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Abstract
This paper is concerned with traveling fronts of spatially periodic reaction–diffusion equa-
tionswith combustion nonlinearity inR

N . It is known that for any given propagation direction
e ∈ S

N−1, the equation admits a pulsating front connecting two equilibria 0 and 1. In this
paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives
at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the
propagation direction e ∈ S

N−1. Following the uniform estimates, we then show continuous
Fréchet differentiability of the pulsating fronts with respect to the propagation direction.
Lastly, using the differentiability, we establish the existence, uniqueness and stability of
curved fronts with V-shape in R

2 by constructing suitable super- and subsolutions.

Keywords Reaction–diffusion equations · Spatial periodicity · Combustion nonlinearity ·
Pulsating front · Differentiability · Curved front
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1 Introduction

In this paper, we investigate spatially periodic reaction–diffusion equations of the type

ut −�zu = f (z, u) in (t, z) ∈ R × R
N , (1.1)

where N ∈ N, u = u(t, z), ut = ∂u
∂t , �z denotes the Laplace operator with respect to the

spatial variables z ∈ R
N , and the reaction term f (z, u) satisfies the following assumptions:
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(F1) f : R
N × R → R is of class C∞(RN+1) and satisfies

‖ f ‖Ck (RN+1) =
k∑

i=0

∥∥∥Di f
∥∥∥
L∞(RN+1)

< +∞ for all k ∈ N. (1.2)

(F2) For each u ∈ R, the function f (·, u) : R
N → R is L−periodic. Here a function

h : R
N → R is said to be L−periodic ifh(z1, . . . , zk+Lk, . . . , zN ) = h(z1, . . . , zN )

for all 1 ≤ k ≤ N and all (z1, . . . , zN ) ∈ R
N , where L1, . . . , LN are given positive

constants. In such case,LN := (0, L1)×· · ·×(0, LN ) is called the cell of periodicity.
(F3) There exists p ∈ (0, 1) such that

⎧
⎪⎨

⎪⎩

∀ (z, u) ∈ R
N × [0, p] ∪ {1}, f (z, u) = 0;

∀ (z, u) ∈ R
N × (p, 1), f (z, u) ≥ 0;

∀ u ∈ (p, 1), ∃ z ∈ R
N , s.t . f (z, u) > 0.

(1.3)

(F4) There holds sup
z∈RN

fu(z, 1) < 0.

Assumption (F1) can be relaxed to f ∈ Cm
(
R

N+1
)
for sufficiently large m ∈ N, but for

the sake of convenience, we suppose f ∈ C∞ (
R

N+1
)
. Clearly, assumptions (F3) and (F4)

imply that the reaction term f is of combustion type. Denote

− K1 := inf
z∈RN

fu(z, 1) and − κ1 := sup
z∈RN

fu(z, 1). (1.4)

By assumptions (F1) and (F4), one has 0 < κ1 ≤ K1 < +∞. It follows from (1.2) and (1.4)
that there exists a positive constant γ� < 1 such that

fu(z, u) ≤ −κ1

2
, ∀(z, u) ∈ R

N × [1 − γ�, 1 + γ�]. (1.5)

For reaction–diffusion equations in spatially periodic media, important advances have
recently been made in its propagation dynamics. To describe the propagation dynamics
of spatially periodic equations, it is necessary to introduce an important notion–pulsating
front, which is a natural extension of the classical notion–planar traveling wave solution in
homogeneous media.

Definition 1.1 (Pulsating Front) A pair (Ue, ce) with Ue : R × R
N → R and ce ∈ R is said

to be a pulsating front of (1.1) with effective speed ce in the direction e ∈ S
N−1 connecting

two equilibria 0 and 1, if the following three properties are satisfied:

(i) the function u(t, z) := Ue(z ·e−cet, z) is an entire (classical) solution of the parabolic
Eq. (1.1).

(ii) the profileUe satisfiesUe(s, z) = Ue(s, z+ y) for all (s, z) ∈ R×R
N and y ∈

N∏
i=1

LiZ.

(iii) the profile Ue satisfies

lim
s→+∞Ue(s, z) = 0 and lim

s→−∞Ue(s, z) = 1 uniformly for z ∈ R
N .

The notion of pulsating front was introduced first by Shigesada et al. [46] and Xin [58–60].
Nowwe recall the existing results on pulsating fronts of a general reaction–diffusion equation
in spatially periodic media

ut = ∇ · (A(z)∇u)+ q(z) · ∇u + f (z, u) in (t, z) ∈ R × R
N , (1.6)
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where A(z) = (
Ai j (z)

)
1≤i, j≤N is a matrix field and q(z) = (q1(z), · · · , qN (z)) is a vector

field. For the monostable nonlinearity f , it was shown that for any propagation direction
e ∈ S

N−1, there exists a minimal wave speed c∗
e such that Eq. (1.6) admits a pulsating front

if and only if the wave speed c ≥ c∗
e , see Berestycki and Hamel [3], Liang and Zhao [37],

Weinberger [57], etc. Furthermore, the uniqueness and stability of pulsating fronts were
studied in [29, 35]. For the combustion nonlinearity, it follows fromBerestycki andHamel [3]
and Xin [58, 60] that for any e ∈ S

N−1, there exists a unique (up to time shift) pulsating front
Ue with wave speed ce. In particular, the speed ce is also unique. For the bistable nonlinearity
f , the existence and nonexistence of pulsating traveling fronts were studied intensively. For
one dimensional case, see Ding, Hamel and Zhao [15], Ducrot, Giletti andMatano [18], Fang
and Zhao [22], Giletti and Matano [23], and Nolen and Ryzhik [42]. For higher dimensional
case, see Ducrot [17], Giletti and Rossi [24], Xin [59]. More recently, Ding and Giletti [14]
showed in any spatial dimension that for an arbitrary large number of directions, there exists
a spatially periodic bistable type equation to achieve any combination of speeds in those
given directions, provided that those speeds have the same sign. In particular, even if in one
dimensional space, any pair of rightward and leftward wave speeds is admissible, which is
completely different from the Fisher-KPP case. They also showed that these variations in the
speeds of bistable pulsating fronts lead to strongly asymmetrical situations in the multistable
equations. Besides these existence results for pulsating fronts of bistable equations, it was
also shown that theremay not exist pulsating fronts for bistable equations in spatially periodic
media. Zlatoš [64] constructed a periodic pure bistable reaction such that there is no pulsating
fronts of (1.1). We also refer to [15, 61, 62] for some nonexistence results. For the unique
and stability of pulsating fronts for bistable equations in spatially periodic media, we refer
to Ding, Hamel and Zhao [15].

As reported above, in spatially periodic media, pulsating traveling fronts may not exist for
bistable equations. In fact, unlike in the homogeneous case, the equation in spatially periodic
media is no longer invariant by rotation, and hence the wave profile and the wave speed may
be different depending on its direction even if the pulsating fronts exist. Therefore, many
researchers paid attention to the dependence of propagation phenomena on the direction in
spatially periodic media. In [2], Alfaro and Giletti considered a spatially periodic reaction–
diffusion equation with either combustion or monostable nonlinearity in high-dimensional
space. They showed that the (minimal) wave speed of pulsating fronts of the equation depends
continuously on the direction of propagation, and so does its associated profile (up to time
shifts). They also showed that the spreading properties in [57] are uniform with respect to the
direction. Guo [25] studied a spatially periodic reaction–diffusion equationwith bistable non-
linearity in high-dimensional space. Under the a priori assumption that there exist pulsating
fronts with nonzero speeds for every direction of propagation, they showed the continuity and
differentiability of wave speeds and profiles of the underlying pulsating fronts with respect
to the direction of propagation. They also proved that the propagating speed of any transition
front is larger than the infimum of speeds of pulsating fronts and less than the supremum of
speeds of pulsating fronts. More recently, Ding et al. [16] revisited the continuity and further
proved the continuity of wave speeds on the direction without the extra assumption that the
wave speeds are nonzero in all directions.

In high-dimensional space, even if for homogeneous reaction–diffusion equation, there
exist various traveling fronts whose level sets admit different shapes, such as V-shaped
traveling fronts, pyramidal traveling fronts, and conical traveling fronts. These fronts have
been found in experimental observations and numerical calculations for the Bunsen burners
and Belousov–Zhabotinskii chemical reaction, see [27, 43, 47] for flames of various kinds of
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smooth shapes, and [6, 44] for V-shaped chemical waves. In the past thirty years, there were
many important studies concentrating on the rigorous mathematical analysis to these fronts.
See [32, 33, 40, 48–52] for bistable equations, [11, 12, 34, 55] for monostable equations,
[5, 9, 11, 12, 30, 31, 55] for combustion equations, and [41, 45, 53] for reaction–diffusion
systems. For inhomogeneous (heterogeneous) reaction–diffusion equations, there also were
some literatures concerning curved fronts of the equations. See [54, 56, 63] for time periodic
bistable and combustion equations, [19, 20] for monostable and combustion equations with
periodic shear flow, and [10] for space-time periodicmonostable equations. In particular, Guo
et al. [26] studied Eq. (1.1) under bistable assumption and gave some sufficient conditions
to the existence of curved fronts in R

2. They further showed that the curved front is unique
and asymptotically stable.

In this paper we continuously investigate the propagation phenomena of periodic Eq. (1.1)
under assumptions (F1)–(F4). Namely, we consider Eq. (1.1) with combustion nonlinearity.
By (F3), we have that there exists p ∈ (0, 1) such that f (z, u) = 0 for any (z, u) ∈
R

N × [0, p] ∪ {1}, which is different from the bistable case studied in [26]. In this case the
equilibrium 0 is degenerate, which in turn raises some difficulties in our study. In fact, to
overcome the difficulty due to the degenerate, we have to work under some weighted sense.
Under assumptions (F1)–(F4), it follows from [3] that for any given propagation direction
e ∈ S

N−1, (1.1) admits a unique pulsating front connecting two equilibria 0 and 1. Based
on the existence of pulsating fronts, in this paper we turn to investigate the properties of the
pulsating fronts and establish curved fronts for (1.1). Firstly,wegive exponentially asymptotic
behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay
estimates of the pulsating fronts at infinity on the propagation direction e ∈ S

N−1. According
to the uniform estimates, we then show continuous Fréchet differentiability of the pulsating
frontswith respect to the propagation direction. Lastly, using the differentiability,we establish
the existence, uniqueness and stability of curved fronts with V-shape in R

2.
The following sections are devoted to stating and proving the results of this paper. In Sect. 2

we introduce some known results as preliminaries and state our main results. Section3 is
concernedwith the asymptotic behaviors of pulsating fronts, including Theorems 2.5 and 2.7.
In Sect. 4, we mainly investigate the Fréchet differentiability of pulsating fronts with respect
to the direction of propagation, namely Theorems 2.8 and 2.10. Lastly, Sect. 5 is devoted to
the proof of the existence, uniqueness and stability of curved fronts in R

2, that is, we prove
Theorems 2.12, 2.15 and 2.16.

2 Preliminaries andMain Results

In this section, we firstly introduce some known results on the pulsating fronts of Eq. (1.1)
as preliminaries, and then state our main results. Here we emphasize that (F1)–(F4) always
hold throughout this paper.

2.1 Preliminaries

As reported in Sect. 1, the existence and uniqueness of pulsating fronts of (1.1) with com-
bustion nonlinearity has been established by Berestycki and Hamel [3], namely, for any
given propagation direction e ∈ S

N−1, (1.1) admits a unique pulsating front connecting two
equilibria 0 and 1.

Theorem 2.1 ([3], Theorem 1.13) Assume that (F1)–(F4) hold. Let e ∈ S
N−1. Then
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(i) there exists (Ue, ce) such that u(t, z) := Ue(z · e − cet, z) is a classical solution of
(1.1).

(ii) the speed ce is unique and positive. The profile Ue(s, z) is unique up to transition in the
variable s.

(iii) the profile Ue(s, z) : R × R
N → R is strictly decreasing in s.

From the above definition, pulsating front Ue satisfies a semilinear degenerate elliptic
equation of the type

ce∂sUe + ∂ssUe + 2∇z∂sUe · e +�zUe + f (z,Ue) = 0 in R × R
N , (2.1)

where e ∈ S
N−1. We now recall some results of the asymptotic behaviors of pulsating front

Ue at infinite. Due to assumption (F4), the asymptotic behaviors of pulsating front as tending
to the equilibrium state 1 can directly follows from Bu, Wang and Liu [13]. Recently, Bu and
He [8] also gave the asymptotic behaviors of pulsating front as tending to the equilibrium
state 0. We say that Ue(s, z) ∼ C1e−ces as s → +∞ uniformly in z ∈ R

N , if

lim inf
s→+∞ min

z∈RN

Ue(s, z)

C1e−ces
= lim sup

s→+∞
max
z∈RN

Ue(s, z)

C1e−ces
= 1.

Theorem 2.2 ([8, 13]) Assume that (F1)–(F4) hold. Let e ∈ S
N−1. Assume that (Ue, ce) is

the unique pulsating front of (1.1). Then

(i) there exist two nonzero constants C1 and C2 such that

Ue(s, z) ∼ C1e
−ces and ∂sUe(s, z) ∼ C2e

−ces as s → +∞
uniformly in z ∈ R

N .
(ii) there exist two nonzero constants C ′

1, C
′
2 and a positive constant τe dependent on e such

that

1 −Ue(s, z) ∼ C ′
1e
τesϕτe (z) and ∂sUe(s, z) ∼ C ′

2e
τesϕτe (z) as s → −∞

uniformly in z ∈ R
N , where 0 < ϕτe (z) ∈ C2(RN ) is L-periodic and ‖ϕτe‖L∞(RN ) = 1.

For spatially periodic media, pulsating fronts in different propagation directions are dif-
ferent in general. Thus the dependency of pulsating front with respect to the propagation
direction is vital to investigate problems involving more than one pulsating front. Alfaro and
Giletti [2] got the continuity of pulsating fronts with respect to the propagation direction for
spatially periodic reaction–diffusion equations with combustion nonlinearity.

Theorem 2.3 ([2], Theorems 2.4 and 2.5). Assume that assumptions (F1)–(F4) hold. Let
e ∈ S

N−1. Assume that (Ue, ce) is the unique pulsating front of (1.1). Then

(i) the mappig e ∈ S
N−1 �→ ce is continuous.

(ii) there exist two positive constants κ and K such that

0 < κ := inf
e∈SN−1

ce ≤ sup
e∈SN−1

ce =: K < +∞.

(iii) the mapping e ∈ S
N−1 �→ Ue is continuous under the topology ‖ · ‖L∞(R×RN ), by

normalization as minz∈RN Ue(0, z) = (1 + p)/2, where p is defined in (1.3).

Remark 2.4 Here we emphasize that the continuity of pulsating fronts in Theorem 2.3 (iii) is
proved under the normalization minz∈RN Ue(0, z) = (1 + p)/2.
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2.2 Main Results

In this subsection we list our main results in this paper. The first part is concerned with the
properties of pulsating fronts, including the exponentially asymptotic behaviors of pulsating
front and its derivatives at infinite, and the continuity and Fréchet differentiability of pulsating
fronts andwave speedswith respect to the propagation direction. The second part is concerned
with curved fronts of (1.1) in R

2.
• Pulsating fronts
In this part we mainly focus on the continuity and Fréchet differentiability of pulsating

fronts and wave speeds with respect to the propagation direction. To do that, we firstly
establish the exponentially asymptotic behaviors of pulsating front and its derivatives at
infinite.

Theorem 2.5 Assume that assumptions (F1)–(F4) hold. Let e ∈ S
N−1. Assume that (Ue, ce)

is the unique pulsating front of (1.1). Then for any nonnegative integers k and l, there exists
a constant Ckl dependent on k and l, such that

lim
s→+∞

Dk
z D

l
sUe

Ue
= Ckl , (2.2)

lim
s→+∞

∂sUe

Ue
= −ce, (2.3)

lim
s→+∞

∂ssUe

Ue
= c2e , (2.4)

lim
s→+∞

|∇zUe| , |∇z∂sUe|
Ue

= 0, (2.5)

lim
s→+∞

�zUe

Ue
= 0 (2.6)

uniformly in z ∈ R
N , where ∇z denotes the gradient operator with respect to z ∈ R

N .

Remark 2.6 Here we point out that the asymptotic behaviors in Theorem 2.5 may rely on the
propagation direction e.

Furthermore, we have the following uniform estimates.

Theorem 2.7 Assume that (F1)–(F4) hold. Let e ∈ S
N−1. Assume that (Ue, ce) is the unique

pulsating front of (1.1). Normalize Ue asminz∈RN Ue(0, z) = (1+ p)/2, where p is defined
in (1.3). Then there exist positive constants K and κ2, both independent of e ∈ S

N−1, such
that

|Ue(s, z)|, |DUe(s, z)|, |D2Ue(s, z)|, |D3Ue(s, z)| ≤ Ke− 3κ
4 s in [0,+∞)× R

N ,

|1 −Ue(s, z)|, |DUe(s, z)|, |D2Ue(s, z)|, |D3Ue(s, z)| ≤ Keκ2s in (−∞, 0] × R
N ,

where κ is defined in Theorem 2.3; D, D2 and D3 denote any first-order, second-order and
third-order derivative with respect to (s, z) ∈ R × R

N respectively.

Now we consider the continuity and Fréchet differentiability of pulsating fronts and wave
speeds with respect to the propagation direction. Denote

ρ = ρ(s)
def= 1 + e2εs, ∀s ∈ R, (2.7)
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where ε is a constant satisfying 0 < ε � κ . Let us now define a weighted L2 space

L2
ρ(R × L

N )
def=

{
u : R × R

N → R

∣∣∣∣ ‖u‖L2
ρ

def=
(∫

R×LN
u2ρ dsdz

)1/2

< ∞

and u(s, z) = u(s, z + y) a.e. in R × R
N for any y ∈

N∏

i=1

LiZ

} (2.8)

and a weighted H1 space

H1
ρ (R × L

N )
def=

{
u ∈ L2

ρ : ‖u‖2H1
ρ

def= ‖u‖2L2
ρ

+
∫

R×LN
|∇u|2ρ dsdz < ∞

}
, (2.9)

where ∇ denotes the gradient operator with respect to (s, z) ∈ R × R
N . Similarly, one can

obtain the definition of weighted space Hn
ρ , n ≥ 2.

In the sequel of this paper, the profile of pulsating fronts Ue are always normalized as
∫

R+×LN
U 2
e ρ dsdz = 1 for all e ∈ S

N−1, (2.10)

for the sake of considering the Fréchet differentiability of pulsating front. Under normal-
ization (2.10), the continuity of pulsating fronts with respect to the propagation direction is
given in below theorem.

Theorem 2.8 Assume that assumptions (F1)–(F4) hold. Let e ∈ S
N−1. Assume that (Ue, ce)

is the unique pulsating front of (1.1). Then

(i) the mappig e ∈ S
N−1 �→ ce is continuous.

(ii)

0 < κ = inf
e∈SN−1

ce ≤ sup
e∈SN−1

ce = K < +∞,

where κ and K coincide with those in Theorem 2.3.
(iii) the mapping e ∈ S

N−1 �→ Ue is continuous under the topology ‖ · ‖L∞(R×RN ), by
normalization (2.10).

Remark 2.9 Clearly, the uniform estimates in Theorem 2.7 is established under the normal-
ization Ue as minz∈RN Ue(0, z) = (1 + p)/2. In fact, the conclusions in Theorem 2.7 still
hold for the normalization (2.10).

In the following theorem, we give the continuous differentiability of pulsating fronts with
respect to the propagation direction e ∈ S

N−1 for the case of combustion nonlinearity. For the
case of bistable nonlinearity, continuity and differentiability properties of the pulsating fronts
Ue and speeds ce with respect to the direction e ∈ S

N−1 under topology ‖ · ‖L2(R×LN )×R has
been studied by Guo [25]. For any b ∈ R

N \ {0}, define
Ub := U b

|b|
and cb := c b

|b|
. (2.11)

It is clear that Ub and cb are well defined.

Theorem 2.10 Assume that assumptions (F1)–(F4) hold. Let e ∈ S
N−1. Assume that (Ue, ce)

is the unique pulsating front of (1.1). Normalize Ue as (2.10). Then Ub and cb are doubly
continuously Fréchet differentiable in b ∈ R

N everywhere at R
N \ {0} under the topology

‖ · ‖C2(R×RN )×R.
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Remark 2.11 According to the proof of Theorem 2.10, Ub and cb are also second-order
continuously Fréchet differentiable in b ∈ R

N everywhere at R
N \ {0} under the topology

‖ · ‖H2
ρ (R×LN )×R.

• Curved fronts
In this part we only consider the case N = 2. Namely, we establish the existence,

uniqueness and stability of curved fronts with V-shape for Eq. (1.1) in R
2 on the base of

the asymptotic behavior results (Theorem 2.5) and Fréchet differentiability results (Theo-
rem 2.10).

Let N = 2 and z := (x, y) ∈ R
2. Let θ be an arbitrary angle, then it follows from

Theorem 2.1 that there exists a unique pulsating front in the sense of Definition 1.1 with the
propagation direction (cos θ, sin θ), denoted by (Uθ , cθ ). Under the normalization (2.10),
define

U−
αβ(t, x, y)

def= max
{
Uα(x cosα + y sin α − cαt, x, y), Uβ(x cosβ + y sin β − cβ t, x, y)

}
,

which is evidently a subsolution of (1.1). The following theorem shows the existence of
curved fronts, which converge to pulsating fronts along its asymptotic lines under some
conditions on angles α and β. The curved front is actually a transition front connecting 0
and 1 (see [4, 7, 28]), whose interface can be chosen as a V-shaped curve. For convenience,
denote

ξα := x cosα + y sin α − cαt and ξβ := x cosβ + y sin β − cβ t .

Define

g(θ) := cθ
sin θ

for all θ ∈ (0, π).

Theorem 2.12 Assume that assumptions (F1)–(F4) hold. Let α and β be two angles satisfying
0 < α < β < π , such that g′(α) < 0, g′(β) > 0, and

cα
sin α

= cβ
sin β

=: cαβ > cθ
sin θ

, ∀θ ∈ (α, β). (2.12)

Then there exists an entire solution V (t, x, y) of (1.1), which satisfies 0 < V < 1,

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣V (t, x, y)−U−
αβ(t, x, y)

∣∣∣

min
{
1, e−ν� min{ξα/ sin α, ξβ/ sin β}} = 0 (2.13)

and
∂t V (t, x, y) > 0 (2.14)

in R × R
2, where ν� is a positive constant.

Remark 2.13 The condition of Theorem 2.12 is not empty. In fact, there are infinite pairs
(α, β) satisfying the condition.

Proof of Remark 2.13 It follows from Theorem 2.10 that the function cθ is continuously dif-
ferentiable in [0, π], which implies that maxθ∈[0,π ] c′

θ is bounded. By virtue of Theorem 2.8,
one gets

g′(θ) = 1

sin θ

(
c′
θ − cθ cot θ

) ≤ 1

sin θ

(
max
θ∈[0,π ] c

′
θ − κ cot θ

)
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for all 0 < θ < π/2. Thus there is a constant θ1 ∈ (0, π/2) such that g′(θ) < 0 for
all θ ∈ (0, θ1). Similarly, there is a constant θ2 ∈ (π/2, π) such that g′(θ) > 0 for all
θ ∈ (θ2, π). Since

g(θ) = cθ
sin θ

≥ κ

sin θ
→ +∞ as θ → 0 or π

and

g(θ) = cθ
sin θ

≤ K

sin θ
≤ K

min{sin θ1, sin θ2} in [θ1, θ2],
where κ and K are given in Theorem 2.8, it is clear that Remark 2.13 is valid. ��
Remark 2.14 Based on below uniqueness result (Theorem 2.15), we can get a fact that

V (t, x, y) = V (t + L2k/cαβ, x, y + L2k) in R × R
2, ∀k ∈ Z,

where L2 given in the definition of L
N is the period of y. As Remark 1.4 of Guo et al. [26],

we can show that the curved front V (t, x, y) established in Theorem 2.12 is a transition front
of Eq. (1.1) connecting two equilibria 0 and 1, see [4, 7, 28] for the definition of transition
fronts. According to Remark 2.13, there exist α1 and β1 with 0 < α1 < β1 < π such that for
any α ∈ (0, α1), there exists β ∈ (β1, π) such that (2.12) is satisfied and there is a curved
front V (t, x, y) of (1.1) satisfying (2.13) and (2.14). This gives a sufficient condition to the
existence of curved fronts in R

2. That is, condition (2.12) holds when angle α close to 0 and
angle β close to π . See also Corollary 1.5 of Guo et al. [26]. In addition, as mentioned by
Guo et al. [26], one can rotate the coordinate such that the y-axis points to any direction.
Though the periodicity can not be preserved by rotation, the same proofs of Theorem 2.12
can be applied to obtaining the existence of a curved front by using any two pulsating fronts
whose propagation directions are closed to reversed with each other.

The following two theorems give the uniqueness and stability of the curved frontV (t, x, y)
in Theorem 2.12 respectively.

Theorem 2.15 Assume that assumptions (F1)–(F4) hold. Let α, β, V (t, x, y) be given in
Theorem 2.12. If there is an entire solution V1(t, x, y) of (1.1) satisfying 0 ≤ V1 ≤ 1 and

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣V1(t, x, y)−U−
αβ(t, x, y)

∣∣∣ = 0, (2.15)

then V1(t, x, y) ≡ V (t, x, y) in R
3.

Theorem 2.16 Assume that assumptions (F1)–(F4) hold. Let α, β, V (t, x, y) be given in
Theorem 2.12. Assume that u0 ∈ C(R2, [0, 1]) satisfies

U−
αβ(0, x, y) ≤ u0(x, y) (2.16)

for all (x, y) ∈ R
2, and

lim
R→+∞ sup

x2+y2>R2

∣∣∣u0(x, y)−U−
αβ(0, x, y)

∣∣∣

min
{
1, e−νmin{ξα/ sin α, ξβ/ sin β}} = 0 (2.17)

for some ν > 0, where ξα and ξβ are evaluated at (0, x, y). Then the solution u(t, x, y) of
Cauchy problem (1.1) for t ≥ 0 with initial condition u(0, x, y) = u0(x, y), satisfies

lim
t→+∞ ‖u(t, ·, ·)− V (t, ·, ·)‖L∞(R2) = 0.
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Theorems 2.12, 2.15 and 2.16 investigate the existence, uniqueness and stability of curved
fronts of (1.1) in R

2. In particular, Theorem 2.12 implies that condition (2.12) together with
g′(α) < 0 and g′(β) < 0 is sufficient to the existence of the curved front V (t, x, y). The
following theorem shows that condition (2.12) is necessary.

Theorem 2.17 Assume that assumptions (F1)–(F4) hold. Suppose that there exist a constant
cαβ > 0 and two angles α and β with 0 < α < β < π such that (1.1) admits an entire
solution V (t, x, y) satisfying 0 < V < 1 and (2.13) for some positive constant ν�, then the
constant cαβ and the angles α and β satisfy (2.12).

Finally, we give some comments with respect to the results in this part.

Remark 2.18 Herewewould like to give some comments with respect to the results on curved
fronts, and list some interesting issues which should be considered in the future.

(1) Clearly, the stability of curved fronts in Theorem 2.16 is only established for the case
that u0(x, y) ≥ U−

αβ(0, x, y) for all (x, y) ∈ R
2. A natural question is whether the

solution of Eq. (1.1) with initial value u0 satisfying 0 ≤ u0(x, y) ≤ U−
αβ(0, x, y) for all

(x, y) ∈ R
2 still converge to the curved front? For homogeneous equations, the answer is

positive, and hence, we conjecture that the answer is also positive for periodic Eq. (1.1).
But to confirm the conclusion for (1.1), it is needed to construct some new super- and
subsolutions, which seems not easy.

(2) In this paper we only consider the existence of curved fronts inR
2. As reported in Sect. 1,

for homogeneous equation in R
3, it has been found that there exist various curved fronts

with nonplanar level sets. Therefore, it is valuable to investigate possible curved fronts
of periodic Eq. (1.1) in R

3. In addition, it was shown that there exist nonplanar traveling
fronts in homogeneous equation with degenerate monostable nonlinearity. Therefore, it
is also interesting to consider the existence of curved fronts of Eq. (1.1) with degenerate
monostable nonlinearity. Besides, as done in [7, 26, 28, 45], curved fronts with varying
interfaces should also be considered.

(3) As mentioned in Sect. 1, El Smaily [19] has considered the existence, uniqueness and
qualitative properties of curved traveling fronts to the reaction–advection–diffusion prob-
lem (which is precisely a periodic shear flow)

∂t u = �u + q(x)∂yu + f (u), (x, y) ∈ R
2, (2.18)

where f ∈ C1+δ satisfies

∃p ∈ (0, 1) such that f (u) = 0 for u ∈ [0, p) ∪ {1}, f (u) > 0 for u ∈ [p, 1), f ′(1) < 0.

Under the assumption q(x) = q(−x) for all x ∈ R, by constructing a pair of sub- and
supersolutions which consist of the right and left moving fronts, El Smaily [19] established
the existence of curved fronts of Eq. (2.18) satisfying conical conditions (see (1.5) in [19]).
Furthermore, he showed the uniqueness and monotonicity of curved fronts by using the com-
parison principle and the sliding method. In our opinion, the main feature of El Smaily [19]
is to consider the influence of spatially periodic advection term on the curved front. As a
counterpart, this paper concentrates on the influence of spatially periodic reaction term on the
curved front. Technically, the essential difference is due to that the reaction term f depends
on spatial variables z, which brings a lot of different difficulties. In this paper, by using the
continuous Fréchet differentiability of the pulsating fronts with respect to the propagation
direction done in Sect. 4, we first construct a supersolution via pulsating front with varying
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propagation direction (different from that in El Smaily [19]) and then establish the existence
of curved fronts of Eq. (1.1) in R

2. Furthermore, we obtain the uniqueness and stability by
using the sliding technique and investigating the Omega-limit set of the solution of Eq. (1.1)
with initial values satisfying (2.16) and (2.17). Clearly, there is no results on the stability of
curved fronts in [19]. Of course, it will be more difficult and challenging to consider curved
fronts in general Eq. (1.6) with advection term.

3 Properties of Pulsating Front

In this section we introduce some versions of the maximum principle in unbounded domains
and give some properties of pulsating front.

Lemma 3.1 Assume that g(s, z, u) is a function defined in R × R
N × R, and g(s, z, ·) is

globally Lipschitz-continuous uniformly for (s, z). Let ce �= 0 and �+
h := (h,+∞) × R

N .

Assume that g is nonincreasing with respect to u in�+
h × (−∞, �] for some � ∈ R. Assume

that φ1(s, z) and φ2(s, z) are two functions of C2(�+
h ), and ‖φ1‖C0(�+

h )
, ‖φ2‖C0(�+

h )
<

+∞. Assume that g, φ1, φ2 are periodic with respect to z ∈ R
N , and L

N is the cell of
periodicity independent of s, u. Let

⎧
⎪⎪⎨

⎪⎪⎩

Neφ
1(s, z)+ g

(
s, z, φ1(s, z)

) ≥ 0 in �+
h

Neφ
2(s, z)+ g

(
s, z, φ2(s, z)

) ≤ 0 in �+
h

lim
s0→+∞ sup

s≥s0,z∈RN

(
φ1 − φ2

)
(s, z) ≤ 0

where

Neφ := ce∂sφ + ∂ssφ + 2∇z∂sφ · e +�zφ.

Assume that φ1 ≤ � in �+
h and φ1(h, z) ≤ φ2(h, z) for all z ∈ R

N . Then φ1 ≤ φ2 in �+
h .

Lemma 3.2 Assume that g(s, z, u) is a function defined in R × R
N × R, and g(s, z, ·) is

globally Lipschitz-continuous uniformly for (s, z). Let ce �= 0 and �−
h := (−∞, h) × R

N .

Assume that g is nonincreasing with respect to u in�−
h × (−∞, �] for some � ∈ R. Assume

that φ1(s, z) and φ2(s, z) are two functions of C2(�−
h ), and ‖φ1‖C0(�−

h )
, ‖φ2‖C0(�−

h )
<

+∞. Assume that g, φ1, φ2 are periodic with respect to z ∈ R
N , and L

N is the cell of
periodicity independent of s, u. Let

⎧
⎪⎪⎨

⎪⎪⎩

Neφ
1(s, z)+ g

(
s, z, φ1(s, z)

) ≥ 0 in �−
h ,

Neφ
2(s, z)+ g

(
s, z, φ2(s, z)

) ≤ 0 in �−
h ,

lim
s0→−∞ sup

s≤s0,z∈RN

(
φ1 − φ2

)
(s, z) ≤ 0.

Assume that φ1 ≤ � in �−
h and φ1(h, z) ≤ φ2(h, z) for all z ∈ R

N . Then φ1 ≤ φ2 in �−
h .

Lemmas 3.1 and 3.2 can be proved similarly to Lemma 3.2 of [3]. In the following we
firstly consider the asymptotic behavior of pulsating front tending to the equilibrium 0, that
is Theorem 2.5. Then we give some estimates of the profile Ue and its derivatives.

Proof of Theorem 2.5 Fix an arbitrary propagation direction e ∈ S
N−1.
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Step 1: we prove (2.2).
It follows from Definition 1.1 that there exists a positive constant q1 such that

Ue(s, z) ≤ p for all (s, z) ∈ [q1 − 1,+∞)× R
N ,

where p is defined in (1.3). Denote u(t, z) := Ue(z · e − cet, z) and define

� := {(t, z) : z · e − cet > q1} and �1 := {(t, z) : z · e − cet > q1 − 1} .
Clearly, one has 0 ≤ u ≤ p in �1. By (1.3) and (2.1), u(t, z) satisfies

∂t u −�zu = 0 in �1.

It follows from Theorem 9 in Section 3 of Chapter 2 of [21] and Corollary 7.42 of [38] that,
for any k, l ∈ N there exists a constant C̃kl > 0 such that

∣∣∣Dk
z D

l
t u(t, z)

∣∣∣ ≤ C̃klu(t, z), ∀(t, z) ∈ �, (3.1)

which implies that there is a constant Ĉkl > 1 such that
∣∣∣Dk

z D
l
sUe

∣∣∣ <
(
Ĉkl − 1

)
Ue, ∀(s, z) ∈ [q1,+∞)× R

N . (3.2)

For convenience, denote Ũe := Dk
z D

l
sUe + ĈklUe. Then Ũe solves an equation of the type

ce∂sŨe + ∂ssŨe + 2∇z∂sŨe · e +�zŨe = 0 in (q1,+∞)× R
N .

Since Ũe = (
Dk
z D

l
sUe + (

Ĉkl − 1
)
Ue

) + Ue, it follows from (3.1), (3.2) and Theorem 2.2
that

lim inf
s→+∞ min

z∈RN

Ũe

e−ces
≥ lim inf

s→+∞ min
z∈RN

Ue

e−ces
= C1 > 0

and

lim sup
s→+∞

max
z∈RN

Ũe

e−ces
≤ lim sup

s→+∞
max
z∈RN

(
2Ĉkl − 1

)
Ue

e−ces
= (

2Ĉkl − 1
)
C1 < +∞.

With similar arguments as those in Theorem 2.2 of [8], by replacing φ with Ũe, one can prove
that there exists a positive constant Ckl dependent on k and l such that

Ũe(s, z) ∼ Ckle
−ces as s → +∞

uniformly in z ∈ R
N , and hence (2.2) holds.

Step 2: we prove (2.3).
According to Theorem 2.2, there exist two nonzero constants C1 and C2 such that

Ue(s, z) ∼ C1e
−ces and ∂sUe(s, z) ∼ C2e

−ces as s → +∞ (3.3)

uniformly in z ∈ R
N . Thus in order to prove (2.3), one needs only to prove C2

C1
= −ce.

For any n ∈ N, we define

wn(ξ) := Ue(ξ + n, 0)

Ue(n, 0)
, w(ξ) := e−ceξ , w∗(ξ) := C2

C1
e−ceξ

where ξ ∈ [−1, 1]. It is easy to verify that the sequence of functions {w′
n}n∈N is convergent

to the function w∗ uniformly in ξ ∈ [−1, 1] as n → ∞. Apparently, one has by (3.3) that
the sequence of functions {wn}n∈N is convergent to w in ξ ∈ [−1, 1] as n → ∞. Thus

w′(ξ) = d

dξ

(
lim
n→∞wn

)
= lim

n→∞w′
n(ξ) = w∗(ξ), ∀ξ ∈ [−1, 1].
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It is clear that C2
C1

= −ce.
Step 3: we prove (2.4) and (2.5).
From (2.2) and (3.3), one knows

Ue(s, z) ∼ C1e
−ces and ∂z j Ue(s, z) ∼ C3 j e

−ces as s → +∞
uniformly in z ∈ R

N , where j ∈ {1, 2, · · · , N }, C3 j is a constant, and C1 is nonzero. Fix
arbitrary j ∈ {1, 2, · · · , N }, denote

w̃n(z j ) := Ue(n, 0, · · · , 0, z j , 0, · · · , 0)
Ue(n, 0, · · · , 0) , w̃(z j ) ≡ 1, w̃∗(z j ) ≡ C3 j

C1

for all n ∈ N, where z j ∈ [−1, 1]. With similar arguments as those in Step 2, one gets that

d

dz j

(
lim
n→∞ w̃n

)
= lim

n→∞ w̃′
n in [−1, 1],

which implies w̃′ = w̃∗. Consequently C3 j/C1 = 0 for any j ∈ {1, 2, · · · , N }. Therefore

lim
s→+∞

|∇zUe|
Ue

= 0 uniformly in z ∈ R
N .

From (2.2) and (3.3), one knows

∂sUe(s, z) ∼ C2e
−ces, ∂s(∂sUe)(s, z) ∼ C4e

−ces, ∂z j (∂sUe)(s, z) ∼ C5 j e
−ces

uniformly in z ∈ R
N as s → +∞, where j ∈ {1, 2, · · · , N }, C4 and C5 j are constants, and

C2 is nonzero. Then with similar arguments as above, one obtains that C4/C2 = −ce and
C5 j/C2 = 0 for all 1 ≤ j ≤ N . It follows from (2.3) that

lim
s→+∞

∂ssUe

Ue
= c2e and lim

s→+∞
|∇z∂sUe|

Ue
= 0

uniformly in z ∈ R
N .

Step 4: we prove (2.6).
It follows from (2.1) that

lim
s→+∞

�zUe

Ue
= − lim

s→+∞
ce∂sUe + ∂ssUe + 2∇z∂sUe · e

Ue
= 0.

Hence (2.6) holds. The proof of Theorem 2.5 is thereby complete. ��
Below we establish three propositions which provide some estimates of pulsating fronts

Ue. Here we emphasize that these estimates are independent of the propagation direction
e ∈ S

N−1.

Proposition 3.3 Assume that assumptions (F1)–(F4) hold, and that (Ue, ce) is a pulsating
front of (1.1), where e ∈ S

N−1. Normalize Ue as minz∈RN Ue(0, z) = (1 + p)/2, where p
is defined in (1.3). Then there exist two positive constants K2 and κ2, both independent of
e ∈ S

N−1, such that

0 < Ue(s, z) ≤ K2e
− 3κ

4 s for all (s, z) ∈ [0,+∞)× R
N ,

0 < 1 −Ue(s, z) ≤ K2e
κ2s for all (s, z) ∈ (−∞, 0] × R

N ,

where κ is defined in Theorem 2.3.
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Proof By virtue of the continuity of Ue in e with respect to the topology ‖ · ‖L∞(R×RN )

(from Theorem 2.3) and the monotonicity of Ue(s, z) in s (from Theorem 2.1), there exists
a constant q2 such that

Ue(s, z) ≤ p for all (s, z) ∈ [q2,+∞)× R
N and e ∈ S

N−1,

where p is defined in (1.3). Thus f (z,Ue) ≡ 0 in [q2,+∞)× R
N for all e ∈ S

N−1. It then
follows from (2.1) that

NeUe = 0 in [q2,+∞)× R
N

for all e ∈ S
N−1, where the operatorNe is defined in Lemma 3.1. Denote K2a := e

3κ
4 q2 , then

Ue(q2, z) ≤ 1 = K2ae− 3κ
4 q2 for all z ∈ R

N and e ∈ S
N−1. By calculations, it holds from

the conclusion (ii) of Theorem 2.3 that

Ne

(
K2ae

− 3κ
4 s

)
= K2ae

− 3κ
4 s

(
−3κ

4
ce + 9κ2

16

)
≤ −K2a

3κ2

16
e− 3κ

4 s < 0

for all e ∈ S
N−1. Furthermore, the asymptotic behavior of Ue (from Theorem 2.2, together

with κ ≤ ce) yields

lim
s0→+∞ sup

{s≥s0, z∈RN }

(
Ue − K2ae

− 3κ
4 s

)
≤ 0, ∀e ∈ S

N−1.

Then for any e ∈ S
N−1, applying Lemma 3.1 to g = 0, � = p, h = q2, φ1 = Ue and

φ2 = K2ae− 3κ
4 s , we obtain

Ue(s, z) ≤ K2ae
− 3κ

4 s in [q2,+∞)× R
N .

Apparently, there exists a positive constant κ2 satisfying

Kκ2 + κ22 − κ1

2
≤ 0, (3.4)

where K > 0 is defined in Theorem 2.3 and κ1 > 0 is defined in (1.4). Set Ve := 1 −Ue in
R × R

N . It follows from (2.1) that

NeVe + f̃ (z, Ve) = 0 in R × R
N

for all e ∈ S
N−1, where f̃ (z, u) := − f (z, 1 − u) in R

N × R. It follows from (1.5) that

f̃u(z, u) = fu(z, 1 − u) ≤ −κ1

2
, ∀(z, u) ∈ R

N × [0, γ�], (3.5)

where γ� is given in (1.5). By virtue of the continuity ofUe in e with respect to the topology
‖·‖L∞(R×RN ) (from Theorem 2.3) and the monotonicity ofUe(s, z) in s (from Theorem 2.1),
there exists a constant q3 such that Ve(s, z) = 1−Ue(s, z) ≤ γ� for all (s, z) ∈ (−∞, q3] ×
R

N and e ∈ S
N−1. Set K2b := γ�e−κ2q3 and then

Ve(q3, z) ≤ γ� = K2be
κ2q3 , ∀z ∈ R

N .

Furthermore K2beκ2s ≤ γ� for all (s, z) ∈ (−∞, q3] × R
N . Thus, by calculations, one gets

from (3.4), (3.5) and Theorem 2.3 that

Ne
(
K2be

κ2s
) + f̃

(
z, K2be

κ2s
) = Ne

(
K2be

κ2s
) + f̃

(
z, K2be

κ2s
) − f̃ (z, 0)

=
(
ceκ2 + κ22 + f̃u

(
z, θK2be

κ2s
))

K2be
κ2s
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≤
(
Kκ2 + κ22 − κ1

2

)
K2be

κ2s

≤ 0

in (−∞, q3)× R
N for all e ∈ S

N−1, where θ ∈ (0, 1). Lastly, using Theorem 2.2 yields

lim
s0→−∞ sup

s≤s0,z∈RN

(
Ve − K2be

κ2s
) = 0, ∀e ∈ S

N−1.

Therefore, for any e ∈ S
N−1, applying Lemma 3.2 to g = f̃ , � = γ1, h = q3, φ1 = Ve and

φ2 = K2beκ2s , we get

Ve(s, z) ≤ K2be
κ2s in (−∞, q3] × R

N .

Now set K2 := max{K2a, K2b/γ�}. The proof of Proposition 3.3 is thereby complete. ��

Remark 3.4 By virtue of Theorem 2.8 which will be proved in Section 4, Proposition 3.3 also
holds with another normalization as (2.10).

Corollary 3.5 For any e1, e2 ∈ S
N−1, there holds that Ue1 −Ue2 ∈ L2

ρ(R × L
N ).

Proposition 3.6 Assume that assumptions (F1)–(F4) hold, and that (Ue, ce) is a pulsating
front of (1.1). Normalize Ue as minz∈RN Ue(0, z) = (1 + p)/2, where p is defined in (1.3).
Then there exists a positive constant K3 independent of e, such that

|DUe(s, z)|, |D2Ue(s, z)|, |D3Ue(s, z)| ≤ K3e
− 3κ

4 s in [0,+∞)× R
N , (3.6)

|DUe(s, z)|, |D2Ue(s, z)|, |D3Ue(s, z)| ≤ K3e
κ2s in (−∞, 0] × R

N , (3.7)

where κ is defined in Theorem 2.3, κ2 is given in Proposition 3.3; D, D2 and D3 denote
any first-order, second-order and third-order derivative with respect to (s, z) ∈ R × R

N

respectively.

Proof Step 1: we prove (3.6).
For any e ∈ S

N−1, denote u(t, z; e) := Ue (z · e − cet, z) for any (t, z) ∈ R × R
N .

By Definition 1.1, the function u(t, z; e) is an entire (classical) solution of Eq. (1.1) for all
e ∈ S

N−1. It follows from [3] that there exists a constant M > 0 such that

‖u(·, · ; e)‖C2(R×RN ) ≤ M, ∀e ∈ S
N−1. (3.8)

It is clear that u(t, z; e) solves a linear parabolic equation of the type

∂t u −�zu − f̃1(t, z; e)u = 0 in R × R
N , (3.9)

where f̃1(t, z; e) := f (z, u(t, z; e))/u(t, z; e) in R × R
N . We claim that

∥∥∥ f̃1(·, · ; e)
∥∥∥
C1(R×RN )

≤ p−2(N + 1)(2M + 1) ‖ f ‖C1(RN+1) , ∀e ∈ S
N−1. (3.10)

Since f (z, 0) = 0 in R
N from (1.3), one has from (1.2) that

∥∥∥ f̃1(·, ·; e)
∥∥∥
C0(R×RN )

≤ ‖ f ‖C1(RN+1) . (3.11)

Since f̃1(t, z; e) ≡ 0 for (t, z) ∈ R × R
N with u(t, z; e) ≤ p, and
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∂zi f̃1(t, z; e) = 1

u(t, z; e)
(
fzi (z, u(t, z; e))+ fu(z, u(t, z; e))∂zi u(t, z; e)

)

− f (z, u(t, z; e))
u2(t, z; e) ∂zi u(t, z; e),

one gets
∥∥∥∂zi f̃1(·, · ; e)

∥∥∥
C0(R×RN )

≤ p−2 ‖ f ‖C1(RN+1)

(
1 + 2 ‖u(·, · ; e)‖C1(R×RN )

)
(3.12)

where i ∈ {1, 2, · · · , N }. Similarly, one also has
∥∥∥∂t f̃1(·, · ; e)

∥∥∥
C0(R×RN )

≤ 2p−2 ‖ f ‖C1(RN+1) ‖u(·, · ; e)‖C1(R×RN ) . (3.13)

Following from (3.8) and (3.11)-(3.13), we conclude that (3.10) holds.
Using (3.10) and applying the Schauder interior estimates (see also Theorem 4.9 of [38])

to (3.9), we get

‖u(·, · ; e)‖C1(Q(t̃,z̃;1)) ≤ C∗ ‖u(·, · ; e)‖C0(Q(t̃,z̃;2)) , ∀(t̃, z̃) ∈ R × R
N , (3.14)

where the constantC∗ > 0 is independent of (t̃, z̃) ∈ R×R
N and e ∈ S

N−1, and Q(t̃, z̃; r) :=
{(t, z) : t̃ − r2 ≤ t ≤ t̃, |z − z̃| ≤ r}. Since Ue(s, z) = u( z·e−s

ce
, z; e) for all e ∈ S

N−1,
together with κ ≤ ce ≤ K from Theorem 2.3, by virtue of (3.14) and Proposition 3.3, we
get (3.6) for DUe. By differentiating Eq. (1.1), (3.6) follows from the similar arguments as
above.

Step 2. Now let us consider the function v(t, z; e) := 1 − u(t, z; e) in R × R
N , which

solves a linear parabolic equation of the type

(∂t −�z)v + f∗(t, z; e)v = 0 in R × R
N ,

where f∗(t, z; e) := f (z, u(t, z; e))/(1 − u(t, z; e)) in R × R
N . In view of f (z, 1) = 0 in

R
N , applying similar arguments as those in Step 1 to the function v(t, z; e), we can get (3.7).

��
Remark 3.7 Theorem 2.7 directly follows from Propositions 3.3 and 3.6. By virtue of The-
orem 2.8 which will be proved in Section 4, Proposition 3.6 also holds with another
normalization as (2.10).

Corollary 3.8 Assume that assumptions (F1)–(F4) hold, and that (Ue, ce) is a pulsating front
of (1.1). Then DUe(s, z), D2Ue(s, z), D3Ue(s, z) ∈ L2

ρ(R × L
N ), where D, D2 and

D3 denote any first-order, second-order and third-order derivative with respect to (s, z) ∈
R × R

N respectively.

Proposition 3.9 ([26], Lemma 2.5) Normalize the profile Ue as (2.10). Then for any q > 0,
there are two small positive constants γ and r independent of e ∈ S

N−1, such that

γ ≤ Ue(s, z) ≤ 1 − γ and − ∂sUe(s, z) ≥ r , ∀(s, z) ∈ [−q, q] × R
N . (3.15)

Proof From the continuity of Ue in e with respect to the topology ‖ · ‖L∞(R×RN ) (see The-
orem 2.8, which will be proved in Sect. 4) and the monotonicity of Ue(s, z) in s (from
Theorem 2.1), one has that the first inequality of (3.15) holds. The second inequality of
(3.15) can be proved by similar arguments as those in the proof of Lemma 2.5 of [26]. This
completes the proof. ��
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4 Fréchet Differentiability of Pulsating Fronts

This section is devoted to proving the Fréchet differentiability of pulsating fronts with respect
to the propagation direction. At first, we prove the continuity of pulsating fronts with respect
to the propagation direction under topology ‖ · ‖L∞(R×RN ), that is Theorem 2.8. Then we
establish several lemmas and prove the Fréchet differentiability of pulsating fronts with
respect to the propagation direction, that is Theorem 2.10. Lastly, some estimates of Fréchet
derivatives of pulsating fronts with respect to the propagation direction are given. Here
we would like to roughly state the strategy of the proof of the Fréchet differentiability of
pulsating fronts. Based on the results of [60] (see Lemmas 4.1 and 4.2), we can obtain a
priori estimates and the spectral structure of the linearized operator He of Eq. (2.1) at the
pulsating front Ue in the weighted Sobolev space H1

ρ (R × L
N ). Consequently, by studying

two nonlinear operators Ke and Ge, we can introduce a key linear operator Qe and show
that Qe is invertible and the inverse operator Q−1

e is bounded, see Lemma 4.6. This step is
inspired by [15] and [25]. In order to fall into the scheme of the weighted Sobolev space, the
continuity of pulsating fronts with respect to the propagation direction under the topology
‖ · ‖H2

ρ (R×LN ) is given by using Theorem 2.8, see Lemma 4.7. Finally after studying the

continuity of the inverse operator Q−1
e with respect to e ∈ S

N−1 (see Lemma 4.8), we are
ready to prove the Fréchet differentiability of pulsating fronts.

4.1 Continuity

In this subsection, wemodify the proof of Theorem2.3 to get Theorem2.8. For simplification,
we only give themodified part in the proof of Theorem2.3, thus one needs to readTheorem2.3
(actully read Theorems 2.4 and 2.5 of [2]) for a start. For convenience, we write here the
stated normalization of Ue, that is (2.10), which is

∫

R+×LN
U 2
e (s, z)ρ(s) dsdz = 1, ∀e ∈ S

N−1,

where the function ρ(s) = 1 + e2εs is given in (2.7) for 0 < ε � κ .

Proof of Theorem 2.8 Since conclusions (i) and (ii) do not rely on the normalization of Ue,
we get them from Theorem 2.3. Below we prove conclusion (iii), that is to prove

∥∥Uek −Ue
∥∥
L∞(R×RN )

→ 0 as k → ∞, (4.1)

if ek, e ∈ S
N−1 satisfy that |ek − e| → 0 as k → ∞, and Ue and Uek are normalized as

(2.10).
Let S, sk ∈ R satisfy

min
z∈RN

Ue(S, z) = 1 + p

2
and min

z∈RN
Uek (sk, z) = 1 + p

2
, ∀k ∈ N, (4.2)

where p is defined in (1.3). Since ∂sUe < 0 for all e ∈ S
N−1, S and sk are unique and

well-defined. To prove (4.1), we need only to prove that the sequence {sk}k∈N is uniformly
bounded by the proof of Theorem 2.3. We prove it by contradiction, and if not, two cases
may occur.

Case 1: up to extraction of a subsequence, sk → −∞ as k → ∞.
By virtue of (4.2), it follows from Proposition 3.3 that

0 < Uek (sk + s, z) ≤ K2e
− 3κ

4 s, ∀(s, z) ∈ R
+ × L

N , k ∈ N,
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where K2 and κ are given in Proposition 3.3. Note ε � κ . By virtue of the normalization
(2.10), one gets a contradiction

1 =
∫

R+×LN
U 2
ek (s, z)ρ(s) dsdz

=
∫

[−sk ,+∞)×LN
U 2
ek (sk + s, z)ρ(sk + s) dsdz

≤
∫

[−sk ,+∞)×LN
K 2
2 e

− 3κ
2 s

(
1 + e2ε(sk+s)

)
dsdz

→ 0 as k → ∞.

Case 2: up to extraction of a subsequence, sk → +∞ as k → ∞.
It follows from Definition 1.1 that

lim
s→−∞Ue(S + s, z) = 1 uniformly in z ∈ L

N .

Consequently, we can choose a large integer Ke such that
∫

[−Ke,Ke]×LN
U 2
e (S + s, z) dsdz � 1. (4.3)

In addition, it follows from the proof of Theorem2.3 that the sequenceUek (sk+·, ·) converges
to Ue(S + ·, ·) in L∞(R × L

N ). Thus together with (4.3), we get
∫

[−Ke,Ke]×LN
U 2
ek (sk + s, z) dsdz � 1 for all sufficiently large integer k. (4.4)

Since sk → +∞ as k → ∞, one has sk > Ke for all sufficiently large integer k. Therefore,
one reaches a contradiction from (4.4), that is, for all sufficiently large integer k

1 =
∫

R+×LN
U 2
ek (s, z)ρ(s) dsdz

=
∫

[−sk ,+∞)×LN
U 2
ek (sk + s, z)ρ(sk + s) dsdz

≥
∫

[−Ke,Ke]×LN
U 2
ek (sk + s, z)ρ(sk + s) dsdz

� 1.

Therefore {sk}k∈N is uniformly bounded, and the proof of Theorem 2.8 is complete. ��

4.2 Fréchet Differentiability

In this subsection, we prove Theorem 2.10. Now define two linear operators Me and He

Me(v) := ce∂sv + ∂ssv + 2∇z∂sv · e +�zv − βv

= (e∂s + ∇z)
T (e∂s + ∇z)v + ce∂sv − βv, ∀e ∈ S

N−1,

He(v) := ce∂sv + ∂ssv + 2∇z∂sv · e +�zv + fu(z,Ue)v

= (e∂s + ∇z)
T (e∂s + ∇z)v + ce∂sv + fu(z,Ue)v, ∀e ∈ S

N−1,
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where β > 0 is a given constant. In above definitions, ∇z denotes the gradient operator with
respect to z ∈ R

N . For any e ∈ S
N−1, the domains of two linear operators Me and He are

defined by

D(Me) = D(He)
def=

{
u(s, z) ∈ H1

ρ (R × L
N ) : (e∂s + ∇z)

T (e∂s + ∇z)u ∈ L2
ρ

}

endowed with the norm

‖u‖D(Me) := ‖u‖H1
ρ (R×LN ) +

∥∥∥(e∂s + ∇z)
T (e∂s + ∇z)u

∥∥∥
L2
ρ(R×LN )

,

where the space L2
ρ(R × L

N ) and H1
ρ (R × L

N ) are given by (2.8) and (2.9), respectively.
The following two lemmas coming from [60], are related to the linear operator Me.

Lemma 4.1 ([60], Lemmas 2.1−2.4)Let v ∈ D(Me) solve an equation of the typeMev = g,
where g ∈ L2

ρ(R × L
N ). Then there exists a positive constant M independent of e ∈ S

N−1,
such that

‖v‖D(Me) ≤ M ‖g‖L2
ρ(R×LN ) .

Proof With similar arguments as those in Lemmas 2.1−2.4 of [60], by replacing k, c and A(s)
with e, ce and −β, respectively, since κ ≤ ce ≤ K from Theorem 2.8, we get Lemma 4.1. ��

Lemma 4.2 ([60], Lemmas 2.5 and 2.6) For all e ∈ S
N−1, the linear operator

Me : D(Me) → L2
ρ(R × L

N )

is invertible. Moreover, the inverse operator M−1
e : L2

ρ(R × L
N ) → D(Me) is uniformly

bounded, that is
∥∥M−1

e

∥∥ ≤ M, ∀e ∈ S
N−1,

where the constant M independent of e is given in Lemma 4.1.

Proof With similar arguments as those in Lemmas 2.5 and 2.6 of [60], by replacing k, c and
A(s) with e, ce and −β, respectively, one gets that

Me : D(Me) → L2
ρ(R × L

N ) is invertible.

Then it follows from Lemma 4.1 that ‖M−1
e ‖ ≤ M , where the constant M is given in

Lemma 4.1, which is independent of e ∈ S
N−1. This completes the proof. ��

In the following lemma, we show the continuity of M−1
e with respect to e ∈ S

N−1 in
some sense.

Lemma 4.3 Let e ∈ S
N−1. For any unit vector sequence {en}n∈N, if |en −e| → 0 as n → ∞,

then
∥∥M−1

en (g)− M−1
e (g)

∥∥
H1
ρ (R×LN )

→ 0 as n → ∞

uniformly with respect to g ∈ BA
def=

{
g ∈ H1

ρ (R × L
N ) : ‖g‖H1

ρ
≤ A

}
for every A > 0.
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Proof For g ∈ H1
ρ (R × L

N ), denote

wn := M−1
en (g) and w := M−1

e (g), ∀n ∈ N.

Then Lemma 4.2 implies

wn ∈ D(Men ), w ∈ D(Me), ‖wn‖H1
ρ
, ‖w‖H1

ρ
≤ M ‖g‖L2

ρ
, ∀n ∈ N,

where M > 0 is defined by Lemma 4.2. Since Mew = g and g ∈ H1
ρ , using difference

quotients in (−L1, 2L1)× · · · × (−LN , 2LN ), by virtue of Lemma 4.1 and periodicity, we
get that w ∈ H2

ρ and

‖w‖H2
ρ

≤ 3N M ‖g‖H1
ρ
. (4.5)

By calculation,

Men (wn − w) = Menwn − Menw + Mew − Mew = Mew − Menw

= (ce − cen )∂sw + 2∇z∂sw · (e − en)

for all n ∈ N. Thus it follows from Lemma 4.1 that

‖wn − w‖H1
ρ

≤ M
∥∥(ce − cen )∂sw + 2∇z∂sw · (e − en)

∥∥
L2
ρ
, ∀n ∈ N. (4.6)

Moreover, (4.5) and (4.6) yield

‖wn − w‖H1
ρ

≤ C ‖g‖H1
ρ

(|cen − ce| + |en − e|) , ∀n ∈ N, (4.7)

where C is a positive constant independent of n and g. Since the mapping e ∈ S
N−1 �→ ce

is continuous by Theorem 2.8, the proof is complete by using (4.7). ��

We emphasize here that L2
ρ(R × L

N ) and H1
ρ (R × L

N ) are Hilbert spaces with inner
products (·, ·)L2

ρ
and (·, ·)H1

ρ
, respectively, where

(v, u)L2
ρ

:=
∫

R×LN
vuρ dsdz, ∀v, u ∈ L2

ρ(R × L
N ),

(v, u)H1
ρ

:= (v, u)L2
ρ

+
∑

|α|=1

(
Dαv, Dαu

)
L2
ρ
, ∀v, u ∈ H1

ρ (R × L
N ).

The following lemma, which comes from [60], gives some properties of the linear operator
He. The L2

ρ adjoint operator of He, denoted by H∗
e , is given by

(H∗
e (v), u

)
L2
ρ(R×LN )

= (v,He(u))L2
ρ(R×LN ) for all v, u ∈ H2

ρ (R × L
N ).

Lemma 4.4 ([60], Propositions 2.1 and 2.2, Lemma 2.8).Assume that assumptions (F1)–(F4)
hold. Then

(i) the linear operator He has algebraically simple eigenvalue 0 and the kernel of He is
generated by ∂sUe.

(ii) the adjoint operator H∗
e has geometrically simple eigenvalue 0.

(iii) the range of the linear operatorHe, denoted by R(He), is closed in L2
ρ(R × L

N ), and

L2
ρ(R × L

N ) = R(He)⊕ ker(H∗
e ).
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Proof Define

A(s, z) :=
{
fu(z, 1) for s > 0 and z ∈ R

N ,

0 for s ≤ 0 and z ∈ R
N .

Replacing k, c, A(s) and g′(U )with e, ce, A(s, z) and fu(z,Ue) in [60], respectively, we get
the conclusion (i) from Proposition 2.1 of [60], and get the conclusion (ii) from Proposition
2.2 of [60], and get the conclusion (iii) from Lemma 2.8 of [60] and Chapter 6 of [36]. ��

Now we define two nonlinear operators. For any e ∈ S
N−1, the nonlinear operator Ke :

H2
ρ (R × L

N )× R × R
N → L2

ρ(R × L
N ) is defined by

Ke(v, γ, η) := γ ∂s(Ue + v)+ 2∇z∂s(Ue + v) · η + f (z,Ue + v)− f (z,Ue)+ βv

for all (v, γ, η) ∈ H2
ρ × R × R

N . For any e ∈ S
N−1, the nonlinear operator Ge : H2

ρ (R ×
L
N )× R × R

N → H1
ρ (R × L

N )× R is defined by

Ge(v, γ, η) := (G1
e (v, γ, η), G2

e (v, γ, η)
)
,

where

G1
e (v, γ, η) := v + M−1

e (Ke(v, γ, η)), G2
e (v, γ, η) :=

∫

R+×LN

[
(Ue + v)2 −U 2

e

]
ρ dsdz

for all (v, γ, η) ∈ H2
ρ × R × R

N . In particular, we emphasize here that the domain of the
nonlinear operator Ge(·, ·, 0) is

D0 :=
{
(v, γ )

∣∣∣v ∈ L2
ρ(R × L

N ), ∂sv ∈ L2
ρ(R × L

N ), γ ∈ R

}
.

But here we only consider the restriction of the operator Ge(·, ·, 0) on (v, γ ) ∈ H1
ρ × R and

show its Fréchet differentiability in the following lemma.

Lemma 4.5 Assume that assumptions (F1)–(F4) hold. Then for every e ∈ S
N−1, the operator

Ge(·, ·, 0) : H1
ρ (R × L

N )× R → H1
ρ (R × L

N )× R is continuously Fréchet differentiable.

Proof Since Ke : H1
ρ (R × L

N ) × R × {0} → L2
ρ(R × L

N ) and M−1
e : L2

ρ(R × L
N ) →

D(Me), it follows that Ge(·, ·, 0) : H1
ρ (R × L

N )× R → H1
ρ (R × L

N )× R.
Step 1. One has

A1|(v,γ )(ṽ, γ̃ ) := lim
t→0

1

t

[G1
e (v + t ṽ, γ + t γ̃ , 0)− G1

e (v, γ, 0)
]

= ṽ + M−1
e (γ ∂s ṽ + γ̃ ∂s(Ue + v)+ fu(z,Ue + v)ṽ + βṽ).

It holds from Lemma 4.2 that A1|(v,γ ) : H1
ρ × R → H1

ρ is well defined. In addition, one has
∥∥A1|(v,γ )(ṽ, γ̃ )

∥∥
H1
ρ

≤ ‖ṽ‖H1
ρ

+ ∥∥M−1
e

∥∥ ‖γ ∂s ṽ + γ̃ ∂s(Ue + v)+ fu(z,Ue + v)ṽ + βṽ‖L2
ρ

≤ C ‖(ṽ, γ̃ )‖H1
ρ×R ,

which implies that A1|(v,γ ) is also bounded, and then is the Gâteaux differentiable operator
of G1

e (·, ·, 0) at the point (v, γ ). For any ṽ ∈ H1
ρ (R × L

N ), we have
∥∥D(ṽ2ρ)

∥∥
L1(R×LN )

= ∥∥ṽ2Dρ + 2ρṽDṽ
∥∥
L1 ≤ (1 + 2ε)

∥∥ṽ2ρ
∥∥
L1 + ∥∥(Dṽ)2ρ

∥∥
L1 ,
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where D denotes any first-order derivative with respect to (s, z) ∈ R × R
N . Thus

∥∥ṽ2ρ
∥∥
W 1,1(R×LN )

≤ (N + 2)(1 + 2ε) ‖ṽ‖H1
ρ (R×LN ) , ∀ṽ ∈ H1

ρ (R × L
N ). (4.8)

Then it follows that

∥∥A1|(v1,γ1) − A1|(v2,γ2)
∥∥

= sup
‖(ṽ,γ̃ )‖

H1
ρ×R

≤1

∥∥A1|(v1,γ1)(ṽ, γ̃ )− A1|(v2,γ2)(ṽ, γ̃ )
∥∥
H1
ρ

≤ sup
‖(ṽ,γ̃ )‖

H1
ρ×R

≤1

∥∥∥M−1
e

∥∥∥ ‖∂s ṽ(γ1 − γ2)+ γ̃ ∂s(v1 − v2)

+ṽ ( fu(z,Ue + v1)− fu(z,Ue + v2))‖L2
ρ

≤ M
(
|γ1 − γ2| + ‖v1 − v2‖H1

ρ

)
+ M sup

‖ṽ‖
H1
ρ
≤1

∥∥∥( fu(z,Ue + v1)− fu(z,Ue + v2))
2 ṽ2ρ

∥∥∥
L1

≤ M
(
|γ1 − γ2| + ‖v1 − v2‖H1

ρ

)

+ M sup
‖ṽ‖

H1
ρ
≤1
(2 ‖ fu‖L∞)

2N
N+1

∥∥∥ṽ2ρ
∥∥∥
L

N+1
N

∥∥∥∥( fu(z,Ue + v1)− fu(z,Ue + v2))
2

N+1

∥∥∥∥
LN+1

≤ M
(
|γ1 − γ2| + ‖v1 − v2‖H1

ρ

)
+ C ‖ fu‖

2N
N+1
L∞ ‖ fuu‖

2
N+1
L∞ ‖v1 − v2‖

2
N+1
L2 ,

wherewe have used the Sobolev imbedding theorem (see Theorem4.12 of [1]). Therefore, the
Gâteaux differentiable operator A1|(v,γ ) is continuouswith respect to (v, γ ). As a conclusion,
G1
e (·, ·, 0) is continuously Fréchet differentiable, and its Fréchet differentiable operator is
∂(v,γ )G1

e (·, ·, 0)|(v,γ ) = A1|(v,γ ).
Step 2. It is clear that

A2|(v,γ )(ṽ, γ̃ ) := lim
t→0

1

t

[G2
e (v + t ṽ, γ + t γ̃ , 0)− G2

e (v, γ, 0)
]

= 2
∫

R+×LN
(Ue + v) ṽρ dsdz.

With similar arguments as those in Step 1, we get that G2
e (·, ·, 0) is continuously Fréchet

differentiable, and its Fréchet differentiable operator is ∂(v,γ )G2
e (·, ·, 0)|(v,γ ) = A2|(v,γ ). ��

Denote Qe := ∂(v,γ )Ge(·, ·, 0)|(0,0) for all e ∈ S
N−1. Then it follows from Lemma 4.5

that the linear operator Qe : H1
ρ (R × L

N )× R → H1
ρ (R × L

N )× R is defined by

Qe(ṽ, γ̃ ) :=
(
ṽ + M−1

e (γ̃ ∂sUe + fu(z,Ue)ṽ + βṽ) , 2
∫

R+×LN
Ueṽρ dsdz

)
. (4.9)

Apparently, H1
ρ ×R is a Hilbert space with the inner product (·, ·)H1

ρ×R, which is defined by

((w,μ), (v, γ ))H1
ρ×R := (w, v)H1

ρ
+ μγ for all (w,μ), (v, γ ) ∈ H1

ρ × R.

The inverse operator of Qe is studied in the following lemma and we postpone its proof
in the appendix. For bistable equations, the corresponding result for one-dimensional case
z ∈ R is given in Lemma 3.4 of [15], and then the general case z ∈ R

N is considered in [25]
but without specific proof details. In the following lemma, we give the rigorous proof for
combustion equations, which is also valid for bistable equations with slight modification.
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Lemma 4.6 Assume that assumptions (F1)–(F4) hold. Then for every e ∈ S
N−1, the linear

operatorQe : H1
ρ (R×L

N )×R → H1
ρ (R×L

N )×R is invertible, and the inverse operator

Q−1
e is bounded.

Theorem 2.8 shows that the mapping e ∈ S
N−1 �→ Ue is continuous under the topology

‖ · ‖L∞(R×RN ), but indeed, the mapping is also continuous under the topology ‖ · ‖H2
ρ (R×LN ),

that is the following lemma.

Lemma 4.7 Assume that assumptions (F1)–(F4) hold, and that (Ue, ce) is a pulsating front
of (1.1). Normalize Ue as (2.10). Then the mapping e ∈ S

N−1 �→ Ue is continuous under
the topology ‖ · ‖H2

ρ (R×LN ), that is,
∥∥Uen −Ue

∥∥
H2
ρ (R×LN )

→ 0 as |en − e| → 0.

Proof Let {en}n∈N ⊂ S
N−1 satisfy limn→∞ en = e.

Step 1. It follows from Proposition 3.3 that

|Uen −Ue| ≤ max{Uen ,Ue} ≤ K2e
− 3κ

4 s in [0,+∞)× L
N , (4.10)

|Uen −Ue| ≤ |1 −Uen | + |1 −Ue| ≤ 2K2e
κ2s in (−∞, 0] × L

N , (4.11)

where K2, κ, κ2 are given in Proposition 3.3. Using the Lebesgue dominated convergence
theorem, together with (4.10), (4.11) and Theorem 2.8, one gets

∥∥Uen −Ue
∥∥
L2
ρ

→ 0 as n → ∞. (4.12)

Step 2. Note that Uen and Ue satisfy the following equations

MenUen = − f (z,Uen )− βUen and MeUe = − f (z,Ue)− βUe,

respectively. Then it holds that

Men (Uen −Ue)

= (ce − cen )∂sUe + 2∇z∂sUe · (e − en)+ β(Ue −Uen )+ f (z,Ue)− f (z,Uen )

= (ce − cen )∂sUe + 2∇z∂sUe · (e − en)+ [
β + fu(z, τUe + (1 − τ)Uen )

]
(Ue −Uen )

(4.13)

where τ ∈ (0, 1). It follows from Corollaries 3.5 and 3.8 that

∂sUe, ∇z∂sUe ∈ L2
ρ(R × L

N ) and (Uen −Ue) ∈ H2
ρ (R × L

N ) ⊂ D(Men ). (4.14)

Thus by virtue of (4.13), (4.14) and Lemma 4.1, since fu(·, ·) is bounded from (1.2), we get
that ∥∥Uen −Ue

∥∥
H1
ρ

≤ C
(
|cen − ce| + |en − e| + ∥∥Uen −Ue

∥∥
L2
ρ

)
, (4.15)

where C is a constant independent of n. Then it follows from (4.12), (4.15) and Theorem 2.8
that

∥∥Uen −Ue
∥∥
H1
ρ

→ 0 as n → ∞.

With similar arguments as above, one obtains
∥∥Uen −Ue

∥∥
H2
ρ

→ 0 as n → ∞.

The proof of Lemma 4.7 is thereby complete. ��
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We focus on the continuity of the inverse operator Q−1
e with respect to e ∈ S

N−1 in the
following lemma, whose proof is postponed to the appendix.

Lemma 4.8 Assume that assumptions (F1)–(F4) hold. Then the linear operator Q−1
e is

uniformly bounded with respect to e ∈ S
N−1. Furthermore, the linear operator Q−1

e is
continuous with respect to e ∈ S

N−1, that is,
∥∥Q−1

en − Q−1
e

∥∥ → 0 as |en − e| → 0.

Now we are ready to prove the Fréchet differentiability of pulsating fronts with respect to
the propagation direction.

Proof of Theorem 2.10 It follows immediately fromTheorem2.8 andLemma4.7 that (Ub, cb)
is continuous in b ∈ R

N everywhere at R
N \ {0} under the topology ‖ · ‖H2

ρ×R.

Step 1: we prove that (Ub, cb) is first-order continuously Fréchet differentiable in b ∈ R
N

under the topology ‖ · ‖H1
ρ×R.

It follows from (2.1) and (2.11) that for any b ∈ R
N\{0}, (Ub, cb) solves the equation

cb∂sUb + ∂ssUb + 2∇z∂sUb · b

|b| +�zUb + f (z,Ub) = 0 in R × R
N . (4.16)

Now fix arbitrary e ∈ S
N−1, and let h ∈ R

N be small such that e + h ∈ R
N \ {0}. Set

Ũh := Ue+h −Ue, c̃h := ce+h − ce ∈ R, h̃ := e+h
|e+h| − e ∈ R

N .

One obtains from Corollaries 3.5 and 3.8 that Ũh ∈ H2
ρ for all h. Furthermore, Lemma 4.7

yields ∥∥Ũh
∥∥
H2
ρ

= ‖Ue+h −Ue‖H2
ρ

→ 0 as |h| → 0. (4.17)

From Theorem 2.8, one knows

|c̃h | = |ce+h − ce| → 0 as |h| → 0.

It is trivial to get
h̃ = h − (e · h)e + o(|h|) as |h| → 0. (4.18)

By virtue of (2.10) and (4.16), it holds that

Ge
(
Ũh, c̃h, h̃

) = (0, 0).

Note Ge(0, 0, 0) = (0, 0). By Lemma 4.5, one gets that

(0, 0) = Ge
(
Ũh, c̃h, h̃

) − Ge(0, 0, 0)
= Ge

(
Ũh, c̃h, h̃

) − Ge
(
Ũh, c̃h, 0

) + Qe
(
Ũh, c̃h

) + ω2
(
Ũh, c̃h

)

=
(
M−1

e

(
2∇z∂sUe · h̃) , 0

)
+ ω1

(
Ũh, h̃

) + Qe
(
Ũh, c̃h

) + ω2
(
Ũh, c̃h

)
, (4.19)

where ω1(Ũh, h̃) := (M−1
e (2∇z∂sŨh · h̃), 0) and

ω2
(
Ũh, c̃h

) = o
(∥∥(Ũh, c̃h

)∥∥
H1
ρ×R

)
as |h| → 0. (4.20)

Then it follows from (4.19) and Lemma 4.6 that
(
Ũh, c̃h

) = −Q−1
e

(
M−1

e

(
2∇z∂sUe ·h̃

)
, 0

)
−Q−1

e

(
ω1

(
Ũh, h̃

))−Q−1
e

(
ω2

(
Ũh, c̃h

))
. (4.21)
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One computes
∥∥Q−1

e

(
ω1

(
Ũh, h̃

))∥∥
H1
ρ×R

≤ 2
∥∥Q−1

e

∥∥ ∥∥M−1
e

∥∥ ∥∥Ũh
∥∥
H2
ρ
|h̃|.

Thus one obtains from (4.17) and (4.18) that
∥∥Q−1

e

(
ω1

(
Ũh, h̃

))∥∥
H1
ρ×R

= o(|h|) as |h| → 0. (4.22)

We claim that ∥∥Q−1
e

(
ω2

(
Ũh, c̃h

))∥∥
H1
ρ×R

= o(|h|) as |h| → 0. (4.23)

Since ‖(Ũh, c̃h)‖H2
ρ×R → 0 as |h| → 0, together with (4.20), one has

∥∥(Ũh, c̃h
) + Q−1

e

(
ω2

(
Ũh, c̃h

))∥∥
H1
ρ×R

≥ ∥∥(Ũh, c̃h
)∥∥

H1
ρ×R

− ∥∥Q−1
e

∥∥ ∥∥ω2
(
Ũh, c̃h

)∥∥
H1
ρ×R

≥ 1

2

∥∥(Ũh, c̃h
)∥∥

H1
ρ×R

as |h| → 0. Then it holds from (4.18), (4.21) and (4.22) that

1

2|h|
∥∥(Ũh, c̃h

)∥∥
H1
ρ×R

≤ 1

|h|
∥∥(Ũh, c̃h

) + Q−1
e

(
ω2

(
Ũh, c̃h

))∥∥
H1
ρ×R

= 1

|h|
∥∥∥Q−1

e

(
M−1

e

(
2∇z∂sUe · h̃) , 0

)
+ Q−1

e

(
ω1

(
Ũh, h̃

))∥∥∥
H1
ρ×R

≤ ∥∥Q−1
e

∥∥ ∥∥M−1
e

∥∥
∥∥∥2∇z∂sUe · h̃

|h|
∥∥∥
L2
ρ

+ o(|h|)
|h| < +∞

as |h| → 0, which implies
∥∥(Ũh, c̃h

)∥∥
H1
ρ×R

= O(|h|) as |h| → 0. (4.24)

Consequently, claim (4.23) is valid from (4.20), (4.24) and the fact that Q−1
e is bounded.

It follows from (4.18) and (4.21)–(4.23) that

(Ue+h −Ue, ce+h − ce) = −Q−1
e

(
M−1

e

(
2∇z∂sUe · [h − (e · h)e]) , 0

)
+ o(|h|)

as |h| → 0 under the topology ‖ · ‖H1
ρ×R, which means that (Ub, cb) is Fréchet differentiable

in b ∈ R
N everywhere at e ∈ S

N−1 under the topology ‖ · ‖H1
ρ×R. Denote the Fréchet

derivative of (Ub, cb) in b at e by (U ′
e, c

′
e). Then its form is

(
U ′
e(h), c

′
e(h)

) = Q−1
e

(
M−1

e

(
2∇z∂sUe · [(e · h)e − h]) , 0

)
, ∀h ∈ R

N . (4.25)

Furthermore, for any b ∈ R
N \ {0} one can get by (2.11) that

(Ub+h, cb+h)− (Ub, cb) =
(
U ′

b
|b|

( h
|b| − b·h

|b|3 b
)
, c′

b
|b|

( h
|b| − b·h

|b|3 b
)) + o(|h|) (4.26)

as |h| → 0. Thus, (Ub, cb) is first-order Fréchet differentiable in b ∈ R
N everywhere at

R
N \ {0} under the topology ‖ · ‖H1

ρ (R×LN )×R.
By virtue of Lemmas 4.2, 4.3, 4.7 and 4.8, it follows from (4.25) that

∥∥(U ′
en , c

′
en

) − (
U ′
e, c

′
e

)∥∥

= sup
h∈SN−1

∥∥(U ′
en (h), c

′
en (h)

) − (
U ′
e(h), c

′
e(h)

)∥∥
H1
ρ×R

→ 0 as en → e.
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Therefore by (4.26), (Ub, cb) is first-order continuously Fréchet differentiable in b ∈ R
N

everywhere at R
N \ {0} under the topology ‖ · ‖H1

ρ (R×LN )×R. For convenience, without of

ambiguity, we sometimes use notationsU ′
b ·h and c′

b ·h asU ′
b(h) and c

′
b(h), where b, h ∈ R

N .
Step 2. Since f ∈ C∞(RN+1), we can get that Proposition 3.6 holds for kth-order deriva-

tives and Lemmas 4.1-4.8 hold for ‖ · ‖Hk
ρ
, for all k ∈ N. Hence with similar arguments as

those in Step 1, one can prove that (Ub, cb) is first-order continuously Fréchet differentiable
in b ∈ R

N everywhere at R
N \ {0} under the topology ‖ · ‖Hk

ρ (R×LN )×R for any k ∈ N.
Applying the Sobolev imbedding theorem (see Theorem 4.12 of [1]), by virtue of the peri-
odicity, we also obtain that (Ub, cb) is first-order continuously Fréchet differentiable under
the topology ‖ · ‖C2(R×RN )×R.

Step 3: we prove that (Ub, cb) is second-order continuously Fréchet differentiable in
b ∈ R

N under the topology ‖ · ‖H1
ρ×R.

Now fix arbitrary e ∈ S
N−1. We define two nonlinear operators K∗

e and G∗
e . The operator

K∗
e : H2

ρ (R × L
N )× R × H2

ρ (R × L
N )× R × R

N × R
N → L2

ρ(R × L
N )

is defined by

K∗
e (v1, ϑ1, v2, ϑ2, h1, h2) := ϑ2∂s(Ue + v1)+ c′e(h1)∂sv1 + ϑ1∂s

(
U ′
e(h1)+ v2

)

+ 2∇z∂sv1 ·
[

h1
|e + h2| − (e + h2) · h1

|e + h2|3
(e + h2)

]

+ 2∇z∂sUe ·
[

h1
|e + h2| − (e + h2) · h1

|e + h2|3
(e + h2)− h1 + (e · h1)e

]

+ (
2∇z∂sv2 + 2∇z∂sU

′
e(h1)

) ·
[
e + h2
|e + h2| − e

]

+ fu(z,Ue + v1)
(
U ′
e(h1)+ v2

) − fu(z,Ue)U
′
e(h1)+ βv2

for all (v1, ϑ1, v2, ϑ2, h1, h2) ∈ H2
ρ × R × H2

ρ × R × R
N × R

N . The operator

G∗
e : H2

ρ (R × L
N )× R × H2

ρ (R × L
N )× R × R

N × R
N → H1

ρ (R × L
N )× R

is defined by

G∗
e (v1, ϑ1, v2, ϑ2, h1, h2)

:=
(
v2 + M−1

e
(K∗

e (v1, ϑ1, v2, ϑ2, h1, h2)
)
, 2

∫

R+×LN

[
U ′
e(h1)v1 + v2(Ue + v1)

]
ρ dsdz

)

for all (v1, ϑ1, v2, ϑ2, h1, h2) ∈ H2
ρ × R × H2

ρ × R × R
N × R

N .
For any h2 ∈ R

N satisfying e + h2 ∈ R
N \ {0}, denote Ũh2 := Ue+h2 − Ue, c̃h2 :=

ce+h2 − ce, and Ũ ′
h2
(h1) := U ′

e+h2
(h1) − U ′

e(h1), c̃
′
h2
(h1) := c′

e+h2
(h1) − c′

e(h1) for all

h1 ∈ S
N−1. Then it holds from Step 2 that
(
Ũh2 , c̃h2 , Ũ

′
h2(h1), c̃

′
h2(h1), h1, h2

) ∈ H2
ρ × R × H2

ρ × R × R
N × R

N .

Differentiating Eq. (4.16) at b on the direction h ∈ R
N yields

(
b
|b|∂s + ∇z

)T (
b
|b|∂s + ∇z

)(
U ′
b · h) + (

c′
b · h)∂sUb + cb∂s

(
U ′
b · h)

+ 2∇z∂sUb ·
(

h
|b| − b·h

|b|3 b
)

+ fu(z,Ub)
(
U ′
b · h) = 0 (4.27)
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in R × R
N . By calculation, one can obtain from (4.27) and (2.10) that

G∗
e

(
Ũh2 , c̃h2 , Ũ

′
h2(h1), c̃

′
h2(h1), h1, h2

)

=
(
0 , 2

∫

R+×LN

[
U ′
e+h2(h1)Ue+h2 −U ′

e(h1)Ue
]
ρ dsdz

)

=
(
0 ,

∫

R+×LN

(
U 2
e+h2ρ

)′
(h1)− (

U 2
e ρ

)′
(h1) dsdz

)

= (0, 0) (4.28)

for all |h2| ≤ 1
2 and h1 ∈ S

N−1. Then by virtue of (4.28) one computes

(0, 0) = G∗
e

(
Ũh2 , c̃h2 , Ũ

′
h2(h1), c̃

′
h2(h1), h1, h2

)
− G∗

e

(
0, 0, Ũ ′

h2(h1), c̃
′
h2(h1), h1, 0

)

+ Qe
(
Ũ ′
h2(h1), c̃

′
h2(h1)

)

for all |h2| ≤ 1
2 and h1 ∈ S

N−1, where Qe is given in Lemma 4.6. Thus we have
(
Ũ ′
h2(h1), c̃

′
h2(h1)

)

= Q−1
e

[
G∗
e

(
Ũh2 , c̃h2 , Ũ

′
h2(h1), c̃

′
h2(h1), h1, h2

)
− G∗

e

(
0, 0, Ũ ′

h2(h1), c̃
′
h2(h1), h1, 0

)]

(4.29)

for all |h2| ≤ 1
2 and h1 ∈ S

N−1. It is trivial that

e + h2
|e + h2| − e = h2 − (e · h2)e + o(|h2|) as |h2| → 0 (4.30)

and

h1
|e + h2| − (e + h2) · h1

|e + h2|3 (e + h2)− h1 + (e · h1)e
= [3(e · h1)(e · h2)− (h1 · h2)] e − (e · h2)h1 − (e · h1)h2 + o(|h2|) (4.31)

as |h2| → 0 uniformly for h1 ∈ S
N−1. Denote

�̃h1 := h1 − (e · h1)e, �̃h2 := h2 − (e · h2)e,
�̂h1h2 := [3(e · h1)(e · h2)− (h1 · h2)] e − (e · h2)h1 − (e · h1)h2

for all h1, h2 ∈ R
N . Nowwe define a bilinear operator A∗ : R

N ×R
N → H1

ρ (R×L
N )×R,

whose form is

A∗(h1, h2)
:= (M−1

e

[
c′
e(h1)∂sU

′
e(h2)+ c′

e(h2)∂sU
′
e(h1)+ 2∇z∂sU

′
e(h2) · �̃h1 + 2∇z∂sUe · �̂h1h2

+2∇z∂sU
′
e(h1) · �̃h2 + fuu(z,Ue)U

′
e(h1)U

′
e(h2)

]
, 2

∫

R+×LN
U ′
e(h1)U

′
e(h2)ρ dsdz

)

for all h1, h2 ∈ R
N . By calculation, we obtain from Step 2 that

∥∥A∗(h1, h2)
∥∥
H1
ρ×R

≤ ∥∥M−1
e

∥∥ ∥∥c′
e(h1)∂sU

′
e(h2)+ c′

e(h2)∂sU
′
e(h1)+ 2∇z∂sUe · �̂h1h2

∥∥
L2
ρ

+ ∥∥M−1
e

∥∥ ∥∥2∇z∂sU
′
e(h2) · �̃h1 + 2∇z∂sU

′
e(h1) · �̃h2

∥∥
L2
ρ
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+ ∥∥M−1
e

∥∥ ∥∥ fuu(z,Ue)U
′
e(h1)U

′
e(h2)

∥∥
L2
ρ

+ 2
∥∥U ′

e(h1)
∥∥
L2
ρ

∥∥U ′
e(h2)

∥∥
L2
ρ

≤ ∥∥M−1
e

∥∥
(
2
∥∥c′

e

∥∥ ∥∥U ′
e

∥∥ + 12 ‖Ue‖H2
ρ

)
|h1||h2| + 2

∥∥U ′
e

∥∥2 |h1||h2|
+ 4

∥∥M−1
e

∥∥
(∥∥U ′

e(h2)
∥∥
H2
ρ

|h1| + ∥∥U ′
e(h1)

∥∥
H2
ρ

|h2|
)

+ ∥∥M−1
e

∥∥ ‖ fuu‖L∞
∥∥U ′

e(h1)
∥∥
L∞

∥∥U ′
e(h2)

∥∥
L2
ρ

≤ C |h1||h2|, (4.32)

where C is a constant independent of h1 and h2. For convenience, define an operator B∗ :
R

N × R
N → H1

ρ (R × L
N )× R, whose form is

B∗(h1, h2)

:= G∗
e

(
Ũh2 , c̃h2 , Ũ

′
h2(h1), c̃

′
h2(h1), h1, h2

)

− G∗
e

(
0, 0, Ũ ′

h2(h1), c̃
′
h2(h1), h1, 0

)
− A∗(h1, h2)

for all h1, h2 ∈ R
N . Since (Ub, cb) is first-order continuously Fréchet differentiable in b

under both topologies ‖ · ‖H2
ρ×R and ‖ · ‖C0×R from Step 2, together with (4.30) and (4.31),

one can get that ∥∥B∗(h1, h2)
∥∥
H1
ρ×R

= o(|h2|) as |h2| → 0 (4.33)

uniformly for all h1 ∈ S
N−1. The proof of (4.33) is long and tedious, but not difficult, thus

we omit it.
SinceQ−1

e is bounded fromLemma 4.6, by virtue of (4.29), (4.32) and (4.33), we conclude
that (Ub, cb) is second-order Fréchet differentiable in b ∈ R

N everywhere at e ∈ S
N−1 under

the topology ‖ · ‖H1
ρ×R. Denote the second-order Fréchet derivative of (Ub, cb) in b at e by

(U ′′
e , c

′′
e ). Then its form is

(
U ′′
e , c

′′
e

)
(h2)(h1) = Q−1

e (A∗(h1, h2)) for all h1, h2 ∈ R
N .

Furthermore, by virtue of Lemmas 4.2, 4.3, 4.7, 4.8 and Step 2, one obtains
∥∥(U ′′

en , c
′′
en

) − (
U ′′
e , c

′′
e

)∥∥ → 0 as en → e.

Then it follows from (2.11) that (Ub, cb) is second-order continuously Fréchet differentiable
in b ∈ R

N everywhere at R
N \ {0} under the topology ‖ · ‖H1

ρ (R×LN )×R. For convenience,

without of ambiguity, we sometimes use notationsU ′′
b · h2 · h1 and c′′

b · h2 · h1 asU ′′
b (h2)(h1)

and c′′
b(h2)(h1), where b, h1, h2 ∈ R

N .
Step 4.With the same arguments as those in Step 2, we can get that (Ub, cb) is second-order

continuously Fréchet differentiable in b ∈ R
N everywhere at R

N \ {0} under the topology
‖ · ‖C2(R×RN )×R. The proof of Theorem 2.10 is thereby complete. ��

In the following proposition, we establish some estimates of Fréchet derivatives of Ue

with respect to e ∈ S
N−1, which are especially independent of e ∈ S

N−1.

Proposition 4.9 Assume that assumptions (F1)-(F4) hold. NormalizeUe as (2.10). Then∇Ub

is Fréchet differentiable in b, and

(∇Ub)
′ · h1 = ∇(

U ′
b · h1

)
, (4.34)
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where ∇ denotes the gradient operator with respect to (s, z) ∈ R × R
N . In addition, for any

e, h1, h2 ∈ S
N−1, there exists a positive constant K4 independent of e, h1 and h2, such that

∣∣(U ′
e · h1

)
(s, z)

∣∣ ,
∣∣(U ′′

e · h2 · h1
)
(s, z)

∣∣ ,
∣∣∇(

U ′
b · h1

)
(s, z)

∣∣ ≤ K4e
− κ

2 s (4.35)

for all (s, z) ∈ [0,+∞)× R
N , and

∣∣(U ′
e · h1

)
(s, z)

∣∣ ,
∣∣(U ′′

e · h2 · h1
)
(s, z)

∣∣ ,
∣∣∇(

U ′
b · h1

)
(s, z)

∣∣ ≤ K4e
κ2
2 s (4.36)

for all (s, z) ∈ (−∞, 0] × R
N , where κ and κ2 are given in Proposition 3.3.

Proof Step 1: we prove (4.34).
Since f ∈ C∞(RN+1), it follows from Step 2 of the proof of Theorem 2.10 that

∥∥Ub+h1 −Ub −U ′
b · h1

∥∥
C3(R×RN )

= o(|h1|) as |h1| → 0,

which implies
∥∥∇Ub+h1 − ∇Ub − ∇(

U ′
b · h1

)∥∥
C2(R×RN )

= o(|h1|) as |h1| → 0. (4.37)

Consequently, ∇Ub is Fréchet differentiable in b ∈ R
N under the topology ‖ · ‖C2(R×RN ). In

the meantime, (4.34) is valid from (4.37).
Step 2: we prove (4.35).
By virtue of the continuity of Ue in e with respect to the topology ‖ · ‖L∞(R×RN ) and the

monotonicity of Ue(s, z) in s, there exists a constant q2 > 0 such that

Ue(s, z) ≤ p for all (s, z) ∈ [q2,+∞)× R
N and e ∈ S

N−1,

where p is defined in (1.3). Thus fu(z,Ue) ≡ 0 in [q2,+∞) × R
N for all e ∈ S

N−1.
Recalling (4.27), the function U ′

e · h1 satisfies an equation of the type

0 = Ne
(
U ′
e · h1

) + (
c′
e · h1

)
∂sUe + 2∇z∂sUe · (h1 − (e · h1)e) =: Ne

(
U ′
e · h1

) + g̃ (4.38)

in [q2,+∞)× R
N for all e, h1 ∈ S

N−1, where Ne is defined in Lemma 3.1.
By the continuity of U ′

e in e under the topology ‖ · ‖C2(R×RN ) from Theorem 2.10, there
exists a constant K̃ such that |(U ′

e · h1)(q2, z)| ≤ K̃ for all z ∈ R
N and e, h1 ∈ S

N−1.
Denote

K4 := max

{
K̃ e

κ
2 q2 , 4K3

(
sup

e∈SN−1

∥∥c′
e

∥∥ + 4N

)
/κ2

}
,

then
(
U ′
e · h1

)
(q2, z) ≤ K̃ ≤ K4e

− κ
2 q2 for all z ∈ R

N and e, h1 ∈ S
N−1.

By calculation, it holds from Theorem 2.8 and Proposition 3.6 that

Ne

(
K4e

− κ
2 s
)

+ g̃ = K4e
− κ

2 s
(

−κ

2
ce + κ2

4

)
+ (

c′
e · h1

)
∂sUe + 2∇z∂sUe · (h1 − (e · h1)e)

≤
(

−K4
κ2

4
+ ( ∥∥c′

e

∥∥ + 4N
)
K3

)
e− κ

2 s

≤ 0

in [q2,+∞)× R
N for all e, h1 ∈ S

N−1.
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Noting thatU ′
e · h1 ∈ C2(R×R

N )∩ L2
ρ(R×L

N ) from Theorem 2.10, it is easy to verify
that

lim
s0→+∞ sup

{s≥s0, z∈RN }

(
U ′
e · h1

)
(s, z) = 0 for each e, h1 ∈ S

N−1, (4.39)

which implies

lim
s0→+∞ sup

{s≥s0, z∈RN }

(
U ′
e · h1 − K4e

− κ
2 s
)

= 0 for all e, h1 ∈ S
N−1.

Then applying Lemma 3.1 to g = g̃, � = +∞, h = q2, φ1 = U ′
e · h1 and φ2 = K4e− κ

2 s ,
one infers

U ′
e · h1(s, z) ≤ K4e

− κ
2 s in �+

h

for all e, h1 ∈ S
N−1. Note that −U ′

e · h1 = U ′
e(−h1) for all e, h1 ∈ S

N−1. Consequently
∣∣(U ′

e · h1
)
(s, z)

∣∣ ≤ K4e
− κ

2 s in [q2,+∞)× R
N (4.40)

for all e, h1 ∈ S
N−1. Furthermore with similar arguments as those in Proposition 3.6, even

if it means increasing K4, one can get that
∣∣D

(
U ′
e · h1

)
(s, z)

∣∣ ,
∣∣D2 (U ′

e · h1
)
(s, z)

∣∣ ≤ K4e
− κ

2 s in [q2,+∞)× R
N (4.41)

for all e, h1 ∈ S
N−1.

Differentiating Eq. (4.27), it holds that U ′′
e · h2 · h1 solves an equation of the type

−Ne
(
U ′′
e · h2 · h1

) = (
c′
e · h2

)
∂s
(
U ′
e · h1

) + 2∇z∂s
(
U ′
e · h1

) · (h2 − (e · h2)e)
+ (

c′
e · h1

)
∂s
(
U ′
e · h2

) + (
c′′
e · h2 · h1

)
∂sUe

+ 2∇z∂s
(
U ′
e · h2

) · (h1 − (e · h1)e)
+ 2∇z∂sUe · (−(e · h1)h2 − (h2 · h1)e)

in [q2,+∞)× R
N for all e, h1, h2 ∈ S

N−1. Then by virtue of (4.41) and Proposition 3.6,
with similar arguments as above, even if it means increasing K4, we obtain

∣∣(U ′′
e · h2 · h1

)
(s, z)

∣∣ ≤ K4e
− κ

2 s in [q2,+∞)× R
N (4.42)

for all e, h1, h2 ∈ S
N−1. Finally (4.35) follows by (4.40)–(4.42).

Step 3: we prove (4.36).
Clearly, there exists a constant q3 < 0 such that

1 − γ� ≤ Ue(s, z) ≤ 1 for all (s, z) ∈ (−∞, q3] × R
N and e ∈ S

N−1, (4.43)

where γ� is given in (1.5). It follows from (4.27) that the function U ′
e · h1 satisfies

Ne
(
U ′
e · h1

) + ĝ
(
s, z,U ′

e · h1
) = 0 in (−∞, q3] × R

N (4.44)

for all e, h1 ∈ S
N−1, where Ne is defined in Lemma 3.1 and

ĝ(s, z, u) := fu(z,Ue)u + (
c′
e · h1

)
∂sUe + 2∇z∂sUe · (h1 − (e · h1)e)

for all (s, z, u) ∈ (−∞, q3] × R
N × R. Increasing K4, it follows from (1.5), (3.4), (4.43),

Theorem 2.8 and Proposition 3.6 that

Ne

(
K4e

κ2
2 s

)
+ ĝ

(
s, z, K4e

κ2
2 s

)
≤

[(
−K

κ2

2
− 3

4
κ22

)
K4 + ( ∥∥c′

e

∥∥ + 4N
)
K3

]
e
κ2
2 s ≤ 0
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in (−∞, q3] × R
N for all e, h1 ∈ S

N−1. By Theorem 2.10, there is a constant K̂ such that
|(U ′

e · h1)(q3, z)| ≤ K̂ for all z ∈ R
N and e, h1 ∈ S

N−1. Even if it means increasing K4,
one has

∣∣(U ′
e · h1

)
(q3, z)

∣∣ ≤ K̂ ≤ K4e
κ2
2 q3 for all z ∈ R

N and e, h1 ∈ S
N−1.

Noting that U ′
e · h1 ∈ C2(R × R

N ) ∩ L2
ρ(R × L

N ) from Theorem 2.10, it is easy to verify
that

lim
s0→−∞ sup

{s≤s0, z∈RN }

(
U ′
e · h1

)
(s, z) = 0 for each e, h1 ∈ S

N−1.

Lastly, applying Lemma 3.2 to g = ĝ, h = q3, � = +∞, φ1 = U ′
e · h1 and φ2 = K4e

κ2
2 s ,

we obtain ∣∣(U ′
e · h1

)
(s, z)

∣∣ ≤ K4e
κ2
2 s in (−∞, q3] × R

N (4.45)

for all e, h1 ∈ S
N−1. Then with similar arguments as above and those in Step 2, we can get

(4.36). The proof of Proposition 4.9 is thereby complete. ��

5 Curved Fronts in R
2

This section is devoted to the existence, uniqueness and stability of curved fronts admitting a
shape similar to aV-shaped curve, namely Theorems 2.12, 2.15 and 2.16. Here the asymptotic
behaviors and the Fréchet differentiability of pulsating fronts with respect to the propagation
direction play key roles in our proof. Here we would like to notice that the main strategy in
this section are similar to those for bistable equations, see [26]. However, as a counterpart
to bistable equation [26], the degeneracy of f at u = 0 gives rise to main difficulties in this
section. To overcome the difficulties, we have to apply sophisticated asymptotic behaviors of
pulsating fronts near the state 0 to construct more complicated supersolutions, see also [55].
Throughout this section, we investigate the problem in two space dimensions, that is N = 2
in Eq. (1.1). Set z := (x, y) ∈ R

2.

5.1 Existence

At first, we introduce some properties of the hyperbolic function sech(x), which can be
checked easily.

Lemma 5.1 One has

(i) |sech′(x)|, |sech′′(x)| ≤ sech(x) for all x ∈ R,
(ii) sech′(x) > 0 for all x < 0; sech′(x) < 0 for all x > 0,
(iii) there is a positive constant q such that sech′′(x) > 0 for all |x | ≥ q.

The following lemmacomes from [26],which gives a smooth functionwith two asymptotic
lines.

Lemma 5.2 ([26], Lemma 2.2) For any angles 0 < α < β < π , there is a smooth function
ψ(x) for x ∈ R with y = −x cot α and y = −x cot β being its asymptotic lines and there
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are two positive constants k1 and K5 such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′′(x) > 0 for all x ∈ R,

− cot α < ψ ′(x) < − cot β for all x ∈ R,

k1sech(x) ≤ ψ ′(x)+ cot α ≤ K5sech(x) for all x < 0,∣∣∣∣
1√

ψ ′2(x)+1
− sin α

∣∣∣∣ ≤ K5sech(x) for all x < 0,

k1sech(x) ≤ − cot β − ψ ′(x) ≤ K5sech(x) for all x ≥ 0,∣∣∣∣
1√

ψ ′2(x)+1
− sin β

∣∣∣∣ ≤ K5sech(x) for all x ≥ 0,

max
{∣∣ψ ′′(x)

∣∣ ,
∣∣ψ ′′′(x)

∣∣} ≤ K5sech(x) for all x ∈ R.

(5.1)

Remark 5.3 In fact, by the proof of Lemma 2.2 of [26], the function ψ(x) has the form

ψ(x) =
{

−x cot α + ςsech(x), when x ≤ −a,

−x cot β + ςsech(x), when x ≥ b,

where positive constants ς , a and b are given in its proof.

Now, we construct a vector-valued function of the form

e(x) := (e1(x), e2(x)) =
(

− ψ ′(λx)√
ψ ′2(λx)+1

, 1√
ψ ′2(λx)+1

)
, ∀x ∈ R,

where λ is a number to be determined. By Lemma 5.2, every component of e(x) is smooth
and

e(x) → (cosα, sin α) as x → −∞ and e(x) → (cosβ, sin β) as x → +∞.

The derivatives of e(x) can be denoted by

e′(x) = (
e′
1(x), e

′
2(x)

) =
(

− λψ ′′(λx)
(ψ ′2(λx)+1)

3
2
, − λψ ′(λx)ψ ′′(λx)

(ψ ′2(λx)+1)
3
2

)

and e′′(x) = (
e′′
1(x), e

′′
2(x)

)
, where

e′′
1(x) = − λ2ψ ′′′(λx)

(ψ ′2(λx)+1)
3
2

+ 3λ2ψ ′(λx)ψ ′′2(λx)
(ψ ′2(λx)+1)

5
2

,

e′′
2(x) = − λ2ψ ′′2(λx)

(ψ ′2(λx)+1)
3
2

− λ2ψ ′(λx)ψ ′′′(λx)
(ψ ′2(λx)+1)

3
2

+ 3λ2ψ ′2(λx)ψ ′′2(λx)
(ψ ′2(λx)+1)

5
2

.

Furthermore, it follows from Lemma 5.2 that there exists a positive constant K6 such that
∣∣e′(x)

∣∣ ≤ λK6sech(λx),
∣∣e′′(x)

∣∣ ≤ λ2K6sech(λx), ∀x ∈ R. (5.2)

Let ω(s) be a smooth function satisfying ω′(s) ≥ 0 and

ω(s) =

⎧
⎪⎨

⎪⎩

0, when s ≤ −1,

ω(s), when s ∈ (−1, 1),

1, when s ≥ 1.

(5.3)

For ease of reading, we write below some stated assumptions related to Theorem 2.12.
Firstly, α and β are two given angles satisfying 0 < α < β < π . Secondly, let cαβ be a
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constant satisfying

cαβ = cα
sin α

= cβ
sin β

.

Thirdly, (Uα(s, x, y), cα) is the uniquepulsating frontwith propagationdirection (cosα, sin α)
and

(
Uβ(s, x, y), cβ

)
is the unique pulsating front with propagation direction (cosβ, sin β)

in the sense of Definition 1.1. Fourthly, the function U−
αβ is given by

U−
αβ(t, x, y)

def= max
{
Uα(x cosα + y sin α − cαt, x, y), Uβ(x cosβ + y sin β − cβ t, x, y)

}
,

(5.4)
which is a subsolution of (1.1). Lastly, denote ξα and ξβ by

ξα := x cosα + y sin α − cαt = sin α
(
(y − cαβ t)+ x cot α

)
, (5.5)

ξβ := x cosβ + y sin β − cβ t = sin β
(
(y − cαβ t)+ x cot β

)
. (5.6)

Now, we construct two functions ξ and η, where

ξ = ξ(t, x, y) := y − cαβ t − ψ(λx)/λ
√
ψ ′2(λx)+ 1

, (5.7)

η = η(t, x, y) := y − cαβ t − ψ(λx)/λ, (5.8)

where the real number λ is to be determined.

Lemma 5.4 Assume that assumptions (F1)-(F4) hold. Then there is a constant δ∗ > 0 such
that the below statement is valid: for each δ ∈ (0, δ∗] there exists a positive constant ε+

0 (δ)

such that, for any 0 < ε < ε+
0 (δ) there is a positive constant λ

+
0 (δ, ε) such that for arbitrary

0 < λ < λ+
0 (δ, ε), the function

U+(t, x, y) := Ue(x)(ξ, x, y)+ εsech(λx)× [
U δ
α(η, x, y)ω(ξ)+ (1 − ω(ξ))

]
(5.9)

is a supersolution of Eq. (1.1). Futhermore

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣U+(t, x, y)−U−
αβ(t, x, y)

∣∣∣ ≤ ε, (5.10)

U+(t, x, y) ≥ U−
αβ(t, x, y) in R

3, (5.11)

∂

∂t
U+(t, x, y) > 0 in R

3. (5.12)

Proof Step 1: we prove that U+ is a supersolution.
The strategy is to find two numbers X ′ > 1 and X ′′ > 1 and show the inequality

LU+ := ∂tU
+ −�x,yU

+ − f
(
x, y,U+) ≥ 0, ∀(t, x, y) ∈ R

3,

by considering three cases ξ > X ′, ξ < −X ′′, and ξ ∈ [−X ′′, X ′], respectively. Denote
I1 := (∂t −�x,y)

(
Ue(x)(ξ, x, y)

)
and I2 := (∂t −�x,y)

(
εsech(λx)U δ

α(η, x, y)
)
.

By virtue of Theorem 2.10 and Proposition 4.9, it follows from calculation that

I1 = ∂sUe(x)ξt −�x,yUe(x) − 2∂sxUe(x)ξx − 2∂syUe(x)ξy

− ∂sUe(x)(ξxx + ξyy)− ∂ssUe(x)
(
ξ2x + ξ2y

) −U ′′
e(x) · e′(x) · e′(x)

−U ′
e(x) · e′′(x)− 2∂xU

′
e(x) · e′(x)− 2∂sU

′
e(x) · e′(x)ξx , (5.13)
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where Ue(x) and all of its derivatives are evaluated at (ξ(t, x, y), x, y). Now, we compute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξt = − cαβ√
ψ ′2+1

,

ξx = − λψ ′ψ ′′
ψ ′2+1

ξ − ψ ′√
ψ ′2+1

,

ξy = 1√
ψ ′2+1

,

ξxx = − λ2ψ ′′2+λ2ψ ′ψ ′′′
ψ ′2+1

ξ + 3λ2ψ ′2ψ ′′2
(ψ ′2+1)2

ξ + λ(ψ ′2−1)ψ ′′

(ψ ′2+1)
3
2
,

ξyy = 0,

ξx − e1(x) = − λψ ′ψ ′′
ψ ′2+1

ξ,

ξ2x + ξ2y − 1 = λ2ψ ′2ψ ′′2
(ψ ′2+1)2

ξ2 + 2λψ ′2ψ ′′

(ψ ′2+1)
3
2
ξ,

(5.14)

where functions ψ ′, ψ ′′, and ψ ′′′ are evaluated at λx . Note that (Ue(x), ce(x)) solves

ce(x)∂sUe(x) + ∂ssUe(x) + 2∇x,y∂sUe(x) · e(x)+�x,yUe(x) + f
(
x, y,Ue(x)

) = 0.

Since e2(x) = ξy , by virtue of the above equation and (5.13), one gets that

I1 = (
ξt + ce(x)

)
∂sUe(x) − 2∂sxUe(x)(ξx − e1(x))− ∂sUe(x)(ξxx + ξyy)

− ∂ssUe(x)
(
ξ2x + ξ2y − 1

) −U ′′
e(x) · e′(x) · e′(x)−U ′

e(x) · e′′(x)
− 2∂xU

′
e(x) · e′(x)− 2∂sU

′
e(x) · e′(x)ξx + f

(
x, y,Ue(x)

)
, (5.15)

where Ue(x) and all of its derivatives are evaluated at (ξ(t, x, y), x, y). From Claim 2.9
of [26], there is a positive constant K7 such that

ξt + ce(x) = − cαβ√
ψ ′2(λx)+1

+ ce(x) ≤ −K7sech(λx) < 0 for all x ∈ R. (5.16)

Now, it turns to compute I2 and one has that

I2 = εδsech(λx)U δ−1
α ∂sUαηt − ελ2sech′′(λx)U δ

α

− 2εδλsech′(λx)U δ−1
α × [∂xUα + ∂sUαηx ]

− εδ(δ − 1)sech(λx)U δ−2
α ×

[
(∂xUα + ∂sUαηx )

2 + (
∂yUα + ∂sUαηy

)2]

− εδsech(λx)U δ−1
α ×

[
�x,yUα + 2∇x,y∂sUα · (ηx , ηy)+ ∂ssUα

(
η2x + η2y

)

+ ∂sUα(ηxx + ηyy)
]
, (5.17)

where Uα and all of its derivatives are evaluated at (η(t, x, y), x, y).
Case 1: ξ(t, x, y) > X ′, where X ′ > 1 is to be chosen.
In this case, it holds that U+(t, x, y) = Ue(x)(ξ, x, y)+ εsech(λx)×U δ

α(η, x, y). Thus

LU+ = I1 + I2 − f
(
x, y,U+).
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Computing the derivatives of η(t, x, y) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = −cαβ,

ηx = −ψ ′(λx),
ηy = 1,

ηxx = −λψ ′′(λx),
ηyy = 0,

η2x + η2y = ψ ′2(λx)+ 1.

(5.18)

By virtue of (5.17), (5.18) and Lemma 5.1, one gets that

I2 = −εU δ
α × λ

[
λsech′′(λx)+ 2δsech′(λx) ∂xUα − ψ ′(λx)∂sUα

Uα
− δsech(λx)ψ ′′(λx) ∂sUα

Uα

]

− εU δ
α × δsech(λx)

[
�x,yUα + 2∇x,y∂sUα · (−ψ ′(λx), 1

)

Uα

+ δ

(
∂xUα − ψ ′(λx)∂sUα

)2 + (
∂yUα + ∂sUα

)2

U2
α

−
(
∂xUα − ψ ′(λx)∂sUα

)2 + (
∂yUα + ∂sUα

)2

U2
α

+ ∂ssUα
Uα

(
ψ ′2(λx)+ 1

) + cαβ
∂sUα
Uα

]

≥ −εsech(λx)U δ
α × λ

[
λ+ 2δ

∣∣∂xUα − ψ ′(λx)∂sUα
∣∣

Uα
− δψ ′′(λx) ∂sUα

Uα

]

− εsech(λx)U δ
α × δ

[
�x,yUα + 2∇x,y∂sUα · (−ψ ′(λx), 1)

Uα

+ δ

(
∂xUα − ψ ′(λx)∂sUα

)2 + (
∂yUα + ∂sUα

)2

U2
α

−
(
∂xUα − ψ ′(λx)∂sUα

)2 + (
∂yUα + ∂sUα

)2

U2
α

+ ∂ssUα
Uα

(
ψ ′2(λx)+ 1

) + cαβ
∂sUα
Uα

]

=: J1 + J2, (5.19)

where Uα and all of its derivatives are evaluated at (η(t, x, y), x, y). Recalling (5.7) and
(5.8), it follows from Lemma 5.2 that

ξ ≤ η = ξ

√
ψ ′2(λx)+ 1 ≤ ξ

√
max{cot α,− cot β}2 + 1. (5.20)
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By virtue of Theorem 2.5, it holds that⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x,yUα + 2∇x,y∂sUα · (−ψ ′(λx), 1)
Uα

−→ 0,

(
∂xUα − ψ ′(λx)∂sUα

)2 + (
∂yUα + ∂sUα

)2

U 2
α

−→ c2α
(
ψ ′2(λx)+ 1

)
,

∂ssUα
Uα

(
ψ ′2(λx)+ 1

) −→ c2α
(
ψ ′2(λx)+ 1

)
,

cαβ
∂sUα
Uα

−→ −cαβcα

(5.21)

as η → +∞ uniformly in (x, y) ∈ R
2. Set

δ∗1 := cαβ
2cα

(
max{cot α,− cot β}2 + 1

) .

Then for any δ ∈ (0, δ∗1 ], there exists a sufficiently large number X ′
1 > 1 such that

J2 > εsech(λx)U δ
α × δ

cαβcα
4

(5.22)

for all (η, x, y) ∈ (X ′
1,+∞) × R

2. Thus by (5.19) and (5.22), there is a small positive
constant λ+

1 (δ) such that, for arbitrary λ ≤ λ+
1 (δ), one has

I2 > εsech(λx)U δ
α × δ

cαβcα
8

(5.23)

for all (η, x, y) ∈ (X ′
1,+∞)× R

2. Recalling ∂sUe(x) < 0, by virtue of (5.2), (5.14)–(5.16),
Propositions 3.3, 3.6, 4.9 and Lemma 5.2, there exists a constant �1 > 0 such that

I1 ≥ −�1sech(λx)e
− κ

4 ξ + f
(
x, y,Ue(x)

)
(5.24)

for all (ξ, x, y) ∈ [0,+∞) × R
2, where κ is given in Theorem 2.8. Following from Theo-

rem 2.2, we have that there exists a sufficiently large number X ′
2 > 1 such that

Uα(η, x, y) ≥ C1

2
e−cαη ≥ C1

2
e−Kη, ∀(η, x, y) ∈ (X ′

2,+∞)× R
2, (5.25)

where C1 is given in Theorem 2.2 and K is given in Theorem 2.8. Denote

δ∗2 := κ

8K
√
max{cot α,− cot β}2 + 1

.

By virtue of (5.20) and (5.25), for each δ ∈ (0, δ∗2 ] one has

U δ
α(η, x, y) ≥

(
C1

2

)δ
e− κ

8 ξ , ∀(η, x, y) ∈ (X ′
2,+∞)× R

2. (5.26)

Since (1.3) and Proposition 3.3, by virtue of (5.20), (5.23), (5.24) and (5.26), there exists a
sufficiently large number X ′

3 > 1 such that

LU+ = I1 + I2 − f
(
x, y,U+)

≥ −�1sech(λx)e
− κ

4 ξ + εsech(λx)U δ
α × δ

cαβcα
8

≥ −�1 × sech(λx)e− κ
4 ξ +

(
C1

2

)δ
εδ

cαβcα
8

× sech(λx)e− κ
8 ξ

> 0 (5.27)
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for all (η, x, y) ∈ (X ′
3,+∞)×R

2. Note that η(t, x, y) ≥ ξ(t, x, y) from (5.20), thus setting
δ∗ = min{δ∗1 , δ∗2}, X ′ = max{X ′

1, X
′
2, X

′
3} and λ+

0 ≤ λ+
1 (δ), we have LU+ > 0 in Case 1.

Case 2: ξ(t, x, y) < −X ′′, where X ′′ > 1 is to be chosen.
In this case, it holds that U+(t, x, y) = Ue(x)(ξ, x, y) + εsech(λx). Recalling (5.15),

(5.16) and ∂sUe(x) < 0, one has

LU+ = I1 − ελ2sech′′(λx)− f
(
x, y,U+)

> −2∂sxUe(x)(ξx − e1(x))− ∂sUe(x)(ξxx + ξyy)

− ∂ssUe(x)
(
ξ2x + ξ2y − 1

) −U ′′
e(x) · e′(x) · e′(x)−U ′

e(x) · e′′(x)
− 2∂xU

′
e(x) · e′(x)− 2∂sU

′
e(x) · e′(x)ξx

+ f
(
x, y,Ue(x)

) − f
(
x, y,U+) − ελ2sech′′(λx), (5.28)

whereUe(x) and all of its derivatives are evaluated at (ξ(t, x, y), x, y). Set ε
+
1 := γ�/2, where

γ� is defined in (1.5). Then for any ε < ε+
1 , by virtue of (1.5) and Proposition 3.3, there is a

sufficiently large number X ′′ > 1 such that

f
(
x, y,Ue(x)

) − f
(
x, y,U+) > κ1

2
εsech(λx) (5.29)

for all (ξ, x, y) ∈ (−∞,−X ′′) × R
2, where κ1 is given in (1.4). By (5.2), (5.14), (5.28),

(5.29), Propositions 3.6, 4.9 and Lemma 5.2, one concludes that there is a constant �2 > 0
such that

LU+ > sech(λx)×
[
−ελ2 −�2λ+ κ1

2
ε
]

(5.30)

for all (ξ, x, y) ∈ (−∞,−X ′′)× R
2. It is trivial that there exists a constant λ+

2 (ε) > 0 such
that

− ελ2 −�2λ+ κ1

2
ε ≥ 0 for all λ ∈ (

0, λ+
2 (ε)

)
. (5.31)

Therefore setting ε+
0 ≤ ε+

1 and λ+
0 ≤ λ+

2 (ε), (5.30) and (5.31) yield that LU+ > 0 in Case
2.

Case 3: −X ′′ ≤ ξ(t, x, y) ≤ X ′.
Recalling (5.14) and (5.18), there is a number �3 > 0 such that
∣∣∣(∂t −�x,y)

(
εsech(λx)

[
U δ
α(η, x, y)ω(ξ)+ (1 − ω(ξ))

])∣∣∣ < �3εsech(λx) (5.32)

for all (ξ, x, y) ∈ [−X ′′, X ′] × R
2. It follows from (5.15) and (5.32) that

LU+ > I1 − f
(
x, y,U+) −�3εsech(λx)

= (
ξt + ce(x)

)
∂sUe(x) − 2∂sxUe(x)(ξx − e1(x))− ∂sUe(x)(ξxx + ξyy)

− ∂ssUe(x)
(
ξ2x + ξ2y − 1

) −U ′′
e(x) · e′(x) · e′(x)−U ′

e(x) · e′′(x)
− 2∂xU

′
e(x) · e′(x)− 2∂sU

′
e(x) · e′(x)ξx

+ f
(
x, y,Ue(x)

) − f
(
x, y,U+) −�3εsech(λx) (5.33)

for all (ξ, x, y) ∈ [−X ′′, X ′] × R
2, where Ue(x) and all of its derivatives are evaluated at

(ξ(t, x, y), x, y). From Proposition 3.9 and (5.16), there exists a number r > 0 such that
(
ξt + ce(x)

)
∂sUe(x) ≥ K7rsech(λx) (5.34)
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Fig. 1 Several cases to prove (5.38)

for all (ξ, x, y) ∈ [−X ′′, X ′] × R
2. By virtue of (5.2), (5.14), Propositions 3.6, 4.9 and

Lemma 5.2, since ξ is bounded, there exists a constant �4 > 0 such that

− 2∂sxUe(x)(ξx − e1(x))− ∂sUe(x)(ξxx + ξyy)− ∂ssUe(x)
(
ξ2x + ξ2y − 1

)

−U ′′
e(x) · e′(x) · e′(x)−U ′

e(x) · e′′(x)− 2∂xU
′
e(x) · e′(x)− 2∂sU

′
e(x) · e′(x)ξx

≥ −�4λsech(λx) (5.35)

for all (ξ, x, y) ∈ [−X ′′, X ′] × R
2. By (1.2) there is a number �5 > 0 such that

f
(
x, y,Ue(x)

) − f
(
x, y,U+) > −�5εsech(λx). (5.36)

It follows immediately from (5.33)–(5.36) that

LU+ > sech(λx)× [K7r −�4λ−�5ε −�3ε] , ∀(ξ, x, y) ∈ [−X ′′, X ′] × R
2. (5.37)

Denote

λ+
3 (ε) := ε and ε+

2 (δ) := K7r

�3 +�4 +�5
.

Then setting ε+
0 ≤ ε+

2 (δ) and λ
+
0 ≤ λ+

3 (ε), LU+ > 0 holds in Case 3 by (5.37). All
in all, Step 1 is complete by setting δ∗ = min{δ∗1 , δ∗2}, ε+

0 ≤ min{ε+
1 , ε

+
2 (δ), γ�/3} and

λ+
0 ≤ min{λ+

1 (δ), λ
+
2 (ε), λ

+
3 (ε)}, where γ� is defined in (1.5).

Step 2: we prove (5.10).
We claim that

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣Ue(x)(ξ, x, y)−U−
αβ(t, x, y)

∣∣∣ = 0, (5.38)

which yields (5.10) immediately. Denote T := x2 + (y − cαβ t)2. The proof of (5.38) is
divided into several cases (see Fig. 1).

Case A: |x | is bounded. In this case, |y − cαβ t | is unbounded. By (5.5)–(5.7), one has

ξ, ξα, ξβ → +∞ or ξ, ξα, ξβ → −∞.
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Then it follows from Proposition 3.3 that
∣∣∣Ue(x)(ξ, x, y)−U−

αβ(t, x, y)
∣∣∣ → 0 as T → +∞ in Case A.

Case B: |x | is unbounded.We only discuss the case x → −∞, and the case x → +∞ is
similar. It follows from (5.5), (5.6) and Remark 5.3 that

{
ξβ = sin β

sin α ξα − sin(β−α)
sin α x in R

3,

ψ(λx)/λ = −x cot α + ςsech(λx)/λ for all x ≤ −a/λ.
(5.39)

Subcase B1: x → −∞ and ξα → +∞. By (5.39), one gets

ξβ ≥ sin β

sin α
ξα and η ≥ ξα

sin α
− ς/λ,

which implies ξβ, ξ → +∞ in Subcase B1. This yields by Proposition 3.3 that
∣∣∣Ue(x)(ξ, x, y)−U−

αβ(t, x, y)
∣∣∣ → 0 as T → +∞ in SubcaseB1.

Subcase B2: x → −∞ and ξα is bounded. It holds from (5.39) that ξβ → +∞, which
yields from Propositions 3.3 and 3.9 that U−

αβ = Uα(ξα, x, y) in Subcase B2. By virtue of
(5.39), Lemma 5.2, Remark 5.3, Propositions 3.6 and 4.9, one gets

∣∣Ue(x)(ξ, x, y)−Uα(ξα, x, y)
∣∣ ≤ ∣∣Ue(x)(ξ, x, y)−Uα(ξ, x, y)

∣∣ + |Uα(ξ, x, y)−Uα(ξα, x, y)|
≤ K4 |e(x)− (cosα, sin α)| + K3 |ξ − ξα |
≤ K4 |e(x)− (cosα, sin α)| +

(
K3 |ξα |
sin α

K5 + K3ς

λ

)
sech(λx)

for all x ≤ −a/λ. Therefore,
∣∣∣Ue(x)(ξ, x, y)−U−

αβ(t, x, y)
∣∣∣ → 0 as T → +∞ in SubcaseB2.

Subcase B3: x → −∞ and ξα → −∞. It follows from (5.39) that η ≤ ξα/ sin α, which
implies ξ → −∞ in Subcase B3. Thus we obtain from Proposition 3.3 that

∣∣∣Ue(x)(ξ, x, y)−U−
αβ(t, x, y)

∣∣∣ ≤ ∣∣1 −Ue(x)(ξ, x, y)
∣∣ + |1 −Uα(ξα, x, y)| → 0

as T → +∞ in Subcase B3. In conclusion, the equality (5.38) is valid.
We claim that there exists positive constants ν� and C� such that

∣∣∣U−
αβ(t, x, y)

∣∣∣ + ∣∣Ue(x)(ξ, x, y)
∣∣ + ∣∣U δ

α(η, x, y)
∣∣

min
{
1, e−2ν� min{ξα/ sin α, ξβ/ sin β}} ≤ C� (5.40)

in R×R
2. It is sufficient to consider min{ξα/ sin α, ξβ/ sin β} > 0. We only discuss the case

x ≤ 0, and the case x ≥ 0 is similar. Since ξα/ sin α ≤ ξβ/ sin β, Proposition 3.3 yields that

|Uα(ξα, x, y)| + ∣∣Uβ(ξβ, x, y)
∣∣ ≤ K2

(
e− 3κ

4 ξα + e− 3κ
4 ξβ

)
≤ K2e

−2νξα/ sin α

for all ν ≤ 3κ min{sin α, sin β}/8. It holds from Remark 5.3 that

|η − ξα/ sin α| = |ψ(λx)/λ+ x cot α| = |ςsech(λx)/λ| ≤ ς/λ
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Fig. 2 The sequence (tn , xn , yn)

for all x ≤ −a/λ. Then by virtue of Proposition 3.3, (5.7) and (5.8), we obtain that there is
a positive constant ν� = ν�(δ, λ) < 3κ min{sin α, sin β}/8 such that

∣∣Ue(x)(ξ, x, y)
∣∣ + ∣∣U δ

α(η, x, y)
∣∣ ≤ K2e

−2ν�ξα/ sin α.

Therefore, the inequality (5.40) is valid.
Step 3: we prove (5.11) by using the sliding method, inspired by Theorem 1.11 of [4].
Denote

0
α�R := {

(t, x, y) ∈ R
3 : ξα > R

}
and 1

α�R := {
(t, x, y) ∈ R

3 : ξα < −R
}
.

By (5.38) and Proposition 3.3, there are two numbers R1 > 1 and R2 > 1 such that

Uα(ξα, x, y) > 1 − γ�

3
,

∣∣∣Ue(x)(ξ, x, y)−U−
αβ(t, x, y)

∣∣∣ <
γ�

3
in 1

α�R1−1, (5.41)

and Uα(ξα, x, y) < p in 0
α�R2−1, where p and γ� are defined in (1.3) and (1.5).

Denote α�R12 := R
3\(1α�R1 ∪0

α�R2). Since ξα is bounded in α�R12 , there exists a number
γ1 > 0 such that

Uα(ξα, x, y) > γ1 in α�R12 . (5.42)

By virtue of (5.38), there is a large positive number q such that

U+(t, x, y)−Uα(ξα, x, y) ≥ Ue(x)(ξ, x, y)−U−
αβ(t, x, y) > −γ1

2
(5.43)

for all (t, x, y) ∈ α�R12 ∩{|x | > q}. Since ξα is bounded in α�R12 , ξ(t, x, y) is also bounded
in α�R12 ∩ {|x | ≤ q}. Then from Proposition 3.9, there exists a number γ2 > 0 such that

U+(t, x, y) ≥ Ue(x)(ξ, x, y) > γ2 in α�R12 ∩ {|x | ≤ q}. (5.44)

Since ξα(t, x, y) is bounded in α�R12 , there is a number τ ′ > 0 such that

Uα
(
ξα

(
t − τ ′, x, y

)
, x, y

)
< min

{γ1
2
, γ2

}
in α�R12 . (5.45)
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By (5.42)–(5.45), one gets

U+(t, x, y) > Uα
(
ξα

(
t − τ ′, x, y

)
, x, y

)
in α�R12 . (5.46)

Define

ε∗ := inf
{
ε > 0 : U+(t, x, y) ≥ Uα

(
ξα

(
t − τ ′, x, y

)
, x, y

) − ε, ∀(t, x, y) ∈ 1
α�R1

}
.

(5.47)
It follows from (5.41) that

U+(t, x, y)+ 2γ�
3

≥ Ue(x)(ξ, x, y)+ 2γ�
3

≥ U−
αβ(t, x, y)+ γ�

3
> 1 in 1

α�R1 ,

which implies 0 ≤ ε∗ ≤ 2γ�/3. We will prove that ε∗ = 0, which means

U+(t, x, y) ≥ Uα
(
ξα

(
t − τ ′, x, y

)
, x, y

)
in 1

α�R1 . (5.48)

Assume by contradiction that ε∗ > 0. Denote

v(t, x, y) := U+(t, x, y)−Uα
(
ξα

(
t − τ ′, x, y

)
, x, y

) + ε∗ in 1
α�R1 ∪ α�R12 ,

then v ≥ 0 in 1
α�R1 ∪ α�R12 by (5.46). From the definition of ε∗, there exists a sequence of

points {(tn, xn, yn)}n∈N ⊂ 1
α�R1 such that

v(tn, xn, yn) → 0 as n → ∞. (5.49)

By virtue of (5.38), there is a large positive number R1 > R1 such that

∣∣∣Ue(x)(ξ, x, y)−U−
αβ(t, x, y)

∣∣∣ <
ε∗

2
in 1

α�R1
,

which yields that v(t, x, y) > ε∗/2 in 1
α�R1

. Thus there exist a small number σ > 0 and a
sequence of points (see Fig. 2)

{(tn − σ, x̃n, ỹn)}n∈N ⊂ 1
α�R1

satisfying
dist((x̃n, ỹn), (xn, yn)) is uniformly bounded w.r.t. n. (5.50)

Notice ε∗ ≤ 2γ�/3. By virtue of (1.5), (5.41) and U+ is a supersolution of (1.1), it follows
that

(∂t −�x,y)
(
U+ + ε∗) − f

(
x, y,U+ + ε∗) ≥ (∂t −�x,y)U

+ − f
(
x, y,U+) ≥ 0 (5.51)

in 1
α�R1−1. Since Uα(ξα(t − τ ′, x, y), x, y) is a solution, one gets that

(∂t −�x,y)v(t, x, y)+ b1(t, x, y)v(t, x, y) ≥ 0 in 1
α�R1−1, (5.52)

whereb1(t, x, y) := (
f (x, y,Uα)− f (x, y,U+ + ε∗)

)
/v, and‖b1‖L∞ is boundedby (1.2).

Below there is a claim, which contradicts the fact that v(tn − σ, x̃n, ỹn) > ε∗/2, thus we
have proved ε∗ = 0.

Claim 5.5 There holds

v(tn − σ, x̃n, ỹn) → 0 as n → ∞.

123



Journal of Dynamics and Differential Equations

Proof Assume that by contradiction, up to a subsequence, there is a number γ3 > 0 such
that

v(tn − σ, x̃n, ỹn) ≥ γ3, ∀n ∈ N.

Since the first-order derivatives of v are bounded, one has

v(tn − σ, x, y) >
γ3

2
(5.53)

for all (x, y) in a ball Br (x̃n, ỹn) centered at (x̃n, ỹn) with a small radius r independent of n,
for all n ∈ N. Let wn be the solution of an equation of the type

(∂t −�x,y)w(t, x, y)+ b1(t, x, y)w(t, x, y) = 0 (5.54)

in a suitable domain En ⊂ 1
α�R1−1, which contains (tn − σ, tn)× Br (x̃n, ỹn) and the point

(tn, xn, yn) away from ∂En independently of n, with initial condition

w(tn − σ, ·, ·)

⎧
⎪⎨

⎪⎩

≡ γ2
2 in Br

2
(x̃n, ỹn),

decays to 0 in Br (x̃n, ỹn) \ Br
2
(x̃n, ỹn),

≡ 0 outside Br (x̃n, ỹn),

and with lateral boundary condition w = 0. Furthermore, since (5.50), from the Harnack
inequality, there exists a positive constant C independent of n such that

wn(tn, xn, yn) ≥ Cγ2, ∀n ∈ N.

By virtue of (5.52), (5.53) and the fact that v ≥ 0 in 1
α�R1−1, function v is just a supersolution

of the problem (5.54), thus

v(tn, xn, yn) ≥ wn(tn, xn, yn) ≥ Cγ2, ∀n ∈ N,

which is a contradiction with (5.49). Therefore Claim 5.5 is valid. ��
Similarly, we have

U+(t, x, y) ≥ Uα
(
ξα

(
t − τ ′, x, y

)
, x, y

)
in 0

α�R2 . (5.55)

It follows immediately from (5.46), (5.48) and (5.55) that

U+(t, x, y) ≥ Uα
(
ξα

(
t − τ ′, x, y

)
, x, y

)
in R

3. (5.56)

Set
τ ∗ := inf

{
τ > 0 : U+(t, x, y) ≥ Uα(ξα(t − τ, x, y), x, y) in R

3} . (5.57)

Apparently τ ∗ is a well-defined nonnegative number by (5.56). In fact, τ ∗ = 0 and we will
prove it by contradiction. Assume τ ∗ > 0 and define

ϑ(t, x, y) := U+(t, x, y)−Uα(ξα(t − τ ∗, x, y), x, y) in R
3,

then ϑ ≥ 0 in R
3. Two cases may occur.

Case i: inf{ϑ(t, x, y) : (t, x, y) ∈ α�R12} > 0.
Since the first-order derivatives of Uα(ξα(t, x, y), x, y) are bounded, there is a number

τ0 ∈ (0, τ ∗) such that

U+(t, x, y) > Uα(ξα(t − τ0, x, y), x, y) in α�R12 .
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Applying the above arguments again, one gets that

U+(t, x, y) ≥ Uα(ξα(t − τ0, x, y), x, y) in R
3.

This contradicts the minimality of τ ∗ and Case i is thus ruled out.
Case ii: inf{ϑ(t, x, y) : (t, x, y) ∈ α�R12} = 0.
There exists a sequence of points {(t̄n, x̄n, ȳn)}n∈N ⊂ α�R12 such that

ϑ(t̄n, x̄n, ȳn) → 0 as n → ∞. (5.58)

Since ξα(t −τ ∗, x, y) is bounded in α�R12 , by Proposition 3.9 there are two numbers γ4 > 0
and r > 0 such that

Uα(ξα(t − τ ∗, x, y), x, y) < 1 − γ4

and
Uα(ξα(t, x, y), x, y)−Uα(ξα(t − τ ∗, x, y), x, y) ≥ rτ ∗ (5.59)

for all (t, x, y) ∈ α�R12 . Note that
{
ξβ = sin β

sin α ξα − sin(β−α)
sin α x in R

3,

ψ(λx)/λ = −x cot β + ςsech(λx)/λ for all x ≥ b/λ.
(5.60)

It follows from (5.6), (5.7), (5.60) and Proposition 3.3 that Ue(x)(ξ, x, y) → 1 as x → +∞
uniformly in α�R12 . Thus there exist two numbers q̄ and N0 such that

(t̄n, x̄n, ȳn) ∈ α�R12 ∩ {x < q̄}, ∀n ≥ N0. (5.61)

By virtue of (5.38) and (5.59), there is a number q̃ < 0 such that

ϑ(t, x, y) ≥ Ue(x)(ξ, x, y)−Uα(ξα(t − τ ∗, x, y), x, y)

≥ Uα(ξα(t, x, y), x, y)− rτ ∗

2
−Uα(ξα(t − τ ∗, x, y), x, y)

≥ rτ ∗

2
(5.62)

in α�R12 ∩ {x < q̃}.
Since U+ is a supersolution and Uα(ξα(t − τ ∗, x, y), x, y) is a solution of (1.1), one has

(∂t −�x,y)ϑ(t, x, y)+ b2(t, x, y)ϑ(t, x, y) ≥ 0 in R
3,

where

b2(t, x, y) := [
f
(
x, y,Uα

(
ξα(t − τ ∗, x, y), x, y

)) − f (x, y,U+)
]
/ϑ,

and ‖b2‖L∞ is bounded by (1.2). Then by virtue of (5.58), (5.61) and the fact that ϑ ≥ 0
in R

3, the same arguments as those in Claim 5.5 yield that there exist (see Fig. 3) a number
σ̂ > 0 and a sequence of points {(x̂n, ŷn)}n∈N such that

{
(t̄n − σ̂ , x̂n, ŷn)

}
n≥N0

⊂ α�R12 ∩ {x < q̃} and ϑ(t̄n − σ̂ , x̂n, ŷn) → 0 as n → ∞,

which is impossible because of (5.62). Therefore Case ii is ruled out.
As a consequence, τ ∗ = 0which implies thatU+(t, x, y) ≥ Uα(ξα, x, y) inR

3. Similarly,
we also have U+(t, x, y) ≥ Uβ(ξβ, x, y) in R

3, thus (5.11) is proved. Finally, one can get
immediately (5.12) by calculation. Therefore, we complete the proof of Lemma 5.4. ��

Here we note that the construction of the supersolution in Lemma 5.4 is motivated by
Wang and Bu [55] and Guo et al. [26]. Below we prove the existence of curved fronts.
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Fig. 3 The sequence (t̄n , x̄n , ȳn)

Proof of Theorem 2.12 By virtue of Proposition 7.3.1 of [39], let wn(t, x, y) be the unique
solution of below Cauchy problem

{
∂tw −�x,yw = f (x, y, w) when t > −n, (x, y) ∈ R

2

w(t, x, y) = U−
αβ(−n, x, y) when t = −n, (x, y) ∈ R

2 (5.63)

for all n ∈ N. By virtue of Lemma 5.4, since U−
αβ is a subsolution, using the comparison

principle, for any n ∈ N, one gets

U−
αβ(t, x, y) ≤ wn(t, x, y) ≤ U+(t, x, y) (5.64)

in [−n,+∞) × R
2. Using the comparison principle again, it holds that the sequence of

functions {wn(t, x, y)}n∈N is increasing in n. Applying Theorems 5.1.3 and 5.1.4 of [39] to
(5.63), there exists a constant � independent of n ∈ N such that

‖wn(·, ·, ·)‖
C1+ θ

2 ,2+θ ([−n+1,+∞)×R2)
≤ �

for some θ ∈ (0, 1) and all n ∈ N. Then letting n → ∞, the sequence {wn(t, x, y)}n∈N
converges to an entire solution V (t, x, y) of (1.1). Furthermore, it follows from (5.64) that

U−
αβ(t, x, y) ≤ V (t, x, y) ≤ U+(t, x, y) in R × R

2. (5.65)

Thus by virtue of (5.40), we obtain
√
V (t, x, y)−U−

αβ(t, x, y) ≤ C min
{
1, e−ν� min{ξα/ sin α, ξβ/ sin β}}

in R × R
2. Then letting ε → 0 in U+ yields 0 ≤ V ≤ 1 and (2.13).

It follows from (5.63) that for any τ > 0, wn(t + τ, x, y) solves an equation of the type
{
∂tw −�x,yw = f (x, y, w) when t > −n, (x, y) ∈ R

2

w(t, x, y) = wn(−n + τ, x, y) when t = −n, (x, y) ∈ R
2
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for all n ∈ N. In addition, (5.64) gives that

wn(−n + τ, x, y) ≥ U−
αβ(−n + τ, x, y) ≥ U−

αβ(−n, x, y)

for all (x, y) ∈ R
2. Then applying the comparison principle, one gets

wn(t + τ, x, y) ≥ wn(t, x, y), ∀(t, x, y) ∈ (−n,+∞)× R
2, ∀τ > 0,

which implies ∂twn(t, x, y) ≥ 0 in (−n,+∞)×R
2. Letting n → ∞ yields ∂t V (t, x, y) ≥ 0

in R × R
2. By virtue of the strong maximum principle, we obtain (2.14). The proof of

Theorem 2.12 is thereby complete. ��

5.2 Uniqueness

Proof of Theorem 2.15 Let V1(t, x, y) be an entire solution of (1.1) satisfying (2.15) and
0 ≤ V1 ≤ 1. We will prove that V ≥ V1 in R

3. It follows from (2.13) and (2.15) that

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣V (t, x, y)−U−
αβ(t, x, y)

∣∣∣ = 0 (5.66)

and
lim

R→+∞ sup
x2+(y−cαβ t)2>R2

∣∣∣V1(t, x, y)−U−
αβ(t, x, y)

∣∣∣ = 0. (5.67)

Denote

0
α�R := {

(t, x, y) ∈ R
3 : ξα/ sin α > R

}
, 1

α�R := {
(t, x, y) ∈ R

3 : ξα/ sin α < −R
}
,

0
β�R := {

(t, x, y) ∈ R
3 : ξβ/ sin β > R

}
, 1

β�R := {
(t, x, y) ∈ R

3 : ξβ/ sin β < −R
}
.

Since the proof of Theorem 2.15 is almost same as Step 3 of the proof of Lemma 5.4, we
only give the outlines for the sake of saving space.

Step 1. By (5.5), (5.6), (5.66) and (5.67), there exist R1 > 1 and R2 > 1 such that

V (t, x, y) > 1 − γ�

2
, V1(t, x, y) > 1 − γ�

2
in 1

α�R1−1 ∪ 1
β�R1−1 (5.68)

and

V (t, x, y) < p, V1(t, x, y) < p in 0
α�R2−1 ∩ 0

β�R2−1,

where p and γ� are defined in (1.3) and (1.5). Denote�R12 := R
3\(1α�R1 ∪ 1

β�R1 ∪ (0α�R2 ∩
0
β�R2)). One can prove that there exists a number τ ′ > 0 such that

V
(
t + τ ′, x, y

)
> V1(t, x, y) in �R12 . (5.69)

Step 2. Define

ε∗ := inf
{
ε > 0 : V

(
t + τ ′, x, y

) ≥ V1(t, x, y)− ε, ∀(t, x, y) ∈ 1
α�R1 ∪ 1

β�R1

}
.

One can prove that ε∗ = 0, which means

V
(
t + τ ′, x, y

) ≥ V1(t, x, y) in 1
α�R1 ∪ 1

β�R1 . (5.70)

Similarly, one can prove

V
(
t + τ ′, x, y

) ≥ V1(t, x, y) in 0
α�R2 ∩ 0

β�R2 . (5.71)
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Step 3. It follows from (5.69)–(5.71) that V
(
t + τ ′, x, y

) ≥ V1(t, x, y) in R
3. Define

τ ∗ := inf
{
τ > 0 : V (t + τ, x, y) ≥ V1(t, x, y) in R

3} .

One can prove that τ ∗ = 0, which implies that V ≥ V1 in R
3. With similar arguments as

above, by permuting the roles of functions V and V1, one can also prove that V1 ≥ V in R
3.

Consequently V1 ≡ V in R
3. The proof of Theorem 2.15 is thereby complete. ��

Using the uniqueness result, we get Remark 2.14.

Proof of Remark 2.14 Apparently for any k ∈ Z,

Vk(t, x, y) := V (t + L2k/cαβ, x, y + L2k)

is an entire solution of (1.1) and 0 ≤ Vk ≤ 1, where L2 is the period of y. It follows from
(5.5)–(5.8) that the values of ξα , ξβ , ξ and η at points (t + L2k/cαβ, x, y+ L2k) are invariant
for all k ∈ Z. Then since L2 is the period of Ue(s, x, y) in y for all e ∈ S

N−1, one gets

U+(t, x, y) = U+(t + L2k/cαβ, x, y + L2k), U−
αβ(t, x, y) = U−

αβ(t + L2k/cαβ, x, y + L2k)

in R × R
2 for all k ∈ Z. Thus we obtain from (5.10) that

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣U+(t + L2k/cαβ, x, y + L2k)−U−
αβ(t + L2k/cαβ, x, y + L2k)

∣∣∣ ≤ ε,

which implies by (5.65) that

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣Vk(t, x, y)−U−
αβ(t, x, y)

∣∣∣ = 0.

Therefore Theorem 2.15 yields that Vk(t, x, y) ≡ V (t, x, y) in R
3, which completes the

proof. ��

5.3 Stability

We construct super- and subsolutions for Cauchy problem (1.1) (ignore initial condition).

Lemma 5.6 For each δ ∈ (0, δ∗] and each 0 < ε < ε+
0 (δ), there exist positive constants

μ(δ) and �(δ, μ) such that for any 0 < λ < λ+
0 (δ, ε),

W+
σ (t, x, y) :=U+(τ, x, y)+σe−μt×

[
U δ
α(η(τ,x, y), x, y)ω(η(τ, x, y))+(1 − ω(η(τ, x, y)))

]

is a supersolution of (1.1) for t ≥ 0 and (x, y) ∈ R
2, for all σ ∈ (0,min{p/4, γ�/4}], where

τ = τ(t) := t − �σe−μt + �σ , and δ∗, ε+
0 (δ), λ

+
0 (δ, ε), U

+ are given in Lemma 5.4, and η,
ω, p, γ� are given in (5.8), (5.3), (1.3), (1.5), respectively.

Proof The strategy is to find two numbers X ′ > 1 and X ′′ > 1 and show the inequality

LW+
σ := ∂tW

+
σ −�x,yW

+
σ − f

(
x, y,W+

σ

) ≥ 0, ∀(t, x, y) ∈ [0,+∞)× R
2,

by considering three cases η(τ, x, y) > X ′, η(τ, x, y) < −X ′′, and η(τ, x, y) ∈ [−X ′′, X ′],
respectively. Since U+ is a supersolution of (1.1) by Lemma 5.4, one has

LW+
σ ≥ �σμe−μtU+

τ + f
(
x, y,U+) − f

(
x, y,W+

σ

)

+ (∂t −�x,y)
(
σe−μt × [

U δ
α(η, x, y)ω(η)+ (1 − ω(η))

])
(5.72)
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in R × R
2, where η, U+ and all of its derivatives are evaluated at (τ (t), x, y).

Case 1: η(τ(t), x, y) > X ′ and t ≥ 0, where X ′ > 1 is to be chosen.
In this case,ω(η) ≡ 1. Recalling (5.9) and (5.20), by virtue of Proposition 3.3, there exists

a number X ′
1 > 1 such that W+

σ < p in {(t, x, y) : η(τ(t), x, y) ∈ (X ′
1,+∞), t ≥ 0}. It

follows from (5.72), (1.3) and (5.12) that

LW+
σ ≥ �σμe−μtU+

τ + (∂t −�x,y)
(
σe−μtU δ

α

)

≥ −σμe−μtU δ
α + σe−μt × (∂τ −�x,y)

(
U δ
α

)
− δU δ−1

α ∂sUαcαβ�μ
(
σe−μt)2

≥ −σμe−μtU δ
α + σe−μt × (∂τ −�x,y)

(
U δ
α

)
(5.73)

in {(t, x, y) : η(τ(t), x, y) ∈ (X ′
1,+∞), t ≥ 0}, where Uα and all of its derivatives are

evaluated at (η(τ (t), x, y), x, y). Then one can obtain from (5.19), (5.21), (5.22) and (5.73)
that there exists a sufficiently large number X ′ > X ′

1 such that

LW+
σ ≥ −σμe−μtU δ

α + σe−μtU δ
α

δcαβcα
4

in {(t, x, y) : η(τ(t), x, y) ∈ (X ′,+∞), t ≥ 0}. Let 0 < μ < δcαβcα/4. Thus we prove
immediately that LW+

σ > 0 in Case 1.
Case 2: η(τ(t), x, y) < −X ′′ and t ≥ 0, where X ′′ > 1 is to be chosen.
In this case,ω(η) ≡ 0.Recalling (5.9), (5.20) and (5.29), by virtue of Proposition 3.3, there

exists a number X ′′ > 1 such thatU+, W+
σ ∈ [1− γ�, 1+ γ�] in {(t, x, y) : η(τ(t), x, y) ∈

(−∞,−X ′′), t ≥ 0}. Then it follows from (5.72), (5.12) and (1.5) that

LW+
σ ≥ �σμe−μtU+

τ + f
(
x, y,U+) − f

(
x, y,W+

σ

) + (∂t −�x,y)
(
σe−μt)

≥ f
(
x, y,U+) − f

(
x, y,W+

σ

) − σμe−μt

≥ κ1

2
σe−μt − σμe−μt

in {(t, x, y) : η(τ(t), x, y) ∈ (−∞,−X ′′), t ≥ 0}. Setting 0 < μ < κ1/2, one has that
LW+

σ > 0 in Case 2.
Case 3: −X ′′ ≤ η(τ(t), x, y) ≤ X ′ and t ≥ 0.
It holds from (5.9), (5.14) and (5.18) that

∂

∂τ

(
U+(τ, x, y)

) = ∂sUe(x)(ξ, x, y)ξτ + εsech(λx)
∂

∂τ

[ (
U δ
α(η, x, y)− 1

)
ω(ξ)

]

≥ ∂sUe(x)(ξ, x, y)
−cαβ√

ψ ′2(λx)+ 1
(5.74)

in R
3, where ξ and η are evaluated at (τ, x, y). Since η is bounded in this case, ξ is also

bounded. Thus by (5.74), Proposition 3.9 and Lemma 5.2, there exists a number r > 0 such
that

U+
τ (τ, x, y) > rcαβ in {(t, x, y) : η(τ(t), x, y) ∈ [−X ′′, X ′]}. (5.75)

By Theorems 2.5 and 2.7, Lemma 5.2, (5.72), (5.8) and (5.75), we obtain that

LW+
σ ≥ �σμe−μtU+

τ − ‖ fu‖L∞ σe−μt + (∂t −�x,y)
(
σe−μt

[
U δ
α(η, x, y)ω(η)+ (1 − ω(η))

])

≥ �σμe−μtU+
τ − ‖ fu‖L∞ σe−μt − σe−μt�x,y

[ (
U δ
α(η, x, y)− 1

)
ω(η)

]

− σμe−μt + σe−μt ∂
∂τ

[ (
U δ
α(η, x, y)− 1

)
ω(η)

]
τ ′(t)
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≥ �σμe−μtU+
τ − ‖ fu‖L∞ σe−μt − σμe−μt − σe−μt�x,y

[ (
U δ
α(η, x, y)− 1

)
ω(η)

]

≥ (
�μU+

τ − ‖ fu‖L∞ − μ
)
σe−μt − σe−μt × C(δ)

in {(t, x, y) : η(τ(t), x, y) ∈ [−X ′′, X ′], t ≥ 0}. Set

� >
‖ fu‖L∞ + μ+ C(δ)

μrcαβ
.

Then we prove that LW+
σ > 0 in Case 3. The proof of Lemma 5.6 is thereby complete. ��

Lemma 5.7 Assume that V is the solution defined in Theorem 2.12. Then for any δ ∈ (0, δ∗],
there is a positive constant λ̃+

0 (δ) such that, for each 0 < λ < λ̃+
0 (δ) there exist positive

constants μ(δ) and �̃(δ, μ, λ) such that

V+
σ (t, x, y; T ) := V

(
T + τ̃ , x, y

) + σe−μt × [
U δ
α(η, x, y)ω(η)+ (1 − ω(η))

]

is a supersolution of (1.1) for t ≥ 0 and (x, y) ∈ R
2, for all T ∈ R and σ ∈

(0,min{p/4, γ�/4}], where τ̃ = τ̃ (t) := t−�̃σe−μt+�̃σ , and η is evaluated at (T+τ̃ , x, y),
and δ∗, μ(δ), η, ω, p, γ� coincide with those in Lemma 5.6.

Moreover, for any δ ∈ (0, δ∗], there is a positive constant λ̂+
0 (δ) such that, for each

0 < λ < λ̂+
0 (δ) there exist positive constants μ̂(δ), �̂(δ, μ̂, λ) and σ

0(δ, μ̂, �̂, λ) such that

V−
σ (t, x, y; T ) := V

(
T + τ̂ , x, y

) − σe−μ̂t × [
U δ
α(η, x, y)ω(η)+ (1 − ω(η))

]

is a subsolution of (1.1) for t ≥ 0 and (x, y) ∈ R
2, for all T ∈ R and σ ∈ (0, σ 0], where

τ̂ = τ̂ (t) := t + �̂σe−μ̂t − �̂σ , and η is evaluated at (T + τ̂ , x, y), and δ∗, η, ω, p, γ�
coincide with those in Lemma 5.6.

Proof Step 1: we prove that Vt ≥ r in {(t, x, y) : |η| ≤ q}, where r = r(λ, q) > 0 is a
constant.

Assume by contradiction that there exists a sequence of points {(tn, xn, yn)}n∈N satisfying

Vt (tn, xn, yn) → 0 as n → ∞ and |η(tn, xn, yn)| ≤ q for all n. (5.76)

By (5.75), there is a positive number r1 = r1(q) independent of λ and ε, such that

∂tU
+ > r1 in {(t, x, y) : |η| ≤ q + cαβ}. (5.77)

Set ε = r1/16, and fix arbitrary 0 < λ < λ+
0 (δ, ε) =: λ̄+

0 (δ, q), where λ
+
0 (δ, ε) is given in

Lemma 5.4. By virtue of (5.10), one gets that there is a number ι = ι(λ) > 0 such that
∣∣U+(t, x, y)− V (t, x, y)

∣∣ ≤ r1
4

(5.78)

for all |x | ≥ ι. Without loss of generality, assume that xn ≤ 0 for all n ∈ N. Let

ȳn := yn + ψ(λ(xn − ι))

λ
− ψ(λxn)

λ
.

Then |ȳn − yn | ≤ ι‖ψ ′‖L∞ ≤ ιmax{cot α,− cot β}. It is trivial to check that η(tn, xn −
ι, ȳn) = η(tn, xn, yn), which implies

|η(tn − τ, xn − ι, ȳn)| ≤ q + cαβ (5.79)

for all τ ∈ [0, 1] and n ∈ N. Since V is a solution of (1.1), it solves an equation of the type

(∂t −�x,y)Vt − fu(x, y, V )Vt = 0 (5.80)
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in R×R
2, where fu(x, y, V ) is bounded by (1.2). Using (2.14), (5.76) and (5.80), we obtain

from the Harnack inequality that

Vt (tn − τ, xn − ι, ȳn) → 0 as n → ∞
uniformly for τ ∈ [0, 1], which yields

V (tn, xn − ι, ȳn)− V (tn − 1, xn − ι, ȳn) → 0 as n → ∞.

By virtue of (5.77)–(5.79), we reach a contradiction

V (tn, xn − ι, ȳn)− V (tn − 1, xn − ι, ȳn) ≥ r1
2
, ∀n ∈ N.

Step 2: we prove that V+
σ (t, x, y; T ) is a supersolution.

By (5.10) (fixλ∗ < λ+
0 (δ, ε∗) inU+,where ε∗ < min{p/8, γ�/8}), one gets that there exist

X ′
1 > 1and X ′′ > 1 such thatV+

σ < p in
{
(t, x, y) : η(T + τ̃ (t), x, y) ∈ (

X ′
1,+∞)

, t ≥ 0
}
,

and

V , V+
σ ∈ [1 − γ�, 1 + γ�] in

{
(t, x, y) : η(T + τ̃ (t), x, y) ∈ (−∞,−X ′′) , t ≥ 0

}
.

With similar arguments as those inCase 1 andCase 2 of the proof of Lemma 5.6, there exists
X ′ > X ′

1 such that

LV+
σ > 0 in

{
(t, x, y) : η(T + τ̃ (t), x, y) ∈ (−∞,−X ′′) ∪ (

X ′,+∞)
, t ≥ 0

}
,

where X ′ and X ′′ are independent of λ, and μ < min{δcαβcα/4, κ1/2}.
By Step 1, there is a positive constant λ̃+

0 (δ) := λ̄+
0 (δ,max{X ′, X ′′}) such that, for any

0 < λ < λ̃+
0 (δ) there exists r = r(λ) such that Vt > r in {(t, x, y) : −X ′′ ≤ η(T +

τ̃ (t), x, y) ≤ X ′}. With similar arguments as those in Case 3 of the proof of Lemma 5.6,
there exists a constant �̃ = �̃(δ, μ, λ) such that LV+

σ > 0 in {(t, x, y) : η(T + τ̃ (t), x, y) ∈
[−X ′′, X ′], t ≥ 0}. In conclusion, V+

σ is a supersolution of (1.1) for t ≥ 0 and (x, y) ∈ R
2,

for all σ ∈ (0,min{p/4, γ�/4}].
Step 3: we prove that V−

σ (t, x, y; T ) is a subsolution.
Let σ 0 ≤ σ 0

1 := min{p/4, γ�/4}. With similar arguments as Step 2, one can get that there
exist X̂ ′ > 1 and X̂ ′′ > 1 independent of λ, such that

LV−
σ < 0 in

{
(t, x, y) : η(T + τ̂ (t), x, y) ∈ ( − ∞,−X̂ ′′), t ≥ 0

}

(provided μ̂ < κ1/2), and

LV−
σ ≤ σμ̂e−μ̂tU δ

α − δU δ−1
α ∂sUαcαβ �̂μ̂

(
σe−μ̂t)2 − σe−μ̂tU δ

α

δcαβcα
4

≤
(
μ̂+ μ̂

−∂sUαδcαβ
Uα

�̂σ − δcαβcα
4

)
σe−μ̂tU δ

α (5.81)

in
{
(t, x, y) : η(T + τ̂ (t), x, y) ∈ (

X̂ ′,+∞)
, t ≥ 0

}
. It follows from Theorems 2.5 and 2.7

that ∂sUα/Uα is bounded. If

σ ≤ σ 0
2 := 1

�̂
,

then by (5.81) there exists a constant μ̂(δ) > 0 such that

LV−
σ < 0 in

{
(t, x, y) : η(T + τ̂ (t), x, y) ∈ (

X̂ ′,+∞)
, t ≥ 0

}
.
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By Step 1, there is a positive constant λ̂+
0 (δ) := λ̄+

0 (δ,max{X̂ ′, X̂ ′′}) such that, for any
0 < λ < λ̂+

0 (δ) there exists r̂ = r̂(λ) such that

∂

∂τ̂

(
V (T + τ̂ , x, y)

)
> r̂ in

{
(t, x, y) : −X̂ ′′ ≤ η(T + τ̂ , x, y) ≤ X̂ ′}.

With similar arguments as those in Case 3 of the proof of Lemma 5.6, we have that

LV−
σ ≤ −�̂σ μ̂e−μ̂t r̂ + ‖ fu‖L∞ σe−μ̂t + σe−μ̂t�x,y

[ (
U δ
α(η, x, y)− 1

)
ω(η)

]

+ σμ̂e−μ̂t − σe−μ̂t ∂
∂τ̂

[ (
U δ
α(η, x, y)− 1

)
ω(η)

]
τ̂ ′(t)

≤ (−�̂μ̂r̂ + ‖ fu‖L∞ + μ̂+ C1(δ)
)
σe−μ̂t − σe−μ̂t ∂

∂τ̂

[ (
U δ
α(η, x, y)− 1

)
ω(η)

]
τ̂ ′(t)

≤ (−�̂μ̂r̂ + ‖ fu‖L∞ + μ̂+ C1(δ)+ C2(δ)× �̂μ̂σ
)
σe−μ̂t (5.82)

in
{
(t, x, y) : η(T + τ̂ (t), x, y) ∈ [ − X̂ ′′, X̂ ′], t ≥ 0

}
. If

σ ≤ σ 0
3 := r̂

2C2(δ)
and �̂ >

2
(‖ fu‖L∞ + μ̂+ C1(δ)

)

μ̂r̂
,

then it follows from (5.82) that

LV−
σ < 0 in

{
(t, x, y) : η(T + τ̂ (t), x, y) ∈ [ − X̂ ′′, X̂ ′], t ≥ 0

}
.

At last, let σ 0 := min{σ 0
1 , σ

0
2 , σ

0
3 }.

All in all, V−
σ is a subsolution of (1.1) for t ≥ 0 and (x, y) ∈ R

2, for all σ ∈ (0, σ 0]. ��
Now, we are ready to prove the stability of the curved front V (t, x, y) in Theorem 2.12.

Proof of Theorem 2.16 It follows from (5.5), (5.6), (5.8), Remark 5.3 and the fact that
− cot α < ψ ′ < − cot β from Lemma 5.2, that

η(τ(0), x, y) ≤ ξα/ sin α and η(τ(0), x, y) ≤ ξβ/ sin β, ∀(0, x, y) ∈ R
3, ∀λ > 0. (5.83)

Step 1: we construct supersolutions of Cauchy problem (1.1) with initial value u0(x, y).
Set δ1 := min{ν/K , δ∗}, where positive constants ν, K and δ∗ are given in (2.17), The-

orem 2.8 and Lemma 5.6, separately. For any σ ∈ (0,min{p/4, γ�/4}], there exists from
(2.17) a number Rσ > 0 such that

u0(x, y) ≤ U−
αβ(0, x, y)+ σ

(
C1

2

)δ1
min

{
1, e−νmin{ξα/ sin α, ξβ/ sin β}} (5.84)

for all x2 + y2 > Rσ , where the constant C1 > 0 is given in Theorem 2.2, and ξα , ξβ are
evaluated at (0, x, y). We claim that

W+
σ (0, x, y) ≥ u0(x, y) in R

2 (5.85)

for all σ ∈ (0,min{p/4, γ�/4}], where parameters in Lemma 5.6 are taken as δ = δ1,
μ = μ(δ1), � = �(δ1, μ), ∀ε ∈ (0, ε+

0 (δ1)), and 0 < λ < λ+
0 (δ1, ε) is to be determined.

Case 1: min{ξα, ξβ} > 0. By Theorem 2.2, there exists a constant X∗ > 0 such that

Uα(η, x, y) ≥ C1

2
e−cαη, ∀(η, x, y) ∈ (X∗,+∞)× R

2. (5.86)

Recalling δ1 ≤ ν/K , we obtain from Lemma 5.6, (5.83), (5.84) and (5.86) that

W+
σ (0, x, y) ≥ U+(0, x, y)+ σU δ1

α (η, x, y)
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≥ U−
αβ(0, x, y)+ σ

(
C1

2

)δ1
e−δ1cαη

≥ U−
αβ(0, x, y)+ σ

(
C1

2

)δ1
e−νη

≥ U−
αβ(0, x, y)+ σ

(
C1

2

)δ1
e−νmin{ξα/ sin α, ξβ/ sin β}

≥ u0(x, y)

in {(x, y) : η(0, x, y) > X∗, x2 + y2 > Rσ }. Furthermore, one infers from Proposition 3.9
that

W+
σ (0, x, y) ≥ U+(0, x, y)+ σU δ1

α (X∗, x, y) ≥ U+(0, x, y)+ r1 (5.87)

in {(x, y) : η(0, x, y) ≤ X∗} for some constant r1 > 0. Thus even if it means increasing
Rσ , we obtain from (2.17) that

W+
σ (0, x, y) ≥ u0(x, y) in {(x, y) : η(0, x, y) ≤ X∗, x2 + y2 > Rσ }.

Note that ψ(0) > 0. It follows from (5.7) and Lemma 5.2 that

ξ(0, x, y) = y − ψ(λx)/λ√
ψ ′2(λx)+ 1

→ −∞ as λ → 0

uniformly in {(x, y) : x2 + y2 ≤ Rσ }. Then by virtue of (5.83), Proposition 3.3 and
Lemma 5.4, we get that there is a number λ+

1 (σ ) > 0 such that for any 0 < λ < λ+
1 ,

W+
σ (0, x, y) ≥ Ue(x)(ξ, x, y)+ σU δ1

α (ξα/ sin α, x, y) ≥ 1 ≥ u0(x, y) (5.88)

in {(x, y) : x2 + y2 ≤ Rσ }. Hence W+
σ (0, x, y) ≥ u0(x, y) is valid in Case 1.

Case 2: min{ξα, ξβ} ≤ 0. By virtue of (5.83) and Proposition 3.9, one has

W+
σ (0, x, y) ≥ U+(0, x, y)+ σU δ1

α (0, x, y) ≥ U−
αβ(0, x, y)+ r2

for some constant r2 > 0. By (2.17), even if it means increasing Rσ , we get

W+
σ (0, x, y) ≥ u0(x, y) in

{
(x, y) : x2 + y2 > Rσ

}
.

With similar arguments as (5.88), there is a numberλ+
2 (σ ) > 0 such that for any 0 < λ < λ+

2 ,

W+
σ (0, x, y) ≥ u0(x, y) in

{
(x, y) : x2 + y2 ≤ Rσ

}
.

Therefore W+
σ (0, x, y) ≥ u0(x, y) is valid in Case 2.

In conclusion, claim (5.85) is true for all 0 < λ < min{λ+
0 (δ1, ε), λ

+
1 (σ ), λ

+
2 (σ )}.

Step 2: we introduce a time sequence based on the periodicity of our problem, and prove
that the Omega-limit set along the time sequence contains only V (t, x, y).

By virtue of (2.16), Step 1 and Lemma 5.6, using the comparison principle, one gets

U−
αβ(t, x, y) ≤ u(t, x, y) ≤ W+

σ (t, x, y) in [0,+∞)× R
2 (5.89)

for all σ ∈ (0,min{p/4, γ�/4}]. Define tn := L2n/cαβ and

un(t, x, y) := u(t + tn, x, y + L2n) in R × R
2

for all n ∈ N, where L2 is the period of y. Then tn → +∞ as n → ∞. By parabolic esti-
mates, we have a sequence of functions {unk }k∈N converging locally uniformly to a function
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u∞(t, x, y) inR×R
2, which is an entire solution of (1.1). SinceU−

αβ(t+ tnk , x, y+L2nk) =
U−
αβ(t, x, y) and U

+(t + tnk , x, y + L2nk) = U+(t, x, y), we obtain from (5.89) that

U−
αβ(t, x, y) ≤ unk (t, x, y) ≤ U+(t − �σe−μ(t+tnk ) + �σ, x, y

)
+ σe−μ(t+tnk ) (5.90)

in [−tnk ,+∞)× R
2 for all k ∈ N. Passing to the limit k → ∞ yields

U−
αβ(t, x, y) ≤ u∞(t, x, y) ≤ U+(t + �σ, x, y) in R × R

2.

Let wm(t, x, y; g(x, y)) be the unique solution of the following Cauchy problem
{
∂tw −�x,yw = f (x, y, w) when t > −m, (x, y) ∈ R

2

w(t, x, y) = g(x, y) when t = −m, (x, y) ∈ R
2

for all m ∈ N. It follows from the comparison principle that

wnk

(
t, x, y; U−

αβ(−nk, x, y)
)

≤ u∞(t, x, y) ≤ wnk ,ε,σ
(
t, x, y; U+(−nk + �σ, x, y)

)

(5.91)
in [−nk,+∞)× R

2 for all k ∈ N, where parameters ε and σ are given inW+
σ . Recalling the

definition of V (t, x, y) in the proof of Theorem 2.12, one has

V (t, x, y) ≤ u∞(t, x, y) in R
3. (5.92)

Furthermore, the comparison principle yields that

U−
αβ(t + �σ, x, y) ≤ wnk ,ε,σ

(
t, x, y; U+(−nk + �σ, x, y)

) ≤ U+(t + �σ, x, y)

in [−nk,+∞)×R
2 for all k ∈ N. By parabolic estimates, the sequence {wnk ,ε,σ } converges,

up to a subsequence, locally uniformly to an entire solution w∞(t, x, y) of (1.1) as k → ∞,
ε → 0 and σ → 0, which satisfies by (5.10) that

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣∣∣w∞(t, x, y)−U−
αβ(t, x, y)

∣∣∣ = 0 (5.93)

and 0 ≤ w∞ ≤ 1. Then by virtue of Theorem 2.15 and (5.93), we obtain w∞ ≡ V in R
3,

which implies by (5.91) and (5.92) that u∞ ≡ V in R
3.

Notice that the parameter �(δ, μ) is independent of σ in Lemma 5.6. For any ϑ > 0,
choose a parameter σ1(ϑ) ∈ (0,min{p/4, γ�/4}] such that
∣∣∣U+(

t − �σ1e
−μ(t+tnk ) + �σ1, x, y

)
+ σ1e

−μ(t+tnk ) −U+(t, x, y)
∣∣∣ ≤ σ1 + ∥∥∂tU+∥∥

L∞ �σ1

<
ϑ4

2
(5.94)

for all (t, x, y) ∈ [0,+∞)× R
2 and k ∈ N. Together with (5.90) and (5.94), one has

U−
αβ(t, x, y) ≤ unk (t, x, y) ≤ U+(t, x, y)+ ϑ4

2
in [0,+∞)× R

2 (5.95)

for all k ∈ N. It follows from (5.95), (5.38) and (5.65) that there exists a number Rϑ > 0
such that ∣∣unk (0, x, y)− V (0, x, y)

∣∣ ≤ ϑ4 in
{
(x, y) : x2 + y2 > Rϑ

}
(5.96)

123



Journal of Dynamics and Differential Equations

for all k ∈ N. Since {unk }k∈N converges locally uniformly to V (t, x, y) in R × R
2, there is a

number k0(ϑ) ∈ N such that
∣∣unk (0, x, y)− V (0, x, y)

∣∣ ≤ ϑ4 in
{
(x, y) : x2 + y2 ≤ Rϑ

}
(5.97)

for all k ≥ k0. Denote Tϑ := tnk0 . Then by virtue of (5.96), (5.97) and Remark 2.14, one
gets that for any ϑ > 0,

|u(Tϑ , x, y)− V (Tϑ , x, y)| =
∣∣∣unk0 (0, x, y − L2nk0)− V (0, x, y − L2nk0)

∣∣∣ ≤ ϑ4

(5.98)
for all (x, y) ∈ R

2.
Step 3: we construct super- and subsolutions, which are perturbations of V (t, x, y).
It holds from (5.89) and (5.65) that (fix arbitrary parameters of W+

σ in Step 1)

|u(t, x, y)− V (t, x, y)| ≤
∣∣∣W+

σ (t, x, y)−U−
αβ(t, x, y)

∣∣∣ in [0,+∞)× R
2.

With similar arguments as those in (5.40), we have
√∣∣W+

σ (t, x, y)
∣∣ +

∣∣∣U−
αβ(t, x, y)

∣∣∣ ≤ �min
{
1, e−ν̃min{ξα/ sin α, ξβ/ sin β}}

in R × R
2, for some constants ν̃ > 0 and � > 0, which yields by (5.98) that for any ϑ > 0,

|u(Tϑ , x, y)− V (Tϑ , x, y)| ≤ �ϑ2 min
{
1, e−ν̃min{ξα/ sin α, ξβ/ sin β}} , ∀(x, y) ∈ R

2.

(5.99)
Let δ2 := min{ν̃/K , δ∗}, where K is given in Theorem 2.8. It follows fromProposition 3.9

that there is a constant r3 > 0 such that

U δ2
α (0, x, y) ≥ U δ2

α (X∗, x, y) ≥ r3, ∀(x, y) ∈ R
2. (5.100)

Denote

 := min

{
1,

(
C1

2

)δ2 min{p/4, γ�/4}
�

,

(
2

C1

)δ2
r3

}
, (5.101)

where C1 is given in Theorem 2.2.
We claim that

V−
σ (0, x, y; Tϑ) ≤ u(Tϑ , x, y) ≤ V+

σ (0, x, y; Tϑ) (5.102)

in R
2 for all 0 < ϑ <  , where V−

σ and V+
σ are defined in Lemma 5.7, and parameters are

taken as δ = δ2, σ = σ̄ (ϑ) := �ϑ (2/C1)
δ2 in V−

σ and V+
σ .

Case i: min{ξα, ξβ} > 0. Recalling δ2 ≤ ν̃/K , we obtain from Lemma 5.7, (5.83), (5.86),
(5.99) and (5.101) that for any 0 < ϑ <  ,

V+
σ̄ (0, x, y; Tϑ) ≥ V (Tϑ , x, y)+ σ̄U δ2

α (η, x, y)

≥ V (Tϑ , x, y)+ σ̄

(
C1

2

)δ2
e−δ2cαη

≥ V (Tϑ , x, y)+�ϑ2e−ν̃min{ξα/ sin α, ξβ/ sin β}

≥ u(Tϑ , x, y)

in {(x, y) : η(Tϑ , x, y) > X∗}. Furthermore, one has by (5.99)–(5.101) that

V+
σ̄ (0, x, y; Tϑ) ≥ V (Tϑ , x, y)+ σ̄U δ2

α (X∗, x, y) ≥ V (Tϑ , x, y)+ σ̄r3 ≥ u(Tϑ , x, y)
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in {(x, y) : η(Tϑ , x, y) ≤ X∗} for all 0 < ϑ <  .
Case ii: min{ξα, ξβ} ≤ 0. It follows from (5.83) and (5.99)–(5.101) that

V+
σ̄ (0, x, y; Tϑ) ≥ V (Tϑ , x, y)+ σ̄U δ2

α (0, x, y) ≥ V (Tϑ , x, y)+ σ̄r3 ≥ u(Tϑ , x, y)

in Case ii for all 0 < ϑ <  .
All in all, V+

σ̄ (0, x, y; Tϑ) ≥ u(Tϑ , x, y) inR
2, where parameters in Lemma 5.7 are taken

as δ = δ2, λ = λ̃+
0 (δ2)/2, μ = μ(δ2), � = �̃(δ2, μ, λ), σ = σ̄ = �ϑ (2/C1)

δ2 . Similarly,
one can get that V−

σ̄ (0, x, y; Tϑ) ≤ u(Tϑ , x, y) in R
2. Thus claim (5.102) is valid. It follows

from (5.102), Lemma 5.7 and the comparison principle that for any 0 < ϑ <  ,

V−
σ̄ (s, x, y; Tϑ) ≤ u(Tϑ + s, x, y) ≤ V+

σ̄ (s, x, y; Tϑ), ∀(s, x, y) ∈ [0,+∞)× R
2.

Finally, letting ϑ → 0 which implies σ̄ → 0, we obtain from Lemma 5.7 that

u(t, x, y) → V (t, x, y) as t → +∞
uniformly in R × R

2. The proof of Theorem 2.16 is thereby complete. ��
Proof of Theorem 2.17 Assume that there exists an entire solution V (t, x, y) of (1.1) satis-
fying (2.13) for some constant cαβ . Then it follows from the same proof of Theorem 1.7 in
Guo et al. [26] that

cα
sin α

= cβ
sin β

= cαβ and
cθ
sin θ

�= cαβ, ∀θ ∈ (α, β).

Below we will rule out the case that cθ / sin θ > cαβ , where θ ∈ (α, β).
Fix any δ ∈ (0, 1). For any θ ∈ (α, β) define

W−
θ (t, x, y; T ) := Uθ (ξθ , x, y)− σe−μt × [

U δ
θ (ξθ , x, y)ω(ξθ )+ (1 − ω(ξθ ))

]

in [0,+∞)× R
2 for all T ∈ R, where ξθ is evaluated at (T + t + �σe−μt − �σ, x, y), and

ξθ = ξθ (t, x, y) := x cot θ + y sin θ − cθ t , and μ, �, σ are some positive constants. In fact,
with similar arguments as those in (5.19), (5.21), (5.22) and in the proof of Lemma 5.7, we
can get that

LW−
θ := ∂tW

−
θ −�x,yW

−
θ − f

(
x, y,W−

θ

) ≤ 0 in [0,+∞)× R
2, ∀θ ∈ (α, β), ∀ T ,

where μ = μ(δ, θ), � = �(δ, θ, μ) and σ = σ(δ, θ, μ, �). Since δ < 1, there is a number
C = C(σ ) independent of T such that

W−
θ (0, x, y; T ) = Uθ (ξθ (T , x, y), x, y)− σU δ

θ (ξθ (T , x, y), x, y) ≤ 0 ≤ V (0, x, y)

in {(0, x, y) : ξθ (T , x, y) ≥ C}, for all T ∈ R. Then by similar arguments as those in the
proof of Claim 2.10 in [26], there exists a number T∗ � 0 such that

W−
θ (0, x, y; T∗) ≤ V (0, x, y), ∀(x, y) ∈ R

2.

Thus it follows from the maximum principle that

V (t, x, y) ≥ W−
θ (t, x, y; T∗), ∀(t, x, y) ∈ [0,+∞)× R

2.

Finally taking a sequence {(tn, 0, cαβ tn + R)}n∈N, where tn → +∞ as n → ∞ and the
constant R is large enough, with the same arguments as in the proof of Theorem 1.7 in Guo
et al. [26], we can obtain a contradiction with that cθ / sin θ > cαβ for some θ ∈ (α, β). The
proof of Theorem 2.17 is thereby complete. ��
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6 Appendix

In this section we give the proofs of Lemmas 4.6 and 4.8 respectively.

Proof of Lemma 4.6 Step 1: we prove that the range of Qe, denoted by R(Qe), is closed in
H1
ρ × R.

Let (ṽn, γ̃n), (g̃n, d̃n), (g̃, d̃) ∈ H1
ρ × R satisfy

Qe(ṽn, γ̃n) = (g̃n, d̃n) ∀n ∈ N, and
∥∥∥(g̃n, d̃n)− (g̃, d̃)

∥∥∥
H1
ρ×R

→ 0 as n → ∞. (6.1)

Denote vn := ṽn − g̃n . Then by virtue of (4.9) and (6.1), one has

vn = −M−1
e

(
γ̃n∂sUe + fu(z,Ue)ṽn + βṽn

) ∈ D(Me) = D(He), ∀n ∈ N.

Therefore, one further has

He(vn) = Me(vn)+ ( fu(z,Ue)+ β) vn = − ( fu(z,Ue)+ β) g̃n − γ̃n∂sUe (6.2)

for all n ∈ N. For any w ∈ ker(H∗
e )\{0}, there holds

0 = (
vn,H∗

e (w)
)
L2
ρ

= (He(vn), w)L2
ρ

= (− ( fu(z,Ue)+ β) g̃n − γ̃n∂sUe , w)L2
ρ

for all n ∈ N, which implies

γ̃n (∂sUe, w)L2
ρ

= − (( fu(z,Ue)+ β) g̃n , w)L2
ρ
, ∀n ∈ N. (6.3)

We claim that (∂sUe, w)L2
ρ

�= 0 for all w ∈ ker(H∗
e )\{0}. Assume by contradiction that

(∂sUe, w)L2
ρ

= 0 for some w ∈ ker(H∗
e ) \ {0}. From Lemma 4.4, one knows

dim
(
ker(H∗

e )
) = 1 and L2

ρ(R × L
N ) = R(He)⊕ ker(H∗

e ).

On the one hand, since w ∈ ker(H∗
e )\{0}, one has ∂sUe ∈ (

ker(H∗
e )
)⊥ = R(He). On the

other hand, it follows from Lemma 4.4 that the linear operator He has algebraically simple
eigenvalue 0 and the kernel of He is generated by ∂sUe, thus ∂sUe /∈ R(He), which is a
contradiction.

It follows from (6.3) that

|γ̃n − γ̃m | ≤ ‖ fu‖L∞ + β∣∣∣(∂sUe, w)L2
ρ

∣∣∣
‖w‖L2

ρ
‖g̃n − g̃m‖L2

ρ
, ∀n, m ∈ N.

Since {g̃n}n∈N is a Cauchy sequence in H1
ρ from (6.1), there holds that {γ̃n}n∈N is a Cauchy

sequence in R, then one can assume that {γ̃n}n∈N converges to γ̃ . By (6.2), we have

‖He(vn)− He(vm)‖L2
ρ

≤ (‖ fu‖L∞ + β
) ‖g̃n − g̃m‖L2

ρ
+ ‖∂sUe‖L2

ρ
|γ̃n − γ̃m |

for all n, m ∈ N, which together with (6.1) yield that {He(vn)}n∈N is a Cauchy sequence in
L2
ρ . Thus one can assume that He(vn) converges to g ∈ L2

ρ . One gets from (6.2) that

− ( fu(z,Ue)+ β) g̃ − γ̃ ∂sUe = g. (6.4)

Since R(He) is closed in L2
ρ from Lemma 4.4, there exists a function v ∈ D(He) such that

He(v) = g. Set ṽ := v + α∂sUe + g̃ ∈ H1
ρ , where α ∈ R is to be chosen. Clearly,

∫

R+×LN
Ue∂sUeρ dsdz �= 0, (6.5)
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because Ue > 0, ∂sUe < 0. Thus we can select α ∈ R such that

2
∫

R+×LN
Ueṽρ dsdz = d̃. (6.6)

Since ṽ − g̃ = v + α∂sUe ∈ D(He), it follows that He(ṽ − g̃) = He(v) = g ∈ L2
ρ , which

implies
Me(ṽ − g̃)+ ( fu(z,Ue)+ β) (ṽ − g̃) = g ∈ L2

ρ. (6.7)

Composing (6.7) by M−1
e and using (6.4), one concludes

ṽ + M−1
e (γ̃ ∂sUe + fu(z,Ue)ṽ + βṽ) = g̃. (6.8)

Therefore, Qe(ṽ, γ̃ ) = (g̃, d̃) by (6.6) and (6.8), where (ṽ, γ̃ ) ∈ H1
ρ × R. This completes

Step 1.
Step 2: we prove that Qe is injective.
Let (ṽ, γ̃ ) ∈ ker(Qe) ⊂ H1

ρ × R, then

ṽ = −M−1
e (γ̃ ∂sUe + fu(z,Ue)ṽ + βṽ) ∈ D(Me) = D(He),

which yields

He(ṽ) = Meṽ + fu(z,Ue)ṽ + βṽ = −γ̃ ∂sUe.

Since the linear operator He has algebraically simple eigenvalue 0 and the kernel of He is
generated by ∂sUe from Lemma 4.4, one has H2

e(ṽ) = 0, then ṽ = σ∂sUe, so He(ṽ) = 0,
thus γ̃ = 0. Furthermore, by virtue of (ṽ, γ̃ ) ∈ ker(Qe), it holds that

0 = 2
∫

R+×LN
Ueṽρ dsdz = 2σ

∫

R+×LN
Ue∂sUeρ dsdz.

Combining with (6.5), one gets σ = 0, thus ṽ = 0. Therefore, ker(Qe) = θ .
Step 3: we prove that ker(Q∗

e) = θ .
Set (ṽ, γ̃ ) ∈ ker(Q∗

e) ⊂ H1
ρ × R, then for any (w̃, μ̃) ∈ H1

ρ × R, one has

0 = (
(w̃, μ̃) , Q∗

e(ṽ, γ̃ )
)
H1
ρ×R

= (Qe(w̃, μ̃) , (ṽ, γ̃ ))H1
ρ×R

= (
w̃ + M−1

e (μ̃∂sUe + fu(z,Ue)w̃ + βw̃) , ṽ
)
H1
ρ

+ 2γ̃
∫

R+×LN
Uew̃ρ dsdz. (6.9)

Choosing (w̃, μ̃) = (∂sUe, 0) in (6.9), it follows from Lemma 4.4 that

0 = (M−1
e (He(∂sUe)), ṽ

)
H1
ρ

+ 2γ̃
∫

R+×LN
Ue∂sUeρ dsdz = 2γ̃

∫

R+×LN
Ue∂sUeρ dsdz.

Recalling (6.5), one gets γ̃ = 0. Choosing (w̃, μ̃) = (0, 1) in (6.9), one has

0 = (M−1
e (∂sUe) , ṽ

)
H1
ρ
. (6.10)

Choosing (w̃, μ̃) = (w̃, 0) ∈ D(He)× R in (6.9), one has

0 = (
w̃ + M−1

e ( fu(z,Ue)w̃ + βw̃) , ṽ
)
H1
ρ

= (M−1
e (He(w̃)) , ṽ

)
H1
ρ
. (6.11)

Since
L2
ρ(R × L

N ) = R(He)⊕ ker(H∗
e ) (6.12)
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from Lemma 4.4, and since ∂sUe /∈ R(He), it follows from (6.10) and (6.11) that
(M−1

e (P(∂sUe)) , ṽ
)
H1
ρ

= 0 (6.13)

where P(∂sUe) �= 0 is the orthogonal projection of ∂sUe onto ker(H∗
e ). Moreover, it follows

from Lemma 4.4 that dim
(
ker(H∗

e )
) = 1, hence one gets that ker(H∗

e ) is generated by
P(∂sUe). Together with (6.11)–(6.13), one concludes

(M−1
e (w) , ṽ

)
H1
ρ

= 0 for all w ∈ L2
ρ(R × L

N ). (6.14)

Now choosing (w̃, μ̃) = (ṽ, 0) ∈ H1
ρ × R in (6.9), it follows from (6.14) that

0 = (
ṽ + M−1

e ( fu(z,Ue)ṽ + βṽ) , ṽ
)
H1
ρ

= (ṽ, ṽ)H1
ρ
.

As a consequence, ṽ = 0, thus together with γ̃ = 0, one gets ker(Q∗
e) = θ .

Step 4: we prove that Qe is surjective.
Since M−1

e is a bounded linear operator from Lemma 4.2, it follows that Qe : H1
ρ ×

R → H1
ρ × R is also a bounded linear operator. Since H1

ρ × R is a Hilbert space, since

R(Qe) = R(Qe) in H1
ρ ×R from Step 1, and since ker(Q∗

e) = θ from Step 3, one concludes

H1
ρ × R = R(Qe)⊕ ker(Q∗

e) = R(Qe)⊕ θ = R(Qe).

Therefore, the linear operator Qe is surjective.
All in all, the linear operatorQe is injective and surjective, thus it is invertible. Furthermore,

since Qe is a bounded linear operator, we get that the inverse operator Q−1
e is also bounded.

��
Proof of Lemma 4.8 Step 1:weprove thatQ−1

e is uniformly boundedwith respect to e ∈ S
N−1.

Assume by contradiction that there exist {en}n∈N ⊂ S
N−1, e and {(gn, dn)}n∈N such that

‖(gn, dn)‖H1
ρ×R = 1 ∀n ∈ N, and en → e as n → ∞ (6.15)

and ∥∥Q−1
en (gn, dn)

∥∥
H1
ρ×R

→ +∞ as n → ∞. (6.16)

Denote

(vn, γn) := Q−1
en (gn, dn) and (ṽn, γ̃n) := 1

‖(vn ,γn)‖H1
ρ×R

(vn, γn), ∀n ∈ N.

Clearly, ‖(ṽn, γ̃n)‖H1
ρ×R = 1. Using Lemma 4.2 and (4.8), one obtains from calculations

that
∥∥Qe(ṽn, γ̃n)− Qen (ṽn, γ̃n)

∥∥
H1
ρ×R

= ∥∥M−1
e (γ̃n∂sUe + fu(z,Ue)ṽn + βṽn)− M−1

en (γ̃n∂sUen + fu(z,Uen )ṽn + βṽn)
∥∥
H1
ρ

+
∣∣∣∣2

∫

R+×LN
(Ue −Uen )ṽnρ dsdz

∣∣∣∣

≤ ∥∥(M−1
e − M−1

en

)
(γ̃n∂sUe + fu(z,Ue)ṽn + βṽn)

∥∥
H1
ρ

+ M
∥∥γ̃n(∂sUe − ∂sUen )+ ṽn

(
fu(z,Ue)− fu(z,Uen )

)∥∥
L2
ρ

+ 2
∥∥Uen −Ue

∥∥
L2
ρ

≤ ∥∥(M−1
e − M−1

en

)
(γ̃n∂sUe + fu(z,Ue)ṽn + βṽn)

∥∥
H1
ρ

+ (M + 2)
∥∥Uen −Ue

∥∥
H1
ρ
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+ M
∥∥∥
(
fu(z,Ue)− fu(z,Uen )

)2
ṽ2nρ

∥∥∥
L1

≤ ∥∥(M−1
e − M−1

en

)
(γ̃n∂sUe + fu(z,Ue)ṽn + βṽn)

∥∥
H1
ρ

+ (M + 2)
∥∥Uen −Ue

∥∥
H1
ρ

+ M(2 ‖ fu‖L∞)
2N
N+1C ‖ fuu‖

2
N+1
L∞

∥∥Uen −Ue
∥∥

2
N+1

L2 (6.17)

for all n ∈ N, where C is a constant independent of n, and we have used the Sobolev
imbedding theorem (one can refer to Theorem 4.12 of [1]). Note that ‖(ṽn, γ̃n)‖H1

ρ×R = 1

and ∂sUe ∈ H1
ρ . Then γ̃n∂sUe + fu(z,Ue)ṽn + βṽn belongs to H1

ρ (R × L
N ), and its H1

ρ

norm is uniformly bounded with respect to n. By virtue of (6.17) and Lemmas 4.3 and 4.7,
one gets ∥∥Qe(ṽn, γ̃n)− Qen (ṽn, γ̃n)

∥∥
H1
ρ×R

→ 0 as n → ∞. (6.18)

It follows from (6.15) and (6.16) that

∥∥Qen (ṽn, γ̃n)
∥∥
H1
ρ×R

=
∥∥Qen (vn, γn)

∥∥
H1
ρ×R

‖(vn, γn)‖H1
ρ×R

= 1

‖(vn, γn)‖H1
ρ×R

→ 0 as n → ∞. (6.19)

Then, since Q−1
e is bounded by Lemma 4.6, we obtain from (6.18) and (6.19) that

‖(ṽn, γ̃n)‖H1
ρ×R → 0 as n → ∞,

which contradicts the fact that ‖(ṽn, γ̃n)‖H1
ρ×R = 1.

Step 2. Let {em}m∈N ⊂ S
N−1 satisfy limm→∞ em = e. For given (g, d) ∈ H1

ρ × R

satisfying ‖(g, d)‖H1
ρ×R ≤ 1, denote

(vm, γm) := Q−1
em (g, d) and (v, γ ) := Q−1

e (g, d).

Then Step 1 yields that ‖(vm, γm)‖H1
ρ×R ≤ C̃‖(g, d)‖H1

ρ×R, where C̃ is a constant indepen-
dent of m ∈ N. With similar arguments as (6.17) and (6.18), one gets

∥∥Qe(vm, γm)− Qem (vm, γm)
∥∥
H1
ρ×R

→ 0 as m → ∞

uniformly with respect to (g, d) ∈ {(g, d) ∈ H1
ρ × R : ‖(g, d)‖H1

ρ×R ≤ 1}, which implies
that

‖(vm, γm)− (v, γ )‖H1
ρ×R ≤ ∥∥Q−1

e

∥∥ ‖Qe(vm, γm)− Qe(v, γ )‖H1
ρ×R

= ∥∥Q−1
e

∥∥ ∥∥Qe(vm, γm)− Qem (vm, γm)
∥∥
H1
ρ×R

→ 0 as m → ∞ (6.20)

uniformly with respect to (g, d) ∈ {(g, d) ∈ H1
ρ × R : ‖(g, d)‖H1

ρ×R ≤ 1}. Eventually, one
concludes from (6.20) that

∥∥Q−1
em − Q−1

e

∥∥ = sup
‖(g,d)‖

H1
ρ×R

≤1

∥∥Q−1
em (g, d)− Q−1

e (g, d)
∥∥
H1
ρ×R

→ 0

as m → ∞. The proof of Lemma 4.8 is thereby complete. ��
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