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Abstract
We clarify the geometric structure of non-negative traveling waves for the spatial one-
dimensional degenerate parabolic equation Ut = U p(Uxx + μU ) − δU . This equation
has a nonlinear term with a parameter p > 0 and the cases 0 < p < 1 and p > 1 have been
investigated in the author’s previous studies. It has been pointed out that the classifications of
the traveling waves for these two cases are not the same and thus a bifurcation phenomenon
occurs at p = 1. However, the classification of the case p = 1 remains open since the
conventional approaches do not work for this case, which have prevented us to understand
how the traveling waves bifurcate. The difficulty for the case p = 1 is that the corresponding
ordinary differential equation through the Poincaré compactification has the non-hyperbolic
equilibrium at infinity and we need to estimate the asymptotic behaviors of the trajectories
near it. In this paper, we solve this problem by using a new asymptotic approach, which is
completely different from the asymptotic analysis performed in the previous studies, and
clarify the structure of the traveling waves in the case of p = 1. We then discuss the rich
structure of traveling waves of the equation from a geometric point of view.

Keywords 1D degenerate parabolic equation · Traveling waves · Poincaré
compactification · Center manifold theory · Asymptotic study
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1 Introduction

In this paper,we consider non-negative travelingwaves in a space one-dimensional degenerate
parabolic equation

Ut = U (Uxx + μU ) − δU , t > 0, x ∈ R, (1)
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with μ > 0 and δ = 0 or 1. Equation (1) is a special case of the following equation with
p = 1:

Ut = U p(Uxx + μU ) − δU , t > 0, x ∈ R. (2)

Here we briefly explain some background of Eq. (2). For δ = 0, Eq. (2) is closely related to
the time evolution problem for plane curves. More precisely, the cases 0 < p < 1 and p > 1
of (2) are related to the problems of the motion of an expanding curve and of curve shortening
respectively (see for example [13] and references therein). From the mathematical point of
view, the derivation of the blow-up rate of the blow-up solutions of (2) for p ≥ 2 has been
actively studied (see, e.g., [1–3, 16] and references therein). By applying Type I rescaling as
used in [7–10, 16], we can obtain the case δ = 1 in (2). In addition to this, from the behavior
of the traveling wave with δ = 1 in (2), we can derive a lower bound for the blow-up rate of
(2) with δ = 0 for p ≥ 2. See e.g. [3, 16] and references therein.

The first author gave results on the classifications of the shapes and asymptotic forms of
all non-negative traveling waves with 0 < p < 1 and p > 1 for both δ = 0 and δ = 1 in
(2) (see [7–10]). Note that the results for p ∈ 2N and 0 < p < 1 are given in [8, 10] and
[9] respectively, and the former was extended to the case 1 < p ∈ R in [7]. It is pointed out
in [9] that the bifurcation of the equilibria at infinity occurs at p = 1, which characterizes
the existence of non-negative traveling waves and their bifurcations near p = 1. In these
studies, a two-dimensional system of ordinary differential equations is derived in terms of
traveling wave coordinates, and the Poincaré-type compactification (see below for details) is
used to give a classification of all connecting orbits in the system of two-dimensional ordinary
differential equations including a point at infinity. That is, by introducing the traveling wave
coordinate

φ(ξ) = U (t, x), ξ = x − ct, 0 < c ∈ R,

one can derive

− cφ′ = φ(φ′′ + μφ) − δφ,

(
′ = d

dξ
, ′′ = d2

dξ2

)
, (3)

equivalently, {
φ′ = ψ,

ψ ′ = −cφ−1ψ − μφ + δ,
(4)

from Eq. (1), and all dynamics (including a point at infinity) of Eq. (4) can be investigated
by using of Poincaré-type compactification. Note that we are interested in the range φ ≥ 0
since we are considering non-negative traveling waves. Each connecting orbit (referring to
trajectories between finite equilibria or between equilibria at infinity) in (4) corresponds to a
traveling wave of (2), and thus the classification of the traveling waves of (2) leads to that of
connecting orbits in (4). The shape and asymptotic form of the traveling wave are clarified
by studying the dynamical system corresponding to (4) near its finite/infinity equilibria (see
Definition 3.13 of [14] for the definition of the equilibria at infinity).

As described in [6, 8, 14, 15], the Poincaré compactification is one of the compactifications
of the phase space to analyze dynamical systems near equilibria at infinity, which is the
embedding of Rn into R

n+1 in the unit upper hemisphere. Then a point at infinity in the
original phase space corresponds to the boundary of a compact manifold. This method has
been used, for example, in the analysis of the Liénard equation (see [6] and references therein)
and in the reconstruction of ODE blow-up solutions in terms of dynamical systems theory
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(see [4, 11, 14, 15]). Moreover, in the previous results on the classifications of non-negative
traveling waves of (2) with 0 < p < 1 and p > 1 [7–10], this method plays a central
role. In our setting we consider a system of two-dimensional ordinary differential equations
corresponding to the case n = 2, in which case the boundary of the unit upper hemisphere,
S
1, corresponds to the point at infinity of the phase space R2. Moreover, in order to describe

the detailed dynamics at infinity, the system is divided into several parts covering S1 and each
of them is projected into local coordinates. As a result, by combining the dynamics in these
local coordinates, we can understand the behavior at infinity (SeeAppendix A for the details).
It is natural to apply the same method for the case p = 1, i.e., Eq. (1). Once the p = 1 case is
clarified, we obtain the classification of the dynamics of the corresponding two-dimensional
system including the dynamics at infinity with the variation of the parameter p, which reveals
the geometric structure of non-negative traveling waves in (2). However, there is a significant
difference between the case p �= 1 and p = 1 as pointed out in [9].

For p �= 1, the equilibrium at infinity is hyperbolic and thus we can estimate the dominant
asymptotic behavior near it. On the other hand, for p = 1, the equilibrium at infinity is not
hyperbolic and the dynamics near the equilibria has not been clarified. One of the difficulties
of this problem is that we need to consider the effect of multiple timescale transformations.
If we adopt the approach provided by [7–9], a special function called the exponential integral
must be evaluated under the multiple time-scale transformations. The previous study [10]
examines the relationship between these time-scale transformations carefully and establishes
suitable estimates of the integrals including the Lambert W function. This approach essen-
tially relies on the dynamics of the orbit whose initial value belongs to the center manifold
of the equilibrium at infinity. On the other hand, for the case p = 1, we need to investigate
all trajectories not on the center manifold and thus we cannot apply the analysis by methods
such as [10] to this case. Therefore, it is necessary to develop additional asymptotic studies
for the dynamics near the non-hyperbolic equilibrium at infinity. The approach presented
in this paper deals with a new relation of dependent and independent variables and with a
new estimation of the asymptotic behavior near the non-hyperbolic equilibrium at infinity,
which avoids the problem of evaluating the exponential integral with the multiple time-scale
transformations which appears in the conventional methods. Our approach allows us not only
to obtain the classification of traveling waves at p = 1 but also to fully understand how the
classification of non-negative traveling waves changes as p varies in (2), providing a new
perspective as a geometric structure on the “bifurcation of traveling waves” due to parameter
changes.

This paper is organized as follows. The next section describes the concept of solution
adopted in this paper, which is the same as in [7–9], and gives main results for traveling
waves. In Sect. 3, all dynamics in the phase space including a point at infinity of (4) are
investigated by using of the Poincaré compactification. The proof of the main result is given
in Sect. 4. Finally, Sect. 5 gives a concluding remark on the changes of classification of non-
negative traveling waves in (2) depending on p and a discussion of the “bifurcation” of
traveling waves due to parameter changes.

2 Main Results

Before describing our main results, we provide some prerequisites such as the concept of a
solution, which are also given in [7–9].
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Definition 1 We say that a function U (t, x) ≡ φ(ξ) is a quasi traveling wave of (1) if the
function φ(ξ) is a solution of (3) on a finite interval or semi-infinite interval, where ξ = x−ct
with some positive constant c > 0.

Definition 2 ([7], Definition 2.1) We say that a function U (t, x) ≡ φ(ξ) is a quasi traveling
wave with the singularity of (1) if the function φ(ξ) is a quasi traveling wave of (1) on a
semi-finite such thatU = φ reaches 0 and only right differentiation is possible and it becomes
a constant at finite end point of the semi-infinite interval. More precisely, the function φ(ξ)

is a solution of (3) on a semi-infinite interval (ξ−,+∞), where φ(ξ) ∈ C2(ξ−,+∞) ∩
C0[ξ−,+∞) with |ξ−| < ∞, and satisfies

lim
ξ→ξ−+0

φ(ξ) = 0, lim
ξ→ξ−+0

|φ′(ξ)| = C .

This definition also holds for the finite interval with singularities at both ends.

Next, we define the weak traveling wave solution with a singularity of (1). Note that
U = φ = 0 is an obvious solution in (1).

Definition 3 ([7], Definition 2.2) Let φ(ξ) be a quasi traveling wave with singularity of (1)
on a semi-infinite interval (ξ−,∞) satisfying

lim
ξ→ξ−+0

φ′(ξ) = C and lim
ξ→ξ−+0

φ(ξ) = 0

with a positive constant C . Then, we say that a function

φ∗(ξ) =
{
0, ξ ∈ (−∞, ξ−],
φ(ξ), ξ ∈ (ξ−,+∞)

is a weak traveling wave solution with singularity of (1). Singularity here means having a
point ξ− that is not differentiable. The formulation is similar for the case defined on a finite
interval with singularities at both ends.

We can check that φ = φ∗(ξ) satisfies the following weak form for any ϕ ∈ C∞
0 (R):∫

R

[
cφϕξ + (φξ )

2ϕ − 1

2
φ2ϕξξ − μφ2ϕ + δφϕ

]
dξ = 0.

Under these definitions, we now state our main results. Note that φ(ξ) = U (ξ) and
φ′(ξ) = ψ(ξ) = Uξ (ξ). In the following, the symbol f (ξ) ∼ g(ξ) as ξ → a implies that

lim
ξ→a

∣∣∣∣ f (ξ)

g(ξ)

∣∣∣∣ = 1.

Theorem 1 Assume thatμ > 0 and δ = 0. Then, for a given positive constant c, the equation
(1) has a family of weak traveling wave solutions with the singularity such that it corresponds
to the family of orbits in (4) connecting (φ, ψ) = (0,+∞)and (φ, ψ) = (0, 0). Each solution
φ(ξ) satisfies the following:

(i1) lim
ξ→ξ−+0

φ(ξ) = lim
ξ→+∞ φ(ξ) = lim

ξ→+∞ φ′(ξ) = 0, lim
ξ→ξ−+0

φ′(ξ) = +∞ for some

ξ− ∈ R.
(i2) φ(ξ) > 0 holds for ξ ∈ (ξ−,+∞) and φ(ξ) = 0 holds for ξ ∈ (−∞, ξ−].
(i3) There exists a constant ξ0 ∈ (ξ−,+∞) such that the following holds: φ′(ξ) > 0 for

ξ ∈ (ξ−, ξ0), φ′(ξ0) = 0 and φ′(ξ) < 0 for ξ ∈ (ξ0,+∞).
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In addition, the asymptotic behaviors of φ(ξ) and φ′(ξ) for ξ → ξ− + 0 are{
φ(ξ) ∼ −c(ξ − ξ−) log[Ac(ξ − ξ−)] + B(ξ − ξ−),

φ′(ξ) ∼ −c log[Ac(ξ − ξ−)] as ξ → ξ− + 0, (5)

where A, B are constants with A > 0, and the asymptotic behaviors of φ(ξ) and φ′(ξ) for
ξ → +∞ are ⎧⎪⎨

⎪⎩
φ(ξ) ∼

(μ

c
ξ
)−1

,

φ′(ξ) ∼ −
(μ

c

)−1
ξ−2,

as ξ → +∞. (6)

Theorem 2 Assume thatμ > 0 and δ = 1. Then, for a given positive constant c, the equation
(1) has two types of weak traveling wave solutions as follows.

(I) There exists a family of weak traveling wave solutions with the singularity such that it
corresponds to the family of orbits in (4) connecting (φ, ψ) = (0,+∞) and (φ, ψ) =
(μ−1, 0). Each solution φ(ξ) satisfies (i2), (i3), and the following:

(I1) lim
ξ→ξ−+0

φ(ξ) = 0, lim
ξ→+∞ φ(ξ) = μ−1, lim

ξ→ξ−+0
φ′(ξ) = +∞, lim

ξ→+∞ φ′(ξ) = 0

for some ξ− ∈ R.

In addition, the asymptotic behaviors of φ(ξ) and φ′(ξ) for ξ → ξ− + 0 are expressed
as (5), and the asymptotic behavior of φ(ξ) for ξ → +∞ is

φ(ξ) ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
C1eω1ξ + C2eω2ξ + 1

μ

)
, (D > 0),(

(C3ξ + C4)eωξ + 1

μ

)
, (D = 0),(

e− μc
2 ξ Z̄(ξ) + 1

μ

)
, (D < 0),

(7)

where C j (1 ≤ j ≤ 4) are some constants and

ω1 = −μc + √
D

2
< 0, ω2 = −μc − √

D

2
< 0,

ω = −μc

2
< 0, D = μ2c2 − 4μ,

Z̄(ξ) = C5 · sin[
√|D|
2

ξ ] + C6 · cos[
√|D|
2

ξ ]
with constants C5,C6.

(II) There exists a travelingwave solution such that it corresponds to the orbit in (1) such that
it corresponds to the orbit in (4) connecting (φ, ψ) = (0, 0) and (φ, ψ) = (μ−1, 0).
The solution φ(ξ) satisfies the following:

(II1) lim
ξ→−∞ φ(ξ) = lim

ξ→−∞ φ′(ξ) = lim
ξ→+∞ φ′(ξ) = 0, lim

ξ→+∞ φ(ξ) = μ−1.

(II2) φ(ξ) > 0 holds for ξ ∈ R.

In addition, the asymptotic behavior of φ(ξ) for ξ → ∞ is expressed as (7), and the
asymptotic behavior of φ(ξ) for ξ → −∞ is

φ(ξ) ∼ Mc2e
1
c ξ

M(μc2 + 1)e
1
c ξ − 1

as ξ → −∞, (8)
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where M < 0 is a constant that depends on the initial state φ(0) = φ0.

3 Dynamics on the Poincaré Disk of (4)

In this section, by using the Poincaré compactification, we study the dynamics on the Poincaré
disk � = R

2 ∪ {(φ, ψ) | ‖(φ, ψ)‖ = +∞}. The following discussion is almost the same as
for [7, 9], but for the reader’s convenience, we reproduce the details.

3.1 Dynamics Near Finite Equilibria

First, we study the dynamics near finite equilibria of (4). When δ = 0, Eq. (4) has no
equilibrium. When δ = 1, Eq. (4) has an equilibrium E1 : (φ, ψ) = (μ−1, 0) for {φ > 0}.
Note that the system (4) is singular at φ = 0. The Jacobian matrix of the vector field (4) in
E1 is

J1 =
(

0 1
−μ −cμ

)
.

Then, the behavior of the solution around E1 depends on the sign of D = μ2c2 − 4μ. Since
c > 0, E1 is a stable node for D ≥ 0, and is a stable focus (spiral sink) for D < 0.

Next, we desingularize φ = 0 by the time-rescale desingularization:

ds/dξ = φ−1 (9)

as in [7, 9]. Since we are considering a nonnegative solution, i.e., φ ≥ 0, the direction of the
time does not change via the desingularization (9) in this region. Then we have{

φ′(s) = φψ,

ψ ′(s) = −cψ − μφ2 + δφ,

(
′ = d

ds

)
, (10)

and we can treat φ = 0.

Remark 1 ([7], Remark 9) It should be noted that the time scale desingularization (9) is simply
multiplying the vector field by φ. Then, except the singularity {φ = 0}, the integral curves
of the system (vector field) remain the same but are parameterized differently. We refer to
Section 7.7 of [12] and references therein for the analytical treatments of desingularization
with the time rescaling. In what follows, we use a similar time rescaling (re-parameterization
of the solution curves) repeatedly to desingularize the vector fields.

The system (10) has the following equilibrium:

E0 : (φ, ψ) = (0, 0).

The Jacobian matrix of the vector field (10) at E0 is

J0 =
(
0 0
δ −c

)
.

• For δ = 0, we can use the center manifold theory to study the dynamics near E0 (for
instance, see [5]). Then we obtain the approximation of the (graph of) center manifold
as follows:

{(φ, ψ) | ψ(s) = −μc−1φ2 + O(φ4)}. (11)
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Hence, the dynamics of (10) near E0 is topologically conjugate to the dynamics of the
following equation:

φ′(s) = −μc−1φ3 + O(φ5) (12)

• By the same argument as in [7–10], we can study the dynamics around the equilibrium
E0 for δ = 1. We conclude that the approximation of the (graph of) center manifold is

{
(φ, ψ) | ψ(s) = c−1φ − c−3(μc2 + 1)φ2 + O(φ3)

}
(13)

and the dynamics of (10) near E0 is topologically conjugate to the dynamics of the
following equation:

φ′(s) = c−1φ2 − c−3(μc2 + 1)φ3 + O(φ4). (14)

These results are equivalent to the results in [7, 9] with p = 1. Since our interest is the case
of φ ≥ 0, we will consider the dynamics of this equation on the chartsU j ( j = 1, 2) and V 2.
See Appendix A for the definitions and geometric images of U j and V j , which is described
similarly in the previous studies [7–9]. See also [6, 14, 15].

3.2 Dynamics on the Local Chart U2

To obtain the dynamics on the chart U 2, we introduce the coordinates (λ, x) given by

φ = x/λ, ψ = 1/λ,

where x ≥ 0 and λ ≥ 0. For a geometric image of this coordinates, see Fig. 2. From Eq. (10),
we have {

λ′(s) = cλ + μx2 − δλx,

x ′(s) = λ−1x + cx + μλ−1x3 − δx2.
(15)

By using the time-scale desingularization dτ/ds = λ−1, we can obtain
{

λτ = cλ2 + μλx2 − δλ2x,

xτ = x + cλx + μx3 − δλx2,
(16)

where λτ = dλ/dτ and xτ = dx/dτ . The equilibrium of the system (16) on {λ = 0} is
E2 : (λ, x) = (0, 0)

The Jacobian matrix of the vector field (16) at E2 is(
0 0
0 1

)

and

λτ

∣∣
x=0 = cλ2 > 0, xτ

∣∣
λ=0, x>0 = x(1 + μx2) > 0

hold. Therefore, {λ = 0} (i.e. the x axis) is the unstable manifold and {x = 0} (i.e. the λ

axis) is the center manifold of E2.

123



Journal of Dynamics and Differential Equations

Fig. 1 Schematic pictures of the dynamics on the Poincaré disk. [Left: δ = 0.] [Right: δ = 1.]

3.3 Dynamics on the Local Chart V2

The change of coordinates

φ = −x/λ, ψ = −1/λ

and the time-rescaling dτ/ds = λ−1 give the projection dynamics of (10) on the chart V 2.
Then we obtain the following system:

{
λτ = cλ2 − μλx2 − δλ2x,

xτ = −x + cλx − μx3 − δλx2,
(17)

where λ ≥ 0 and x ≤ 0. The equilibrium of the system (17) on {λ = 0} is
E3 : (λ, x) = (0, 0).

The Jacobian matrix of the vector field (17) at E3 is(
0 0
0 −1

)
.

As a dynamical systemnear the origin of V 2, {(λ, x) | λ > 0, x < 0} is topological conjugate
to a saddle dynamics, which implies that any trajectory with its initial point on the region
{(λ, x) | λ > 0, x < 0} does not converge to (λ, x) = (0, 0). This fact immediately follows
from the following relations and the continuity of solutions:

λτ

∣∣
x=0 = cλ2 > 0, xτ

∣∣
λ=0, x<0 = x(−1 − μx2) > 0.

3.4 Dynamics and Connecting Orbits on the Poincaré disk

We can also obtain the differential equation on the local coordinate U 1, but it has no equi-
librium on {λ = 0}. Combining the dynamics on the chartsU j ( j = 1, 2) and V 2, we obtain
the whole dynamics on the Poincaré disk � that is equivalent to the dynamics of (4) (or (10))
(see also Fig. 1).
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The purpose of this subsection is to prove the existence of connecting orbits (see also
Fig. 1). The strategy described in this subsection is the same as for [7–10]. Before we explain
it, we will give some remarks about the Poincaré disk.

Remark 2 ([7], Remark 11) In Fig. 1, we need to be careful about the handling of the point E0

as stated in [7–10]. When we consider the parameter s on the disk �, E0 is the equilibrium
of (10). However, under the parameter ξ , E0 is a point on the line {φ = 0} with singularity.
We see that dφ/dψ takes the same values for (4) and (10) except for the singularity {φ = 0},
which implies that the trajectories for the parameter s on {(φ, ψ) ∈ � | φ > 0} are the same
as that for the parameter ξ . This is also the case for the dynamics near the equilibrium at
infinity E2 : (φ, ψ) = (0,+∞).

First, we show the existence of connecting orbits for δ = 0 (see also Fig. 1). Since {φ = 0}
is invariant in (10), any trajectory on {(φ, ψ) ∈ � | φ < 0} remains in this domain. Let
Wcs(E0) be a center stable manifold of E0 for (10) and Wu(E2) be an unstable manifold
of E2 for (10). Then, from the Poincaré-Bendixson theorem, any trajectories that goes to
Wcs(E0) must start from a point on Wu(E2). That is, in (10), there is a trajectory between
E2 : (φ, ψ) = (0,+∞) and E0 : (φ, ψ) = (0, 0) such that its initial point is on Wu(E2)

and its end point is onWcs(E0). Moreover, we see that such a trajectory obtained in (10) also
exists in (4) since dφ/dψ takes the same value on the vector fields defined by (4) and (10) as
mentioned in Remark 2. Thus, in (4), there is a trajectory between E2 : (φ, ψ) = (0,+∞)

and E0 : (φ, ψ) = (0, 0) that starts from a point onWu(E2) and reaches a point onWcs(E0).
Next, we show the existence of connecting orbits for δ = 1. Let Wcu(E0) be a center

unstablemanifold of E0 for (10) andWs(E1) be a stablemanifold of E1 for (10). By applying
the Poincaré-Bendixson theorem, we see that any trajectory starting from a point onWcu(E0)

must go to a point on Ws(E1), which yields the existence of a connecting orbit between E0

and E1 in (10). By the same argument as for δ = 0, we conclude that there is a connecting
orbit between E0 and E1 in (4) for δ = 1. Similarly, we obtain a connecting orbit starting
from E2 to E1 for δ = 1.

From the above, we have the existence of all connecting orbits on the Poincaré disk for
both δ = 0 and δ = 1 as shown in Fig. 1.

4 Proof of Theorems

Each traveling wave in the main results, Theorem 1 and Theorem 2, corresponds to each
of connecting orbits shown in Subsection 3.4. We can obtain their shapes and asymptotic
behavior except for (5) in a similar way to [7–9]. See Appendix B for the details. Therefore, it
is sufficient to prove the existence of ξ− in Theorem 1 and to analyze the asymptotic behavior
of the corresponding traveling wave as ξ → ξ− + 0. In other words, the problem reduces to
the dynamics of (16) near the origin E2 as τ → −∞ in {λ ≥ 0, x ≥ 0}. Letting θ = −τ , we
now consider the asymptotic behavior near E2 in {λ ≥ 0, x ≥ 0} of

{
λθ = −λ[cλ + μx2 − δλx],
xθ = −x[1 + cλ + μx2 − δλx], (18)

as θ → +∞. Recall that {λ = 0} (i.e. x-axis) is a stable manifold and {x = 0} (i.e. λ-axis)
is a center manifold of E2.
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Since the dynamics on the center manifold {x = 0} is
dλ

dθ
= −cλ2,

we get λ(θ) = (cθ + a)−1 with a constant a. Therefore, from the center manifold theorem,
E2 is asymptotically stable on {λ ≥ 0, x ≥ 0}. This implies that there exists some η > 0
such that for every ‖(λ(0), x(0))‖ < η and ε > 0 there exists T > 0 such that

‖(λ(θ), x(θ))‖ < ε

holds for all θ > T . In addition, since

1

λ

dλ

dθ
− 1

x

dx

dθ
= 1

holds in the domain {λ > 0, x > 0}, we obtain
λ(θ)

x(θ)
= Aeθ (19)

with A > 0 as an arbitrary constant. It holds that

dλ

dθ
= −λ2[c + μA−2e−2θλ − δA−1e−θλ]

from (18) and (19), and thus we obtain

1

−λ2

dλ

dθ
= c + A−1e−θλ[μA−1e−θ − δ] ∼ c as θ → ∞.

That is, for any ε′ > 0, there exists T ′ > 0 such that∣∣∣∣− 1

λ2

dλ

dθ
− c

∣∣∣∣ ≤ ε′

for all θ > T ′. Note that this inequality can be rewritten as follows:

c − ε′ ≤ − 1

λ2

dλ

dθ
= d

dθ

(
1

λ

)
≤ c + ε′.

For T ′ ≤ θ0 ≤ θ , we integrate the above inequalities:
∫ θ

θ0

(c − ε′) dr ≤
∫ θ

θ0

d

dr

(
1

λ

)
dr ≤

∫ θ

θ0

(c + ε′) dr .

As a result,

(c − ε′)θ − (c − ε′)θ0 + 1

λ(θ0)
≤ 1

λ(θ)
≤ (c + ε′)θ − (c + ε′)θ0 + 1

λ(θ0)

holds. Let α and β be as follows:

α = −(c − ε′)θ0 + 1

λ(θ0)
, β = −(c + ε′)θ0 + 1

λ(θ0)
.

Then, we obtain

(c − ε′)θ + α ≤ 1

λ(θ)
≤ (c + ε′)θ + β. (20)
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On the other hand, considering the multiple time scale desingularization, we compute

dθ

dξ
= dθ

dτ

dτ

ds

ds

dξ
= −1 · λ−1 · φ−1 = −1 · λ−1 · λ

x
= −Aeθλ−1.

Therefore, using (20), we get

− Aeθ
[
(c + ε′)θ + β

] ≤ −Aeθ 1

λ(θ)
= dθ

dξ
≤ −Aeθ

[
(c − ε′)θ + α

]
. (21)

Since

(c + ε′) < (c − ε′)θ + α,

eθ
[
(c + ε′)θ + β

]
< ce(1+ ε′

c )θ

hold when θ is sufficiently large, (21) gives

− Ace(1+ ε′
c )θ <

dθ

dξ
< −Aeθ (c + ε′). (22)

This means that for any ε′ > 0 there exists some T̃ > 0 such that for all θ > T̃ the following
holds:

−Ace(1+ ε′
c )θ <

dθ

dξ
< −Aeθ (c + ε′).

Therefore, by the comparison theorem for ODE,

− 1

1 + ε′
c

log

(
K1 + Ac

(
1 + ε′

c

)
ξ

)
< θ(ξ) < − log

(
K1 + A(c + ε′)ξ

)
(23)

holds with some constant K1. By τ = −θ , we get

log
(
K1 + A(c + ε′)ξ

)
< τ(ξ) <

1

1 + ε′
c

log
(
K1 + A(c + ε′)ξ

)
,

which means that there exists |ξ−| < +∞ such that τ → −∞ as ξ → ξ− + 0. In addition,
we obtain ξ− = −K1(Ac)−1. Therefore,

τ(ξ) ∼ log[Ac(ξ − ξ−)] as ξ → ξ− + 0

holds. Moreover, it follows from (20) and (23) that

− c − ε′

1 + ε′
c

log[K1 + A(c + ε′)ξ ] + α <
1

λ(θ)
< −(c + ε′) log[K1 + A(c + ε′)ξ ] + β.

(24)

Since ψ = 1/λ and both limits of α/ log[Ac(ξ − ξ−)] and β/ log[Ac(ξ − ξ−)] go to 0 as
ξ → ξ− + 0, we see that

ψ(ξ) ∼ −c log[Ac(ξ − ξ−)] as ξ → ξ− + 0,

which implies that the asymptotic form of ψ in (5) holds. In addition, as ξ → ξ− + 0, we
obtain ψ(ξ) → +∞ and thus φ(ξ) → 0 holds by the dynamics on the Poincaré disk.
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Since φ′ = ψ , integrating each side of (24), we have

− c − ε′

1 + ε′
c

(ξ − ξε′
− ) log[A(c + ε′)(ξ − ξε′

− )] + K ε′
2 (ξ − ξε′

− )

< φ(ξ) − φ(ξε′
− ) < −(c + ε′)(ξ − ξε′

− ) log[A(c + ε′)(ξ − ξε′
− )] + K ε′

3 (ξ − ξε′
− )

with constants ξε′
− = − K1

A(c+ε′) and

K ε′
2 =

{
c − ε′

1 + ε′
c

− (c − ε′)θ0 + 1

λ(θ0)

}
, K ε′

3 =
{
(c + ε′) − (c + ε′)θ0 + 1

λ(θ0)

}
.

Note that limε′→0 φ(ξε′
− ) = 0 since limε′→0 ξε′

− = ξ− holds. We also remark that both of

K ε′
2 and K ε′

3 converge to the same value B = c(1− θ0) + (λ(θ0))
−1 when ε′ → 0. Thus, we

obtain the asymptotic form of φ in (5):

φ(ξ) ∼ −c(ξ − ξ−) log[Ac(ξ − ξ−)] + B(ξ − ξ−) as ξ → ξ− + 0,

with the constant B. Note that the constant A is positive. The proof of Theorem 1 is complete.
��

5 Discussion

In this section we give some comments on the results of the asymptotic forms. We also
discuss some observations on the “bifurcation of traveling waves” due to the clarification of
the p = 1 case in (2).

In Sect. 2, we provided the existence of non-negative travelingwaves at p = 1 and clarified
their asymptotic forms. In particular, our approach to the asymptotic form (5) is completely
different from the previous ones [7–10]. It seems difficult to derive (5) by the asymptotic
analysis presented in the previous studies.

The behavior of φ(ξ) obtained in the previous study [7] for 1 < p ∈ R is

φ(ξ) ∼ C1(ξ − ξ−)
1
p , φ′(ξ) ∼ C2(ξ − ξ−)

− p−1
p as ξ → ξ− + 0 (25)

with constants C j > 0. Letting p → 1 formally, we obtain

φ(ξ) ∼ C1(ξ − ξ−), φ′(ξ) ∼ C2 as ξ → ξ− + 0.

However, as shown in Fig. 1, they do not match the limits

lim
ξ→ξ−+0

φ(ξ) = 0, lim
ξ→ξ−+0

φ′(ξ) = +∞

derived from the corresponding equilibrium (φ, ψ) = (0,+∞), which implies that we need
much more detailed information of the behavior of φ. This is the reason why the case p = 1
cannot be treated in the previous studies [7, 9]. We remark that the asymptotic analysis
developed in [7, 9] works only for the case that the equilibrium at infinity is hyperbolic.

In order to overcome such difficulties, we developed a new asymptotic analysis for the
dynamics near the non-hyperbolic equilibrium in Sect. 4. The key idea in our approach is
to estimate the final time scale θ = −τ by the first scale ξ with the special relation (19).
This allows us to extract more information about the behavior of traveling waves, i.e., the
dynamics of (16) near the non-hyperbolic equilibrium at infinity.
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We emphasize that the asymptotic form of φ in (5) has two terms and corresponds to the
dynamics near the non-hyperbolic equilibrium at infinity, which could not be obtained by
the conventional asymptotic analysis. In the previous studies for the hyperbolic equilibrium
at infinity, using the information of the linear term of the system around the equilibrium,
only the main term of φ is obtained as in (25). Regarding the dynamics at infinity and the
multi-term asymptotic form arising from Poincaré-type compactification, there are related
studies [4, 11] which discuss the multi-term asymptotic expansions of the blow-up solutions
for ordinary differential equations. However, these discussions assume that the equilibrium at
infinity is hyperbolic, and are not expected to be directly applicable to our dynamical system
(16) near the non-hyperbolic equilibrium E2. Therefore, this paper presents an example that
has the potential to extend the argument of [4, 11].

Since we now have the classification of the traveling waves in (2), we can combine the
results of [9], which treats the case 0 < p < 1, and those of [7], which treats the case
1 < p ∈ R. Note that we offer Theorem 1 for δ = 0 and Theorem 2 for δ = 1. Here we
consider the case δ = 0. The case δ = 1 can be discussed in a similar way. When 1 < p ∈ R,
Theorem 1 holds except for (5). Let φ1 be the traveling wave obtained here. Then φ1 has the
asymptotic form given by (25) for ξ → ξ− + 0 (see [7]). We call φ1 the type (i) traveling
wave. Moreover, for 0 < p < 1, in addition to Theorem 1 except for the asymptotic form
(5), we have two types of traveling waves satisfying

lim
ξ→ξ−+0

φ2(ξ) = lim
ξ→ξ+−0

φ2(ξ) = lim
ξ→ξ+−0

φ′
2(ξ) = 0, lim

ξ→ξ−+0
φ′
2(ξ) = M

and

lim
ξ→ξ−+0

φ3(ξ) = lim
ξ→ξ+−0

φ3(ξ) = 0, lim
ξ→ξ+−0

φ′
3(ξ) = −M, lim

ξ→ξ−+0
φ′
3(ξ) = M .

respectively with a positive constant M . Let φ2 and φ3 be these two types of traveling waves,
and we call φ2 and φ3 type (ii) and (iii), respectively. Then, as mentioned in [9], the result
for p = 1 is expected to be the “middle case" between the cases 1 < p ∈ R and 0 < p < 1,
that is, traveling waves of type (ii) and (iii) appear when p is moved from 1 < p ∈ R to
0 < p < 1 via p = 1. For (i), it is pointed out in [7, 9] that the asymptotic form is (25) for
each of 1 < p ∈ R and 0 < p < 1. However, as can be seen from the asymptotic form of
φ′(ξ), the limit forms for 1 < p ∈ R and 0 < p < 1 are different. The asymptotic form of
φ′(ξ) for p = 1 shown in Sect. 2 reveals the whole picture of changes of the classifications
for traveling waves depending on the parameter p of the spatial one-dimensional degenerate
parabolic equation (2).

The results of this paper, combined with previous studies [7, 9], provide a complete
understanding of the geometric structure of non-negative traveling waves of (2). When p ∈
(1,+∞) goes to p = 1, the type (i) traveling wave is still type (i) but its asymptotic behavior
near ξ− changes. Then, when p = 1 becomes to 0 < p < 1, new types (ii) and (iii) of
travelingwaves appear. Thus, we have a qualitative change, i.e., “bifurcation", of the behavior
of traveling waves in terms of their classifications. Note that the problem of the stability of
traveling waves should also be considered but it is out of scope of our present study. From
the above discussion, this paper clarifies the structure of the non-negative traveling waves of
the degenerate parabolic equation (2) with the parameter p including the critical value p = 1
from a geometric viewpoint. It also gives an example of bifurcation of traveling waves, and
we believe that this result provides a new perspective on the bifurcation theory for partial
differential equations using the Poincaré-type compactification.
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Appendix A Overview of the Poincaré Type Compactification

The Poincaré compactification is one of the compactifications of the original phase space
(the embedding of Rn into the unit upper hemisphere of Rn+1). In this appendix, we briefly
introduce the Poincaré compactification. Here Section 2 of [8] are reproduced. Also, it should
be noted that we refer [6] for more details. Let

X = P(φ, ψ)
∂

∂φ
+ Q(φ, ψ)

∂

∂ψ

be a polynomial vector field on R
2, or in other words{

φ̇ = P(φ, ψ),

ψ̇ = Q(φ, ψ),

where ˙ denotes d/dt , and P , Q are polynomials of arbitrary degree in the variables φ and
ψ .

We consider R2 as the plane in R
3 defined by (y1, y2, y3) = (φ, ψ, 1). Then the sphere

S
2 = {y ∈ R

3 | y21 + y22 + y23 = 1} is said to be the Poincaré sphere. We divide the Poincaré
sphere into

H+ = {y ∈ S
2 | y3 > 0}, H− = {y ∈ S

2 | y3 < 0}
and

S
1 = {y ∈ S

2 | y3 = 0}.
Let us consider the embedding of vector field X from R

2 to S
2 given by

f + : R2 → S
2, f − : R2 → S

2,

where

f ±(φ, ψ) := ±
(

φ

�(φ,ψ)
,

ψ

�(φ,ψ)
,

1

�(φ,ψ)

)

with �(φ,ψ) = √
φ2 + ψ2 + 1.

Then we have six local charts on S
2 given by Uk = {y ∈ S

2 | yk > 0}, Vk = {y ∈
S
2 | yk < 0} for k = 1, 2, 3. Consider the local projection

g+
k : Uk → R

2, g−
k : Vk → R

2

defined as

g+
k (y1, y2, y3) = −g−

k (y1, y2, y3) =
(
ym
yk

,
yn
yk

)

for m < n and m, n �= k. The projected vector fields are obtained as the vector fields on the
planes

Uk = {y ∈ R
3 | yk = 1}, V k = {y ∈ R

3 | yk = −1}
for each local chart Uk and Vk . We denote by (x, λ) the value of g±

k (y) for any k.
For instance, it follows that

(g+
2 ◦ f +)(φ, ψ) =

(
φ

ψ
,
1

ψ

)
= (x, λ),
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Fig. 2 Locations of the Poincaré sphere and chart U2

therefore, we can obtain the dynamics on the local chart U 2 by the change of variables
φ = x/λ and ψ = 1/λ. The locations of the Poincaré sphere, (φ, ψ)-plane and U 2 are
expressed as Fig. 2. Throughout this paper, we follow the notations used here for the Poincaré
compactification. It is sufficient to consider the dynamics on H+∪S1, which is called Poincaré
disk.

Appendix B Overview of Derivation of Asymptotic Behavior

In this appendix, we state the outline of the proof of (6), (7) and (8). In the following, we
reproduce the proof given in [7–10].

First, we outline the derivation of (6) in Theorem 1. If the initial value is on the center
manifold, the solution around E0 on Poincaré disk has the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(s) =
√√√√ 1

2μ

c
s − A0

=
(
2μ

c
s − A0

)− 1
2

,

ψ(s) = −μ

c

(
2μ

c
s − A0

)−1

= − μ

2μs − cA0
.

Since the initial value φ(0) is located on {φ > 0}, it holds that A0 < 0. We then have

ds

dξ
= φ−1 =

(
2μ

c
s − A0

) 1
2

.

Therefore, there exists a solution s(ξ) such that the following holds:

s(ξ) = μ

2c
ξ2 + μ

c
K1ξ + μ

2c
K 2
1 + c

2μ
A0 ∼ μ

2c
ξ2 as ξ → +∞
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with constants K1. Therefore, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(ξ) =
(
2μ

c
s − A0

)− 1
2 ∼ c

μ
ξ−1,

ψ(ξ) ∼ −μ

c
·
(

μ2

c2
ξ2

)−1

= − c

μ
ξ−2,

as ξ → +∞.

In addition, we can see that φ′ ∼ ψ as ξ → +∞ holds. Therefore, we can derive (6).
Second, we outline the derivation of (7) in Theorem 2. Then, there are three cases to

consider:

(i) Let us consider the case that D > 0, namely, thematrix J1 has the real distinct eigenvalues

ω1 = −μc + √
D

2
, ω2 = −μc − √

D

2
.

The eigenvectors corresponding to each eigenvalue are

v1 =
(

1
ω1

)
, v2 =

(
1
ω2

)
.

Therefore, the solution around the equilibrium E1 is

φ(ξ) ∼ B1e
ω1ξ + B2e

ω2ξ + μ−1

with any constants B1 and B2.
(ii) Consider the case that D = 0, namely, the matrix J1 has a multiple real eigenvalue

ω = −2−1μc. The eigenvector v1 and the generalized eigenvector corresponding to the
eigenvalue v2 are

v1 =
(

1

−μc

2

)
, v2 =

(
α

1 − μc

2
α

)

with α is arbitrary constant. Therefore, the solution around the equilibrium Eδ is

φ(ξ) ∼ (B3ξ + B4)e
ωξ + μ−1.

(iii) Consider the case that D < 0, namely, the matrix J1 has the complex eigenvalues

ω = ρ ± iν = −2−1μc ± i
1

2

√|D|. The eigenvectors corresponding to each eigenvalue
are

v =
(

1
−μc

2

)
± i

(
0

1
2

√|D|
)

.

The function φ(ξ) and ψ(ξ) are expressed as following:(
φ(ξ) − μ−1

ψ(ξ)

)
= z(ξ)

(
0

1
2

√|D|
)

+ w(ξ)

(
1

− c
2

)
,

where (
z(ξ)

w(ξ)

)
= eρξ

(
cos νξ − sin νξ

sin νξ cos νξ

) (
z(0)
w(0)

)
.

Therefore, the solution φ(ξ) around the equilibrium Eδ is

φ(ξ) = e− μc
2 ξ

(
z(0) sin

√|D|
2

ξ + w(0) cos

√|D|
2

ξ

)
+ μ−1.
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Thus, we can derive (7).
Finally, we outline the derivation of (8) in Theorem 2. We set w(s) = φ(s)−1 > 0. From

(14), we have

w′(s) ∼ −1

c
+ 1

c3
(μc2 + 1)w−1 = A + Bw−1,

where A = −c−1 < 0 and B = c−3(μc2 + 1) > 0. These are consistent with the results
obtained in [10] when μ = 1. Since our interest is the dynamics of φ(s) near 0, we can
suppose that w(s) is sufficiently large so that AB−1w + 1 < 0. Therefore, the solution of
the above equation satisfies the following:

−(1 + Aw/B)e
−

(
A
B w+1

)
= −AB−1e− A2

B s− A2C1+B
B .

Here C1 is a constant. By using w = φ−1 and the Lambert W function, we obtain

φ(s) = [−A−1B{W (E(s)) + 1}]−1, E(s) = −AB−1e− A2
B s− A2C1+B

B .

We consequently have

ds

dξ
= φ−1 = − B

A
{W (E(s)) + 1}.

Now we shall prove

ξ(s) → −∞ as s → −∞.

Its proof is given in [10] and is used properties of the Lambert W function. We represent ξ

as a function of φ. Using dξ/ds = φ, we can obtain

ξ + K =
∫

φ(s) ds =
∫

φ
ds

dφ
dφ

=
∫

φ

(
1

c
φ2 − 1

c3
(μc2 + 1)φ3

)−1

dφ

= c3
∫ [

1

c2
1

φ
+ 1

c2
(μc2 + 1)

1

c2 − (μc2 + 1)φ

]
dφ

= c log |φ| − c log |(μc2 + 1)φ − c2|
= c log

∣∣∣∣ φ

(μc2 + 1)φ − c2

∣∣∣∣
with a constant K . Then the constant K is given by

C3 = c log

∣∣∣∣ φ0

(μc2 + 1)φ0 − c2

∣∣∣∣ ,
where φ(0) = φ0. Note that we can conclude that K < 0. Next, we will represent φ as a
function of ξ . As mentioned above, we obtain

ξ + c log

∣∣∣∣ φ0

(μc2 + 1)φ0 − c2

∣∣∣∣ = c log

∣∣∣∣ φ

(μc2 + 1)φ − c2

∣∣∣∣ .
Therefore, we have

φ(ξ) = Mc2e
1
c ξ

M(μc2 + 1)e
1
c ξ − 1

, M = −
∣∣∣∣ φ0

(μc2 + 1)φ0 − c2

∣∣∣∣ ,
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where M < 0 is the constant that depends on the initial state φ0. Thus, we can derive (8).
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