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Abstract

In this paper, we prove the reducibility for some linear quasi-periodic Hamiltonian derivative
wave and half-wave equations under the Brjuno—Riissmann non-resonance conditions. This
is an extension of previous results of reducibility on Hamiltonian PDEs that required stronger
(Diophantine) non-resonance conditions.
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1 Introduction and Main Result

The reducibility theory of linear quasi-periodic systems is the generalization of the classi-
cal Floquet theory for linear periodic systems. It is important both in the linear problems
(spectral analysis of operator, growth of Sobolev norms) and in the non-linear case(linear
stability analysis of quasi-periodic solutions of non-linear systems). The first reducibility
result via Kolmogorov—Arnold—Moser (KAM) theory was due to Bogoljubov, Mitropoliskii
and Samoilenko [11], Dinaburg and Sinai [17] for finite degrees of freedom systems. Since
then KAM theory has been a powerful tool to study reducibility theory. In the late 1980s and
early 1990s, KAM theory was extended to non-linear partial differential equations (PDEs) by
Kuksin [33] and Wayne [48]. See also [35, 42, 43] for further developments. As a corollary,
these results imply the reducibility of the variational equations for quasi-periodic solutions
of non-linear PDEs. In fact, “reducibility is not only an important outcome of KAM but also
an essential ingredient in the proof™ [20].

The first pure reducibility result for linear quasi-periodic PDEs was given by Bambusi
and Graffi [5]. They proved the reducibility of linear Schrodinger equations with unbounded
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perturbations. Eliasson and Kuksin [19] investigated the reducibility of higher dimensional

linear quasi-periodic Schrodinger equations. Combining the pseudo-differential calculus,

Baldi, Berti and Montalto [1, 2] obtained the reducibility of quasi-linear forced perturbations

of Airy equation and quasi-linear KdV equation. Thereafter, these results are developed and

extended widely. One could refer to [3, 4, 6-9, 28-30, 36, 37, 39] and the references therein.
Consider a linear quasi-periodic PDE of the form

du = (A+ P(wt))u, oeR"\ {0}, (1.1)

where A is a positive self-adjoint operator and P is a operator-valued function with the basic
frequencies w. It is well known that KAM reducibility requires a lower bound on small
divisors of the form

|k -+ Ai(w) — Ai(w)], (1.2)

where k - @ = Y7, kiw; and {A;} are the eigenvalues of the operator A. In all the above-
mentioned papers, the lower bound of Diophantine type was used. Namely, the following
non-resonance conditions holds: |k - w + A;j(w) — Aj(w)| > # where the constants
y > 0, © > n — 1. On the other hand, thanks to the pioneering works of Brjuno [12], the
Diophantine conditions can be weakened to the Brjuno conditions. To make it applicable in
KAM scheme, Riissmann [44, 45] introduced the notion of an approximation function to char-
acterize the Brjuno conditions. Under such Brjuno—Riissmann type conditions, Poschel [40]
proved the persistence of elliptic lower dimensional tori in finite dimensional Hamiltonian
systems. In [41], Poschel also proved the existence of infinite dimensional invariant tori in
infinite dimensional Hamiltonian systems of the form H = w - I 4+ P(0, I). Later on, Xu
and You [49] and Chavaudret and Marmi [14] proved the reducibility of linear ODEs with
almost periodic coefficients and quasi-periodic cocycles under such Brjuno—Riissmann type
conditions, respectively. See also [31, 46, 47] for nonlinear forced ODEs. We also mention
some Brjuno type quasi-periodic results of Corsi and Gentile [15] and Gentile [27] for forced
non-Hamiltonian ODEs without using approximation function.

To the best of our knowledge, there has been no Brjuno—Riissmann type results in KAM
theory for PDE:s. In this paper, we establish a reducibility theorem for some linear Hamiltonian
PDEs under Brjuno-Riissmann non-resonance conditions. More precisely, we consider the
following linear quasi-periodic derivative wave equations

Ot — Oxxt +mu + €V(wt, x)Dpyu =0, m=>0x €0, x] (1.3)
and linear quasi-periodic half-wave equations
i0;u +Dou + €V (wt, x)u =0, x € [0, 7], (1.4)

under Dirichlet boundary conditions, where the Fourier multiplier D,, := /—dyx + m. The
basic fequencies w of the potential V satisfy the Brjuno—Riissmann non-resonance conditions.
The wave Eq. (1.3) covers the variational equation around any small amplitude quasi-periodic
solutions of nonlinear Hamiltonian derivative wave equation d;;u —dyxu+mu—+ f (Dyu) = 0,
where f(z) = az>+0(z°), a # 0.Quasi-periodic solutions with Diophantine frequencies of
this nonlinear wave equation under periodic boundary conditions have been obtained in [10].
The half-wave Eq. (1.4) is an important class of PDEs arising in various physical problems [13,
18, 24, 32, 38]. There are two main difficulties when studying the reducibility theory of the
Egs. (1.3) and (1.4). The first one is the weak dispersion relation since the eigenvalues
Aj ~ j, j — oo. The second one is the bad smoothness of the perturbations. To overcome
this, we introduce a simplified version of Toplitz—Lipschitz functions and Toplitz—Lipschitz
matrices, which were first proposed by Eliasson and Kuksin [20] in KAM theory for the higher
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dimensional Schrodinger equations. Such simplified form is more suitable to the Eqs. (1.3)
and (1.4) and it was also used in [25, 26]. Different from that in [25, 26], we characterize
the Toplitz—Lipschitz functions in a way of semi-norm. We also mention the quasi-Toplitz
functions introduced in [10] for nonlinear Hamiltonian derivative wave equations, which is
also an improved version of Eliasson—Kuksin’s Toplitz—Lipschitz functions. Comparing to
the quasi-Toplitz functions, our simplified form is more easy to handle. For further work
on the reduction of linear operators involving weak dispersion relations, please refer to
references [21-23].

To state our main results, we introduce some definitions and assumptions on the potentials
V in the Egs. (1.3) and (1.4).

Definition 1.1 (Approximation function, [40, 45]). A non-decreasing function
A : [0,00) — [1,00)

is called an approximation function, if

log A(t
ng()w, 0<1— o0 (1.5)
and
T log Ar)
/OgTdt < 0. (1.6)

1

in addition, the normalization A(0) = 1 is imposed for definition.

Remark 1.1 Below we list three typical approximation functions: A; = exp(t“/a), 0 <

a<1,A2=exp( ),a>1andA3=exp(log%t),a>l.

t
1+log® (1+41)
Definition 1.2 (Brjuno—Riissmann frequency) Let A be an approximation function. A vector
o € R" is called Brjuno—Riissmann frequency vector if it satisfies

4

k- o] = ————,
A(lk])

keZ"\ {0} (1.7)
for some constant y > 0.

Assumption 1 Suppose the function V : T" x [0, 7] — R is real analytic in (0, x). For
6 € T", V(0,-) is a 2w —periodic, even function V (0, x) = V (0, —x). Then it can be
written as N

V(0.x) =) Vj()cos jx. (1.8)

j=0

Moreover, suppose for all 8, the function V (6, -) extends to a complex analytic function on
a strip |Imx| < 2a for some a > 0. For all x, the function V (-, x) extends to a complex
analytic function on a strip on |[/m6| < 2r for some r > 0. Then there is a positive constant
Cy > 0 such that for p > 0,

IVIp@r.2a.p = Vollpar + Y i"e* Vil par < Cv. (1.9)
Jj=1

where the norm || - || p(2,) is defined in Sect. 2.
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Letg;(x) = \/g sin jx, j > 1 bethe normalized Dirichlet eigenfunctions of the operator

D,Zn := —dyx + m associated to the eigenvalues )»? = j2+m, j > 1. We consider the
Egs. (1.3) and (1.4) in the following function space

He? =3u=> "qij¢; : lullap =) j"eYlq;l <oo}. (1.10)
j=1 j=1

Our main result is stated as follows.

Theorem 1.1 Let m > 0. Under the Assumption 1 on the potential functions V, there is €q
so that for all 0 < € < ¢ there exists O C [0, 2m)" of positive Lebesgue measure such
that for all w € O satisfying Brjuno—Riissmann non-resonance conditions, the above linear
quasi-periodic wave Eq. (1.3) and half-wave Eq. (1.4) reduce to the linear equations with
constant coefficients with respect to the time variable.

In Sect. 5, we prove this theorem by the reducibility Theorem 4.1.
As a corollary of Theorem 1.1, we have the following conclusion concerning the solutions
of the Egs. (1.3) and (1.4):

Corollary 1.1 Let the initial data ugy € Hg’p, vy € Hg’p_l. Under the Assumption 1, there is
€o so that for all 0 < € < €p and w € O,

(1) there exists a unique solution (u(t, x), u;(t, x)) € ’Hg’p X ’Hg’p71 of the wave Eq. (1.3)
with (u(0, x), u; (0, x)) = (ug, vo). Moreover, u(t, x) is almost-periodic in time and stable,
ie.,

(I = eC)(lluolla,p + llvolla, p—1) < llut, Ma,p + Nur @, )lla, p—1
< +eC)(luolla,p + lvolla,p—1),
Vvt € R, for some constant C = C(a, p, w) > 0.

(ii) there exists a unique solution u(t, x) € Hg’p of the half-wave Eq. (1.4) withu(0, x) =
ug. Moreover, u(t, x) is almost-periodic in time and stable, i.e.,

(1 —eO)uolla,p < llut, Ma,p <A +eO) uolla,p, V¢ €R
for some constant C = C(a, p, w) > 0.

Remark 1.2 More recently, using the Renormalization Group method under Brjuno-type con-
ditions without employing an approximation function, Corsi et al. [16] have constructed
almost-periodic solutions with Gevrey regularity for the NLS equation with a convolution
potential of arbitrarily high regularity.

2 Functional Setting

Let O C R” be a parameter set of positive Lebesgue measure. Throughout the paper, for any
real or complex valued function depending on parameters £ € O, its derivatives with respect
to £ are understood in the sense of Whitney. We denote by C ‘],V(O) the class of C! Whitney
differentiable functions on O.

Suppose f € C‘I)V (0), we define its norm as

|flo = sup <|f(§)| + Ig($)|> ,
£eO 3%'

@ Springer



Journal of Dynamics and Differential Equations

where | - | denotes the sup-norm of complex vectors.
Given an n-torus T" = R" /(27 Z)" and its complex neighborhood

Dir)={0C":|Imd| <r, r>0}.

Consider a real analytic function f(6; &) onb € D(r). It isalso C ‘1,[, oné& € O. Its Fourier
expansion reads f(0; &) =Y ropn f(k; £)e*?  then we define its norm as

I lpeyxo =Y 1Fk: ok,
kezn
where k-0 = Y7 k;6; and |k| = > 1, |ki].
Let K > 0. For f(6; &) above, its K —order Fourier truncation 7 f is defined as
Tk HO) = > Ffloet?
kezn, |k|<K

The remainder R f of f is defined by (R f)(0) := f(0)—Tk f(0).Suppose0 < 20 < r,
we have the following estimate for Rg f :

IRk fllpr—20)x0 < 3202 X7 flpeyxo- 2.1
The average [ f] of f on T" is defined as

[f]:= F(0) = 2m)™" /T (6)ds.

Let a, p > 0, we introduce the Banach space ¢%” of all real or complex sequences
7= (Zj)jeZ with

lzlla,p =) e jPlzjl < oo
JEZL
Given r, s > 0, we define the phase space
PUP =T" x R" x €57 x 4P 5w :=(0,1,2,2)
and a complex neighborhood
D(r,s) = {w: mb| <r, 1| <5 lIzlap <5 IZlap < s}

of 7)) :=T" x {I =0} x {z=0} x {=0}in Pfé’p =C" x C" x £%P x (4P,
Consider a real analytic function f (0, I, z, Z; §) on D(r, s), which is also C‘I,V oné € 0.
Its Taylor—Fourier expansion reads

fO.1,2,58) =" fup@OI'*F = Y fuapk; )"0,
Lap keZr l.a,B

where we use the multi-index notations [ = (lj);’.:l, a = (@j)j>1, B = (Bj)j=1
with [, a;, 8; € N. o and B have only finitely many nonzero components. I'72978 =

1 aj_pj
(l_[::lzl I[ )(HJEZ ijij)'
We define the majorant of f as

LA 1beyxo = LFC 1. 2.2 )1 pexo = Y I fiapllpexol 121127
La,B
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and the norm of f as

I fllpesyxo = sup Lf1peyxo
<52 Nzlla,p<s:lZlla.p<s
= sup >l fapll Dy <o 11221128

|”<52,HZ”a.p<5a”ZHa,p<S La,p

Consider an infinite dimensional dynamical system on D(r, s) :
w=Xw), w=(0,1,z72) €D(,s),
where the vector field
Xw) = XD ), XD(w), X w), X w)),

Suppose vector field X (w; &) is real analytic on D(r, s) and C ‘1,[, smooth on O, we define
the weighted norm of X as follows

IXls; per,s)x0

n n
) 1 .
= sup { E LX(Q’)h)(r)xo-i-Sf2 E LX) piyxo
i=1

<52 llzlla,p<s:lZlla,p<s L i=1

1 . | _
+5 Zea]jp(LX(z’)TD(r)xO + LX(Z])WD(r)xO)}«
JEZL

3 Toplitz-Lipschitz Functions

3.1 Definitions

In this section, we introduce a class of real analytic functions with exponentially off-diagonal
decay.

Definition 3.1 Let r, s, p > 0. Suppose P (0, z, Z; &) is real analytic on (0, z,z) € D(r, s)
and C ‘Ev—smooth on parameters £ € O. We say that P is Toplitz—Lipschitz and write P €
p .
TD(r,s)xO if
(P)p,D(r,s)xO < o0, 3.1

where the semi-norm (P), p(rs)x© is the smallest non-negative real number that satisfies
the following conditions
(T1) Exponentially off-diagonal decay.

9P

< (P)y.pr.syxoe PiTil. (3.2)
8Zi 8Zj D(r,s)xO

9P

R < (P)y.pr.syxoe il 3.3)
8Zi 8Zj D(r,s)xO

9P

— < (P)p.D(r.syx0e Pl (34
3Zi32j D(r,s)xO
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(T2) Asymptotically Toplitz. The limits

3P , P _ 3P
im @ — im ——— and im —
1€2, 100 0Zj410Zj—  1€ZL,1—>00 0Zj 410714 1€Z, 1—00 0Zj 4107
exist and are finite for all i, j € Z.
(T3) Lipschitz at infinity. For sufficiently large |z], t € Z, the following hold.

2P . a%p _ i
— — lim ————— < 1tI7HP) . prsyx0e P (3.5)
02i4102j—1 1% 02i19Zj—t | pr gyx0

3zp . a2p _ il
— — lim ————— < 1tITYP) p. D syxoe PN (3.6)
0Zi410Zj41 170 02i410Zj41 || pr yx0

a’p , 3*P _ plit)
— — lim ——— < |t 1<P>p,D(r.x)><(96 PIHIL(3.7)
8Zi+18Zj*f =00 82,4,31,;1 D(r,s)xO

Remark 3.1 By the definition of (P), p(-s)x 0, it is not difficult to verify that

e (P)) Dirsyxo = 0;

o (AP)y D(rs)x0 = |M{P)p.D(rs5)xo forall A € C;

o (P + F)p,D(r,s)xO = (P)p,D(r,s)xO + (F>p,D(r,s)><O-
Note that (P), p(,s)xo = 0 could not imply P = 0. This means (-), p¢s)xo is only a
semi-norm.

Remark 3.2 From (T1) and (T3), the limits in (T3) satisfy

32P L
lim ——— < (P)p.D(r.5yx0e Pt (3.8)
100 82i1192j—1 | pr syx0

aZP L.
lim ————— < (P)p.D@rs)x0e Nl (3.9)
100 82i11Zj+1 | pr syx0

92p L
lim ———— < (P)y.Dp(r.syxoe PiTIl. (3.10)
100 82i119Zj~1 | pr syx0

Remark 3.3 By the definition of the semi-norm (-), p(r,5)x©, it is not difficult to verify that
the following conclusions hold:

(1) <P>p,D(r’,s’)><(9 < <P>p,D(r,s)><O ifo<r’ <r,0< s’ <s;

(2) (P)y . D(r,s5)x0 < (P)p.D(r.s)x0 if 0 < p’ < p;
(3) Let K > 0, then the Fourier truncation 7x P of P satisfies

(TKP)p,D(r,s)XO =< (P)p,D(r,s)xO
and the remainder R P of P satisfies

—K(r—r’) <P)

(Rk P)p. D' s)x0 < € 0,D(r,5)xO

if0<r <r.

Definition 3.2 Let Zg’p be the unilateral infinite sequences space defined by

6" =1z2= iz 1zllap = Y _ 17117 < 0o p . (.11
j=1
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o7 x e, o7 x g

Given a real analytlc function P (0, z, z) with (z,z) € ¢ we lift it from ¢
to £4P x 4P by P(G,z,z) P@,z,2), where (2, z) ethP x t@Pand 7 = z;,z = z; for
all j > 1.

We say that the function P is Toplitz-Lipschitz and write P € 7, p D(r.5)xO if P(6,%,2) is
Toplitz—Lipschitz and define

<P>p,D(r,s)xO = (F>p,D(r,s)xO < Q. (3~]2)
Below we focus on a class of quadratic functions on (z, z) of the form

P@,z,z;€) = Z Pop(0;£)2%7P.

la]+1B81=2

We study the Toplitz—Lipschitz property for these functions under the action of the Poisson
bracket, the flow of linear Hamiltonian system and the canonical transformation.

Proposition 3.1 (Poisson bracket). Let 0 < § < min{p, 1}. Suppose the quadratic functions
R, F e T[[))(r,s)xo’ then {R, F} € ng(ri)xo and there exists a constant C > 0 so that

C
<{R» F}>p—8,D(r,s)><(9 = g<R>,0,D(r,s)xO<F>p,D(r,s)><(9' (3~13)

Proof The Poisson bracket {R, F'} reads
OR 0F O0R OF
{R’F}:lz(ii_fi)-
0zp 0Zk 0z 0zk

. . . . 2 . -
In what follows, it remains to analyze the second derivative aaz{f)’; ! with respectto z;, Zj,
02

and the other second derivatives could be similarly done.
Since the functions R and F are both quadratic on (z, z), their third derivatives vanish.
Then we have
I*{R, F)
07,07

92 92 92 92 92 92 92 92
=) ~ — + - - — — .
]2 <8Zk8Zj 07,0z 0z;0z 0Z;x0Z;  0Zx0Zj 0z;0zx 02k 0% aZkaZj>

(3.14)
2
e We first verify the property (T1) for aaz{g’f LIt suffices to consider the sums
i9zj
R ’R__9°F s
Dokl 5250, dztdzk and 3 4oy 3590 5597, 10 (3.14), and the others can be similarly done.
Since the functions R and F satisfy the property (T1), then we have
R 9°F -y 92F
k dzdej 0202k D(r.s)xO k dzdej D(r,s)xO 92; 0% D(r,s)xO
= <R)p,D(r,s)><O<F>p,D(r,s)><O Zeip(liik‘ﬂkijl)
k
< (R)p,D(r,s)xO(F>p,D(r,s)er_(p_Smi_jl) Z 6—5(|i—k|+|k—j\)
k

< C5"YR) ) p(rosyx O (F) p. Dy x0e P UI=ID
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and
3?R 9%R 9%F
popicsLe| IED o) Fix 52,7
20z 997 | 7 10207 pgsyxo 19297 g g xo
< (R)p,D(r,5)xO{F) p,D(r,5)x0O Zefp””k'“k”')
A

= Cail (R>,0,D(r,s)><(9<F>,0,D(r,s)XOei(pis)(‘iijl)o

here we use the inequality ), e_‘s(‘i_k"*"k_j') < C8~! ('see Lemma 7.5, Appendix).
}

e We then verify the property (T2) for 2 3 . From the above analysis, we know that the
3’R 02 9’F
functional series Zk>1 T0%; le 3Zk and Zk>1 9202 95,97, converge uniformly on D(r, s) X

: it T 3P 9P 9P
O. Since the limits lim; _, o T lim; s o P o and lim;_, o Tors exist and are

0z
finite, then the limits

. 3*R I*F
lim — -
t—00 P 02k+10Zj 41 0Zi410Zk+s

and
_ 92R 92F
lim — -
100 £ 0244 02k—1 0Zj+10Zk—

2R, F}

also exist and are finite. This implies the property (T2) holds for 2 0T

F}

o Finally, we verify the property (T3) for . For the sake of convenience, we introduce

Bz Zj
the notations
82
Pliloo = lim ———
(=00 02i410Z) 41
_ 9P
PlzoOo = lim ———
! 1200 074407
and
82
02 ._
Pl-j,oo. li

= lim ———
—00 82,+,8Z, t

Inviewof R, F € TD(r )%

AB—ab=((A—-a)b+a(B—-b)+ (A—a)B—-Db), (3.15)

o and thanks to the difference equality

and the inequality in Lemma 7.5, we have

9%F ) 2R 92F
‘Z —,122@ ——

BZkthaZhL[ 8Z,+[82k+t azk+,821+, 8Z1+182k+t

D(r,s)xO

Z ’ aZk+tazj+t k] 00 D(r.5)xO H lk,ooHD(r,s)xO
3’ F
+ S| R el 0 | T ~ P
Z kj,00 D(r.s)xO aZiJrzaZkth ik,00 Drs)xO
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92R

8Zk+t aZj-t,-z

2
— Rl FF on

j o0

+Zk:‘

< 1t17R) .05 x O (F ) p.D(rsyx 0 Y e PUTHIHIE=ID
k

+ |t|_1 (R>p,D(r,s)><O<F>p,D(r,s)><(9 Z e—p(li—k|+|k—j|)
k

02i440Zk+¢

D(r,s)xO ‘ D(r,s)xO

+ |t|_2<R>p,D(r,s)xO<F)p,D(r,s)xO Ze—p(li—klﬂk—jl)
k
< |t|_1C8_](R)p,D(r,s)xO(F)p,D(r,s)er_(p_s)(li_jD
and

- - — lim
02i+102k—1 824102k~ 1704

<
Z‘ 3Zl+132k —t
+ Z || Rlzl?,oo || D(r,s)xO

2

=< |t|_ C‘S_ <R>,0,D(r,s)><(9<F>p,D(r,s)><Oe

92R 92F Z 2R 92F

0Zi4102k—r 0Zj410Zk—
i+ It D(r.s)xO

_ R

02
ik,00

k00 H D(r,s)xO

D(r,s)xO
3?’F

0Zj+10Zk—1

Jjk,o00

D(r,s)xO

2
PF o,
Jjk,o00

20
ik,00

8Zj+tazk—t
—(p=8)(i—jD .

aZH—taZk ‘ D(r.5)xO D(r,s)xO

These imply that
P{R.F} 9*R,F}
— — lim —

02i410Zj41 17 02i410Zj41 || pr s)x0

< 17 C5™ (R pir1x0 (F)p. piry o8 #0010,

3.2 Toplitz-Lipschitz Matrices

Denote by M>(C) the space of 2 x 2 complex matrices. Let || - | be any sub-multiplicative
norm on M3 (C). Consider a bilateral infinite dimensional M;(C)—valued matrix

A:ZXZ— MpQC):
All A12
@, j)— Aij = ( % 2]2
z] l]
The matrix multiplication is defined by (AB);; = ZkeZ A By

Now we consider the matrices depend on (6, &) € D(r) x O.

Definition 3.3 (Matrices with Toplitz—Lipschitz property) Let r, p > 0. We say that a matrix
A = A(0,&) on D(r) x O is Toplitz—Lipschitz and write A € szp if ((A))p,r,0 < 00,
where the norm ((A)), , o is defined by the following conditions:
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(T1') Exponentially off-diagonal decay

1AL 1 Deryxo < ((A)) p.r.0e™ P71, (3.16)
1AZ I D(ryxo < ((A))p.r.0e = iH!, (3.17)
IAZ 1 Deryxo < ((A))p.r.0e P, (3.18)
IAF Ipeyxo < ((A))pr.0e P71 (3.19)
(T2") Asymptotically Toplitz The limits
teZl,i?looAllJlrt j+te htnl)OQ A,li, -t EZ{H&@)A?L j—r and tethnl)oo AZH it

exist and are finite for all i, j € Z.
(T3') Lipschitz at infinity For sufficiently large |¢|, ¢ € Z, the following hold.

1AL e = Jim AL G llpeyxo < 117 (AD .06, (3.20)

1A= = Jim A2, i Ipeyxo < 107 (A))p.r,0e P11, (3:21)

1AL joe = lim AZL i IDeyxo < 117 (A p.r0e ™71, (3.22)
Jj— oo J

1A o = Jim AR, i IDeyxo < 1017 (A))p.r0e P11 (3.23)
J oo J

Definition 3.4 Given a unilateral infinite dimensional M;(C)—valued matrix
A:NxN— M,(©),
we lift it from N x N to Z x Z by

- Aij, i>1, j=1,
Aij={l] -

) (3.24)
0, otherwise.

We say that A is Toplitz—Lipschitz and write A € mtf! o if Ais Toplitz—Lipschitz and
define

(AN p.r.0 = ({A)) p.r.0 < 00. (3.25)

The following conclusion indicate that sz,o is an algebra. This important property will
be applied to Proposition 3.4.

Proposition 3.2 Let 0 < § < p. Suppose the matrices A, B € S)ﬁf,o. Then their product
AB e E)J?fz,)a and there exists a constant C > 0 so that
((AB))p—s.r.0 < CS ((A))p.r.0((B))p.r.0-

The proof is given in Sect. 7.2, Appendix.

3.3 Flow of Linear Hamiltonian System

In this section, we study the Hamiltonian flow generated by a quadratic Toplitz—Lipschitz
function F (0, z,7; &) € 7, D(r XO"

In the sequel, we use the notations Z = (ZJ)JTeZ with Z; = (z;,Z;)". The Hessian 9% F
of F with respect to Z reads

0 F = (Vz,Vz F)uez
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where
92F  9%F
_ dz;0zj 0z;0Z;
Vz;Vz, F = 9°F  _9*F

dz;0z; 0707

Denote A = J E%F , where

01
J:diag{f:( )} ,
! -10 jez

then
92F 92F
9%:9z; 0707,
Aij = YA YA (3.26)

T 9zj0z; | 0z;0%,
By the definitions of Toplitz—Lipschitz function and Toplitz—Lipschitz matrix, they have the
following relation.

Lemma3.3 Let p > 0. Suppose F (09, z, z, ; §) is a quadratic function on D(r, s) x O. Then
F e Tg(m)xo ifand only if A = J@%F € sz,o. Moreover,

{A)) p.r.0 = (F)p.D(rs)x0O- (3.27)
The Hamiltonian equation associated to the quadratic function F' reads

O@), (1), 2(1), 2(1)) = XpO(0), 1(1), 2(1), Z(1)),

b ~ (3.28)
(6(0), 1(0), 2(0), 2(0)) = (6°, 1°, 2%, 2%).
Under the new notation Z, the quadratic function F € Tg(m)x o can be rewritten as
17 1 7.
F@,2) = EZ AO)Z = EZ 07 F(6,00Z (3.29)
and the Eq. (3.28) reads
6(1) =0,
1) =—0gFO®), Z(t
() g F(6(1), Z(1)), (3.30)

Z(t) = AOW)Z = JozF©O@), 0)Z(1),
6(0), 1(0), Z(0)) = (8°, 19, ).

The Jacobian 8,0 Z (the derivative of Z(z) with respect to Z°) is

dz; 0z;
3z9 979
9,07 = (a oZ) - 50y
“ Zi™ )i jen 0% 0%

82 @ i,jeZ
Proposition3.4 Ler 0 < § < min{p, 1} and 0 < o < r/3. Suppose Cso < In2 and
Cs? < 2 and the quadratic function F € ’Tg(r X0 and

| XF ”s;D(r—a,s)xO + <F>,0,D(r—(r,s)><(9 < Co. (3.31)

Then the solution (0(t), 1(t), Z(t)) of the Eq. (3.30) with initial condition (6°,1°, Z°) e

D(r — o, 3) satisfies (6(t), I(t), Z(t)) € D(r, 5) forall0 <t < 1. Moreover, the Jacobian
070 Z(t) satisfies

(020Z(t) = 1d)) p—5.r—0.0 < C{F)p.D(r—0.5)xO- (3.32)
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where the notation 1d is the identity mapping.
Proof Since 6(r) = 0, then 8(¢) = 6° € D(r — o) remains unchanged.

Consider the equation for Z :

5 _ 0y7 . 0
{z =AWONZ:=JdzF©®°0)Z, (3.33)

Z0) =2°
It is a linear system with constant coefficients, thus its solution is
Z(t) = A" 20, (3.34)
By (3.26) and (3.31),
|Allgar—gar < sIXFls;DG—0,5)x0 < Cso0.
Thus thanks to Cso <In2,forall0 <t <1,
1Z@llear < elAleer—eor ) Z0) oy < e

=

Y

s
4
Consider the equation for /. By (3.30) and (3.34), we have

(3.35)

(1) =—-32T9,A0)Z,
1(0) = 1°.

The integral form of the above Eq. (3.35) is
1 t

1(t)y=1°— 5/ ZT(1)3p AO) Z(v)d. (3.36)
0

Then thanks to Cs2 < 2, forall0 <t < 1,

C
1)) < 119 + —||A||wﬁw||2(t>||€ap PRSP
4 8 — 2

Thus the flow X’F exists for all 0 < ¢ < 1 and it maps the domain D(r — o, ‘Z) to D(r, %).
Denote the solution (0(t), I(), z(t), 2(t)) = X% (6°, 1°,2°,20), then for 0 < 7 < 1 and
0°,1°,29,2% € D(r — 0, %), the solution (0(2), 1(1), z(1), 2()) € D(r, §).

Now we prove the estimate (3.32). Rewrite the solution Z(#) in (3.34) as

Z(t) = (Id + Bt))Z°, (3.37)
where
0k
YY) _ "k
B(t) =40 _ 14 = 1; HA ).

By Proposition 3.2 and Lemma 3.3, forall 0 <t < 1,

k — k! k=t
() — Z¥ (5) ki

00 — C k—1 .
= Z ( ) <F)p,D(r—(7,s)><(9
k=1

C< >p D(r—o,5)x0O- (3-38)

This completes the proof of the estimate (3.32). O

@ Springer



Journal of Dynamics and Differential Equations

Proposition 3.5 (Canonical transformation). Let 0 < § < min{p/3,1}, 0 < o < r and
R, F € T, [’;(r $)xO" where the Hamiltonian F is a quadratic function. Assume that the

Hamiltonian F satisfies (3.31). Then the composition R o X}p € Tg(_riaa_x/4)xo and there

exists a constant C > 0 so that
(Ro X}v)p—3a,D(r—a.s/4)xo < C872<R>p,D(r,s/2)><(9~ (3.39)

Proof By Proposition 3.4, the time-1 mapping X}p maps (6°,1°,2% € D@ — o, 1) to
0.1,2):=X,0°1°2%¢eD(, 5.
Since the mapping Z is linear in Z°, the Hessian BéoZ = 0. Then the Hessian 3%0 (RoX }V)
of Ro X }: with respect to Z° becomes
20(Ro Xp) = (9,02)T 03 R(X )90 Z.

Note that ((JT(8,02)TJ))p, = ((370Z))p, and JT = J~! = —J, then by Lemma 3.3
and Proposition 3.4, we have

(Ro X}?>p738,D(r70,x/4)><(9
= ((J320(R 0 X)) p—35,D(r—0,5/4)x O
<CEHIT @2 I)) ps.r—o ((JOZR)) p.Dr.s/2x 0020 Z)) p—s.r—c
= C572(R) p.Dr.5/2)x 04020 2))3 5.1 o
< C5 (R)p.D(r.s/2)x0- (3.40)

4 A Reducibility Theorem Under Brjuno Condition

Consider the following quadratic Hamiltonian with time quasi-periodic perturbation:

H(wt,2.2) =Y Qjz;Z; + P(ot,2.2)

j=1
= Z Qjz;zj + Z Paﬁ(wl)ZaZﬂ, 4.1
jzl1 la|+181=2

where (z,2) € £y” x €57, the space €3’ is the unilateral infinite sequences space defined
in (3.11). The forcing frequency vector w € [0, 27)" and the normal frequencies 2; € R
for all j > 1. Then the associated linear Hamiltonian system reads
&) =iz +igk P(1,2,2), “2)
Zj =iz —igh Pt 2,2), j= 1. '

Introducing the angle variables 6 = wt € T", and the auxiliary action variables / € R",
then we obtain an autonomous Hamiltonian system

1 =iQ;z; +1%P(wt,z, 2,

=iz — i Pt 2,2, =1 43)
éi:wi7 lzln,
Ii = =35 P(6.2,2), i=1---n.
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on the phase space Py” := T" x R" x £," x £;'” with respect to the symplectic form

n
Y odoi ndli+i) dzj Adz;.
i=1 izl

The new Hamiltonian is
H®O,1,z,7;w) =N+ P, z,7;»)
= Zw,l +Y Qzizi+ Y Pup®i )2%Z 4.4)
j=1 lo|+1B1=2

Given s, r > 0, in the following, we investigate Hamiltonian (4.4) on the domain D(r, s) C
Pg:g . The forcing frequency w € [0, 2r)" will play the role of parameters. Suppose
H@,1,z,7; w)in (4.4) is real analyticon (0, I, z, Z; ) and C‘l,V—smooth in compact subset
O C [0,27)" with positive Lebesgue measure. Furthermore, suppose Hamiltonian (4.4)
satisfies the following assumptions.

(A1) Asymptotics of normal frequencies:

Q=j+Qj, j=1, (4.5)
where Qj € C‘I/V(O) and there exist positive constants Ag, such that SUP > 1 we0 |§Zj| < Ayp.
SUP ;> 1 SUPgeo 1008251 < &o.

(A2) Non-resonance conditions: There exist a constant 0 < y < 1 and some fixed approx-
imation function A such that uniformly on O, for all (k, 1) € Z" x Z*°\{0},

k-] > ——
A(lk])

4 _
|k-w+l-Q(w)|Zm’ Il =2 (4.6)

k #0,

where [k| = [ki| + - + [kal, 11l = 325 111

(A3) Regularity: The Hamiltonian vector field X p = (0, — Py, iP;, —iP;)T of perturbation
P defines a map

s D(r, v)xO—)POC,

X p(-; w) is real analytic in D(r, s) for each w € O, and P(x; ) is C%;V—smooth in O for
each x € D(r,s).

(A4) Toplitz-Lipschitz property: Q := diag(Q));=1 € M , and P € Th. |, for
some p > 0.
Denote

[P]S;D(r,s)x(f) = ”XP”S;D(I’,S)XO + (P>,0,D(r,x)><(’)- 4.7

Theorem 4.1 Let A be an approximation function such that

g, A(lk (4.8)
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If the Hamiltonian H = N + P in (4.4) satisfies the above assumptions (Al )—(A4) and there
3
exists 0 < g9 < min{%(«/A(l) —1), (C*y25)§, ﬁ} so that

(2)pr0 <e0 and [P.p, 0 < €0

Then there exist

(i) a Cantor subset O, C O with Lebesgue measure mes(O \ Oy) = O(/y) asy — 0;
(i) aC %V —smooth family of real analytic, symplectic coordinate transformations ® = &, :

738’0 x 0, — Pg’o of the form

0 0
O | I |=|1+32"M,00)Z (4.9)
z Lo(0)Z

where Z = (Zj)jrZl with Z; = (z;, Zj)T. M, (0) and L, (0) are linear bounded opera-
tors on Kg’p X Eg’p forall p >0, and L, (0) is also invertible;
(iii) a C},—smooth family of new normal forms
w

n
N® =3 "I+ QFzZ; (4.10)
j=1 izl
such that on "Pg'o x Oy,
Ho® =N,

Moreover the new normal frequencies are close to the original ones
1% - Qlo, < ce,
and the the new frequencies satisfy a non-resonant condition: for all v € O,,,

14
2A(1kD°

k- w| > Yk # 0,

k-w+1-Q% VkeZ", |l|=2.

Y
(W) = ———,
2A(IkD)
5 Applications to Some Linear Hamiltonian PDEs
We give the proof of Theorem 1.1 by Theorem 4.1.

5.1 The Hamiltonian Derivative Wave Equations

We consider the wave Eq. (1.3). Let

1 .
w = —=[D,u+iuy),
o (5.1)
w = ﬁ(Dmu —iuyg).
Then the Eq. (1.3) is written as a non-autonomous Hamiltonian equation
(5.2)

wy = —ig=H(t, w, w) = —iDpw — £V (0t, x)(w + 0),
Wy =i H(t, w, W) = iDyw + £V (ot, x)(w + ).
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with the Hamiltonian

H(t,w,u_)):/
0

Recall the function space Hg’p in (1.10). Through the inverse discrete Fourier transform
S:ey" — Hy”, the space Hy" can be identified with the space £;".
We expand w(t, x), w(z, x) on the eigenfunctions

w(t,x) =Y q;(¢;(x) € HyP, bt x) =Y §;(t)p;(x) € Hy?

j=1 j=1

b

[a}me n %vw, X)(w + 11_1)2] dx.

withg = (g;)j>1. ¢ = (3j)j>1 € £5". Then the Eq. (4.3) becomes

. -0 - . -0
{qj = g g 9 = =ikid; — g 6 53)

gj = iaf’TjH(z, q.p) =irjq; "HZ%G’
where

H(t,q,p) =A+G,

A=) hjqids. hj=y/j2+m,
j=1
€ _ _ b
G= 3 Z (gi +4i)(qj +4q;) A V(tw, x)¢i (x)¢;(x)dx.
i,j>1

Now we introduce the angle variables 6 = wt € T", the auxiliary action variables I € R"
and the complex coordinates z = (z;)j>1, z = (Z;)j>1 vialetting z; = —q;, z; = —q;.
Then we obtain an autonomous Hamiltonian system

Z'jzi)»ij-f-i%P(@,Z,Z) Jj=1
B Sy = ) - .
Z‘j=—1)\,ij_1EP(07Z9Z) j=1 (5.4)
Qi:a)i i:1"'n,
[i =~ P0.2.2) i=1
on the phase space ’Pg P with respect to the symplectic form
n
D doi ndl+i) dzj Adz.
i=1 jz1
The Hamiltonian associated to the system (5.4) is
H=N+P (5.5)
where
n
N = Za)jlj +Z)\.ijZjv
Jj=1 jzl
€ _ B T
P=3 Z (zi +2i)(z; +z,')/0 V(0. x)¢i(x)pj(x)dx. (5.6)

ij>1
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In the following, we check that the Hamiltonian (5.5) satisfies the assumptions (A1)—
(A4). Let r be that in Assumption 1.1 and s > 0 be a suitable positive number. Take g9 =
@rtl 42t + Bycye > 0.

(1) Verifying the assumption (A1).
Since A =jt4+m=j +— - ——i— , then we take 2; =j+52' =j+0(l.).
Note that Q does not depend onw € [0, 2)", thus 9, Q = 0and Q eCl w (0, 2m)™).
Take Ag = 1+m. Since Q. = O(j)anda Q. =0, thenforallj > 1 anda) e [0,2m)",
we have |§2j| < Ap and |8w§2]~| < é&p.

(2) Verifying the assumption (A2).
Take the vector v = (sgn(ky), ..., sgn(k,)) thenk-v = |k|. Letw = w;, = pv+w with

w € R, w e vt. Consider the function f(u) = k-w,+1-Q=lklpu+k-w+I-Q.
Thanks to 9,2 = 0, we have

|f' G0l = [kl
By Lemma 7.6 in Appendix, we have

48
mes{u : pv +w € [0,27)", | f(w)| < 8} < A
It follows that the measure

mes{we[O,ZTr) lk-w+1- Ql_m 1| = }

< diam”fl([(), 2n)”)meS {M TUU W E [0, 27[)”7 |f(,u«)| = ﬁ}

4y
< @m)" D —— . 5.7
kI A(IK])
Thus there is a subset O C [0, 27)" of positive Lebesgue measure with mes O >
(27)" (1 — O(y)) such that the assumption(A2) holds on O.
(3) Verifying the assumption (A3).
The perturbation P in (5.6) reads

- € 20 11 - € 02/ p\=.2
P@®,2,7) =3 > POz +e Yy pll©)zz; + 5 > o)z,

ij=1 ij=1 ijz1

where

P 6) = pl}©) = pj;©) /0 V(0. x)¢i(x)p;(x)dx

2(‘4 ,(9) Vigj©). i>j.
=1 Vo) — Vz,(0) i=], (5.8)
z(V] 1(9) z+](9)) i< ]

Now we investigate the regularity of the perturbation vector field

Xp = (0, — 39 , %‘; i%). Note that the vector field X p does not depend on w.

For the above r, s > 0, we estimate the vector field norm

IXp ”s;D(r,s)XO
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P
0zZ;

D(r)xO) '

52 ZH a0y,

o We first estimate the sum

. lapr
)

P a6,

o0
+ - su iPet ‘ H
Dr.)xO 5 |zlla,p<s,lila,p<s i DrxO 19z

D(r,s)xO
n 20
=€ Sup_ Z Z E” 89 ||D(r)|Zt||Zj|
”ZHa,p<S»HZ”a,p<S h=1i,j>1
11 P 02
= e 21121+ 5 122 e 12125
aoh (r)1<i J 2 89}1 (r)1<i J

ne
20
= — sup > P Ipan zillz;

r _
HZ”a.p<S’”ZHa.p<S ij>1

11 = 02 - =
+ > IpipanlzillZil+ Y i Ipenzillz)]
i,j>1 i,j>1

For this purpose, it suffices to estimate each of three sums on the last line:

> i pen iz

ij>1
=Y Ipjjlipanlzilizil+ Y D IpIpenlzlizii+ Y Y IpIpen izl
izl jzll<i<j-I1 j=lizj+1
< UVo®lpary + 1V2j @) par)lz;l1Z |
j=1
+Z Z (”iji”DQr)+H§j+i”D(2r))|ZiHZj‘
jzll<i<j—1
+3°0 ) WVisjlipen + 1Visill parn)lzillz)|
j=lizj+1

= 6Cylizlla,pllzlla,p-

Similarly, we have

> 1P Ipenlzillzl < 6Cy l1zllaplizlla.p
i,j=1

and

02 PRIE = =
> 1P pen Zil1Z] < 6Cv Izl plZlla.p-

ij>1
This shows that )
1 oP 18n
— — < —7Cye. 5.9
5> 36, ID0sx0 = —=Cv (5.9)
h=1
e We turn to the estimate for
1 > (lapr P
- sup Zipe‘” ‘ — ‘ —
S lzlla,p<sizlla,p<s 5= 9Zi | p(ryxo 9Zi | p(ryxo
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It suffices to consider

o0

P ) 2 a
U] ol [NREP) 90 XTI PAENSS 9p B L)
i=1 HID@)*O i=1j=1 i=1 j=1
By (5.8),
o0 o0
DO i Ipi pe 2]
i=1 j=I1
PP\ 15
=" 1Vo®) — 5 V2@ penz;l - (1)
j=1
o]~ ~
2 Y ISV ®) = Vi @)lpenlzj] o (:2)
j=ll<i<j-1
+y ) zpe“’nfw, J©O) = Vig ;0 Ipanlzsl - (+3),
j=li=j+1
where

o 1~
) =D P IV0(0) = 5 V;@lIpenlzjl < 21V Iper b plizla.p-
j=1

1 ~ ~
=3 Y i"e"IS(Vini®) = Vig;j0)lnenlz)]

j=ll<i<j-1

<Z Z e ||V||D(2r)hp(j—z) Pe=bU=D|z |

j=ll<i<j-1

. .1 . i
+2 D e SIVIIbens (i + )P g
j=l1<i<j-1

§§|V||D(2r)bp2 Z (]—z) ee U=z,

j=1ll<i<j—1

*llVIID(zr)pr Z <J+l) etle tUT|z .|

j=11<i<j—1

1 . o1
< SIVIbansp Y 121172 + S1VIiben b Y2121
Jj=1 j=1

< 2Cvllzlla.p-

=" zf’e‘”nfw, SO = Vi j ) penz;]

j=li=j+1

i ] RN
<D D 7S IViIbanspl = Pl

j=lizj+1

poai ] L -Pa-blit
+D0 D e S IVIDanbp U+ DT ez
jzlizj+1
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O]

=5 |V||D(2r)bpz > (

) (S ( ])|Zj|
j=li=j+1

*||V||D(2r)bpz > (j-‘rl) @embUtD ||

j=li=j+l1
<@'+ 2)Cvlzlla,p-

Then

DO i i Ipelzil < (1) + (42) + (x3) < 2 + 6)Cy [zla.p-
i=1 j=1

By the similar argument, we get
[e.olmNe el
> Z e p)Z D121 < @7 + 6)Cv |1Zlla. p-
i=1 :

It follows that

1

- sup leea' (”7-||D(r)><(9 g ||D(r)xo> <22 +6)Cye.

S llzlla,p<s, ”Z||ap<Vl' 1 i

(5.10)
We conclude from (5.9) and (5.10) that
IXp Hs'D(r IO
1
Z H 28, ||D(r 5HxO + sup leem (H*IID(r)xO +hg- HD(r)xO)

s lzlla, p<s.lzlla,p<s ;—;

<Pt 4124+ —)Cve <.
r

Thus we complete the verification of the regularity for X p.
Verifying the assumption (A4).
o We verify Q := diag(2;j) > satisfies Toplitz—Lipschitz property. During the veri-

fication of the assumption (A1), we have obtained |Q il =< % where Cg is a constant

depending on m. It is evident that lim;_, » Q j++ = 0and

‘ lim QHI < Cy.
t—00 o

= - - - Co Co
G — lim & =Hsz —1im &, < <=0
” ST S M o ST S0 M o~ |j+t] T |t

e Taking p = 2a, we verify the perturbation P € 7, l/))(l X0
We first consider dz 01 . By (5.8), we have for r > 1,

2(Vl i) — l+j+21(6)) i > ],
=epits 1 0) = 1 eVo(0) — §Vaj12:(0), i=],
SVisi(®) = Vigjr2u (), i<j.

3P
02440714
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7. —2aj e s 32p .
Due to || Vjlip@ry < Cye ¥, j = 1, the limit lim;_, Tt exists and

i 9*P %@, Q=i
im ———— = {e¢ . i=],
1200 074407 j4+1 0 /

Moreover,

_ a2p
llm B —
1700 92i410Z 4+

D(r,s)xO

Thanks to the exponentially decay of \7j, we also have

3’ P A 3’ P
— Y — lm ——F X
0Zi410Zj4+r 100 0Zi40Zj+1

SIVisjs2 O] o ywor 0>

=15 1V2j42O) | pyyyxor i =1

SIVir 2O ppyeo> i<

€
< §||V||D(2r),b,pe

Vi), i> ],

Vii©), i<

=€ ||‘7|i_j‘(9)”D(r,S)><O < Soeip‘ifjl'

D(r,s)xO

3

)

—2a(i+j+20) < 0 —pli-jI

t
where we use the inequality e ~24(H/+20) = e=2ali+/)e=21 < Le=2ali=jl,
. . 2 . . ~ ~ =
As to the second derivative 32_3’; = gpf;)(e), we consider the lift P(0,Z,2) =
1 J

P(6,z,7), where (2,%) € €47 x ¢4P and 7 = z;,7 = Z,
Definition 3.2). Then

when j > 1. (recall the

~ 2
32P P>, >1,
= 07,0z —' J =z (511)
0z;07; 0, otherwise.
. . . . . 2p
When |¢] is sufficiently large, we have eitheri +¢ < O or j — ¢t < 0, then 6217;;[ =
i Jj—
L 25 . .
and thus the limit lim;_, 5o # = 0. It is obvious that
Li+10Zj—1
2P o
lim —— < eoe_p|’+/|
1200 8Zi419Zj~1 ll p(r 5y <0
and e -
‘ _P i P < 80 —plitl.
0Zi410Zj—r 170 0Zi410Zj—1 |l p(r 5yx0 t

_— . . 2
Similar argument also applies to the second derivative %.
02

It follows that P € Tg(r $XO and (P), p(r.s)x0 < €0.

5.2 The Half-Wave Equations

Denote the inner product (u, v) = Re fon u(x)v(x)dx. The half-wave Eq. (1.4) can be written

as
u;, =iVH(t,u) = iDou + ieV (wt, x)u.
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where the Hamiltonian
1 & T 2
H(t,u) = E(Dou,u)—i—i V(wt, x)|ul|“dx.
We expand u(t, x) on the eigenfunctions
u(t,x) =Y qj)¢;(x) € Hy",
j=1

(see (1.10) on the space Hg’p) where g = (g))j>1 € Zg’p. Then the Eq. (5.12) becomes

/ 2i 9 H(t q) = A +2 9 G (5.13)

qj = 24— »q,9) = Arj4q;j PR :

J 93, i4j 0g;
where

H(t,q,9)=A+G,

)\.
A= ijqj'qj‘a Aj=1J
Jj=1
& g
G=>Y qu_k/ V(tw, )¢ (x)¢x (x)dx.
2 & 0

To rewrite the above equation as an autonomous Hamiltonian system, we introduce the
angle variables § = wt € T", the action variables / € R" and the complex coordinates
z=(zj)jz1, 2= (zj);>1 through
1 _ 1 _
Zi=—qj, 3= —§;.
J ﬁ J J \/§ J

Then we obtain an autonomous Hamiltonian system

Z'jzi)»ij-f-i%P(g,Z,f) Jj=1

= _ . = -0 - .
%j—_IA]Z]_lﬁjP(G’Z,Z) Jj=1, (5.14)
9,':60,' i=1---n,
Ij =~ P0.2.2) i=1-n
on the phase space P’” with respect to the symplectic form
n
Y doi ndl+i) dzj Adz.
i=1 j=1
The new Hamiltonian associated to the system (5.14) is
H=N+P (5.15)

where

n
N =) oili+) hjzjZj,
i=1 j=1
T
P=c Y ai [ Vo andr.

Lk>1
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The next is the verification of the assumptions (A1)-(A4) for the Hamiltonian (5.15).
Let r be that in Assumption 1.1 and s > 0 be a suitable positive number. Take g9 =
@Pl 424+ 1) Cye > 0.

(1) Verifying the assumption (A1).
Since A; = j, then we take ©; = j + 2; with 2; = 0, thus Q; € C}, ([0, 27)"). Let
Ao = 1. It is obvious that for all j > 1 and w € [0, 27)", |2;| < Ag and |3,2;| < &o.
(2) Verifying the assumption (A2).
Following the verification of the assumption (A2), we can also prove that there is a subset
O c [0,27)" of positive Lebesgue measure with mes O > (27)" (1 — O(y)) such that
the assumption (A2) holds for (5.15) on O.
(3) Verifying the assumption (A3).
The perturbation P in (5.15) reads

P=e) pij0)zz, (5.16)
ij>1

where
pij(0) ::/0 V0, x)¢i (x)pj(x)dx

SVinjO0) = Vigj0)), i > j,
= 1 Vo0) — §¥2;(0), i=j,
F(Vimi(0) = Vi j0)), i <.
Following the arguments in the verification of the assumption (A3) for the wave Eq. (1.3),
one can prove that

n
IXplls:persyxo < QPN+ 12 + ;)“V”D(%),b,pé < &o.

This shows the regularity of Hamiltonian vector field X p.
(4) Verifying the assumption (A4).
Let p = 2a. Thanks to 2; = 0, it is obvious that 2 := diag(£2;)j>1 € Sﬁf,o.
Now we verify P € Tg(r’s)xo. By (5.16), we have
9*P 3*P 3*P

——— =€p;;(0) and =0= .
0z;0Z; Pij©) 07,0z 07,07

Following the arguments in verifying the assumption (A4), we have the limit
2P

lim;_s o0 W exists. Moreover,

82j-%—z
) 2P o
lim —— < goe pli=jl
=00 BZi.t,-zaZjJ,-t D(r,s)xO
and
a2p a2p € i £ i
_— — lim ———— < *”V”D(2r).b.peib(l+j+2t) =< *Oeipllijl-
02ig102j4s 1700 02i4s02jt | o 2 t

: s 2P %P : p
This together with 329 = 0= 9507 shows that the perturbation P € 7, . and

(P)p.D(rs)x0O =< &0.
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5.3 Proof of Corollaries 1.1 and’1.2

Below, we provide the proof for Corollaries 1.1 and 1.2, focusing on the case of the half-wave
equation. The same argument applies to the derivative wave equation.

From Theorem 4.1, in the new coordinates (§°°, I, z°°,z%°) = @;1(0, 1,z,7), the
dynamics are linear with 7°° invariant:

9.;?0— i j=1,...,n,
I;?OZO j=1,...,n,
ZooigEy =,
Z;’O = —IQ;OZ;)O j>1

As (1.4) is equivalent to system (5.14), the solutions u(¢, x) of (1.4) with initial data uo(x) =
ijl zj(0)¢; (x) read

u(t,x) = ZZ/(I)¢j(x)

j=1
with
(z(1), Z(t))T = Ly(wt) (ZOO(O)eiQOO’, ZOO(O)efiQ“z)T
and
(2%(0), 200" = Ly, (0)(z(0), 2(0).
Thus,
u(t,x) = Z V¥j(wt, x)eig.?ot,
j=1

where

i (0.0) = Y [Lo®)Ly 0)((0). Z0) L (x).

=1

Therefore, the solutions are almost-periodic in time with a non-resonant frequency vector
(w, Q7°, 25°, ...). Furthermore, we observe that ¥ (wt, x)eig.?ol solves (1.4) if and only if
k - w4+ Q% is an eigenvalue of the operator K, (above Corollary 1.2). This demonstrates
that the spectrum of the Floquet operator K, equals {k - @ + Qjo 1k eZ", j > 1}, thereby
proving Corollary 1.2.

For Corollary 1.1, the key point is that when V is real analytic and satisfies (1.9), the
perturbation P in (5.15) satisfies Assumption (A3) for all p > 0. That is, X p maps smoothly
from P*? into itself. Therefore, Theorem 4.1 applies for all p > 2, and by (4.9), the
canonical transformation @ is close to the identity in the P“”-norm. Since in the new
variables, (6%, I, z°°,7%°) = d>;1 0,1, z, 7), the modulus of z;’.o is invariant. We deduce
that there exists a constant C such that

(1 =eO)zO)la,p = IzDlla,p = (1 +eO)12(0)lla, p-
which in turn implies that

(I —=eO)luolla,p = llut, Ha,p = (L +eC)uolla,p. vt €R.
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6 Proof of the Reducibility Theorem 4.1
6.1 Basic Strategy

The reducibility Theorem 4.1 is proved by KAM method. We construct a sequence of Hamil-
tonian H = N + P of the form (4.4). Suppose the perturbation P = O (¢), then we construct
a symplectic coordinate transformation @ such that it transforms H = N + P into a new
Hamiltonian Hy = H o ® = N4 + P with new normal form N4 and a smaller perturbation
P, = 0(£"), 1 <k < 2, than the old perturbation P.

The above transformation @ is constructed via the flow X’ generated by a quadratic
Hamiltonian F. Taking & = X } and denoting R = 7k P, then

Ho®=HoXr=NoXL+RoXL+(P—R)oXk

1
=N+ IN.F)+ [ (0= D(N. )L F)o Xpr
0
1
+R+/ {R, FyoX"dt + (P —R)o XL.
0

The new normal form is defined as N. = N + N. This leads to the following homological
equation A
{N.F}+R=N,

where the unknowns are F and N. We solve this homological equation in the next section.

6.2 Solving the Homological Equation

Consider the homological equation
(N.FJ+R=N (6.1)
on D(r,s) x O, where
n
N =Y wili+) Q)
i=1 j=1

with the fixed tangential frequencies w (&) € R". The normal frequencies 2;(§) e R, j > 1
satisfy (4.5). The Hamiltonian R is a quadratic on (z, z) of the form

R0,z,7;6) = (R® )z, 2) + (R (0)z, 2) + (R (0)z, 2)

= Y D IRN®uz + R Gz + RE©Z1M. (6.2)
lkl=Ki,j=1

It does not depend on the action variables I and satisfies R = 7x R. We define its mean value
[R] with respect to 6 by

[R]=)" Rgj;&)zjZ;.

j=1
In the following, we use the notations
Tap(0) = sup(1 + ) AP (1)e™, a, b e N.

>0
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Proposition 6.1 Lety > 0 and 0 < 50 < r. Suppose N and R satisfy the abovg conditions
(Al)—(A2), then the homological Eq. (6.1) has the unique solutions F and N satisfying
[F] = 0 and the estimates

IX Flls: pir—o.5)x0 < (1 +Co)y 2 T12(0) IXRlls: Dir5)x O (6.3)
||Xﬁ||x;D(r,s)xO = ||XR||S;D(F,S)><07 (6.4)

where the constant Cy depends only on Ay.
Proof We look for a Hamiltonian F of the form
F(0,2,%:6) = (F0)z,2) + (F'(0)z,2) + (F®(0)z, 2)

= > Y IFR®mzg + B ©)nz; + F @7z, (6.5)
lkl=Ki,j=1

Denote w -V f(0) := > p_, a)b%. We take N = [R]. By the comparison of coefficients,
the homological Eq. (6.1) is equivalent to the following scalar form: For all i, j > 1,

20 , - 20 20
a)-VFij +1(Qi+Qj)Fij :Rij’ (6.6)
1, - 11 11 11
w'VFij +1(Q,‘—Qj)Fij =Rij _5ij[Rij]’ 6.7)
and
o VF? —i(Q + Q) F} = R}, (6.8)
here §;; = 1,if i = j, and 0, otherwise.
Consider the Eq. (6.7). Fori = j, the Eq. (6.7) becomes
11 _ pll 11
doFjj = Rj; —[Rj;], (6.9)
then by Fourier expansion,
£l 0, k=0,
kii = RIL
TG, o<kl <K
and we obtain the form solution
Rl
Fll_ Z kij k6
Jji ik -
0<[k|<K ik~
For i # j, by Fourier expansion, the Eq. (6.7) becomes
11
Fll = R
NIk o+ Q4 — Q)
and we obtain the form solution
Rl
Fllo) = Y ik 6.10
§O= 2 kot -9 (6.10)

0<|k|<K
Now we give the estimate for Fllj1 Denote S;j =k-w+Q; —Qj.Foralll <a <n,
19g, S 1 = |k - g, + 3e, S — 3e, 2] < Co(1 + |kI),

where the constant Co = Co(E, L) depends only on E and L.
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Then

IF M N er—oyx0

11 11
-y Rijlo , 10sSullRE 10 oy
- 1531 N

|k|<K
< > (A +Co)d + [kDy 2% (ke M7 Ry Joe
|k|<K
< 1+ Co)y TR} Ipe)xo- (6.11)

Similarly, we have
IF, i PN pe—oyxo < (1 +C0)y T IR} | pr)<0>
IE2 1 pr—ayxo < (1+C)y 2T @) IR% | piryxo-
Note that the derivative

20 20 112
5 = Fzj+ Fz; + F'z), (6.12)
i =1
then
IF 5 IR
— < +Coy Tilo) . (6.13)
L9Zi {pgr—o)x0 az; D(r—a)xO
Similarly,
oF ) oR
= <1 +Co)y Ti2o) . (6.14)
L9Zi {pgr—oyxo 9% D(r—a)xO
P ‘lll
For each 1 < b < n, by (6.10), the norm of the derivative aé; is
gFll 11
Y <(1+Cy)yr —L .
30, (I +Co)y "T2(0) 89
D(r—o)xO D(r)yxO
Similarly, we have
9r20 R
! < (14 Co)y *T12(0) -/ ,
a0y 06
D(r—o)xO D(ryxO
and
or02 9 R
4 < (14C))y *Tialo) | =2 :
LA a0y
D(r—o)x0O D(ryxO
It follows that
oF )
— < (I +Co)y Ti2(0) (6.15)
a0 D(r—o,s)x0O 89 D(r,s)xO

From (6.13), (6.14) and (6.15), we obtain the estimate for the Hamiltonian vector field
XF .
IXFlls;pe—os)x0 < (1 +C0)y 2T12(0) | X&lls: D(r5)x -

The estimates of X g follow from the observation that N.: is the diagonal of the mean
value of R:. O
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The above lemma implies the estimate for the Jacobian DX :
IDXFlls: pir—20,59x0 < Co ™ (14 Co)y *T12(0) | XRll5; n(r.5)x0- (6.16)
Now we verity the Toplitz—Lipschitz property of the solutions of homological Eq. (6.1).
Proposition 6.2 Suppose N and R satisfy the above conditions (Al)—(A2) and R €
TD‘)(V’S)XO, then there exists a constant C := 5 + 4Cy such that for any 0 < o < r, the
solutions F and N of homological Eq. (6.1) are Toplitz—Lipschitz on D(r,s) x O, i.e.,

% Y %
FeTn, s9xo N €Tp oo and

(F)p.Dtr-0.5x0 < C¥ T13(0)(R) p.D(r)xO: (6.17)
<[\Aj>p,D(r,s)><O =< <R>p,D(r,s)xO~ (6~18)
Proof The estimation of N follows from the observation that N .z 1s the diagonal of the mean

value of R;:. In the following, we prove the estimation (6.17).
From (6.10) in the proof of Lemma 6.1, the second derivative of F w.r.t. z;, Z; is

2 11
OF _ piig) = 3 Reij k6
07,07 g 0<IE<K itk -+ Q; —Qj)
e We first verify the exponentially off-diagonal decay of ag,-zegj .

: P
Since R € TD(H)XO, we have

3°R o
‘ 92,07 < (R)p.Dr5)x0e I,
2i0Zj D(r,s)xO
Then
32F _ _
PPEs < Y v Adkhe MR loet
2i0%j D(r—o)xO lk|<K
| 2
<y Tu() ‘ =
aziazj D(r,s)xO

<y 'T1HO)(R)p. Dirsyx0e I,
92 F
0z;0z;
Since Q; = j+ Qj, j > 1, and ((R)),,r,0 < &o, the limits lim; , €24, exist and
satisfy

eWe then check the asymptotically Toplitz property of

lim Q4| < eo, (6.19)
t—00 1)
9 lim <2 6.20
H j+t — im o =T (6.20)
Note that
Qisr — Qjgr =i — j + Qigr — Ljr,
then for all i, j the limits ; ; 0o = lim; o0 (82j4; — $2j4,) exist and satisfy the non-
resonance conditions y
k-o+ Q. > — 6.21
|k - w l,j,oo| = A(kD ( )
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Denote S;j o0 ==k @+ Qj joo. Forl <a <n,
|0g, Sij ol = 1k - Oz, + 0, 2 00 — 0,2 o0l
< lkllolo + 212200 < Co(1 + [k)),

where the constant Cy = Co(E, L).
Since R € T}, ), o the limit R} = lim, o0 R
equation to the Eq. (6.7):

ittt exists. Consider a similar

dott +1Q j oot = R}

ij,00°

By the non-resonance conditions (6.21), the solution Flljl o Of the above equation exists:

Rll
11 2 : k,ij,00 k-0
Flj 00 == T 1 . (622)
O<lkl=k "M

Moreover, similar to the estimate for || Fll/1 | D(r—o)xo in (6.11), we obtain
-2 —pli—j|
[l v = 0+ COY T 12(R) iy x0 ™
thus
, 3’ F
lim

- < (1+4Co)y Ti2(0)(R oxoe Pl
A 321971 ( 0)Y T12(0)(R)p.Dr s)x0O

D(r—o)xO

e Finally, we check that a is Lipschitz at infinity.

By (6.10) and (6.22), we wrlte the difference F, ;,, — Fi! as

Fljie = Fileo = D Frij®e’,

|k|<K
where
Mg Rl
. Jd4t, j+t ij,00
1Fpij(€) = — .
Si+t,j+t Sz],oo

Fora =1, ..., n, the Whitney derivatives of F ;;(§) with respect to &, are

1 1
s (Reivr jrr = Rijijoo) B, Sie jte

iagafk»ij (S) = (Rk i+t,j+t Rk ij, oo)

. . 2
Sl+t-,]+l Si+l‘,j+t

Sij,oo = Sitt,j+t 1 g, Si,j+1 — 0, Sij,00
+ ( S S aSaRk,ij,oo - Sz Rk ,ij,00
i+, j+19ij,00 i+t j+t

1 1
— 08, Sij,00(Sij,00 = Sitt,j+1) ( 5 + 5 ) R,}},-j,oo.
Sl-H‘ J+tSlj,OO Sl'-‘rt,j-‘rlSij’oo

In view of (($2)),.r.0 < €0, we have
-1
[Sij,00 = Sitr,j+rl < 2|t]" &
andfora=1,...,n,

19g, Sij.00 — g, Sie, j+e] < 20t 'eo
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It follows that

1Zeij @ < vy T AWDIR 4 14y — R ool ¥ 2 A7 AKD21 o0l RYY; oo

and
‘afzt]:k,ij(s)l
< AGKDY M0, (R i = RE o))+ Col+ DA UKDY T2 IR 4y iy = REG ool
+ 2011 o A2 (KDY 210, RE ool + IRLj 00D +4Co (1 + kDI~ eo A3y IR oI
Therefore,
11 ll k|(r—
IFY e = Flollpe—oxo = Y 1Frij@)loek=
k<K
< Qy~'Tor +Coy’Ti)IRY, .., — Rl
Y Tor+Coy "Ti)IR 4 j4s ij.00llD(x0O
+ (5y T2 +4Coy ™ 31“13)|t|71||RU wllDryxo-
This together with R € T/ D(r.5)xo Shows that
32F ) 92F

< (5+4C)y T3l "Ry prsyxoe PN
D(r—o)xO

— — lim - =
02j410Zj4; 100 02j 440744

Similarly, we have

, 3’ F 3°F
lim ——— lim ———
1220 02i4:102j~1 | pr_gyxo 117 0Zi+10Zj~1 | pr_gx0
-2
< (1+C)y *T12(0)(R) . D5 x0€ 11!
and
82F _ 3%F 32F ) 3F
z -~ am - = | - lim ———
0Zj40Zj— 100 0Zj110Zj D(r—o)xO 0zj440zj— 100 0Zj41027j; Dir—o)xO
< (5+4C)y T3t ™ R) p.pr.sy 0 PlITIL
Thus we complete the proof of the estimation (6.17). O

6.3 KAM Iteration and Convergence

Let Cy be a constant that is twice the maximum of all implicit constants used during the
KAM step, and it depends only on n, Ag and pp.

‘We take the Hamiltonian H = N + P in (4.4) as the initial Hamiltonian Hy = Ng + Py.
Similarly, we set other initial quantities as those in Sect. 4. Namely, we set ro = r, so =
s, =y, po=p, Ko=K, Op=0.

Forv > 0,

n= 427,

8y = 2_(V+4)/)0, Pvtl = py — 48y,
Denote

[(0) = Ta3(0) = sup(1 + 1) A3(1)e ",
>0
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Ky =k VD = i
3
Given o > 0 with 60 < ry. There exists a non-increasing positive sequence
00 >01>202>+>0y>0p41>-++>0
such that
o0
Y ov=0o (6.23)
v=0
and
o0 o0
E(o) = inf r“n(6,) = e , 6.24
@=_ . nf M eo=]]r"ewn < (6.24)
=0 u=0
see Appendix for the proof. For such a fixed sequence {o,}, we define
Iy =2C.I'(0y), (6.25)
and
Ev+1 = Fv867 (6.26)
then )
K
v—1
ev=|]]e| . v=1. (6.27)
n=0
The order K, of Fourier truncation is defined implicitly by
Cie Kvor = el/2, (6.28)
Finally, we set
v—1 1
ry=rg—3 ZOG,L, Sy+1 = st
M:

and denote the domain D, = D(r,, s,).

Remark 6.1 Recall that the non-resonance conditions in our KAM iterative steps are of
Brjuno-type and are given by a class of approximation functions A(¢). This differs from
the usual Diophantine non-resonance conditions, which are given by an explicit power func-
tion t*. Thus, some iterative parameters such as perturbation parameters ¢, and K, cannot
be constructed explicitly but rather implicitly.

Below we provide some heuristic considerations about the construction of ¢, and K.
Now for some iterative sequences, we drop the index v and write ‘+’ for ‘v + 1’ to simplify
notation. Suppose a Hamiltonian H = N + P on D(r, s), where the perturbation P is of
size & under the norm “[-]" as defined in (3.7). From (6.46), after one iteration step, the new
perturbation Py on D(ry, s4) is of the form

Pr =0 (N(@)e*) + 0 (6727 K7e),

where k = 4/3 and I'(0) = I'x3(0). To ensure the iterative scheme follows a Newton-like
form, the size ¢ of the new perturbation P, will be of the form ey ~ I'e“ with " ~ I'(o).
Therefore, it is necessary to set up

§ 2 Kog < '(o)e",
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ie.,e X9 < 820 (0)el/3. Since ¢ « 8, we let e X9 ~ T'el/2 which leads us to define the
sequence K, implicitly as in (6.28). Note that e ~ I'¢” gives the sequence ¢, in (6.26) and
(6.27). From (6.27), the definition of the quantity E (o) in (6.24) is natural.

Lemma 6.3 (Iterative Lemma). Let 0 < go < min{(Cxy025)3, 882, (080)°2, 13} Givena
sequence of parameter domains

Op2012---20,.

Suppose for ¢ =0, 1, ..., v, the Hamiltonian H;, = Ny + Py are regular on Dy x Oy, where
the normal forms

n
Ng=Zw,-Ij+ZQz,j(w)Zij (6.29)
j=1 JEZ
with Qg j(w) = j + S~2g,j(a)) satisfies
=1 -1
1Qclo < Ao+ Y ey and ((Q))pr.0, €0+ ) eb, (6.30)
b=1 b=1
k-l > 1o Y0 < k| < Kq,
A(lkD
Ve ..
k- o+ Qi(w) + Q2 j(w)] = , Vikl = Ke, i) =1,
’ ! A(lkl)
Ve . .
k- w+ Qg i(w) — Q2 j(w)] = , VIkl < K¢, 0 #, (6.31)
’ ! A(k])
on Oy, and the perturbation Py satisfies
PeeTh o, and [Py 0, < EC- (6.32)

Then there exists a Whitney smooth family of real analytic symplectic transformations ®,1 :
D,y x O, — D, satisfying

. 5/12
@it — idllsy:Dyiyx0ys 1DPost — Ilsy:pyyx0, < &)/'2, (6.33)

and a closed subset of O,, :

0w =0\ |J (R G UURG T e WU R ns | 634)
[k|>K, i.j i#]

where

Yv+1
Ry ={we0,: k- ,
. (vs1) w vk ol < A(KD

1
R ) ={o € 0yt lk -0+ Qup1i(@) + Qup (@) < Ayaj{') } :

_ Yo+l
Rk,-j,-”+1(7/v+1) =10 e, k- 0o+ Qi@ — Qi1 j(@)] < Azljcl) }
such that ®,41 transforms H, into

Hy 1 =H,o®,1 1 =Nyy1 + Py,

and on the domain D, 11 X O, 41, Ny11 and P, 11 satisfy the conditions (6.29),,, 1, (6.30),, 1,
(6.31), 11 and (6.32),,,,.
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Proof & The construction of symplectic transformation @, 1.
Let R, = Tk, P, be the Fourier truncation of order K, of P,. Using the inequalities
1 XR,ls,;Dyx0, < I1Xp,lls,:D,x0, < &v,
(Rv>pv,D,,xOv =< (P\J)p,,,Dva,, < &y,
and by Propositions 6.1 and 6.2, under the non-resonance conditions (6.31),,, the homological

equation .
{Ny,, F}+ R, =N (6.35)

has a set of unique solutions F' = F), and N =N, satisfying the estimates

”XFU “s.,;D(r,,—a,,,sU)xO,, =< CVV_ZFIZ(OU)HXRV”S”;D\,XOV =< CVV_ZFIZ(ULJ)&)» (6.36)
||Xﬁv||sU;D‘,><O,, < I Xr,lls,;p,x0, =< v, (6.37)
(Fo) py. D(rv—0v,5)x 00 < C¥y "T13(00) (R) py. D5y x 0y < C¥y °Ti3(00)ey,  (6.38)

and .
(Nv)pU,D.,xOv =< (Rv>,ov,DU><(9,, < &y. (6.39)

Since I'1 < I'13 by the definition and I"13 < 0T'23 by Lemma 7.1 in Appendix, we have

P @.7)
[FV]S,:);D(r\,—av,sv)xOv = ”XFU ”s.,;D(rv—(rU,sl,)XOv + (Fv>pu,D(rv7crv,xv)><(9v

< Cy; *Tia(ov)e, + CyTis(0y)e,
< Coy. (6.40)

Then by Lemma 3.4, the flow X ;,U generated by the Hamiltonian vector field X g, exists on
D(ry—oy, 3)forall0 <t < 1. Taking ®, | = X}v, itmaps D(r, —o,, %) into D(ry, 3).

Now we prove the estimate (6.33). Since ¢, < 1 and y, and o, are both bounded
sequences, it follows from (6.4), (6.25) and (6.28) that

”CDV+1 - id”sv;DvH x O, = 2||XFV ”sv;D(rv—av,sv)xOv

(6.4) B
< 2Cy, Tia(oy)e,
=< ch;zavru(av)gv

(6.25)
= 2CVv_zo-v FV(ZC*)_I &y

6.28 _
628 Cy, 2ove

<2, (6.41)

—Kyou g1/2
v

By the Cauchy estimate and (6.16), using the same approach as for (6.41), we obtain the
estimate

IDP®ys1 — Ills,:Dyyx0, < 20DXE, llsy: D(ry—0y.50) %Oy
<0, '2Cy, Tia(0v)ey. (6.42)

& The new Hamiltonian H, .
Using the Taylor formula together with the homological Eq. (6.35), we define the new
Hamiltonian

Hy1=Hyo®,;1=Nyo®y 1 +R, 0Py +(P,—R)) oDy
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1
=Ny (N P+ [ (=N R P o X, di
0

1
+ R, +/ {Ry. F,} o X} dt + (P, — R)) o X,
0
- Nv+1 + Pv+1, (643)
where

Nu+] = Nv+1,\\7v,
1

Pyt :/ {Ry, (1), FU}OXtFUdt_I_(PI) _RU)OX;"U
0

with R, (1) = (1 — )N, + R,
e The estimation for P, .
We first consider the estimation for | X p,_, lls,, ;D x O, - Note that

1
Xp,.\ = /0 (X4 ) [X R, XR,1dt + (X} )*(Xp, — Xg,).

Then using the classical estimates for the pull-back of a vector field and the Lie bracket of
two vector fields (see Sect. 3 in [42]), and by (2.1) and (6.3), we obtain the estimate

1
TN
||XPV+1 ||~Yv+1§Du+1 XOpt1 =< /0 ”(XFV) [XRv(t)’ XF.,]||.YU+1;DV+1 XOpt1 dt

1
+ (X E)* (X p, — XR) 5,41 D041 xOu 41
< 20[XR,» XFsyi1;D00—200,5051) x Ot
+ 2||XPV - XRI) ||Su+1ZD(ru_O'UaSU+1)XOU+1

2.1
—1
= ZCO'V ||XRv ”S,);DVXOV ”XFV ”SU;DUXOV
—K,
+2e v ”XPV ||s,,;Du><O,,~ (6-44)

We then consider the estimation for (P,,+1)’3:1 ST Using Remarks 3.1 and 3.3(3),
Propositions 3.1 and 3.5, we have:

Rem. 3.1 1 ~ '
(PV+1>Pv+lst+l><Ov+l = o <{RV(t)’ FV} © XF‘,>Pv+lst+l><0v+l dt

+{((Py —R)) 0 X}%)pu+1,Du+1XOv+1

Pro. 3.5 2 N
< (g, /<{Rv(t)»Fv}>p‘,76v,D(r,,fZ(r‘,,sU)xOvHdt
0

+ CS\;_z(PV — Ry) py—8,, D(ry—201 ,5,) X Oyt
Pro. 3.1+Rem. 3.3(3) 3 _3 > 2 _K
< C8;3y T 13(0,)e2 + €8, 2 Kvove, . (6.45)

It follows from (4.7), (6.44), (6.45), (6.26) and (6.28) that

- 47

[PU+1]Sv+l§Du+l xOpl — ”XPV_H ||SV+1;DV+1XO\,+1 + <Pv+1>,0v+],D,,+1><OV+1
(6.44)+(6.45)

<P sy

830,y 3 3(0,)e2 + €8 2e Kvovg,

< CI'p(ov)es + C(SV_2G_K“U"8V
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(6.26)+(6.28)
< el = epy1. (6.46)

e The new frequency and non-resonance condition.
In the new normal form N, 1, the frequencies Q,11,; = j + Qu41,j = Qu,j + Ry j,
S . 92N,
where Q, ; = 9595 . Thus
|Qv,j|(9 = ”Xﬁv ”sU;D,,xO\, = ”XRV ”s\,;Dvav < é&y.

Recall the proof of Propgsition 6.1, N\, is the average of R, = 7k P, from the perturbation
P, with respect to 0, i.e., N, = [R,]. So, by Remark 3.3 (3),

<NU)pV,DUxOv < (Pv>pv,Dv><(9v < &yp.

Then following the definition of the semi-norm (N,) ov.Dyx O, > WE have

S

LA N, A
| im € j4ilo, < || lim 5Dy x0, < (Ni)p,.0,x0, < &v. (6.47)
t—00 OOaZj+[8Z]+[
. A 32N, , 32N,
Q0,40 — lim Q, j1ilo, < l-—t— — lim ————I[s,:p,x0,
=00 02j410Zj41 1700 3Zj+z321+t
—1 O
<117 N, Dyx0, <1t e (6.43)
These imply
1Q2y]0 < &y, ((Qv»p\,,rv,(?v < &y.
Therefore,

Q1110 < Ao +Zsb and ((Qu11))p, .0, < eo+Zsb,
b=1 b=1

#Finally, we consider the construction of O, 4. It suffices to verify
Ve

k-w+ Q i(w) — Q (w)| > , <K,, i .
| v+1,i (@) v+l j(@)] = A(KD v L F ]
By the definition of y,,, ', and K,,, we have
Y0 _ yoe Kvo
2vH3g  A(Ky)  2VH3g, A(K,)e Kvov
—K,oy,
- _We
— 2vH3¢, T (o)
B 2)/ SK 5/6
- 2V+38V
Y0

=" >
2v+28‘£/2 -

This implies y, — yv+1 > 2e,A(lk|) for all 0 < |k| < K, thus

[k-o+Quyri(@) — Qo1 j(@)] > k- o+ Qyi(0) — Q) j(@)] — Qi ()] — |§u,j(w)|
> W 2, > Yv+1 .
A(lk) A(lk)
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Then after removing the resonance zones for K, < |k| < K, 4, we geta closed set 0,41 €
O, with the desired properties. O

The Convergence Proof.

By the iterative Lemma 6.3, we obtain a sequence of decreasing domains D, x O, and
symplectic transformations ®* = ®j0dP0---0®,, : D, x O, — D, _1, v > 1. Then by
(6.33) and following the arguments in [42], the sequence ®" of symplectic transformations
converge uniformly on D(r/2) x O, to a real analytic torus embedding ® : T" — P*?,
for which we also need to verify

(a) the symplectic coordinate transformation @ is of the form given in (4.9);

(b) the new Hamiltonian eventually reduces to the new normal form, i.e., P> = 0;

(c¢) the symplectic coordinate transformation @, which is defined by Theorem 4.1 on each
PP, extends to P40,

In fact, by (3.34) and (3.36) in Section 3.36, the the symplectic coordinate transformation
@, at the vth-step has the form the form

] 0 0
o, 1= |=(1+12"m,0)2 (6.49)
v - v - 2 v . .
V4 2 L,(0)Z

In particular, the linear operator L, (f) = e’/ 4@ s invertible. Then property (a) is satisfied
at each step, and thus we can iterate the process. It follows that the limiting transformation
® = &) o Py o --- also satisfies the property (a). Similar to the initial Hamiltonian, the
transformed Hamiltonian is linear in / and quadratic in Z, which implies that the new
Hamiltonian eventually reduces to the new normal form, i.e., P® = 0.

Since ®%) is a linear symplectomorphism, then following Prop.1.3 [34] by duality, it
extends on £47 x £4P forall p € [—2, 2] and thus the conclusion (¢) holds if we take p = 0.

The sequence of closed subset O,, converges to a closed set

0, =()0..
v>0

By the construction of y,, and |Q2,+1 — Q|0 = |§U|@ < &, we have |Q®° — Q|p < sé/z
and thus forallw € O,,

)

4
2A(1kD)

Y
k, 1-Q¥%w)| > =————, VkeZ", |l|=2.
|k, @) + (@) = IAGKD € ]

Ik, w)| =

Vk # 0,

The measure estimate of O \ O,, of bad frequencies is given in the next section.

6.4 Measure Estimate
In this subsection, we complete the Lebesgue measure estimate of the parameter set O \ O,,.

In the process of constructing iterative sequences, we obtain a decreasing sequence of closed
sets Og D O1 D --- such that O, = (),~( O, and

ono, =l U REG VR o R o | ©.50)

v>0 Ky <|k|<Ky,i,j i,j i#j
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where R}, R;’i’j", Rk_”” are defined in (6.34).

Below we only consider the most difficult resonance set ’Rk_i’j” (yv). The proof for other
resonance sets RZ, R;rl.’jv are more simple, and thus omitted.

Since Q,,; = j+Su2v,j,thenby (6.30), there isaconstant Ay > O such that |2, ; — €, ;| >
A1]i — j|. Denote A» = (1 +2A; 4+ 2A¢)/A1. Note that when |[i — j| > As|k],

k-w—+ Qi — Q1 =1+ A+ ADIk],

thus in this case there is no small divisor, and in the following it remains to consider the case
of [i — j| < Azlkl|.
Denote

Stij=k o+ Qi —Q,
Skijoo =k o+ Am (i — 2,540

and introduce the following resonant sets
Ry =lweo, IS} i
foit,jt V) = 1@ € Ot ISk s iyl < A |

Lemma6.4 Fori,j > 1 with |i — j| < Aslk|, there exist i’, j' > 1 satisfying i’ <
2A21k|, j/ <2Aslk|andt > 1 suchthati =i’ +1t, j = j +t. Consequently,

U ®iuc U URlim ©651)

i,j.li—jl=Azlk| i',j'<2Ak| 1=1

Proof Without loss of generalization, we assume j > i. For given i, j, choosing a fg > 1
suchthat 0 <i —1#y < As|k|. Leti’ =i —t9and j' =i’ + j —i = j — 19, then

Jh =i+ 1) =il = 2450k
It follows that (6.51) holds. O

Lemma 6.5 For fixed k,i’, j’,

n-1___ Y
mes UR;J.,HJ,H < (20 + 8By)(27)"™ VAT

t>1

-,V -,V
Proof For w € Ut> “}"” Rk,i’+z,j’+t(7/”)’ suppose w € Rk,i'+ro,j’+t0 (yy) for some 79 >

A(kD
V ~
From the Toplitz—Lipschitz property of P, and €2,,, we conclude that
2(1 + By)
|Sllc),i’+t,j’+t - Szf,i,j,ool It] .
Then

vV v v vV
ISk ir. 7,00l = ISk it i) T ISk.irsag, jr4t0 = Skoi?, j7,00]

ve 21+ Bo) Nz
+ 34+ 2B)) ———.
N RN/ D)
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Thus

_ Y
U Rk,,i:-t,j-f-t(y‘)) - [w €Oy_1: IS,‘:!i,,j,’ool < (3+2By) JV

/ AdlkD
> 7

We give the estimate of Q; i oo

k-v= |k|2.Leta):wﬂ =uv+wwithpu € R, w € vt. Let
fp) = Sllc),i,j,oo =k- Wy + tl_i)rgo(gv,i—w(wu) - Qv,j+t(wu))-
Due to sup,,cp | lim;— o0 8w5~2v,,~+,| < 3gpand gy < ﬁ, the derivative

L )] = NIk A+ 1m0 - 0,1 (@) = o, 1 (@)

A(Ikl)}

Taking the vector v = |k|(sgn(ky), ..., sgn(ky,)), then

> |k|* — 6nk|eg
- 1|k|2 (6.52)
5 . .
Then by Lemma 7.6, one has
4
mes{u : uv +w e Oy_1, | f()] <8} < Tk
It follows that, by Fubini’s theorem,
mes (Qz,i’,j’,oo>
< diam”" 1 (Oy_p) mes{u : v+ w € Ou_y, | f (W] < (3 +2Bo) Afgkl)}
- VY
<4Qm)" D3 4 2B)) — . (6.53)
k|2/A(Ik])

—v

Similarly, for the resonant set ’Rk’i, o

mes (QZJ,J/’OO) , we have

, (1) __ 4o
mes (Rk’i‘;t’j,ﬂ) < @m"" KPAGKD
Then
y A(lk]) m-1__ 4y
mes U Rty | =2 T(Zﬂ)n ' 1k2A(K])
tf\/@

< 8(27‘[)"(”_1)L~

k| /Ak])

Using (6.53) and (6.55), we complete the proof.

Finally, we give the estimate of mes (O\Oy) .

following the argument of estimating

(6.54)

(6.55)
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Lemma 6.6 Let A be an approximation function satisfying (4.8),i.e., D ;. czn m < o0.

Then the total measure of resonant set should be excluded during the KAM iteration is

mes (O\ O,) = 0(/7).

where the implicit constants in “O" depend only on n, Az, Bg, A and are made explicit in
the proof.

Proof By Lemma 6.5,

v
mes U U ’Rk’i/%,jq_,

1<i’,j/ <2As k| 1>1

_ VY
< (2A21k)*(20 + 8Bo) 2m)" "D Y
|k|>/A(Ik])
_ Y
< AZ(80 + 32By)(27)" ™ 1>L.
: VAKD
Then
mes U U UREU < Z Z mes U U Ry it i+t
V=0 Koy <lk|<K, i,j V=0 K1 <[k|<K, li'],1j'1<2 A2 k| It]=1

- VY
< BE0+ 2By Y
v>0 K, <|k|<K, A(|k|)

1
< A3(80+32Bp) 2m)"" D Y ———.
; VATRD

Consequently, the measure of the set O\O,, is

mes(O\ O,) = 0(/y).

7 Appendix
7.1 Some Properties of Approximation Functions
Lemma 7.1 For all integersk > 1,1 > 0,
k(o) < 0'Tryi(0),

where T'i(0) = Tj3(0) = sup,-o(1 + )X A3 (1)e ™.
Proof Let

() = klog(l +1) +log A3(r) — t0.
Its derivative

/(1) LB A (1)
=——+—1lo —o.
: T+t ar 7
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Ifo(l+1) < 1, then

k—1 d 3
f(t)>m+Z]0gA () =0.

It follows that (1 +7)* A3 (r)e ™" arrive at its supremum at some point ¢, with o (1 +12,) > 1.
Therefore, for all [ > 0,

Ti(0) = (1 +1)f A3 (r)e ™

<o 1+ 1) A (1)e ™ < o' Tipi(0).

Recall E defined in (6.24):

oo o
E(o) = inf [ 6w =] @ < oo

G0>61>+->0,60+01+ <0
u=0 n=0

where I'(0) = I'a(0) = I'p3(0) = sup,>o(1 + DEA3(H)e 1.

Lemma 7.2 The B defined in (6.24) is finite for all ¢ > 0. In particular, let T > 0, if

og A(t
/ ( )dt

log k 12 =7
T
then
E(o) <e’T.
Proof Let 8(¢) = log(1 + 1)2A3(¢) and
t=k"T'T, 0, = 3t)

for v > 0. By condition (1.5) and the hypotheses, o9 > o7 > --- > 0 and

ng _/(S([u) V< 1 /S(ZI)dt -
logk t
T

U

Since §(¢) — oyt < 0 fort > t,, then by condition (1.5) again the supremum of §(¢) — ot
is obtained on the interval [0, 7, ] and thus smaller than §(¢,). It follows that

§(t)—opt < e(S (ty oyty

I'(o,) =supe ) —e

t>0
in view of the definition of o, and hence by «,t, = T,

o
E(o) < ]_[ gty < 0T
u=0

[}
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Lemma7.3
Z 1 f(n )dlog«/A(t
& JATRD VAD
0

provided that t" | A(t) as t — 0.

Proof Note that

3 LY 3 b
S JAGRD © A JAGRD

Let V,,(t) = card{k € N" : |k| < t}. Then By the monotonicity of approximation functions
the sum above may be written as a Stieltjes integral

1 . Vn(tv+l) - Vn(tv)
_— f 1
kEZNn TAGRD = omto ot i *Z NIX)
OC)an(t) 7 dlog «/A(t)

<14 = | Vu(t
- , VA(L) , ® VA(L)

}

by partial integration. From the proof of Lemma 8.3 in [40],

n—+t
Vn(l)§< n )

this prove the lemma. O

Lemma 7.4 There are approximation functions A such that

nloglogn

1
Y e
5, VAT
for all sufficiently large n with some constant K .

Proof Fort <n,

for all » > 1. Hence

dlog /A1)

—————dt=4"
VA@)

f (n +t> dlog VAD
n VA1) -

4;
0\8

for every approximation function A.
Fort > n,

n

1 o
<"+t) = — (4D Hn) < A"
n! n!
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Let ¢ be given by ¢(s) = log? s, and define A by stipulating that  — s = log +/A(?) is the
inverse function of s — ¢ = s¢(s), at least for large ¢ and s respectively. Let s, = n/¢(n)
Since

n n
s@(s)ls, = ——o( )<n

@(n) " @)
by the monotonicity of ¢, then

j <n + t) dlog VAWM 2" ftndlog«/A(t
0

n NIND) ~ VA
2n
< —f """ (s)e " ds. (7.1)
n!

Sn
For all large n and s > s,,,

1 41ogl
(s) = 10g2s < shn, hy = 0g ¢(sn) . Alog ogn.

logs, ~— logn
Thus, for all large n,

n 00

dlog «/ A(t 2"

/(n-l—t) 0og ()dl‘ - 7/.sn+nh;ze*sds
n VA(T) n!

0

2n
< 7(’1 +nhn)n+nhn+l — Z"AZn"h"'H
n

here A, = (1 + hy,)' T+ The final estimate follows, since A, — 1 asn — oo and
nhy,logn = 4nloglogn. O

7.2 Proof of Proposition 3.2

Proof We only give the proof for the estimate of (A B)f}l) and (A B)fjl.z), the proofs for the

estimates of (AB)EJZ.I) and (A B)sz.z) are similar.
By the matrix multiplication, we have

(1) 11 pll 12 p21
AR =3 (allBl + A28}
keZ
and
(12) 11 pl2 12 p22
AR =3 (Al B2 + A2BE).
keZ
eVerifying the property (T1'). In view of A, B € 9, and the inequality in Lemma 7.5,

we have

1B P lpeyxo = 2 1A Ipeyx0 1B 1peyxo + D 143 peyx 0 1B 1 D@y xo
keZ k

k keZ

< ({(A)pr ((B))pr (Zep(|ik+kj|) + Zep(|i+k|+|k+j))
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< C87H(A)) p.r ((B)) p e P7OI=ID

and

1B P Ipeyxo = Y- 1ALk Iex0 1B pryxo + 3 1A% I pe)x 0 1B b <0
keZ k

< (AN pr ((BYpr | D emPUi—kIHETD | N7 e=pllithI+Hk=]D
k keZ
< C5TH(A) p r ((B)) p,re” POUIFID,

o Verifying the property (T2'). In view of A, B € 9, then following the verification of
Property (T1"), we have

: (11) . 11 p 11
l tl_l)ngo(AB)i+t,j+r ”D(”)XO = Xk: Il tl—l>rgo Ai+t,k+t ||D(r)><(’) I tl—lglo Bk+[,]’+; ||D(r)><(’)

. 12 . 21
+ 0 im A lIbeixoll im BEL, 4 lpeyxo
k

< ((A)) o ((B))p.r (Z e~ PUi=kI+1k=jD) 4 Ze—p(|i+k|+|k+j|)>

k k
< C87N((A)) . ((B)) e~ POI=ID

and

. 11 : 12
| lim (AB)2 _llpmxo = D Il lim AL llpexol im Bl Ipeyxo
k

. 12 . 22
+ ; I lim A, Ibeyxol lim BE2, ;_llpexo

< ({A))p.r ((B))p.r (Z e PUi=kI+lk+j1) + Ze—p(|i+k|+|k—j|)>

k k
< C57H (A o ((B)) p e~ PTOI=ID,

These imply the property (T2) holds.

e Verifying the property (T3'). Denote Ail,lj,oo = lim; 00 AIH it and All2] o =

lim;_s o Al+t et Similarly for other terms.
Then by the difference equality (3.15) and the inequality in Lemma 7.5, we have

11 . 11
IAB)L) 4, = tim (AB)) 4 llpeyxo

11
= Z ”AIH k+t T A k,oo”D(r)xO||Bk’j,oo||[)(r)><@
All Bl _gh
+ 2 1Aik ool D) <0l Biys j1t = Bijoc D)0
11 11
+ Z 1AL ke = Al kool Dy <01 Bity s = Bl sollDiyxo

+Z||Al+,k i — Al sollpix0 I BEY ol D<o
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12 21 21
+ Z 1A% sl D0 1BEL, 1 = B sollpiyxo

21 21
+ Z 1AZ i — Al k,oo||D(V)><O||Bk7t,j+t — Bij sollDix0o

< |t|71<<A)>p,r(<B>)p,r (Z e PUi=kI+Ik=jD + Zep(i+k+k+j|)>

k k
< tI7'CETH(AY) 5 ((B)) re” POI=ID
and

12
IAB)) -, — lim (AB)Y) _lpeixo

< Z 1AL, ke = ALk sollDiyxol B ol
+ Z IA; kol Dx0 1B i = Bi sl Diryx0
- Z 1AL ks — Alk ol Drxol B, - = B soll iy xo
+Z||Al+tk L= Al ollpe =0 BE ol pryxo
+ Z 1A% sl D0 1B, - = B sollDiryxo

22 22
+ Z 1A i — Al k,oo”D(r)XO”kat,jft — B sollDixo

< |l‘|71 ((A)>p,r(<B>)p,r (Z e*ﬂ(\ifk\+\k+j|) + Zep(i+k+kjl)>

k k
< 17 C8TH(AY) o ((B)) p e PO,

7.3 Some Technical Lemmas

Lemma?7.5 LetO <6 <1.
26—5(|i—k|+|k—f\) < C(S_l, (7.2)
keZ

where C is a positive constant that does not depend on § and i, j.

Proof Without loss of generality, we assume i > j.

Z e S8Ui—kl+k=jD — Z e S UkI+li—j—kD)

keZ keZ

Z+ Z + Z e~ SUkI+li—j—kD)

k<0 O<k<i—j k>i—j

= Y e R o § o) § b))

k<0 0<k<i—j k>i—j
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2e—8G—J)

= 6257—1 +G—-j+ 1)678(1‘7].).

Since the function f(x) = (x + l)e_‘s“‘, (x > 0) reaches its maximum at x = % — 1, then if
0<d<1,

fx) < ée’l” <

| =

It follows that the inequality holds. O

Lemma 7.6 [45] Let f : [a,b] — R be a gq—times continuously differentiable function
satisfying

lf ) > B, ¥t ela,b]

for some g € N and B > 0. Then we have the estimate

1
mesz € [a, b] : | £ ()] 58}§4<%8)q, Veso0
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