑

j≥1

∑

1≤i≤ j−1
(‖Ṽ j−i‖D(2r) + ‖Ṽ j+i‖D(2r))|zi ||z̄ j |

+
∑

j≥1

∑

i≥ j+1
(‖Ṽi− j‖D(2r) + ‖Ṽ j+i‖D(2r))|zi ||z̄ j |

≤ 6CV ‖z‖a,p‖z̄‖a,p .

Similarly, we have
∑

i, j≥1
‖p20i j ‖D(2r)|zi ||z j | ≤ 6CV ‖z‖a,p‖z‖a,p

and
∑

i, j≥1
‖p02i j ‖D(2r)|z̄i ||z̄ j | ≤ 6CV ‖z̄‖a,p‖z̄‖a,p.

This shows that
1

s2

n∑

h=1
‖ ∂ P

∂θh
‖D(r ,s)×O ≤ 18n

r
CV ε. (5.9)

•We turn to the estimate for

1

s
sup

‖z‖a,p<s,‖z̄‖a,p<s

∞∑

i=1
i peai

(∥
∥
∥
∥
∂ P

∂ z̄i

∥
∥
∥
∥

D(r)×O
+

∥
∥
∥
∥
∂ P

∂zi

∥
∥
∥
∥

D(r)×O

)

.
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It suffices to consider

∞∑

i=1
i peai

∥
∥
∥
∥
∂ P

∂zi

∥
∥
∥
∥

D(r)×O
= ε

∞∑

i=1

∞∑

j=1
i peai‖p11i j ‖D(r)|z j |+ε

∞∑

i=1

∞∑

j=1
i peai‖p02i j ‖D(r)|z̄ j |.

By (5.8),

∞∑

i=1

∞∑

j=1
i peai‖p11i j ‖D(r)|z j |

=
∑

j≥1
j peaj‖Ṽ0(θ)− 1

2
Ṽ2 j (θ)‖D(2r)|z j | · · · (∗1)

+
∑

j≥1

∑

1≤i≤ j−1
i peai‖1

2
(Ṽ j−i (θ)− Ṽi+ j (θ))‖D(2r)|z j | · · · (∗2)

+
∑

j≥1

∑

i≥ j+1
i peai‖1

2
(Ṽi− j (θ)− Ṽi+ j (θ))‖D(2r)|z j | · · · (∗3),

where

(∗1) =
∑

j≥1
j peaj‖Ṽ0(θ)− 1

2
Ṽ2 j (θ)‖D(2r)|z j | ≤ 2‖V ‖D(2r),b,p‖z‖a,p.

(∗2) =
∑

j≥1

∑

1≤i≤ j−1
i peai‖1

2
(Ṽ j−i (θ)− Ṽi+ j (θ))‖D(2r)|z j |

≤
∑

j≥1

∑

1≤i≤ j−1
i peai 1

2
‖V ‖D(2r),b,p( j − i)−pe−b( j−i)|z j |

+
∑

j≥1

∑

1≤i≤ j−1
i peai 1

2
‖V ‖D(2r),b,p( j + i)−pe−b( j+i)|z j |

≤ 1

2
‖V ‖D(2r),b,p

∑

j≥1

∑

1≤i≤ j−1

(
i

j − i

)p

eaie−b( j−i)|z j |

+ 1

2
‖V ‖D(2r),b,p

∑

j≥1

∑

1≤i≤ j−1

(
i

j + i

)p

eaie−b( j+i)|z j |

≤ 1

2
‖V ‖D(2r),b,p

∑

j≥1
|z j | j p2eaj + 1

2
‖V ‖D(2r),b,p

∑

j≥1
2|z j |

≤ 2CV ‖z‖a,p.

(∗3) =
∑

j≥1

∑

i≥ j+1
i peai‖1

2
(Ṽi− j (θ)− Ṽi+ j (θ))‖D(2r)|z j |

≤
∑

j≥1

∑

i≥ j+1
i peai 1

2
‖V ‖D(2r),b,p(i − j)−pe−b(i− j)|z j |

+
∑

j≥1

∑

i≥ j+1
i peai 1

2
‖V ‖D(2r),b,p( j + i)−pe−b( j+i)|z j |
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≤ 1

2
‖V ‖D(2r),b,p

∑

j≥1

∑

i≥ j+1

(
i

i − j

)p

eaie−b(i− j)|z j |

+ 1

2
‖V ‖D(2r),b,p

∑

j≥1

∑

i≥ j+1

(
i

j + i

)p

eaie−b( j+i)|z j |

≤ (2p + 2)CV ‖z‖a,p.

Then

∞∑

i=1

∞∑

j=1
i peai‖p11i j ‖D(r)|z j | ≤ (∗1)+ (∗2)+ (∗3) ≤ (2p + 6)CV ‖z‖a,p.

By the similar argument, we get

∞∑

i=1

∞∑

j=1
i peai‖p02i j ‖D(r)|z̄ j | ≤ (2p + 6)CV ‖z̄‖a,p.

It follows that

1

s
sup

‖z‖a,p<s,‖z̄‖a,p<s

∞∑

i=1
i peai

(

‖∂ P

∂ z̄i
‖D(r)×O + ‖∂ P

∂zi
‖D(r)×O

)

≤ 2(2p + 6)CV ε.

(5.10)
We conclude from (5.9) and (5.10) that

‖X P‖s;D(r ,s)×O

= 1

s2

n∑

h=1
‖ ∂ P

∂θh
‖D(r ,s)×O + 1

s
sup

‖z‖a,p<s,‖z̄‖a,p<s

∞∑

i=1
i peai

(

‖ ∂ P

∂ z̄i
‖D(r)×O + ‖ ∂ P

∂zi
‖D(r)×O

)

≤ (2p+1 + 12+ 18n

r
)CV ε ≤ ε0.

Thus we complete the verification of the regularity for X P .

(4) Verifying the assumption (A4).
• We verify �̆ := diag(�̆ j ) j≥1 satisfies Töplitz–Lipschitz property. During the veri-
fication of the assumption (A1), we have obtained |�̆ j | ≤ C0

j , where C0 is a constant

depending on m. It is evident that limt→∞ �̆ j+t = 0 and

∥
∥
∥ lim

t→∞ �̆ j+t

∥
∥
∥
O
≤ C0.

∥
∥
∥�̆ j+t − lim

t→∞ �̆ j+t

∥
∥
∥
O
=

∥
∥
∥�̆ j+t − lim

t→∞ �̆ j+t

∥
∥
∥
O
≤ C0

| j + t | ≤
C0

|t | .

• Taking ρ = 2a, we verify the perturbation P ∈ T ρ

D(r ,s)×O.

We first consider ∂2P
∂zi ∂ z̄ j

. By (5.8), we have for t ≥ 1,

∂2P

∂zi+t∂ z̄ j+t
= ε p11i+t, j+t (θ) =

⎧
⎪⎨

⎪⎩

ε
2 (Ṽi− j (θ)− Ṽi+ j+2t (θ)), i > j,

εṼ0(θ)− ε
2 Ṽ2 j+2t (θ), i = j,

ε
2 (Ṽ j−i (θ)− Ṽi+ j+2t (θ)), i < j .
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Due to ‖Ṽ j‖D(2r) ≤ CV e−2aj , j ≥ 1, the limit limt→∞ ∂2P
∂zi+t ∂ z̄ j+t

exists and

lim
t→∞

∂2P

∂zi+t∂ z̄ j+t
=

⎧
⎪⎨

⎪⎩

ε
2 Ṽi− j (θ), i > j,

εṼ0(θ), i = j,
ε
2 Ṽ j−i (θ), i < j .

Moreover,
∥
∥
∥
∥ lim

t→∞
∂2P

∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r ,s)×O
≤ ε

∥
∥Ṽ|i− j |(θ)

∥
∥

D(r ,s)×O ≤ ε0e
−ρ|i− j |.

Thanks to the exponentially decay of Ṽ j , we also have
∥
∥
∥
∥

∂2P

∂zi+t∂ z̄ j+t
− lim

t→∞
∂2P

∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r ,s)×O

=

⎧
⎪⎨

⎪⎩

ε
2

∥
∥Ṽi+ j+2t (θ))

∥
∥

D(r ,s)×O , i > j,
ε
2

∥
∥Ṽ2 j+2t (θ)

∥
∥

D(r ,s)×O , i = j,
ε
2

∥
∥Ṽi+ j+2t (θ))

∥
∥

D(r ,s)×O , i < j,

≤ ε

2
‖V ‖D(2r),b,pe

−2a(i+ j+2t) ≤ ε0

t
e−ρ|i− j |.

where we use the inequality e−2a(i+ j+2t) = e−2a(i+ j)e−2t ≤ 1
t e
−2a|i− j |.

As to the second derivative ∂2P
∂zi ∂z j

= ε
2 p20i j (θ), we consider the lift P̃(θ, z̃, ¯̃z) =

P(θ, z, z̄), where (z̃, ¯̃z) ∈ �a,p × �a,p and z̃ = z j , ¯̃z = z̄ j when j ≥ 1. (recall the
Definition 3.2). Then

∂2 P̃

∂ z̃i∂ z̃ j
=

{
∂2P

∂zi ∂z j
, i ≥ 1, j ≥ 1,

0, otherwise.
(5.11)

When |t | is sufficiently large, we have either i + t < 0 or j − t < 0, then ∂2 P̃
∂ z̃i+t ∂ z̃ j−t

= 0

and thus the limit limt→∞ ∂2 P̃
∂ z̃i+t ∂ z̃ j−t

= 0. It is obvious that

∥
∥
∥
∥ lim

t→∞
∂2 P̃

∂ z̃i+t∂ z̃ j−t

∥
∥
∥
∥

D(r ,s)×O
≤ ε0e

−ρ|i+ j |

and ∥
∥
∥
∥

∂2 P̃

∂ z̃i+t∂ z̃ j−t
− lim

t→∞
∂2 P̃

∂ z̃i+t∂ z̃ j−t

∥
∥
∥
∥

D(r ,s)×O
≤ ε0

t
e−ρ|i+ j |.

Similar argument also applies to the second derivative ∂2P
∂ z̄i ∂ z̄ j

.

It follows that P ∈ T ρ

D(r ,s)×O and 〈P〉ρ,D(r ,s)×O ≤ ε0.

5.2 The Half-Wave Equations

Denote the inner product 〈u, v〉 = Re
∫ π

0 u(x)v(x)dx .The half-wave Eq. (1.4) can bewritten
as

ut = i∇H(t, u) = iD0u + iεV (ωt, x)u. (5.12)
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where the Hamiltonian

H(t, u) = 1

2
〈D0u, u〉 + ε

2

∫ π

V (ωt, x)|u|2dx .

We expand u(t, x) on the eigenfunctions

u(t, x) =
∑

j≥1
q j (t)φ j (x) ∈ Ha,p

0 ,

(see (1.10) on the space Ha,p
0 ) where q = (q j ) j≥1 ∈ �

a,p
0 . Then the Eq. (5.12) becomes

q̇ j = 2i
∂

∂ q̄ j
H(t, q, q̄) = λ j q j + 2

∂

∂ q̄ j
G, (5.13)

where

H(t, q, q̄) = �+ G,

� =
∑

j≥1

λ j

2
q j q̄ j , λ j = j,

G = ε

2

∑

j,k≥1
q j q̄k

∫ π

0
V (tω, x)φ j (x)φk(x)dx .

To rewrite the above equation as an autonomous Hamiltonian system, we introduce the
angle variables θ = ωt ∈ T

n, the action variables I ∈ R
n and the complex coordinates

z = (z j ) j≥1, z̄ = (z̄ j ) j≥1 through

z j = 1√
2

q j , z̄ j = 1√
2

q̄ j .

Then we obtain an autonomous Hamiltonian system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż j = iλ j z j + i ∂
∂ z̄ j

P(θ, z, z̄) j ≥ 1,

˙̄z j = −iλ j z̄ j − i ∂
∂z j

P(θ, z, z̄) j ≥ 1,

θ̇i = ωi i = 1 · · · n,

İi = − ∂
∂θi

P(θ, z, z̄) i = 1 · · · n.

(5.14)

on the phase space Pa,p
0 with respect to the symplectic form

n∑

i=1
dθi ∧ d Ii + i

∑

j≥1
dz j ∧ dz̄ j .

The new Hamiltonian associated to the system (5.14) is

H = N + P (5.15)

where

N =
n∑

i=1
ωi Ii +

∑

j≥1
λ j z j z̄ j ,

P = ε
∑

l,k≥1
zl z̄k

∫ π

0
V (tω, x)φl(x)φk(x)dx .
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The next is the verification of the assumptions (A1)–(A4) for the Hamiltonian (5.15).
Let r be that in Assumption 1.1 and s > 0 be a suitable positive number. Take ε0 =
(2p+1 + 24 + n

2r )CV ε > 0.

(1) Verifying the assumption (A1).
Since λ j = j, then we take � j = j + �̆ j with �̆ j = 0, thus �̆ j ∈ C1

W ([0, 2π)n). Let
A0 = 1. It is obvious that for all j ≥ 1 and ω ∈ [0, 2π)n, |�̆ j | ≤ A0 and |∂ω�̆ j | ≤ ε0.

(2) Verifying the assumption (A2).
Following the verification of the assumption (A2), we can also prove that there is a subset
O ⊂ [0, 2π)n of positive Lebesgue measure with mesO ≥ (2π)n(1− O(γ )) such that
the assumption (A2) holds for (5.15) on O.

(3) Verifying the assumption (A3).
The perturbation P in (5.15) reads

P = ε
∑

i j≥1
pi j (θ)zi z̄ j , (5.16)

where

pi j (θ) :=
∫ π

0
V (θ, x)φi (x)φ j (x)dx

=

⎧
⎪⎨

⎪⎩

1
2 (Ṽi− j (θ)− Ṽi+ j (θ)), i > j,

Ṽ0(θ)− 1
2 Ṽ2 j (θ), i = j,

1
2 (Ṽ j−i (θ)− Ṽi+ j (θ)), i < j .

Following the arguments in the verification of the assumption (A3) for the wave Eq. (1.3),
one can prove that

‖X P‖s;D(r ,s)×O ≤ (2p+1 + 12+ n

2r
)‖V ‖D(2r),b,pε ≤ ε0.

This shows the regularity of Hamiltonian vector field X P .

(4) Verifying the assumption (A4).
Let ρ = 2a. Thanks to �̆ j ≡ 0, it is obvious that �̆ := diag(�̆ j ) j≥1 ∈M

ρ
r ,O.

Now we verify P ∈ T ρ

D(r ,s)×O. By (5.16), we have

∂2P

∂zi∂ z̄ j
= ε pi j (θ) and

∂2P

∂zi∂z j
= 0 = ∂2P

∂ z̄i∂ z̄ j
.

Following the arguments in verifying the assumption (A4), we have the limit

limt→∞ ∂2P
∂zi+t ∂ z̄ j+t

exists. Moreover,

∥
∥
∥
∥ lim

t→∞
∂2P

∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r ,s)×O
≤ ε0e

−ρ|i− j |

and∥
∥
∥
∥
∥

∂2P

∂zi+t ∂ z̄ j+t
− lim

t→∞
∂2P

∂zi+t ∂ z̄ j+t

∥
∥
∥
∥
∥

D(r ,s)×O
≤ ε

2
‖V ‖D(2r),b,pe

−b(i+ j+2t) ≤ ε0

t
e−ρ|i− j |.

This together with ∂2P
∂zi ∂z j

= 0 = ∂2P
∂ z̄i ∂ z̄ j

shows that the perturbation P ∈ T ρ

D(r ,s)×O and
〈P〉ρ,D(r ,s)×O ≤ ε0.
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5.3 Proof of Corollaries 1.1 and‘1.2

Below, we provide the proof for Corollaries 1.1 and 1.2, focusing on the case of the half-wave
equation. The same argument applies to the derivative wave equation.

From Theorem 4.1, in the new coordinates (θ∞, I∞, z∞, z̄∞) = �−1ω (θ, I , z, z̄), the
dynamics are linear with I∞ invariant:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̇∞j = ω j j = 1, . . . , n,

İ∞j = 0 j = 1, . . . , n,

ż∞j = i�∞j z∞j j ≥ 1,
˙̄z∞j = −i�∞j z̄∞j j ≥ 1.

As (1.4) is equivalent to system (5.14), the solutions u(t, x) of (1.4) with initial data u0(x) =∑
j≥1 z j (0)φ j (x) read

u(t, x) =
∑

j≥1
z j (t)φ j (x)

with

(z(t), z̄(t))T = Lω(ωt)
(

z∞(0)ei�∞t , z̄∞(0)e−i�∞t
)T

and

(z∞(0), z̄∞(0))T = L−1ω (0)(z(0), z̄(0))T .

Thus,

u(t, x) =
∑

j≥1
ψ j (ωt, x)ei�∞j t

,

where

ψ j (θ, x) =
∑

�≥1
[Lω(θ)L−1ω (0)(z(0), z̄(0))T ]�φ�(x).

Therefore, the solutions are almost-periodic in time with a non-resonant frequency vector
(ω,�∞1 ,�∞2 , . . .). Furthermore, we observe that ψ j (ωt, x)ei�∞j t solves (1.4) if and only if
k · ω + �∞j is an eigenvalue of the operator K2 (above Corollary 1.2). This demonstrates
that the spectrum of the Floquet operator K2 equals {k · ω +�∞j : k ∈ Z

n, j ≥ 1}, thereby
proving Corollary 1.2.

For Corollary 1.1, the key point is that when V is real analytic and satisfies (1.9), the
perturbation P in (5.15) satisfies Assumption (A3) for all p ≥ 0. That is, X P maps smoothly
from Pa,p into itself. Therefore, Theorem 4.1 applies for all p ≥ 2, and by (4.9), the
canonical transformation � is close to the identity in the Pa,p-norm. Since in the new
variables, (θ∞, I∞, z∞, z̄∞) = �−1ω (θ, I , z, z̄), the modulus of z∞j is invariant. We deduce
that there exists a constant C such that

(1− εC)‖z(0)‖a,p ≤ ‖z(t)‖a,p ≤ (1+ εC)‖z(0)‖a,p,

which in turn implies that

(1− εC)‖u0‖a,p ≤ ‖u(t, ·)‖a,p ≤ (1+ εC)‖u0‖a,p, ∀t ∈ R.
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6 Proof of the Reducibility Theorem 4.1

6.1 Basic Strategy

The reducibility Theorem 4.1 is proved by KAMmethod. We construct a sequence of Hamil-
tonian H = N+ P of the form (4.4). Suppose the perturbation P = O(ε), then we construct
a symplectic coordinate transformation � such that it transforms H = N + P into a new
Hamiltonian H+ = H ◦� = N++ P+ with new normal form N+ and a smaller perturbation
P+ = O(εκ), 1 < κ < 2, than the old perturbation P.

The above transformation � is constructed via the flow Xt
F generated by a quadratic

Hamiltonian F . Taking � = X1
F and denoting R = TK P , then

H ◦� = H ◦ X1
F = N ◦ X1

F + R ◦ X1
F + (P − R) ◦ X1

F

= N + {N , F} +
∫ 1

0
(1− t){{N , F}, F} ◦ Xt

F dt

+ R +
∫ 1

0
{R, F} ◦ Xt

F dt + (P − R) ◦ X1
F .

The new normal form is defined as N+ = N + N̂ . This leads to the following homological
equation

{N , F} + R = N̂ ,

where the unknowns are F and N̂ . We solve this homological equation in the next section.

6.2 Solving the Homological Equation

Consider the homological equation

{N , F} + R = N̂ (6.1)

on D(r , s)×O, where

N =
n∑

i=1
ωi Ii +

∑

j≥1
� j (ξ)z j z̄ j

with the fixed tangential frequencies ω(ξ) ∈ R
n . The normal frequencies � j (ξ) ∈ R, j ≥ 1

satisfy (4.5). The Hamiltonian R is a quadratic on (z, z̄) of the form

R(θ, z, z̄; ξ) = 〈R20(θ)z, z〉 + 〈R11(θ)z, z̄〉 + 〈R02(θ)z, z̄〉
=

∑

|k|≤K

∑

i, j≥1
[R20

ki j (ξ)zi z j + R11
ki j (ξ)zi z̄ j + R02

ki j (ξ)z̄i z̄ j ]eik·θ . (6.2)

It does not depend on the action variables I and satisfies R = TK R.We define its mean value
[R] with respect to θ by

[R] =
∑

j≥1
R11
0 j j (ξ)z j z̄ j .

In the following, we use the notations

�ab(σ ) = sup
t≥0

(1+ t)a
b(t)e−tσ , a, b ∈ N.
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Proposition 6.1 Let γ > 0 and 0 < 5σ < r . Suppose N and R satisfy the above conditions
(A1)–(A2), then the homological Eq. (6.1) has the unique solutions F and N̂ satisfying
[F] = 0 and the estimates

‖X F‖s;D(r−σ,s)×O ≤ (1+ C0)γ−2�12(σ )‖X R‖s;D(r ,s)×O, (6.3)

‖X N̂‖s;D(r ,s)×O ≤ ‖X R‖s;D(r ,s)×O, (6.4)

where the constant C0 depends only on A0.

Proof We look for a Hamiltonian F of the form

F(θ, z, z̄; ξ) = 〈F20(θ)z, z〉 + 〈F11(θ)z, z̄〉 + 〈F02(θ)z, z̄〉
=

∑

|k|≤K

∑

i, j≥1
[F20

ki j (ξ)zi z j + F11
ki j (ξ)zi z̄ j + F02

ki j (ξ)z̄i z̄ j ]eik·θ . (6.5)

Denote ω ·∇ f (θ) :=∑n
b=1 ωb

∂ f
∂θb

. We take N̂ = [R]. By the comparison of coefficients,
the homological Eq. (6.1) is equivalent to the following scalar form: For all i, j ≥ 1,

ω · ∇F20
i j + i(�i +� j )F20

i j = R20
i j , (6.6)

ω · ∇F11
i j + i(�i −� j )F11

i j = R11
i j − δi j [R11

i j ], (6.7)

and
ω · ∇F02

i j − i(�i +� j )F02
i j = R02

i j , (6.8)

here δi j = 1, if i = j, and 0, otherwise.
Consider the Eq. (6.7). For i = j, the Eq. (6.7) becomes

∂ω F11
j j = R11

j j − [R11
j j ], (6.9)

then by Fourier expansion,

F11
k j j =

{
0, k = 0,
R11

k j j
ik·ω , 0 < |k| ≤ K

and we obtain the form solution

F11
j j =

∑

0<|k|≤K

R11
k j j

ik · ω eik·θ .

For i �= j, by Fourier expansion, the Eq. (6.7) becomes

F11
ki j =

R11
ki j

i(k · ω +�i −� j )

and we obtain the form solution

F11
i j (θ) =

∑

0≤|k|≤K

R11
ki j

i(k · ω +�i −� j )
eik·θ . (6.10)

Now we give the estimate for F11
i j . Denote Si j = k · ω +�i −� j . For all 1 ≤ a ≤ n,

|∂ξa Si, j | = |k · ∂ξa ω + ∂ξa �̆i − ∂ξa �̆ j | ≤ C0(1+ |k|),
where the constant C0 = C0(E, L) depends only on E and L.
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Then

‖F11
i j ‖D(r−σ)×O

≤
∑

|k|≤K

( |R11
k,i j |O
|Si j | + |∂ξ Si j ||R11

k,i j |O
|S2

i j |

)

e|k|(r−σ)

≤
∑

|k|≤K

(1+ C0)(1+ |k|)γ−2
2(|k|)e−|k|σ |R11
k,i j |Oe|k|r

≤ (1+ C0)γ−2�12(σ )‖R11
i j ‖D(r)×O. (6.11)

Similarly, we have

‖F20
i j ‖D(r−σ)×O ≤ (1+ C0)γ−2�12(σ )‖R20

i j ‖D(r)×O,

‖F02
i j ‖D(r−σ)×O ≤ (1+ C0)γ−2�12(σ )‖R02

i j ‖D(r)×O.

Note that the derivative
∂ F

∂zi
=

∑

j≥1
F20

j i z j + F20
i j z j + F11

i j z̄ j , (6.12)

then ⌊
∂ F

∂zi

⌋

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )

⌊
∂ R

∂zi

⌋

D(r−σ)×O
. (6.13)

Similarly, ⌊
∂ F

∂ z̄i

⌋

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )

⌊
∂ R

∂ z̄i

⌋

D(r−σ)×O
. (6.14)

For each 1 ≤ b ≤ n, by (6.10), the norm of the derivative
∂ F11

i j
∂θb

is
∥
∥
∥
∥
∥

∂ F11
i j

∂θb

∥
∥
∥
∥
∥

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )

∥
∥
∥
∥
∥

∂ R11
i j

∂θb

∥
∥
∥
∥
∥

D(r)×O
.

Similarly, we have
∥
∥
∥
∥
∥

∂ F20
i j

∂θb

∥
∥
∥
∥
∥

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )

∥
∥
∥
∥
∥

∂ R20
i j

∂θb

∥
∥
∥
∥
∥

D(r)×O
,

and
∥
∥
∥
∥
∥

∂ F02
i j

∂θb

∥
∥
∥
∥
∥

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )

∥
∥
∥
∥
∥

∂ R02
i j

∂θb

∥
∥
∥
∥
∥

D(r)×O
.

It follows that
∥
∥
∥
∥
∂ F

∂θ

∥
∥
∥
∥

D(r−σ,s)×O
≤ (1+ C0)γ−2�12(σ )

∥
∥
∥
∥
∂ R

∂θ

∥
∥
∥
∥

D(r ,s)×O
(6.15)

From (6.13), (6.14) and (6.15), we obtain the estimate for the Hamiltonian vector field
X F :

‖X F‖s;D(r−σ,s)×O ≤ (1+ C0)γ−2�12(σ )‖X R‖s;D(r ,s)×O.

The estimates of X N̂ follow from the observation that N̂zz̄ is the diagonal of the mean
value of Rzz̄ . ��
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The above lemma implies the estimate for the Jacobian DX F :
‖DX F‖s;D(r−2σ,s)×O ≤ Cσ−1(1+ C0)γ−2�12(σ )‖X R‖s;D(r ,s)×O. (6.16)

Now we verify the Töplitz–Lipschitz property of the solutions of homological Eq. (6.1).

Proposition 6.2 Suppose N and R satisfy the above conditions (A1)–(A2) and R ∈
T ρ

D(r ,s)×O, then there exists a constant C := 5 + 4C0 such that for any 0 < σ < r , the

solutions F and N̂ of homological Eq. (6.1) are Töplitz–Lipschitz on D(r , s) × O, i.e.,
F ∈ T ρ

D(r−σ,s)×O, N̂ ∈ T ρ

D(r ,s)×O, and

〈F〉ρ,D(r−σ,s)×O ≤ Cγ−3�13(σ )〈R〉ρ,D(r ,s)×O, (6.17)

〈N̂ 〉ρ,D(r ,s)×O ≤ 〈R〉ρ,D(r ,s)×O. (6.18)

Proof The estimation of N̂ follows from the observation that N̂zz̄ is the diagonal of the mean
value of Rzz̄ . In the following, we prove the estimation (6.17).

From (6.10) in the proof of Lemma 6.1, the second derivative of F w.r.t. zi , z̄ j is

∂2F

∂zi∂ z̄ j
= F11

i j (θ) =
∑

0≤|k|≤K

R11
ki j

i(k · ω +�i −� j )
eik·θ .

•We first verify the exponentially off-diagonal decay of ∂2F
∂zi ∂ z̄ j

.

Since R ∈ T ρ

D(r ,s)×O, we have
∥
∥
∥
∥

∂2R

∂zi∂ z̄ j

∥
∥
∥
∥

D(r ,s)×O
≤ 〈R〉ρ,D(r ,s)×Oe−ρ|i− j |.

Then
∥
∥
∥
∥

∂2F

∂zi∂ z̄ j

∥
∥
∥
∥

D(r−σ)×O
≤

∑

|k|≤K

γ−1
(|k|)e−|k|σ |R11
k,i j |Oe|k|r

≤ γ−1�11(σ )

∥
∥
∥
∥

∂2R

∂zi∂ z̄ j

∥
∥
∥
∥

D(r ,s)×O
≤ γ−1�11(σ )〈R〉ρ,D(r ,s)×Oe−ρ|i− j |.

•We then check the asymptotically Töplitz property of ∂2F
∂zi ∂ z̄ j

.

Since � j = j + �̆ j , j ≥ 1, and 〈〈�̆〉〉ρ,r ,O < ε0, the limits limt→∞ �̆ j+t exist and
satisfy

∥
∥
∥ lim

t→∞ �̆ j+t

∥
∥
∥
O
≤ ε0, (6.19)

∥
∥
∥�̆ j+t − lim

t→∞ �̆ j+t

∥
∥
∥
O
≤ ε0

|t | . (6.20)

Note that

�i+t −� j+t = i − j + �̆i+t − �̆ j+t ,

then for all i, j the limits �i, j,∞ := limt→∞(�i+t − � j+t ) exist and satisfy the non-
resonance conditions

|k · ω +�i, j,∞| ≥ γ


(|k|) . (6.21)
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Denote Si j,∞ := k · ω +�i, j,∞. For 1 ≤ a ≤ n,

|∂ξa Si j,∞| = |k · ∂ξa ω + ∂ξa �̆i,∞ − ∂ξa �̆ j,∞|
≤ |k||ω|O + 2|�̆|O ≤ C0(1+ |k|),

where the constant C0 = C0(E, L).

Since R ∈ T ρ

D(r ,s)×O, the limit R11
i j,∞ := limt→∞ R11

i+t, j+t . exists. Consider a similar
equation to the Eq. (6.7):

∂ωu + i�i, j,∞u = R11
i j,∞.

By the non-resonance conditions (6.21), the solution F11
i j,∞ of the above equation exists:

F11
i j,∞ =

∑

0≤|k|≤K

R11
k,i j,∞
iSi j,∞

eik·θ . (6.22)

Moreover, similar to the estimate for ‖F11
i j ‖D(r−σ)×O in (6.11), we obtain

∥
∥
∥F11

i j,∞
∥
∥
∥

D(r−σ)×O ≤ (1+ C0)γ−2�12〈R〉ρ,D(r ,s)×Oe−ρ|i− j |,

thus
∥
∥
∥
∥ lim

t→∞
∂2F

∂zi+t∂ z̄ j+t

∥
∥
∥
∥

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )〈R〉ρ,D(r ,s)×Oe−ρ|i− j |.

• Finally, we check that ∂2F
∂zi ∂ z̄ j

is Lipschitz at infinity.

By (6.10) and (6.22), we write the difference F11
i+t, j+t − F11

i j,∞ as

F11
i+t, j+t − F11

i j,∞ =
∑

|k|≤K

Fk,i j (ξ)ek·θ .

where

iFk,i j (ξ) = R11
k,i+t, j+t

Si+t, j+t
− R11

k,i j,∞
Si j,∞

.

For a = 1, . . . , n, the Whitney derivatives of Fk,i j (ξ) with respect to ξa are

i∂ξaFk,i j (ξ) = ∂ξa (R11
k,i+t, j+t − R11

k,i j,∞)

Si+t, j+t
− ∂ξa Si+t, j+t

S2
i+t, j+t

(R11
k,i+t, j+t − R11

k,i j,∞)

+
(

Si j,∞ − Si+t, j+t

Si+t, j+t Si j,∞

)

∂ξa R11
k,i j,∞ −

(
∂ξa Si+t, j+t − ∂ξa Si j,∞

S2
i+t, j+t

)

R11
k,i j,∞

− ∂ξa Si j,∞(Si j,∞ − Si+t, j+t )

(
1

S2
i+t, j+t Si j,∞

+ 1

Si+t, j+t S2
i j,∞

)

R11
k,i j,∞.

In view of 〈〈�̆〉〉ρ,r ,O < ε0, we have

|Si j,∞ − Si+t, j+t | ≤ 2|t |−1ε0.
and for a = 1, . . . , n,

|∂ξa Si j,∞ − ∂ξa Si+t, j+t | ≤ 2|t |−1ε0.

123



Journal of Dynamics and Differential Equations

It follows that

|Fk,i j (ξ)| ≤ γ−1
(|k|)|R11
k,i+t, j+t − R11

k,i j,∞| + γ−2
2(|k|)2|t |−1ε0|R11
k,i j,∞|

and

|∂ξaFk,i j (ξ)|
≤ 
(|k|)γ−1|∂ξa (R11

k,i+t, j+t − R11
k,i j ,∞)| + C0(1+ |k|)
2(|k|)γ−2|R11

k,i+t, j+t − R11
k,i j,∞|

+ 2|t |−1ε0
2(|k|)γ−2(|∂ξa R11
k,i j ,∞| + |R11

k,i j ,∞|)+ 4C0(1+ |k|)|t |−1ε0
3(|k|)γ−3|R11
k,i j,∞|.

Therefore,

‖F11
i+t, j+t − F11

i j,∞‖D(r−σ)×O =
∑

|k|≤K

|Fk,i j (ξ)|Oe|k|(r−σ)

≤ (2γ−1�01 + C0γ−2�12)‖R11
i+t, j+t − R11

i j,∞‖D(r)×O
+ (5γ−2�02 + 4C0γ−3�13)|t |−1‖R11

i j,∞‖D(r)×O.

This together with R ∈ T ρ

D(r ,s)×O shows that
∥
∥
∥
∥
∥

∂2F

∂zi+t ∂ z̄ j+t
− lim

t→∞
∂2F

∂zi+t ∂ z̄ j+t

∥
∥
∥
∥
∥

D(r−σ)×O
≤ (5+ 4C0)γ−3�13|t |−1〈R〉ρ,D(r ,s)×Oe−ρ|i− j |.

Similarly, we have
∥
∥
∥
∥ lim

t→∞
∂2F

∂zi+t∂z j−t

∥
∥
∥
∥

D(r−σ)×O
,

∥
∥
∥
∥ lim

t→∞
∂2F

∂ z̄i+t∂ z̄ j−t

∥
∥
∥
∥

D(r−σ)×O
≤ (1+ C0)γ−2�12(σ )〈R〉ρ,D(r ,s)×Oe−ρ|i+ j |

and
∥
∥
∥
∥
∥

∂2F

∂ z̄i+t ∂ z̄ j−t
− lim

t→∞
∂2F

∂ z̄i+t ∂ z̄ j−t

∥
∥
∥
∥
∥

D(r−σ)×O
,

∥
∥
∥
∥
∥

∂2F

∂zi+t ∂z j−t
− lim

t→∞
∂2F

∂zi+t ∂z j−t

∥
∥
∥
∥
∥

D(r−σ)×O
≤ (5+ 4C0)γ−3�13(σ )|t |−1〈R〉ρ,D(r ,s)×Oe−ρ|i+ j |.

Thus we complete the proof of the estimation (6.17). ��

6.3 KAM Iteration and Convergence

Let C∗ be a constant that is twice the maximum of all implicit constants used during the
KAM step, and it depends only on n, A0 and ρ0.

We take the Hamiltonian H = N + P in (4.4) as the initial Hamiltonian H0 = N0 + P0.
Similarly, we set other initial quantities as those in Sect. 4. Namely, we set r0 = r , s0 =
s, γ0 = γ, ρ0 = ρ, K0 = K , O0 = O.

For ν ≥ 0,

γν = γ0

2
(1+ 2−ν),

δν = 2−(ν+4)ρ0, ρν+1 = ρν − 4δν.

Denote

�(σ) = �23(σ ) = sup
t≥0

(1+ t)2
3(t)e−σ t .
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κν = κ−(ν+1), κ = 4

3
.

Given σ > 0 with 6σ < r0. There exists a non-increasing positive sequence

σ0 ≥ σ1 ≥ σ2 ≥ · · · ≥ σν ≥ σν+1 ≥ · · · > 0

such that ∞∑

ν=0
σν = σ (6.23)

and

�(σ) = inf
σ̃0≥σ̃1≥···>0,σ̃0+σ̃1+···≤σ

∞∏

μ=0
�κμ(σ̃μ) =

∞∏

μ=0
�κμ(σμ) <∞, (6.24)

see Appendix for the proof. For such a fixed sequence {σν}, we define
�ν = 2C∗�(σν), (6.25)

and
εν+1 = �νε

κ
ν , (6.26)

then

εν =
⎛

⎝
ν−1∏

μ=0
�

κμ
μ ε0

⎞

⎠

κν

, ν ≥ 1. (6.27)

The order Kν of Fourier truncation is defined implicitly by

C∗e−Kνσν = �νε
1/2
ν . (6.28)

Finally, we set

rν = r0 − 3
ν−1∑

μ=0
σμ, sν+1 = 1

4
sν

and denote the domain Dν = D(rν, sν).

Remark 6.1 Recall that the non-resonance conditions in our KAM iterative steps are of
Brjuno-type and are given by a class of approximation functions 
(t). This differs from
the usual Diophantine non-resonance conditions, which are given by an explicit power func-
tion tτ . Thus, some iterative parameters such as perturbation parameters εν and Kν cannot
be constructed explicitly but rather implicitly.

Below we provide some heuristic considerations about the construction of εν and Kν .
Now for some iterative sequences, we drop the index ν and write ‘+’ for ‘ν + 1’ to simplify
notation. Suppose a Hamiltonian H = N + P on D(r , s), where the perturbation P is of
size ε under the norm “[·]" as defined in (3.7). From (6.46), after one iteration step, the new
perturbation P+ on D(r+, s+) is of the form

P+ = O
(
�(σ)εκ

)+ O
(
δ−2e−Kσ ε

)
,

where κ = 4/3 and �(σ) = �23(σ ). To ensure the iterative scheme follows a Newton-like
form, the size ε+ of the new perturbation P+ will be of the form ε+ ∼ �εκ with � ∼ �(σ).
Therefore, it is necessary to set up

δ−2e−Kσ ε ≤ �(σ)εκ ,
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i.e., e−Kσ ≤ δ2�(σ)ε1/3. Since ε # δ, we let e−Kσ ∼ �ε1/2, which leads us to define the
sequence Kν implicitly as in (6.28). Note that ε+ ∼ �εκ gives the sequence εν in (6.26) and
(6.27). From (6.27), the definition of the quantity �(σ) in (6.24) is natural.

Lemma 6.3 (Iterative Lemma). Let 0 < ε0 < min{(C∗γ025) 3
2 , δ120 , (γ0δ0)

9/2, 1
12n }. Given a

sequence of parameter domains

O0 ⊇ O1 ⊇ · · · ⊇ Oν .

Suppose for � = 0, 1, . . . , ν, the Hamiltonian H� = N�+ P� are regular on D�×O�, where
the normal forms

N� =
n∑

j=1
ω j I j +

∑

j∈Z
��, j (ω)z j z̄ j (6.29)

with ��, j (ω) = j + �̃�, j (ω) satisfies

|�̃�|O ≤ A0 +
�−1∑

b=1
εb and 〈〈�̃�〉〉ρ�,r�,O�

≤ ε0 +
�−1∑

b=1
εb, (6.30)

|k · ω| ≥ γ�


(|k|) , ∀0 < |k| ≤ K�,

|k · ω +��,i (ω)+��, j (ω)| ≥ γ�


(|k|) , ∀|k| ≤ K�, i, j ≥ 1,

|k · ω +��,i (ω)−��, j (ω)| ≥ γ�


(|k|) , ∀|k| ≤ K�, i �= j, (6.31)

on O�, and the perturbation P� satisfies

P� ∈ T ρ�

D�×O�
and [P�]ρ�

s�;D�×O�
< ε�. (6.32)

Then there exists a Whitney smooth family of real analytic symplectic transformations �ν+1 :
Dν+1 ×Oν → Dν satisfying

‖�ν+1 − id‖sν ;Dν+1×Oν
, ‖D�ν+1 − I‖sν ;Dν+1×Oν

≤ ε5/12ν , (6.33)

and a closed subset of Oν :

Oν+1 = Oν \
⋃

|k|>Kν

⎛

⎝Rν+1
k (γν+1) ∪

⋃

i, j

R+,ν+1
ki j (γν+1) ∪

⋃

i �= j

R−,ν+1
ki j (γν+1)

⎞

⎠ , (6.34)

where

Rν+1
k (γν+1) =

{

ω ∈ Oν : |k · ω| < γν+1

(|k|)

}

,

R+,ν+1
ki j (γν+1) =

{

ω ∈ Oν : |k · ω +�ν+1,i (ω)+�ν+1, j (ω)| < γν+1

(|k|)

}

,

R−,ν+1
ki j (γν+1) =

{

ω ∈ Oν : |k · ω +�ν+1,i (ω)−�ν+1, j (ω)| < γν+1

(|k|)

}

,

such that �ν+1 transforms Hν into

Hν+1 = Hν ◦�ν+1 = Nν+1 + Pν+1,

and on the domain Dν+1×Oν+1, Nν+1 and Pν+1 satisfy the conditions (6.29)ν+1, (6.30)ν+1,
(6.31)ν+1 and (6.32)ν+1.
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Proof � The construction of symplectic transformation �ν+1.
Let Rν = TKν Pν be the Fourier truncation of order Kν of Pν . Using the inequalities

‖X Rν‖sν ;Dν×Oν
≤ ‖X Pν‖sν ;Dν×Oν

≤ εν,

〈Rν〉ρν,Dν×Oν ≤ 〈Pν〉ρν,Dν×Oν ≤ εν,

and by Propositions 6.1 and 6.2, under the non-resonance conditions (6.31)ν, the homological
equation

{Nν, F} + Rν = N̂ (6.35)

has a set of unique solutions F = Fν and N̂ = N̂ν satisfying the estimates

‖X Fν‖sν ;D(rν−σν,sν )×Oν
≤ Cγ−2ν �12(σν)‖X Rν‖sν ;Dν×Oν

≤ Cγ−2ν �12(σν)εν, (6.36)

‖X N̂ν
‖sν ;Dν×Oν

≤ ‖X Rν‖sν ;Dν×Oν
≤ εν, (6.37)

〈Fν〉ρν,D(rν−σν,sν )×Oν
≤ Cγ−3ν �13(σν)〈Rν〉ρν,D(rν ,sν )×Oν

≤ Cγ−3ν �13(σν)εν, (6.38)

and
〈N̂ν〉ρν,Dν×Oν ≤ 〈Rν〉ρν,Dν×Oν ≤ εν. (6.39)

Since �12 ≤ �13 by the definition and �13 ≤ σ�23 by Lemma 7.1 in Appendix, we have

[Fν]ρν

sν ;D(rν−σν,sν )×Oν

(4.7)= ‖X Fν‖sν ;D(rν−σν,sν )×Oν
+ 〈Fν〉ρν,D(rν−σν,sν )×Oν

≤ Cγ−2ν �12(σν)εν + Cγ−3ν �13(σν)εν

≤ Cσν. (6.40)

Then by Lemma 3.4, the flow Xt
Fν

generated by the Hamiltonian vector field X Fν exists on

D(rν−σν,
sν
4 ) for all 0 ≤ t ≤ 1. Taking�ν+1 = X1

Fν
, it maps D(rν−σν,

sν
4 ) into D(rν,

sν
2 ).

Now we prove the estimate (6.33). Since εν # 1 and γν and σν are both bounded
sequences, it follows from (6.4), (6.25) and (6.28) that

‖�ν+1 − id‖sν ;Dν+1×Oν
≤ 2‖X Fν‖sν ;D(rν−σν,sν )×Oν

(6.4)≤ 2Cγ−2ν �12(σν)εν

≤ 2Cγ−2ν σν�ν(σν)εν

(6.25)≤ 2Cγ−2ν σν�ν(2C∗)−1εν

(6.28)= Cγ−2ν σνe−Kνσν ε1/2ν

≤ ε5/12ν . (6.41)

By the Cauchy estimate and (6.16), using the same approach as for (6.41), we obtain the
estimate

‖D�ν+1 − I‖sν ;Dν+1×Oν
≤ 2‖DX Fν‖sν ;D(rν−σν ,sν )×Oν

≤ σ−1ν 2Cγ−2ν �12(σν)εν. (6.42)

� The new Hamiltonian Hν+1.
Using the Taylor formula together with the homological Eq. (6.35), we define the new

Hamiltonian

Hν+1 = Hν ◦�ν+1 = Nν ◦�ν+1 + Rν ◦�ν+1 + (Pν − Rν) ◦�ν+1
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= Nν + {Nν, Fν} +
∫ 1

0
(1− t){{Nν, Fν}, Fν} ◦ Xt

Fν
dt

+ Rν +
∫ 1

0
{Rν, Fν} ◦ Xt

Fν
dt + (Pν − Rν) ◦ X1

Fν

= Nν+1 + Pν+1, (6.43)

where

Nν+1 = Nν + N̂ν,

Pν+1 =
∫ 1

0
{R̂ν(t), Fν} ◦ Xt

Fν
dt + (Pν − Rν) ◦ X1

Fν

with R̂ν(t) = (1− t)N̂ν + t Rν .

• The estimation for Pν+1.
We first consider the estimation for ‖X Pν+1‖sν+1;Dν+1×Oν+1 . Note that

X Pν+1 =
∫ 1

0
(Xt

Fν
)∗[X R̂ν (t), X Fν ]dt + (X1

Fν
)∗(X Pν − X Rν ).

Then using the classical estimates for the pull-back of a vector field and the Lie bracket of
two vector fields (see Sect. 3 in [42]), and by (2.1) and (6.3), we obtain the estimate

‖X Pν+1‖sν+1;Dν+1×Oν+1 ≤
∫ 1

0
‖(Xt

Fν
)∗[X R̂ν (t), X Fν ]‖sν+1;Dν+1×Oν+1 dt

+ ‖(X1
Fν

)∗(X Pν − X Rν )‖sν+1;Dν+1×Oν+1

≤ 2‖[X Rν , X Fν ]‖sν+1;D(rν−2σν,sν+1)×Oν+1
+ 2‖X Pν − X Rν‖sν+1;D(rν−σν,sν+1)×Oν+1

(2.1)≤ 2Cσ−1ν ‖X Rν‖sν ;Dν×Oν
‖X Fν‖sν ;Dν×Oν

+ 2e−Kνσν‖X Pν‖sν ;Dν×Oν
. (6.44)

We then consider the estimation for 〈Pν+1〉ρν+1
Dν+1×Oν+1 . Using Remarks 3.1 and 3.3(3),

Propositions 3.1 and 3.5, we have:

〈Pν+1〉ρν+1,Dν+1×Oν+1
Rem. 3.1≤

∫ 1

0
〈{R̂ν(t), Fν} ◦ Xt

Fν
〉ρν+1,Dν+1×Oν+1 dt

+ 〈(Pν − Rν) ◦ X1
Fν
〉ρν+1,Dν+1×Oν+1

Pro. 3.5≤ Cδ−2ν

∫ 1

0
〈{R̂ν(t), Fν}〉ρν−δν ,D(rν−2σν,sν )×Oν+1 dt

+ Cδ−2ν 〈Pν − Rν〉ρν−δν ,D(rν−2σν,sν )×Oν+1
Pro. 3.1+Rem. 3.3(3)≤ Cδ−3ν γ−3ν �13(σν)ε

2
ν + Cδ−2ν e−Kνσν εν . (6.45)

It follows from (4.7), (6.44), (6.45), (6.26) and (6.28) that

[Pν+1]ρν+1
sν+1;Dν+1×Oν+1

(4.7)= ‖X Pν+1‖sν+1;Dν+1×Oν+1 + 〈Pν+1〉ρν+1,Dν+1×Oν+1
(6.44)+(6.45)≤ Cδ−3ν σ−1ν γ−3ν �13(σν)ε

2
ν + Cδ−2ν e−Kνσν εν

≤ C�23(σν)ε
κ
ν + Cδ−2ν e−Kνσν εν
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(6.26)+(6.28)≤ �νε
κ
ν = εν+1. (6.46)

• The new frequency and non-resonance condition.
In the new normal form Nν+1, the frequencies �ν+1, j = j + �̆ν+1, j = �ν, j + �̂ν, j ,

where �̂ν, j = ∂2 N̂ν

∂z j ∂ z̄ j
. Thus

|�̂ν, j |O ≤ ‖X N̂ν
‖sν ;Dν×Oν

≤ ‖X Rν‖sν ;Dν×Oν
≤ εν.

Recall the proof of Proposition 6.1, N̂ν is the average of Rν = TK Pν from the perturbation
Pν with respect to θ , i.e., N̂ν = [Rν]. So, by Remark 3.3 (3),

〈N̂ν〉ρν,Dν×Oν ≤ 〈Pν〉ρν,Dν×Oν ≤ εν.

Then following the definition of the semi-norm 〈N̂ν〉ρν,Dν×Oν , we have

| lim
t→∞ �̂ν, j+t |Oν ≤ ‖ lim

t→∞
∂2 N̂ν

∂z j+t∂ z̄ j+t
‖sν ;Dν×Oν

≤ 〈N̂ν〉ρν,Dν×Oν ≤ εν. (6.47)

|�̂ν, j+t − lim
t→∞ �̂ν, j+t |Oν ≤ ‖

∂2 N̂ν

∂z j+t∂ z̄ j+t
− lim

t→∞
∂2 N̂ν

∂z j+t∂ z̄ j+t
‖sν ;Dν×Oν

≤ |t |−1〈N̂ν〉ρν,Dν×Oν ≤ |t |−1εν. (6.48)

These imply

|�̂ν |O ≤ εν, 〈〈�̂ν〉〉ρν,rν ,Oν ≤ εν.

Therefore,

|�̆ν+1|O ≤ A0 +
ν∑

b=1
εb and 〈〈�̆ν+1〉〉ρν,rν ,Oν ≤ ε0 +

ν∑

b=1
εb,

�Finally, we consider the construction of Oν+1. It suffices to verify

|k · ω +�ν+1,i (ω)−�ν+1, j (ω)| ≥ γ�


(|k|) , ∀|k| ≤ Kν, i �= j .

By the definition of γν, �ν and Kν, we have

γ0

2ν+3εν
(Kν)
= γ0e−Kνσν

2ν+3εν
(Kν)e−Kνσν

≥ γ0e−Kνσν

2ν+3εν�(σν)

= 2γ0ε
κ−5/6
ν

2ν+3εν

= γ0

2ν+2ε1/2ν

≥ 1.

This implies γν − γν+1 ≥ 2εν
(|k|) for all 0 < |k| ≤ Kν, thus

|k · ω +�ν+1,i (ω)−�ν+1, j (ω)| ≥ |k · ω +�ν,i (ω)−�ν, j (ω)| − |�̂ν,i (ω)| − |�̂ν, j (ω)|
≥ γν


(|k|) − 2εν ≥ γν+1

(|k|) .
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Then after removing the resonance zones for Kν < |k| ≤ Kν+1, we get a closed setOν+1 ⊆
Oν with the desired properties. ��

The Convergence Proof.
By the iterative Lemma 6.3, we obtain a sequence of decreasing domains Dν × Oν and

symplectic transformations�ν = �1 ◦�2 ◦· · ·◦�ν : Dν×Oν−1 → Dν−1, ν ≥ 1. Then by
(6.33) and following the arguments in [42], the sequence �ν of symplectic transformations
converge uniformly on D(r/2) × Oγ to a real analytic torus embedding � : Tn → Pa,p,

for which we also need to verify

(a) the symplectic coordinate transformation � is of the form given in (4.9);
(b) the new Hamiltonian eventually reduces to the new normal form, i.e., P∞ = 0;
(c) the symplectic coordinate transformation �, which is defined by Theorem 4.1 on each

Pa,p , extends to Pa,0.

In fact, by (3.34) and (3.36) in Section 3.36, the the symplectic coordinate transformation
�ν at the νth-step has the form the form

�ν

⎛

⎝
θ

I
Z

⎞

⎠ =
⎛

⎝
θ

�
(I )
ν

�
(Z)
ν

⎞

⎠ =
⎛

⎝
θ

I + 1
2 Z T Mν(θ)Z
Lν(θ)Z

⎞

⎠ . (6.49)

In particular, the linear operator Lν(θ) = eJ Aν (θ) is invertible. Then property (a) is satisfied
at each step, and thus we can iterate the process. It follows that the limiting transformation
� = �1 ◦ �2 ◦ · · · also satisfies the property (a). Similar to the initial Hamiltonian, the
transformed Hamiltonian is linear in I and quadratic in Z , which implies that the new
Hamiltonian eventually reduces to the new normal form, i.e., P∞ = 0.

Since �(Z) is a linear symplectomorphism, then following Prop.1.3 [34] by duality, it
extends on �a,p×�a,p for all p ∈ [−2, 2] and thus the conclusion (c) holds if we take p = 0.

The sequence of closed subset Oν converges to a closed set

Oγ =
⋂

ν≥0
Oν .

By the construction of γν and |�ν+1 −�ν |O = |�̂ν |O ≤ εν, we have |�∞ −�|O ≤ ε
1/2
0 ,

and thus for all ω ∈ Oγ ,

|〈k, ω〉| ≥ γ

2
(|k|) , ∀k �= 0,

|〈k, ω〉 + l ·�∞(ω)| ≥ γ

2
(|k|) , ∀k ∈ Z
n, |l| = 2.

The measure estimate of O \Oγ of bad frequencies is given in the next section.

6.4 Measure Estimate

In this subsection, we complete the Lebesgue measure estimate of the parameter setO \Oγ .

In the process of constructing iterative sequences, we obtain a decreasing sequence of closed
sets O0 ⊃ O1 ⊃ · · · such that Oγ =⋂

ν≥0 Oν and

O \Oγ =
⋃

ν≥0

⋃

Kν−1<|k|≤Kν ,i, j

⎛

⎝Rν
k (γν) ∪

⋃

i, j

R+,ν
ki j (γν) ∪

⋃

i �= j

R−,ν
ki j (γν)

⎞

⎠ , (6.50)

123



Journal of Dynamics and Differential Equations

where Rν
k ,R

+,ν
ki j ,R−,ν

ki j are defined in (6.34).

Below we only consider the most difficult resonance set R−,ν
ki j (γν). The proof for other

resonance sets Rν
k , R+,ν

ki j are more simple, and thus omitted.

Since�ν, j = j+�̆ν, j , then by (6.30), there is a constant A1 > 0 such that |�ν,i−�ν, j | ≥
A1|i − j |. Denote A2 = (1+ 2A1 + 2A0)/A1. Note that when |i − j | > A2|k|,

|k · ω +�ν,i −�ν, j | ≥ (1+ A0 + A1)|k|,
thus in this case there is no small divisor, and in the following it remains to consider the case
of |i − j | ≤ A2|k|.

Denote

Sν
k,i, j = k · ω +�ν,i −�ν, j ,

Sν
k,i, j,∞ = k · ω + lim

t→∞(�ν,i+t −�ν, j+t )

and introduce the following resonant sets

R−,ν
k,i+t, j+t (γν) =

{

ω ∈ Oν−1 : |Sν
k,i+t, j+t | <

γν


(|k|)
}

,

Lemma 6.4 For i, j ≥ 1 with |i − j | ≤ A2|k|, there exist i ′, j ′ ≥ 1 satisfying i ′ ≤
2A2|k|, j ′ ≤ 2A2|k| and t ≥ 1 such that i = i ′ + t, j = j ′ + t . Consequently,

⋃

i, j,|i− j |≤A2|k|
Rν

ki j ⊂
⋃

i ′, j ′≤2A2|k|

⋃

t≥1
Rν

k,i ′+t, j ′+t . (6.51)

Proof Without loss of generalization, we assume j > i . For given i, j, choosing a t0 ≥ 1
such that 0 ≤ i − t0 ≤ A2|k|. Let i ′ = i − t0 and j ′ = i ′ + j − i = j − t0, then

j ′ ≤ i ′ + | j − i | ≤ 2A2|k|.
It follows that (6.51) holds. ��
Lemma 6.5 For fixed k, i ′, j ′,

mes

⎛

⎝
⋃

t≥1
Rν

k,i ′+t, j ′+t

⎞

⎠ ≤ (20+ 8B0)(2π)n(n−1)
√

γ

|k|2√
(|k|) .

Proof For ω ∈ ⋃

t>
√


(|k|)
γ

R−,ν
k,i ′+t, j ′+t (γν), suppose ω ∈ R−,ν

k,i ′+t0, j ′+t0
(γν) for some t0 >

√

(|k|)

γ
.

From the Töplitz–Lipschitz property of Pν and �̆ν , we conclude that

|Sν
k,i ′+t, j ′+t − Sν

k,i, j,∞| <
2(1+ B0)

|t | .

Then

|Sν
k,i ′, j ′,∞| ≤ |Sν

k,i ′+t0, j ′+t0
| + |Sν

k,i ′+t0, j ′+t0
− Sν

k,i ′, j ′,∞|

≤ γν


(|k|) +
2(1+ B0)

|t0| ≤ (3+ 2B0)

√
γ√


(|k|) .

123



Journal of Dynamics and Differential Equations

Thus

⋃

t>
√


(|k|)
γ

R−,ν
k,i+t, j+t (γν) ⊆

{

ω ∈ Oν−1 : |Sν
k,i ′, j ′,∞| < (3+ 2B0)

√
γ√


(|k|)
}

=: Qν
k,i ′, j ′,∞.

We give the estimate ofQν
k,i ′, j ′,∞. Taking the vector v = |k|(sgn(k1), . . . , sgn(kn)), then

k · v = |k|2. Let ω = ωμ = μv + w with μ ∈ R, w ∈ v⊥. Let

f (μ) = Sν
k,i, j,∞ = k · ωμ + lim

t→∞(�ν,i+t (ωμ)−�ν, j+t (ωμ)).

Due to supω∈O | limt→∞ ∂ω�̃ν,i+t | ≤ 3ε0 and ε0 ≤ 1
12n , the derivative

| f ′(μ)| = ||k|2 + lim
t→∞ v · (∂ω�̃ν,i+t (ωμ)− ∂ω�̃ν, j+t (ωμ))|

≥ |k|2 − 6n|k|ε0
≥ 1

2
|k|2. (6.52)

Then by Lemma 7.6, one has

mes{μ : μv + w ∈ Oν−1, | f (μ)| ≤ δ} ≤ 4δ

|k|2 .

It follows that, by Fubini’s theorem,

mes
(
Qν

k,i ′, j ′,∞
)

≤ diamn−1(Oν−1)mes{μ : μv + w ∈ Oν−1, | f (μ)| ≤ (3+ 2B0)

√
γ√


(|k|) }

≤ 4(2π)n(n−1)(3+ 2B0)

√
γ

|k|2√
(|k|) . (6.53)

Similarly, for the resonant set R−,ν
k,i ′+t, j ′+t , following the argument of estimating

mes
(
Qν

k,i ′, j ′,∞
)

, we have

mes
(
R−,ν

k,i ′+t, j ′+t

)
≤ (2π)n(n−1) 4γν

|k|2
(|k|) . (6.54)

Then

mes

⎛

⎜
⎜
⎝

⋃

t≤
√


(|k|)
γ

R−,ν
k,i ′+t, j ′+t

⎞

⎟
⎟
⎠ ≤ 2

√

(|k|)

γ
(2π)n(n−1) 4γ

|k|2
(|k|)

≤ 8(2π)n(n−1)
√

γ

|k|2√
(|k|) . (6.55)

Using (6.53) and (6.55), we complete the proof. ��
Finally, we give the estimate of mes

(
O\Oγ

)
.
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Lemma 6.6 Let 
 be an approximation function satisfying (4.8),i.e.,
∑

k∈Zn
1√


(|k|) < ∞.

Then the total measure of resonant set should be excluded during the KAM iteration is

mes
(
O \Oγ

) = O(
√

γ ),

where the implicit constants in “O" depend only on n, A2, B0,
 and are made explicit in
the proof.

Proof By Lemma 6.5,

mes

⎛

⎝
⋃

1≤i ′, j ′≤2A2|k|

⋃

t≥1
Rν

k,i ′+t, j ′+t

⎞

⎠

≤ (2A2|k|)2(20+ 8B0)(2π)n(n−1)
√

γ

|k|2√
(|k|)
≤ A2

2(80+ 32B0)(2π)n(n−1)
√

γ√

(|k|) .

Then

mes

⎛

⎝
⋃

ν≥0

⋃

Kν−1<|k|≤Kν

⋃

i, j

Rν
ki j

⎞

⎠ ≤
∑

ν≥0

∑

Kν−1<|k|≤Kν

mes

⎛

⎝
⋃

|i ′|,| j ′|≤2A2|k|

⋃

|t |≥1
Rν

k,i ′+t, j ′+t

⎞

⎠

≤ A2
2(80+ 32B0)(2π)n(n−1) ∑

ν≥0

∑

Kν−1<|k|≤Kν

√
γ√


(|k|)

≤ A2
2(80+ 32B0)(2π)n(n−1)√γ

∑

k

1√

(|k|) .

Consequently, the measure of the set O\Oγ is

mes(O \Oγ ) = O(
√

γ ).

��

7 Appendix

7.1 Some Properties of Approximation Functions

Lemma 7.1 For all integers k ≥ 1, l ≥ 0,

�k(σ ) ≤ σ l�k+l(σ ),

where �k(σ ) = �k3(σ ) = supt≥0(1+ t)k
3(t)e−tσ .

Proof Let

f (t) = k log(1+ t)+ log
3(t)− tσ.

Its derivative

f ′(t) = k

1+ t
+ d

dt
log
3(t)− σ.
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If σ(1+ t) ≤ 1, then

f ′(t) ≥ k − 1

t + 1
+ d

dt
log
3(t) ≥ 0.

It follows that (1+ t)k
3(t)e−tσ arrive at its supremum at some point t∗ with σ(1+ t∗) ≥ 1.
Therefore, for all l ≥ 0,

�k(σ ) = (1+ t∗)k
3(t∗)e−t∗σ

≤ σ l(1+ t∗)k+l
3(t∗)e−t∗σ ≤ σ l�k+l(σ ).

��

Recall � defined in (6.24):

�(σ) = inf
σ̃0≥σ̃1≥···>0,σ̃0+σ̃1+···≤σ

∞∏

μ=0
�κμ(σ̃μ) =

∞∏

μ=0
�κμ(σμ) < ∞,

where �(σ) = �2(σ ) = �23(σ ) = supt≥0(1+ t)2
3(t)e−tσ .

Lemma 7.2 The � defined in (6.24) is finite for all σ > 0. In particular, let T > 0, if

1

log κ

∞∫

T

log
(t)

t2
dt < σ,

then

�(σ) ≤ eσ T .

Proof Let δ(t) = log(1+ t)2
3(t) and

tν = κν+1T , σν = δ(tν)

tν

for ν ≥ 0. By condition (1.5) and the hypotheses, σ0 ≥ σ1 ≥ · · · > 0 and

∞∑

ν=0
σν ≤

∞∫

−1

δ(tν)

tν
dν ≤ 1

log κ

∞∫

T

δ(t)

t2
dt ≤ σ.

Since δ(t)− σν t ≤ 0 for t ≥ tν, then by condition (1.5) again the supremum of δ(t)− σν t
is obtained on the interval [0, tν] and thus smaller than δ(tν). It follows that

�(σν) = sup
t≥0

eδ(t)−σν t ≤ eδ(tν ) = eσν tν

in view of the definition of σν and hence by κν tν = T ,

�(σ ) ≤
∞∏

μ=0
eκνσν tν ≤ eσ T .

��
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Lemma 7.3

∑

k∈Zn

1√

(|k|) ≤ 2n

∞∫

0

(
n + t

n

)
d log

√

(t)√


(t)
dt

provided that tn/
(t) as t → 0.

Proof Note that
∑

k∈Zn

1√

(|k|) ≤ 2n

∑

k∈Nn

1√

(|k|) .

Let Vn(t) = card{k ∈ N
n : |k| ≤ t}. Then By the monotonicity of approximation functions

the sum above may be written as a Stieltjes integral

∑

k∈Nn

1√

(|k|) ≤ inf

0=t0<t1<t2<···
{1+

∞∑

ν=0

Vn(tν+1)− Vn(tν)√

(tν)

}

≤ 1+
∞∫

0

dVn(t)√

(t)

=
∞∫

0

Vn(t)
d log

√

(t)√


(t)

by partial integration. From the proof of Lemma 8.3 in [40],

Vn(t) ≤
(

n + t
n

)

,

this prove the lemma. ��

Lemma 7.4 There are approximation functions 
 such that

∑

k∈Zn

1√

(|k|) ≤ K n log log n

for all sufficiently large n with some constant K .

Proof For t ≤ n,

(
n + t

n

)

≤
(
2n
n

)

≤ (2n)!
(n!)2 ≤ 4n

for all n ≥ 1. Hence

n∫

0

(
n + t

n

)
d log

√

(t)√


(t)
dt ≤ 4n

∞∫

0

d log
√


(t)√

(t)

dt = 4n

for every approximation function 
.

For t ≥ n,

(
n + t

n

)

= 1

n! (t + 1) · · · (t + n) ≤ 2n

n! t
n .
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Let ϕ be given by ϕ(s) = log2 s, and define 
 by stipulating that t �→ s = log
√


(t) is the
inverse function of s �→ t = sϕ(s), at least for large t and s respectively. Let sn = n/ϕ(n)

Since

sϕ(s)|sn =
n

ϕ(n)
ϕ(

n

ϕ(n)
) ≤ n

by the monotonicity of ϕ, then

n∫

0

(
n + t

n

)
d log

√

(t)√


(t)
dt ≤ 2n

n!
∞∫

0

tn d log
√


(t)√

(t)

dt

≤ 2n

n!
∞∫

sn

snϕn(s)e−sds. (7.1)

For all large n and s ≥ sn,

ϕ(s) = log2 s ≤ shn , hn = logϕ(sn)

log sn
≤ 4 log log n

log n
.

Thus, for all large n,

n∫

0

(
n + t

n

)
d log

√

(t)√


(t)
dt ≤ 2n

n!
∞∫

0

sn+nhne−sds

≤ 2n

nn
(n + nhn)n+nhn+1 = 2n An

nnnhn+1

here An = (1 + hn)1+hn+1/n . The final estimate follows, since An → 1 as n → ∞ and
nhn log n = 4n log log n. ��

7.2 Proof of Proposition 3.2

Proof We only give the proof for the estimate of (AB)
(11)
i j and (AB)

(12)
i j , the proofs for the

estimates of (AB)
(21)
i j and (AB)

(22)
i j are similar.

By the matrix multiplication, we have

(AB)
(11)
i j =

∑

k∈Z

(
A11

ik B11
k j + A12

ik B21
k j

)

and

(AB)
(12)
i j =

∑

k∈Z

(
A11

ik B12
k j + A12

ik B22
k j

)
.

•Verifying the property (T1′). In view of A, B ∈ M
ρ
r and the inequality in Lemma 7.5,

we have

‖(AB)
(11)
i, j ‖D(r)×O ≤

∑

k∈Z
‖A11

i,k‖D(r)×O‖B11
k, j‖D(r)×O +

∑

k

‖A12
i,k‖D(r)×O‖B21

k, j‖D(r)×O

≤ 〈〈A〉〉ρ,r 〈〈B〉〉ρ,r

⎛

⎝
∑

k

e−ρ(|i−k|+|k− j |) +
∑

k∈Z
e−ρ(|i+k|+|k+ j |)

⎞

⎠

123



Journal of Dynamics and Differential Equations

≤ Cδ−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,r e
−(ρ−δ)(|i− j |)

and

‖(AB)
(12)
i, j ‖D(r)×O ≤

∑

k∈Z
‖A11

i,k‖D(r)×O‖B12
k, j‖D(r)×O +

∑

k

‖A12
i,k‖D(r)×O‖B22

k, j‖D(r)×O

≤ 〈〈A〉〉ρ,r 〈〈B〉〉ρ,r

⎛

⎝
∑

k

e−ρ(|i−k|+|k+ j |) +
∑

k∈Z
e−ρ(|i+k|+|k− j |)

⎞

⎠

≤ Cδ−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,r e
−(ρ−δ)(|i+ j |).

•Verifying the property (T2′). In view of A, B ∈M
ρ
r , then following the verification of

Property (T1′), we have

‖ lim
t→∞(AB)

(11)
i+t, j+t‖D(r)×O ≤

∑

k

‖ lim
t→∞ A11

i+t,k+t‖D(r)×O‖ lim
t→∞ B11

k+t, j+t‖D(r)×O

+
∑

k

‖ lim
t→∞ A12

i+t,k−t‖D(r)×O‖ lim
t→∞ B21

k−t, j+t‖D(r)×O

≤ 〈〈A〉〉ρ,r 〈〈B〉〉ρ,r

(
∑

k

e−ρ(|i−k|+|k− j |) +
∑

k

e−ρ(|i+k|+|k+ j |)
)

≤ Cδ−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,re
−(ρ−δ)(|i− j |)

and

‖ lim
t→∞(AB)

(12)
i+t, j−t‖D(r)×O ≤

∑

k

‖ lim
t→∞ A11

i+t,k+t‖D(r)×O‖ lim
t→∞ B12

k+t, j−t‖D(r)×O

+
∑

k

‖ lim
t→∞ A12

i+t,k−t‖D(r)×O‖ lim
t→∞ B22

k−t, j−t‖D(r)×O

≤ 〈〈A〉〉ρ,r 〈〈B〉〉ρ,r

(
∑

k

e−ρ(|i−k|+|k+ j |) +
∑

k

e−ρ(|i+k|+|k− j |)
)

≤ Cδ−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,re
−(ρ−δ)(|i− j |).

These imply the property (T2) holds.
•Verifying the property (T3′). Denote A11

i, j,∞ := limt→∞ A11
i+t, j+t and A12

i, j,∞ :=
limt→∞ A12

i+t, j−t . Similarly for other terms.
Then by the difference equality (3.15) and the inequality in Lemma 7.5, we have

‖(AB)
(11)
i+t, j+t − lim

t→∞(AB)
(11)
i+t, j+t‖D(r)×O

≤
∑

k

‖A11
i+t,k+t − A11

i,k,∞‖D(r)×O‖B11
k, j,∞‖D(r)×O

+
∑

k

‖A11
i,k,∞‖D(r)×O‖B11

k+t, j+t − B11
k, j,∞‖D(r)×O

+
∑

k

‖A11
i+t,k+t − A11

i,k,∞‖D(r)×O‖B11
k+t, j+t − B11

k, j,∞‖D(r)×O

+
∑

k

‖A12
i+t,k−t − A12

i,k,∞‖D(r)×O‖B21
k, j,∞‖D(r)×O
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+
∑

k

‖A12
i,k,∞‖D(r)×O‖B21

k−t, j+t − B21
k, j,∞‖D(r)×O

+
∑

k

‖A12
i+t,k−t − A12

i,k,∞‖D(r)×O‖B21
k−t, j+t − B21

k, j,∞‖D(r)×O

≤ |t |−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,r

(
∑

k

e−ρ(|i−k|+|k− j |) +
∑

k

e−ρ(|i+k|+|k+ j |)
)

≤ |t |−1Cδ−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,re
−(ρ−δ)(|i− j |)

and

‖(AB)
(12)
i+t, j−t − lim

t→∞(AB)
(12)
i+t, j−t‖D(r)×O

≤
∑

k

‖A11
i+t,k+t − A11

i,k,∞‖D(r)×O‖B12
k, j,∞‖D(r)×O

+
∑

k

‖A11
i,k,∞‖D(r)×O‖B12

k+t, j−t − B12
k, j,∞‖D(r)×O

+
∑

k

‖A11
i+t,k+t − A11

i,k,∞‖D(r)×O‖B12
k+t, j−t − B12

k, j,∞‖D(r)×O

+
∑

k

‖A12
i+t,k−t − A12

i,k,∞‖D(r)×O‖B22
k, j,∞‖D(r)×O

+
∑

k

‖A12
i,k,∞‖D(r)×O‖B22

k−t, j−t − B22
k, j,∞‖D(r)×O

+
∑

k

‖A12
i+t,k−t − A12

i,k,∞‖D(r)×O‖B22
k−t, j−t − B22

k, j,∞‖D(r)×O

≤ |t |−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,r

(
∑

k

e−ρ(|i−k|+|k+ j |) +
∑

k

e−ρ(|i+k|+|k− j |)
)

≤ |t |−1Cδ−1〈〈A〉〉ρ,r 〈〈B〉〉ρ,re
−(ρ−δ)(|i+ j |).

��

7.3 SomeTechnical Lemmas

Lemma 7.5 Let 0 < δ ≤ 1. ∑

k∈Z
e−δ(|i−k|+|k− j |) ≤ Cδ−1, (7.2)

where C is a positive constant that does not depend on δ and i, j .

Proof Without loss of generality, we assume i ≥ j .
∑

k∈Z
e−δ(|i−k|+|k− j |) =

∑

k∈Z
e−δ(|k|+|i− j−k|)

=
⎛

⎝
∑

k<0

+
∑

0≤k≤i− j

+
∑

k>i− j

⎞

⎠ e−δ(|k|+|i− j−k|)

=
∑

k<0

e−δ(−2k+i− j) +
∑

0≤k≤i− j

e−δ(i− j) +
∑

k>i− j

e−δ(2k−(i− j))
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= 2e−δ(i− j)

e2δ − 1
+ (i − j + 1)e−δ(i− j).

Since the function f (x) = (x + 1)e−δx , (x ≥ 0) reaches its maximum at x = 1
δ
− 1, then if

0 < δ ≤ 1,

f (x) ≤ 1

δ
e−1+δ ≤ 1

δ
.

It follows that the inequality holds. ��
Lemma 7.6 [45] Let f : [a, b] → R be a q−times continuously differentiable function
satisfying

| f (q)(t)| ≥ β, ∀ t ∈ [a, b]
for some q ∈ N and β > 0. Then we have the estimate

mes{t ∈ [a, b] : | f (t)| ≤ ε} ≤ 4

(
q!
2β

ε

) 1
q

, ∀ ε > 0.
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