Journal of Dynamics and Differential Equations
https://doi.org/10.1007/510884-024-10388-1

®

Check for
updates

On Traveling Fronts of Combustion Equations in Spatially
Periodic Media

Yasheng Lyu'? . Hongjun Guo? - Zhi-Cheng Wang'

/ Accepted: 11 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

This paper is concerned with traveling fronts of spatially periodic reaction—diffusion equa-
tions with combustion nonlinearity in RY . It is known that for any given propagation direction
e € SV~! the equation admits a pulsating front connecting two equilibria 0 and 1. In this
paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives
at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the
propagation direction e € S¥~!. Following the uniform estimates, we then show continuous
Fréchet differentiability of the pulsating fronts with respect to the propagation direction.
Lastly, using the differentiability, we establish the existence, uniqueness and stability of
curved fronts with V-shape in R? by constructing suitable super- and subsolutions.
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1 Introduction

In this paper, we investigate spatially periodic reaction—diffusion equations of the type

up — Au = f(z,u) in(t,z) € R x RV, (1.1)

where N € N, u = u(t,z), uy = g—’;,

spatial variables z € RY, and the reaction term f (z, u) satisfies the following assumptions:

A denotes the Laplace operator with respect to the
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(F1) f:RYN xR — Ris of class C°(RN*1) and satisfies
k .
1 ety = 2(; Hsz”Lw(RNH) < +oo forall k € N. (1.2)
1=

(F2) For each u € R, the function f(-, u) : RY - Ris L—periodic. Here a function
h: RN - Rissaidtobe L—periodicifh(zy, ..., 2xk+Lk, - -, 2n) = h(21, ..., ZN)
foralll <k < Nandall (z,...,zy) € RN, where L;, ..., Ly are given positive
constants. In such case, LY := (0, L) x - - - x (0, L) is called the cell of periodicity.

(F3) There exists p € (0, 1) such that

V(z,u) € RN x [0, pJU{1}, f(z,u)=0;
V(z,u) e RN x (p, 1), f(z,u) =>0; (1.3)
Yue(p, 1), 3zeRN, sit. f(z,u) > 0.

(F4) There holds sup f,(z, 1) <O.

zeRN

Assumption (F1) can be relaxed to f € C™ (RN ‘H) for sufficiently large m € N, but for
the sake of convenience, we suppose f € C* (RN “). Clearly, assumptions (F3) and (F4)
imply that the reaction term f is of combustion type. Denote

— Ky := inf f,(z,1) and —«;:= sup f,(z, 1). (1.4)
zeRV Z€RN
By assumptions (F1) and (F4), one has 0 < k; < K; < +o0. It follows from (1.2) and (1.4)
that there exists a positive constant y, < 1 such that

fulzou) < —’izl, Yz ) e RY x [1 =y, 1+ 3. (1.5)

For reaction—diffusion equations in spatially periodic media, important advances have
recently been made in its propagation dynamics. To describe the propagation dynamics
of spatially periodic equations, it is necessary to introduce an important notion—pulsating
front, which is a natural extension of the classical notion—planar traveling wave solution in
homogeneous media.

Definition 1.1 (Pulsating Front) A pair (U,, c¢.) with U, : R x RN — Rand ¢, € R is said
to be a pulsating front of (1.1) with effective speed ¢, in the direction e € S¥~! connecting
two equilibria 0 and 1, if the following three properties are satisfied:

(i) the function u(t, z) := U.(z-e — ct, ) is an entire (classical) solution of the parabolic
Eq. (1.1).
N
(ii) the profile U, satisfies U, (s, z) = U, (s, z+y) forall (s,z) e RxRN and y € I1LiZ.
i=1

(iii) the profile U, satisfies
lim U(s,z) =0 and lim U,(s,z) =1 uniformly for z € RV,
§—+400 §—>—00
The notion of pulsating front was introduced first by Shigesada et al. [46] and Xin [58-60].

Now we recall the existing results on pulsating fronts of a general reaction—diffusion equation
in spatially periodic media

uy =V - (A@)Vu) +q@) - Vu+ f(z,u) in(,z) € R x RY, (1.6)
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where A(z) = (Ajj (z))1<i’j<N is a matrix field and ¢ (z) = (¢1(2), - - - , gn(2)) is a vector
field. For the monostable nonlinearity f, it was shown that for any propagation direction
e € SN~1, there exists a minimal wave speed ¢ such that Eq. (1.6) admits a pulsating front
if and only if the wave speed ¢ > ¢, see Berestycki and Hamel [3], Liang and Zhao [37],
Weinberger [57], etc. Furthermore, the uniqueness and stability of pulsating fronts were
studied in [29, 35]. For the combustion nonlinearity, it follows from Berestycki and Hamel [3]
and Xin [58, 60] that for any e € SV~!, there exists a unique (up to time shift) pulsating front
U, with wave speed c,. In particular, the speed ¢, is also unique. For the bistable nonlinearity
f, the existence and nonexistence of pulsating traveling fronts were studied intensively. For
one dimensional case, see Ding, Hamel and Zhao [15], Ducrot, Giletti and Matano [18], Fang
and Zhao [22], Giletti and Matano [23], and Nolen and Ryzhik [42]. For higher dimensional
case, see Ducrot [17], Giletti and Rossi [24], Xin [59]. More recently, Ding and Giletti [14]
showed in any spatial dimension that for an arbitrary large number of directions, there exists
a spatially periodic bistable type equation to achieve any combination of speeds in those
given directions, provided that those speeds have the same sign. In particular, even if in one
dimensional space, any pair of rightward and leftward wave speeds is admissible, which is
completely different from the Fisher-KPP case. They also showed that these variations in the
speeds of bistable pulsating fronts lead to strongly asymmetrical situations in the multistable
equations. Besides these existence results for pulsating fronts of bistable equations, it was
also shown that there may not exist pulsating fronts for bistable equations in spatially periodic
media. Zlatos [64] constructed a periodic pure bistable reaction such that there is no pulsating
fronts of (1.1). We also refer to [15, 61, 62] for some nonexistence results. For the unique
and stability of pulsating fronts for bistable equations in spatially periodic media, we refer
to Ding, Hamel and Zhao [15].

As reported above, in spatially periodic media, pulsating traveling fronts may not exist for
bistable equations. In fact, unlike in the homogeneous case, the equation in spatially periodic
media is no longer invariant by rotation, and hence the wave profile and the wave speed may
be different depending on its direction even if the pulsating fronts exist. Therefore, many
researchers paid attention to the dependence of propagation phenomena on the direction in
spatially periodic media. In [2], Alfaro and Giletti considered a spatially periodic reaction—
diffusion equation with either combustion or monostable nonlinearity in high-dimensional
space. They showed that the (minimal) wave speed of pulsating fronts of the equation depends
continuously on the direction of propagation, and so does its associated profile (up to time
shifts). They also showed that the spreading properties in [57] are uniform with respect to the
direction. Guo [25] studied a spatially periodic reaction—diffusion equation with bistable non-
linearity in high-dimensional space. Under the a priori assumption that there exist pulsating
fronts with nonzero speeds for every direction of propagation, they showed the continuity and
differentiability of wave speeds and profiles of the underlying pulsating fronts with respect
to the direction of propagation. They also proved that the propagating speed of any transition
front is larger than the infimum of speeds of pulsating fronts and less than the supremum of
speeds of pulsating fronts. More recently, Ding et al. [16] revisited the continuity and further
proved the continuity of wave speeds on the direction without the extra assumption that the
wave speeds are nonzero in all directions.

In high-dimensional space, even if for homogeneous reaction—diffusion equation, there
exist various traveling fronts whose level sets admit different shapes, such as V-shaped
traveling fronts, pyramidal traveling fronts, and conical traveling fronts. These fronts have
been found in experimental observations and numerical calculations for the Bunsen burners
and Belousov—Zhabotinskii chemical reaction, see [27, 43, 47] for flames of various kinds of
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smooth shapes, and [6, 44] for V-shaped chemical waves. In the past thirty years, there were
many important studies concentrating on the rigorous mathematical analysis to these fronts.
See [32, 33, 40, 48-52] for bistable equations, [11, 12, 34, 55] for monostable equations,
[5,9, 11, 12, 30, 31, 55] for combustion equations, and [41, 45, 53] for reaction—diffusion
systems. For inhomogeneous (heterogeneous) reaction—diffusion equations, there also were
some literatures concerning curved fronts of the equations. See [54, 56, 63] for time periodic
bistable and combustion equations, [19, 20] for monostable and combustion equations with
periodic shear flow, and [10] for space-time periodic monostable equations. In particular, Guo
et al. [26] studied Eq. (1.1) under bistable assumption and gave some sufficient conditions
to the existence of curved fronts in R?. They further showed that the curved front is unique
and asymptotically stable.

In this paper we continuously investigate the propagation phenomena of periodic Eq. (1.1)
under assumptions (F1)—(F4). Namely, we consider Eq. (1.1) with combustion nonlinearity.
By (F3), we have that there exists p € (0, 1) such that f(z,u) = 0 for any (z,u) €
RY x [0, pl U {1}, which is different from the bistable case studied in [26]. In this case the
equilibrium 0 is degenerate, which in turn raises some difficulties in our study. In fact, to
overcome the difficulty due to the degenerate, we have to work under some weighted sense.
Under assumptions (F1)-(F4), it follows from [3] that for any given propagation direction
e € S¥71, (1.1) admits a unique pulsating front connecting two equilibria 0 and 1. Based
on the existence of pulsating fronts, in this paper we turn to investigate the properties of the
pulsating fronts and establish curved fronts for (1.1). Firstly, we give exponentially asymptotic
behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay
estimates of the pulsating fronts at infinity on the propagation direction e € S¥~!. According
to the uniform estimates, we then show continuous Fréchet differentiability of the pulsating
fronts with respect to the propagation direction. Lastly, using the differentiability, we establish
the existence, uniqueness and stability of curved fronts with V-shape in RZ.

The following sections are devoted to stating and proving the results of this paper. In Sect. 2
we introduce some known results as preliminaries and state our main results. Section3 is
concerned with the asymptotic behaviors of pulsating fronts, including Theorems 2.5 and 2.7.
In Sect. 4, we mainly investigate the Fréchet differentiability of pulsating fronts with respect
to the direction of propagation, namely Theorems 2.8 and 2.10. Lastly, Sect.5 is devoted to
the proof of the existence, uniqueness and stability of curved fronts in R, that is, we prove
Theorems 2.12, 2.15 and 2.16.

2 Preliminaries and Main Results

In this section, we firstly introduce some known results on the pulsating fronts of Eq. (1.1)
as preliminaries, and then state our main results. Here we emphasize that (F1)—-(F4) always
hold throughout this paper.

2.1 Preliminaries

As reported in Sect. 1, the existence and uniqueness of pulsating fronts of (1.1) with com-
bustion nonlinearity has been established by Berestycki and Hamel [3], namely, for any
given propagation direction e € S¥~!, (1.1) admits a unique pulsating front connecting two
equilibria 0 and 1.

Theorem 2.1 ([3], Theorem 1.13) Assume that (F1)—(F4) hold. Let ¢ € SN~!. Then
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(i) there exists (U,, c.) such that u(t,z) := U,(z - € — cot, 2) is a classical solution of
(1.1).

(ii) the speed c, is unique and positive. The profile U, (s, z) is unique up to transition in the
variable s.

(iii) the profile U,(s, z) : R x RN — R is strictly decreasing in s.

From the above definition, pulsating front U, satisfies a semilinear degenerate elliptic
equation of the type

CedsUe 4 O55Ue 4+ 2V,0,Ue - e + AU, + f(z,Up) =0 inR x RY, (2.1)

where ¢ € SV~!. We now recall some results of the asymptotic behaviors of pulsating front
U, atinfinite. Due to assumption (F4), the asymptotic behaviors of pulsating front as tending
to the equilibrium state 1 can directly follows from Bu, Wang and Liu [13]. Recently, Bu and
He [8] also gave the asymptotic behaviors of pulsating front as tending to the equilibrium
state 0. We say that U, (s, z) ~ C1e~%"* as s — +oo uniformly in z € RV, if

Ue(s, 2) Ue(s, 2) _1

lim inf min = lim sup max
s—>+00 ;eRN CreC* s—+oo zeRN Cre™¢*

Theorem 2.2 ([8, 13]) Assume that (F1)~(F4) hold. Let e € SN~1. Assume that (U,, c.) is
the unique pulsating front of (1.1). Then

(i) there exist two nonzero constants C1 and C» such that
Us(s,2) ~ Cre % and 9,U,(s,z) ~ Cre “* ass — +00

uniformly in z € RV,
(ii) there exist two nonzero constants C{, C} and a positive constant T, dependent on e such
that

1 —U,(s,2) ~ Cie™ ¢, (z) and 3;U,(s,z) ~ Che™ ¢, (z) ass — —o0
uniformly in z € RN, where 0 < ¢, (2) € Cz(RN) is L-periodic and ||¢-, ||LOO(RN) =1.

For spatially periodic media, pulsating fronts in different propagation directions are dif-
ferent in general. Thus the dependency of pulsating front with respect to the propagation
direction is vital to investigate problems involving more than one pulsating front. Alfaro and
Giletti [2] got the continuity of pulsating fronts with respect to the propagation direction for
spatially periodic reaction—diffusion equations with combustion nonlinearity.

Theorem 2.3 ([2], Theorems 2.4 and 2.5). Assume that assumptions (F1)—(F4) hold. Let
e € SN Assume that (U,, c,) is the unique pulsating front of (1.1). Then

(i) the mappig e € SN~1 — ¢, is continuous.
(ii) there exist two positive constants k and K such that

O<k:= inf ¢, < sup c,=: K < +oo0.
eeSN-1 eeSN-1
(iii) the mapping e € SN~ U, is continuous under the topology || - oo sy DY

normalization as min, gy U, (0, z) = (1 + p)/2, where p is defined in (1.3).

Remark 2.4 Here we emphasize that the continuity of pulsating fronts in Theorem 2.3 (iii) is
proved under the normalization min, gy U (0, 2) = (1 + p)/2.
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2.2 Main Results

In this subsection we list our main results in this paper. The first part is concerned with the
properties of pulsating fronts, including the exponentially asymptotic behaviors of pulsating
front and its derivatives at infinite, and the continuity and Fréchet differentiability of pulsating
fronts and wave speeds with respect to the propagation direction. The second part is concerned
with curved fronts of (1.1) in R?.

e Pulsating fronts

In this part we mainly focus on the continuity and Fréchet differentiability of pulsating
fronts and wave speeds with respect to the propagation direction. To do that, we firstly
establish the exponentially asymptotic behaviors of pulsating front and its derivatives at
infinite.

Theorem 2.5 Assume that assumptions (F1)—(F4) hold. Let e € SN —1. Assume that (U,, ¢,)
is the unique pulsating front of (1.1). Then for any nonnegative integers k and I, there exists
a constant Cy; dependent on k and [, such that

. DtDlU,
lim —=—2"° = Cy, (2.2)
s— 400 U,
3 U,
lim —< = —¢,, (2.3)
s—+o00 U,
. 8ssUe 2
AT T e 24)
V.U,|, |V.0,U,
lim M =0, (2.5)
s—>+00 U,
AU,
lim —=—< =0 (2.6)
s—>+oo U,

uniformly in z € RN, where V. denotes the gradient operator with respect to z € RV

Remark 2.6 Here we point out that the asymptotic behaviors in Theorem 2.5 may rely on the
propagation direction e.

Furthermore, we have the following uniform estimates.

Theorem 2.7 Assume that (F1)—(F4) hold. Let e € S¥~1. Assume that (U, ¢,) is the unique
pulsating front of (1.1). Normalize U, as min,cgn U, (0, z) = (1 + p)/2, where p is defined
in (1.3). Then there exist positive constants K and k>, both independent of e € SN~ such
that

3k

|Ue(s, 2)|, |DU.(s, 2)|, ID*Ue(s, 2|, ID*Ue(s,2)| < Ke™#° in[0, +00) x RV,
Il — Ue(s, 2), IDUe(s, 2|, ID*Ue(s, 2|, ID*Ue(s, 2)| < Ke* in (—o0,0] x RV,

where « is defined in Theorem 2.3; D, D? and D3 denote any first-order, second-order and
third-order derivative with respect to (s, z) € R x RN respectively.
Now we consider the continuity and Fréchet differentiability of pulsating fronts and wave
speeds with respect to the propagation direction. Denote
def

p=p(s) = 1+e*5, Vs eR, (2.7)
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where ¢ is a constant satisfying 0 < & < «. Let us now define a weighted L? space

def

12
L2R x LY) = {M:RXRN%R‘HMHde:ef(/ uzpdsdz> <00

? RxLN
(2.8)

N
and u(s,z) =u(s,z+y)ae. inR x RV for any y € nLiZ}
i=1

and a weighted H'! space

def def

H®xLY) € luelLl?: ul? € ul?, +/ Vul?pdsdz <oof,  (2.9)
p P H) L2 RxLV

where V denotes the gradient operator with respect to (s, z) € R x RV, Similarly, one can
obtain the definition of weighted space H”, n > 2.
In the sequel of this paper, the profile of pulsating fronts U, are always normalized as

/ U2p dsdz =1 foralle e SN71, (2.10)
Rt xLN

for the sake of considering the Fréchet differentiability of pulsating front. Under normal-
ization (2.10), the continuity of pulsating fronts with respect to the propagation direction is
given in below theorem.

Theorem 2.8 Assume that assumptions (F1)—(F4) hold. Let e € S¥~1. Assume that (U,, c.)
is the unique pulsating front of (1.1). Then

(i) the mappig e € SN~1 — ¢, is continuous.
(ii)
O<k= inf ¢, < sup ¢, =K < 400,
ecSN-1 eeSN-1
where k and K coincide with those in Theorem 2.3.
(iii) the mapping e € SN+ U, is continuous under the topology || - | oo sy BY
normalization (2.10).

Remark 2.9 Clearly, the uniform estimates in Theorem 2.7 is established under the normal-
ization U, as min, gy U (0, z) = (1 + p)/2. In fact, the conclusions in Theorem 2.7 still
hold for the normalization (2.10).

In the following theorem, we give the continuous differentiability of pulsating fronts with
respect to the propagation direction e € S¥~! for the case of combustion nonlinearity. For the
case of bistable nonlinearity, continuity and differentiability properties of the pulsating fronts
U, and speeds c, with respect to the direction ¢ € S¥~! under topology | - || L2(RxLN)xR has

been studied by Guo [25]. For any b € RV \ {0}, define

Up = U‘%‘ and ¢p :Iclb. (2.11)

It is clear that Uj and c; are well defined.

Theorem 2.10 Assume that assumptions (F1)—(F4) hold. Let e € SN=1. Assume that (U,, ¢,)
is the unique pulsating front of (1.1). Normalize U, as (2.10). Then Uy and cp, are doubly
continuously Fréchet differentiable in b € RN everywhere at RN \ {0} under the topology

I 2 mxrN) xR
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Remark 2.11 According to the proof of Theorem 2.10, U, and c¢j are also second-order
continuously Fréchet differentiable in » € RV everywhere at RN \ {0} under the topology

I W2 @<y xR

e Curved fronts

In this part we only consider the case N = 2. Namely, we establish the existence,
uniqueness and stability of curved fronts with V-shape for Eq. (1.1) in R? on the base of
the asymptotic behavior results (Theorem 2.5) and Fréchet differentiability results (Theo-
rem 2.10).

Let N = 2 and z := (x,y) € R% Let 6 be an arbitrary angle, then it follows from
Theorem 2.1 that there exists a unique pulsating front in the sense of Definition 1.1 with the
propagation direction (cos €, sin8), denoted by (Up, cg). Under the normalization (2.10),
define
U(;ﬁ(t, Xx,y) & max {Ua(x cosa + ysina —cqt, x,y), Ug(xcos B+ ysinf —cgt, x, y)} s
which is evidently a subsolution of (1.1). The following theorem shows the existence of
curved fronts, which converge to pulsating fronts along its asymptotic lines under some
conditions on angles « and S. The curved front is actually a transition front connecting 0
and 1 (see [4, 7, 28]), whose interface can be chosen as a V-shaped curve. For convenience,
denote

&y :=xcosa+ ysina —cqt and &g :=xcos B + ysin B — cgt.
Define

2@ = " forall € (0, 7).
sin 6

Theorem 2.12 Assume that assumptions (F1)—(F4) hold. Let o« and B be two angles satisfying
0 <a < B <m, such that g'(x) <0, g'(B) >0, and

Cq cp

Co
—_— = —, V0 . 2.12
sinae  sinfB b= Gne’ € @ p) 2.12)

Then there exists an entire solution V (t, x, y) of (1.1), which satisfies 0 <V < 1,

’V(t,x,y)—U;ﬁ(t,x,y)‘ B

R min {1, oV« min{éy/sina, Eﬁ/sinﬂ}} -

lim sup 0 (2.13)

R=400 32 4 (y—cupt)?

and
oV, x,y)>0 (2.14)

in R x R, where v, is a positive constant.

Remark 2.13 The condition of Theorem 2.12 is not empty. In fact, there are infinite pairs
(o, B) satisfying the condition.

Proof of Remark 2.13 Tt follows from Theorem 2.10 that the function ¢y is continuously dif-
ferentiable in [0, 7], which implies that maxg¢(o, ] c; is bounded. By virtue of Theorem 2.8,
one gets

1 1
") = — (¢, — te) < —— r_ t0
£ @) sin 6 (¢4 = cocot0) = sin 6 92%8‘,);] G KCO
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for all 0 < @ < 7/2. Thus there is a constant §; € (0, 7/2) such that g'(§) < 0 for
all & € (0, 6y). Similarly, there is a constant §, € (7/2, ) such that g’(9) > 0 for all
6 € (0, ). Since

Co

g(0) = — > —— — 400 asf — Oorm
sin@ ~ sin@
and
co K K .
gO0)=—— < — < —— . in [61, 6],
sinf — sinf — min{sin Oy, sin6,}
where « and K are given in Theorem 2.8, it is clear that Remark 2.13 is valid. O

Remark 2.14 Based on below uniqueness result (Theorem 2.15), we can get a fact that
V(t,x,y) = V(t + Lok/cap, x, y + Lak) inR x R?, Vk € Z,

where L, given in the definition of LV is the period of y. As Remark 1.4 of Guo et al. [26],
we can show that the curved front V (¢, x, y) established in Theorem 2.12 is a transition front
of Eq. (1.1) connecting two equilibria O and 1, see [4, 7, 28] for the definition of transition
fronts. According to Remark 2.13, there exist & and 81 with 0 < a1 < B1 < 7 such that for
any o € (0, o1), there exists 8 € (B1, m) such that (2.12) is satisfied and there is a curved
front V (¢, x, y) of (1.1) satistying (2.13) and (2.14). This gives a sufficient condition to the
existence of curved fronts in R2. That is, condition (2.12) holds when angle o close to 0 and
angle B close to . See also Corollary 1.5 of Guo et al. [26]. In addition, as mentioned by
Guo et al. [26], one can rotate the coordinate such that the y-axis points to any direction.
Though the periodicity can not be preserved by rotation, the same proofs of Theorem 2.12
can be applied to obtaining the existence of a curved front by using any two pulsating fronts
whose propagation directions are closed to reversed with each other.

The following two theorems give the uniqueness and stability of the curved front V (¢, x, y)
in Theorem 2.12 respectively.

Theorem 2.15 Assume that assumptions (F1)—(F4) hold. Let o, B, V(t, x,y) be given in
Theorem 2.12. If there is an entire solution Vi(t, x, y) of (1.1) satisfying 0 < V| < 1 and

lim sup Vit,x,y) — U(;ﬁ(t,x, y)| =0, (2.15)
R— o0 x2+(yfca,3[)2>R2

then Vi(t,x,y) =V (t,x,y)in R3.

Theorem 2.16 Assume that assumptions (F1)—(F4) hold. Let o, B, V(t, x,y) be given in
Theorem 2.12. Assume that ug € C(R2, [0, 1]) satisfies

Ugp(0, x,y) < uo(x, y) (2.16)

forall (x,y) € R?, and

| ‘uo(x,y)—U;,g(O,x,y) 0 )
i - - - = 1
R foo xzfyuzsz min {1, e~V mintéu/sina. & /sin B} } 2.17)

for some v > 0, where &, and &g are evaluated at (0, x, y). Then the solution u(t, x, y) of
Cauchy problem (1.1) for t > 0 with initial condition u(0, x, y) = uo(x, y), satisfies

(m e ) = V) ez = 0.
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Theorems 2.12, 2.15 and 2.16 investigate the existence, uniqueness and stability of curved
fronts of (1.1) in R2. In particular, Theorem 2.12 implies that condition (2.12) together with
g' (@) < 0and g’(B) < 0 is sufficient to the existence of the curved front V (¢, x, y). The
following theorem shows that condition (2.12) is necessary.

Theorem 2.17 Assume that assumptions (F1)—(F4) hold. Suppose that there exist a constant
cop > 0 and two angles a and B with 0 < a < B < 7 such that (1.1) admits an entire
solution V (t, x, y) satisfying 0 < V < 1 and (2.13) for some positive constant v,, then the
constant cqp and the angles o and B satisfy (2.12).

Finally, we give some comments with respect to the results in this part.

Remark 2.18 Here we would like to give some comments with respect to the results on curved
fronts, and list some interesting issues which should be considered in the future.

(1) Clearly, the stability of curved fronts in Theorem 2.16 is only established for the case
that ug(x, y) > Uyp 0, x,y) for all (x,y) € R?. A natural question is whether the
solution of Eq. (1.1) with initial value ug satisfying 0 < ug(x, y) < Ua_ﬂ (0, x, y) for all
(x, y) € R still converge to the curved front? For homogeneous equations, the answer is
positive, and hence, we conjecture that the answer is also positive for periodic Eq. (1.1).
But to confirm the conclusion for (1.1), it is needed to construct some new super- and
subsolutions, which seems not easy.

(2) In this paper we only consider the existence of curved fronts in R?. As reported in Sect. 1,
for homogeneous equation in R3, it has been found that there exist various curved fronts
with nonplanar level sets. Therefore, it is valuable to investigate possible curved fronts
of periodic Eq. (1.1) in R3. In addition, it was shown that there exist nonplanar traveling
fronts in homogeneous equation with degenerate monostable nonlinearity. Therefore, it
is also interesting to consider the existence of curved fronts of Eq. (1.1) with degenerate
monostable nonlinearity. Besides, as done in [7, 26, 28, 45], curved fronts with varying
interfaces should also be considered.

(3) As mentioned in Sect. 1, El Smaily [19] has considered the existence, uniqueness and
qualitative properties of curved traveling fronts to the reaction—advection—diffusion prob-
lem (which is precisely a periodic shear flow)

du = Au+q()dyu+ f@), (x,y) e R?, (2.18)

where f € C!T9 satisfies

Ip € (0, 1) such that f(u) =0 foru € [0, p) U{l}, f(u) >0 foru e [p, 1), f'(1) <O0.

Under the assumption g(x) = g(—x) for all x € R, by constructing a pair of sub- and
supersolutions which consist of the right and left moving fronts, EI Smaily [19] established
the existence of curved fronts of Eq. (2.18) satisfying conical conditions (see (1.5) in [19]).
Furthermore, he showed the uniqueness and monotonicity of curved fronts by using the com-
parison principle and the sliding method. In our opinion, the main feature of El Smaily [19]
is to consider the influence of spatially periodic advection term on the curved front. As a
counterpart, this paper concentrates on the influence of spatially periodic reaction term on the
curved front. Technically, the essential difference is due to that the reaction term f depends
on spatial variables z, which brings a lot of different difficulties. In this paper, by using the
continuous Fréchet differentiability of the pulsating fronts with respect to the propagation
direction done in Sect. 4, we first construct a supersolution via pulsating front with varying
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propagation direction (different from that in E1 Smaily [19]) and then establish the existence
of curved fronts of Eq. (1.1) in R?. Furthermore, we obtain the uniqueness and stability by
using the sliding technique and investigating the Omega-limit set of the solution of Eq. (1.1)
with initial values satisfying (2.16) and (2.17). Clearly, there is no results on the stability of
curved fronts in [19]. Of course, it will be more difficult and challenging to consider curved
fronts in general Eq. (1.6) with advection term.

3 Properties of Pulsating Front

In this section we introduce some versions of the maximum principle in unbounded domains
and give some properties of pulsating front.

Lemma 3.1 Assume that g(s, z, u) is a function defined in R x RY x R, and g(s, z, ) is
globally Lipschitz-continuous uniformly for (s, 7). Let c, # 0 and E,‘l" = (h, +00) x RV,

Assume that g is nonincreasing with respect to u in Z;‘ X (—00, o] for some ¢ € R. Assume
that ¢' (s, z) and ¢*(s, z) are two functions of CZ(E;), and ||¢! ”CO(E;)’ ||¢2||Co():h+) <

+o00. Assume that g, ¢', ¢* are periodic with respect to z € RN, and LN is the cell of
periodicity independent of s, u. Let

Nep'(s.2) +8(s.2,¢'(5,2) 20 in T
Ne¢?(s,2) + g(s. 2, $*(5,2)) <0 in T}
lim sup ((/)1 - (/)2) (5,2) <0

SO_)+OOSZS(),Z€RN
where
Netp := cedsp + 055 + 2V, 050 - € + A .
Assume that ¢' < o in ;;and ' (h,2) < ¢*(h, 2) forall z € RN. Then ¢' < ¢* in Eilj
Lemma 3.2 Assume that g(s, z, u) is a function defined in R x RV x R, and g(s, z, ) is

globally Lipschitz-continuous uniformly for (s, z). Let ¢, # 0 and Z; := (=00, h) X RN,

Assume that g is nonincreasing with respect to u in ;" X (=00, ¢] for some g € R. Assume
that ¢' (s, z) and $*(s, z) are two functions of C*(Z; ), and ||¢' oz ||¢2||CO(Z;) <

+o00. Assume that g, ¢', ¢* are periodic with respect to z € RN, and LN is the cell of
periodicity independent of s, u. Let
Neg'(s.2) + g(s5.2.0'(5,2) = 0 in %,
Neg?(s,2) + g(5.2.9%(5,2)) <0 in I},
lim sup (¢! —¢?) (s.2) <0.
507> 700 s <50, z€RN

Assume that ¢' < o in;;and dL(h,z) < ¢*(h,z) forall z € RN. Then ¢! < ¢% in Zih_

Lemmas 3.1 and 3.2 can be proved similarly to Lemma 3.2 of [3]. In the following we
firstly consider the asymptotic behavior of pulsating front tending to the equilibrium O, that
is Theorem 2.5. Then we give some estimates of the profile U, and its derivatives.

Proof of Theorem 2.5 Fix an arbitrary propagation direction e € SN~
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Step 1: we prove (2.2).
It follows from Definition 1.1 that there exists a positive constant ¢ such that

Ue(s, 2) < p forall (s,2) € [g1 — 1, +00) x RY,
where p is defined in (1.3). Denote u(t, z) := U.(z - ¢ — cot, z) and define
Q:={(t,2): z-e—cet >q1} and Q| :={(t,2): z-e—c.t > q1 — 1}.
Clearly, one has 0 < u < p in 1. By (1.3) and (2.1), u(¢, z) satisfies
o — Azu =0 in Q.

It follows from Theorem 9 in Section 3 gf Chapter 2 of [21] and Corollary 7.42 of [38] that,
for any k, [ € N there exists a constant C; > 0 such that

‘ijDfu(z, z)‘ < Cuu(t,2), V(1,2 € Q, G.1)
which implies that there is a constant ad > 1 such that

|DEDLU| < (Cu = 1) Ue, ¥(s,2) € g1, +00) x RV, (3.2)

For convenience, denote (7@ = Df Dé U, + ad U,. Then (7@ solves an equation of the type
edsU, + d35Up +2V.0,U, - € + AU, = 0 in (g1, +00) x RV,

Since U, = (D¥DLU, + (Cu — 1) U.) + Us, it follows from (3.1), (3.2) and Theorem 2.2

that

Ue

lim inf min > lim inf min =C; >0

§—>400 ;cRN €7 ¢S T 5—>+00 ;RN e e

and

~

. . (26k1 — 1) U, —~
lim sup max < limsup max ——— = (2Ck; — 1) C| < +o0.

s——+o00 zeRN e Ce s——+o00 zeRN e~ CeS
With similar arguments as those in Theorem 2.2 of [8], by replacing ¢ with U,, one can prove
that there exists a positive constant Cy; dependent on k and / such that

Uu(s,z) ~ Crre % ass — 400

uniformly in z € R¥, and hence (2.2) holds.
Step 2: we prove (2.3).
According to Theorem 2.2, there exist two nonzero constants C and C; such that
U,(s,z) ~ Cre”“* and 05U, (s,z) ~ Cre”“ ass — +oo (3.3)
uniformly in z € RY. Thus in order to prove (2.3), one needs only to prove % = —C,.
For any n € N, we define
o Ue(6 +n,0) i —Cek * L G —cok
wy(§) = U 0) w(E) =e %, wi(§) = .

where & € [—1, 1]. It is easy to verify that the sequence of functions {w/,},en is convergent
to the function w* uniformly in & € [—1, 1] as n — oco. Apparently, one has by (3.3) that
the sequence of functions {w, },enN is convergent to w in § € [—1, 1] as n — oo. Thus

w'(§) = %(grgow) = lim w),(6) = w*(©), ¥& e [~1.1].
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It is clear that % = —C,.
Step 3: we prove (2.4) and (2.5).
From (2.2) and (3.3), one knows

Ue(s,2) ~ Cre™ ™" and 9,U,(s,z) ~ C3je” " ass — +o0

uniformly in z € RY, where Jj €{1,2,---, N}, C3; is a constant, and C is nonzero. Fix

arbitrary j € {1,2,---, N}, denote

Un,0,---,0,2;,0,---,0)
Uen,0,---,0)

Gsj
Ci

Wy (z)) = , w(z)) =1, ﬁ)*(zj) =

for all n € N, where z; € [—1, 1]. With similar arguments as those in Step 2, one gets that

d
—\ lim w ): lim @/ in[—1,1],
de( im w, im w, in[ ]

n—0o0 n—o0
which implies @’ = w*. Consequently C3;/C1 =0 forany j € {1,2,---, N}. Therefore
V.U
lim [VeUel = 0 uniformly in 7 € RV,
s—>+oo U,

From (2.2) and (3.3), one knows
s U, (s, Z) ~ CZe_Ctsa g (as Ue)(57 z7) ~ C4e—ces’ aZj (8s Ue)(s7 Z) ~ C5je_ceé.

uniformly in z € RN ass — 400, where j € {1,2,---, N}, C4 and Cs; are constants, and
C» is nonzero. Then with similar arguments as above, one obtains that C4/C> = —c, and
Cs5;/Cy =0forall 1 < j < N.Itfollows from (2.3) that

a5 U, V,0,U
lim —==£ =cz and lim M:O
s—>+00 . s—>—+00 U,
uniformly in z € RV,
Step 4: we prove (2.6).
It follows from (2.1) that
. AU, . CeOsUp + 055 Ue + 2V, 05U, - €
lim —— = — lim =0.
s—+o0 U, s— 400 U,
Hence (2.6) holds. The proof of Theorem 2.5 is thereby complete. O

Below we establish three propositions which provide some estimates of pulsating fronts
U,. Here we emphasize that these estimates are independent of the propagation direction
eeSN-1,

Proposition 3.3 Assume that assumptions (F1)—-(F4) hold, and that (U,, c.) is a pulsating
front of (1.1), where e € SN™1. Normalize U, as min, v Ue(0,2) = (1 + p)/2, where p
is defined in (1.3). Then there exist two positive constants K, and k>, both independent of
e € SN such that

0 < Up(s,2) < Kae™ ¥ forall (s, 2) € [0, +00) x RV,
0<1—Uss,2) < K2 forall (s, z) € (—o0,0] x RV,

where K is defined in Theorem 2.3.
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Proof By virtue of the continuity of U, in e with respect to the topology || - [l o®rxrN)
(from Theorem 2.3) and the monotonicity of U, (s, z) in s (from Theorem 2.1), there exists
a constant g7 such that

U,(s,z) < p forall (s, 2) € [q2, 400) x RN and e € SV 71,

where p is defined in (1.3). Thus f(z, U,) = 0 in [g2, +00) x RY for all e € S¥~!. It then
follows from (2.1) that

N.U, =0 in [g2, +00) x RY

forall e € SN—1, where the operator N\, is defined in Lemma 3.1. Denote Ky, := e%qz, then

Ueqp,2) <1 = Kzae_%qz forallz € RN ande € SV, By calculations, it holds from
the conclusion (ii) of Theorem 2.3 that

3 s, (3 92 3k?
N (Kot ) = Ko 0 (=5 + 50 ) = —Kau e 0 <0
for all ¢ € SV~!. Furthermore, the asymptotic behavior of U, (from Theorem 2.2, together
with ¥ < ¢,) yields

: —3e N—1
lim sup (Ue — Kpqe™ 4 ) <0, YeeS .

0400 o> 50, zeRN}

Then for any ¢ € SN~!, applying Lemma 3.1to g = 0,0 = p, h = ¢q2, ¢' = U, and
¢ = Kzae’%s, we obtain

Ue(s, z) < Kz,le_%s in [g2, 400) x RV,
Apparently, there exists a positive constant «; satisfying
Kky + 3 — %1 <0, (3.4)

where K > 0 is defined in Theorem 2.3 and x; > 0 is defined in (1.4). Set V, :=1 — U, in
R x RN Tt follows from (2.1) that

NoVe+ f(z,Ve) =0 inR x RV
forall e € SN~!, where f(z,u) := —f(z, 1 —u) in RY x R. It follows from (1.5) that

Fulzow) = fuz 1 —u) < —%, V(z.u) € RN x [0, 3], (3.5)

where y, is given in (1.5). By virtue of the continuity of U, in e with respect to the topology
I Il oo (rxwy (from Theorem 2.3) and the monotonicity of U, (s, z) in s (from Theorem 2.1),
there exists a constant g3 such that V. (s, z) = 1 — U,(s, 7) < y, forall (s, z) € (—00, g3] X
RN ande € SNL. Set Ky, := yye 243 and then

Ve(q3,2) < yu = K2pe'®B, Vz € RV,

Furthermore K»pe“?* < y, for all (s, z) € (—o0, g3] x RV, Thus, by calculations, one gets
from (3.4), (3.5) and Theorem 2.3 that

Ne(K2pe ) + f(z, Kope*?®) = N (K2pe) + f(z, Kpe ) — f(z,0)
= (CEKQ + IC22 + ]Fu (Z, QKQbEKzs)) Kype®
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K
< (Kky + K22 — El) Kope?®

S~~~

IA

in (—00, ¢3) x RN forall e € SN~!, where 6 € (0, 1). Lastly, using Theorem 2.2 yields

lim sup (Ve — K2pe®*) =0, Ve e sV-1

.
50 d 5<50,2€RN

Therefore, for any e € SN-1 applying Lemma 3.2 to g = f, o=vy1,h=gqgs, ¢! =V, and
% = Kope'?®, we get

Ve(s, 2) < Kape®® in (—o0, g3] x RV,

Now set Ky := max{K24, K2p/vx}. The proof of Proposition 3.3 is thereby complete. O

Remark 3.4 By virtue of Theorem 2.8 which will be proved in Section 4, Proposition 3.3 also
holds with another normalization as (2.10).

Corollary 3.5 Forany ey, e; € SN~ there holds that U,, — U,, € L%(R x LN).

Proposition 3.6 Assume that assumptions (F1)—-(F4) hold, and that (U,, c.) is a pulsating
front of (1.1). Normalize U, as min,cgn U (0, z) = (1 + p)/2, where p is defined in (1.3).
Then there exists a positive constant K3 independent of e, such that

DU, (s, 2)|. |D*Ue(s. 2)|. |D*U(s.2)| < Kze™4° in [0, +00) x RY,  (3.6)
IDU,(s, 2)|, ID*Ue(s, 2)|, |D*Ue(s, 2)| < K3e** in (—o00,0] x R, (3.7)

where « is defined in Theorem 2.3, k> is given in Proposition 3.3; D, D? and D3 denote
any first-order, second-order and third-order derivative with respect to (s,z) € R x RN
respectively.

Proof Step I: we prove (3.6).

For any e € SN=1 denote u(t, z;e) == U, (z-e — cot, z) for any (f,z) € R x RV,
By Definition 1.1, the function u(¢, z; e) is an entire (classical) solution of Eq. (1.1) for all
e € SY—1 It follows from [3] that there exists a constant M > 0 such that

luC, -5 @)l c2muryy < M, Vee SV (3.8)
It is clear that u(t, z; e) solves a linear parabolic equation of the type
du—Au— fit,z;e)u =0 inR x RY, (3.9)
where f](t, €)= f(z,u(t,z;e))/u(t, z; e) in R x RY. We claim that

Hfl(.’.;e)H <p AN+ DCM+ DI flcigven, YeeSV™  (3.10)

CI(RxRN)

Since f(z,0) = 0in RN from (1.3), one has from (1.2) that

< I fllcr@n+1y - (3.11)

[ 7ic. )

CORXRN)

Since fl (t,z;e) =0for (f,z) € R x RN with u(z, z; e) < p,and
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- 1
O f1t,ze) = ——— (fo (zou(t, 25 0) + fu(z, ut, z; )0, u(t, 2; €))
u(t, z; e)
fz,ut, z;e)
— —————0zu(t,z;e),
2.2 0) L u(t, 2 e)
one gets
r . -2 .
0 1630 g =P lcmeny (L2 Ollcigy)  (G12)
where i € {1,2,---, N}. Similarly, one also has
UFiC5 0 Ly, 2P W lcimen G Dleigarn - B13)

Following from (3.8) and (3.11)-(3.13), we conclude that (3.10) holds.
Using (3.10) and applying the Schauder interior estimates (see also Theorem 4.9 of [38])
to (3.9), we get

luC. s )llcioizny < CHlluC, s )llcoizay» Y2 € RxRY, (3.14)

where the constantC* > Oisindependentof (7, 7) € RxRY ande € S¥~!,and Q(7, Z; r) :=
{(t,2): T—r2 <t <7, |z—=3%| <r}) Since Uy(s,z) = u(” S zie) foralle € SN—1,
together with k < ¢, < K from Theorem 2.3, by virtue of (3. 14) and Proposition 3.3, we
get (3.6) for DU,. By differentiating Eq. (1.1), (3.6) follows from the similar arguments as
above.

Step 2. Now let us consider the function v(¢, z;e) := 1 —u(t,z; e) in R x RY, which
solves a linear parabolic equation of the type

B — ADv+ fiut,z3e)v =0 inR x RV,

where f.(t, z;e) = f(z,u(t,z;€))/(1 —u(t, z;e)) in R x RV, In view of f(z,1) = 0in
RN, applying similar arguments as those in Step 1 to the function v(z, z; ), we can get (3.7).
0

Remark 3.7 Theorem 2.7 directly follows from Propositions 3.3 and 3.6. By virtue of The-
orem 2.8 which will be proved in Section 4, Proposition 3.6 also holds with another
normalization as (2.10).

Corollary 3.8 Assume that assumptions (F1)-(F4) hold, and that (U,, c,.) is a pulsating front
of (1.1). Then DU,(s.z2), D*Uc(s.z), D3Ue(s.2) € LA2(R x LN), where D, D* and
D3 denote any first-order, second-order and third-order derivative with respect to (s, z) €
R x R¥ respectively.

Proposition 3.9 ([26], Lemma 2.5) Normalize the profile U, as (2.10). Then for any q > 0,
there are two small positive constants y and r independent of e € SN~ such that

Yy <Uds,2) <1—y and —dU,(s,2) > r, V(s,2) € [—q,q] x RV, (3.15)

Proof From the continuity of U, in e with respect to the topology || - || Loo(xrn) (see The-
orem 2.8, which will be proved in Sect.4) and the monotonicity of U,(s, z) in s (from
Theorem 2.1), one has that the first inequality of (3.15) holds. The second inequality of
(3.15) can be proved by similar arguments as those in the proof of Lemma 2.5 of [26]. This
completes the proof. O
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4 Fréchet Differentiability of Pulsating Fronts

This section is devoted to proving the Fréchet differentiability of pulsating fronts with respect
to the propagation direction. At first, we prove the continuity of pulsating fronts with respect
to the propagation direction under topology || - || corxgr¥), that is Theorem 2.8. Then we
establish several lemmas and prove the Fréchet differentiability of pulsating fronts with
respect to the propagation direction, that is Theorem 2.10. Lastly, some estimates of Fréchet
derivatives of pulsating fronts with respect to the propagation direction are given. Here
we would like to roughly state the strategy of the proof of the Fréchet differentiability of
pulsating fronts. Based on the results of [60] (see Lemmas 4.1 and 4.2), we can obtain a
priori estimates and the spectral structure of the linearized operator H, of Eq. (2.1) at the
pulsating front U, in the weighted Sobolev space H ; (R x V). Consequently, by studying
two nonlinear operators K, and G,, we can introduce a key linear operator Q, and show
that Q, is invertible and the inverse operator Qe_l is bounded, see Lemma 4.6. This step is
inspired by [15] and [25]. In order to fall into the scheme of the weighted Sobolev space, the
continuity of pulsating fronts with respect to the propagation direction under the topology
Il H2(RXLN) is given by using Theorem 2.8, see Lemma 4.7. Finally after studying the

continuity of the inverse operator Q! with respect to e € S¥~! (see Lemma 4.8), we are
ready to prove the Fréchet differentiability of pulsating fronts.

4.1 Continuity

In this subsection, we modify the proof of Theorem 2.3 to get Theorem 2.8. For simplification,
we only give the modified part in the proof of Theorem 2.3, thus one needs to read Theorem 2.3
(actully read Theorems 2.4 and 2.5 of [2]) for a start. For convenience, we write here the
stated normalization of U,, that is (2.10), which is

/ N Uf(s, 2p(s)dsdz =1, Ye e SN 71,
Rt xL

where the function p(s) = 1 + 2% is given in (2.7) for 0 < € < «.

Proof of Theorem 2.8 Since conclusions (i) and (ii) do not rely on the normalization of U,,
we get them from Theorem 2.3. Below we prove conclusion (iii), that is to prove

U, — U, — 0 ask — o0, 4.1)
| Ve, = Ue |

Lo®(RxRVN)

if e, e € SN~! satisfy that |ex — e| — 0 as k — oo, and U, and U,, are normalized as
(2.10).
Let S, s; € R satisfy

1
P and min Uy (s1.2) = —2, VkeN, (4.2)
zeRN 2

min U,(S, z) =
zeRN

where p is defined in (1.3). Since d;U, < O for all e € SN=1. S and s; are unique and
well-defined. To prove (4.1), we need only to prove that the sequence {si}ren is uniformly
bounded by the proof of Theorem 2.3. We prove it by contradiction, and if not, two cases
may occur.

Case I: up to extraction of a subsequence, sy — —o0 as k — 00.

By virtue of (4.2), it follows from Proposition 3.3 that

_3kg + N
0<U;(sk+s,2) < Krem 37, V(s,2) e R" x L7, keN,
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where K5 and « are given in Proposition 3.3. Note ¢ < «. By virtue of the normalization
(2.10), one gets a contradiction

1= / U2 (s, 2)p(s) dsdz
Rt <LV
= / Uezk(sk—i—s,z)p(sk—i—s) dsdz
[—s,400) x LV

< / Kze_%(s (1 +62£(5“+S)) dsdz
[—s1,400) xILN

— 0 ask — oo.

Case 2: up to extraction of a subsequence, s — 400 as k — o0.
It follows from Definition 1.1 that

lim U.(S+s,z) =1 uniformlyin z € L.
§—>—0Q0
Consequently, we can choose a large integer K, such that
/ UZ(S +s,2) dsdz > 1. (4.3)
[—Ke, K IX LN

In addition, it follows from the proof of Theorem 2.3 that the sequence U,, (s +-, -) converges
to U (S + -, -) in L®(R x LN). Thus together with (4.3), we get

/ U ezk (sk +5,2) dsdz > 1 for all sufficiently large integer k. 4.4)
[—Ke, Ko 1xLN

Since s — +00 as k — 00, one has sy > K, for all sufficiently large integer k. Therefore,
one reaches a contradiction from (4.4), that is, for all sufficiently large integer k

1= / Uz (s, 2)p(s) dsdz
Rt xILN
=/ Ufk(sk—l—s,z)p(sk—l—s) dsdz
[—sk,+00)x LV

> / Uezk(sk—i—s,z)p(sk—i—s) dsdz
[_KeaKe]XILN
> 1.

Therefore {si}xen is uniformly bounded, and the proof of Theorem 2.8 is complete. O

4.2 Fréchet Differentiability

In this subsection, we prove Theorem 2.10. Now define two linear operators M, and H,

M (V) 1= €edsv + dg5v + 2V, 05v - e + Av — Bv
= (ed; + V)T (eds + V)v + c.05v — v, Ve e SN71,
He(V) := Cedsv + 0550 + 2V, 05v - e + Av + fu (2, Up)v
= (edy 4+ V)T (eds + V)v + c.05v + fu(z, Uo)v, Ve e SN,
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where 8 > 0 is a given constant. In above definitions, V, denotes the gradient operator with
respect to z € RV, For any e € S¥~!, the domains of two linear operators M, and H, are
defined by

def

D(M,) = D(H,) < [u(s, e HY®xLY): (eds + Vo) (eds + Vou € L’ﬁ]

endowed with the norm

(edy + Vo) (et + Vou|

u = ||u + ,
lullpiag,) ==l “H/!(]RXJLN) L2®xLY)

where the space L%(R x LN) and H x} (R x LN) are given by (2.8) and (2.9), respectively.
The following two lemmas coming from [60], are related to the linear operator M.

Lemma 4.1 ([60], Lemmas?2.1-2.4) Letv € D(M,) solve an equation of the type M,v = g,
where g € L%(R x LNY. Then there exists a positive constant M independent of e € SN ™1,
such that

lvlpm,) =M ”g”L%(RxLN)'

Proof With similar arguments as those in Lemmas 2.1—2.4 of [60], by replacing k, c and A(s)
with e, ¢, and — B, respectively, since x < ¢, < K from Theorem 2.8, we get Lemma 4.1. O

Lemma4.2 ([60], Lemmas 2.5 and 2.6) Forall e € SN=1 the linear operator
M, DIM,) > LIR x LY)

is invertible. Moreover, the inverse operator M;l : L%(R x LN) = D(M,) is uniformly
bounded, that is

M7 <M, VYeesNT,
where the constant M independent of e is given in Lemma 4.1.

Proof With similar arguments as those in Lemmas 2.5 and 2.6 of [60], by replacing k, ¢ and
A(s) with e, ¢, and — B, respectively, one gets that

M, D(M,) — LR x L) is invertible.

Then it follows from Lemma 4.1 that ||M;l|| < M, where the constant M is given in
Lemma 4.1, which is independent of ¢ € S¥~!. This completes the proof. O

In the following lemma, we show the continuity of M ! with respect to e € S¥=! in
some sense.

Lemma4.3 Lete € SN, For any unit vector sequence {ey },eN, if e, —e] — 0asn — oo,
then

HMe_,,l(g) - M‘f_l(g)HHg(RxLN) — 0 asn —> o

uniformly with respect to g € By =t {g € H;(R x LN) ||g||H[£ < A}forevery A > 0.
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Proof For g € H}(R x L"), denote
wy = M;'(g) and w:=M;'(g), YneN.
Then Lemma 4.2 implies

wy € DMy,), w € DM, wllgy lwllgy < Mgl Vel

where M > 0 is defined by Lemma 4.2. Since M,w = g and g € Hg, using difference
quotients in (—L1,2L1) X --- x (—Ly, 2Ly), by virtue of Lemma 4.1 and periodicity, we
get that w € Hg and

lwllyz <3V M gl - 45)
By calculation,

M, (W, —w) = Mg, wy — Mg, w + Mew — Mew = Mew — M, w
= (Ce — C¢,)0sW + 2V 05w - (e — ¢,)

for all n € N. Thus it follows from Lemma 4.1 that
lwn = wlgy < M [[(ce = ce,)dw + 2V 85w - (e — e,,)”L% , VneN.  (4.6)
Moreover, (4.5) and (4.6) yield
lwn = wlgy = Clighyy (Ice, = cel +len —el), Vn €N, @.7)

where C is a positive constant independent of 7 and g. Since the mapping e € S¥~! > ¢,
is continuous by Theorem 2.8, the proof is complete by using (4.7). O

We emphasize here that L%(R x LNy and H [} (R x L") are Hilbert spaces with inner
products (-, -) 2 and (-, ) gy 1 respectively, where

(v, u)p2 = / vup dsdz, Vv, u € L%(R X ]LN),
? RxLN
(v, M)H/; = (v, M)le7 + Z (D“v, D"‘u)L%, Vv, u € H;(]R x LM).
la|=1

The following lemma, which comes from [60], gives some properties of the linear operator
H,. The L% adjoint operator of H,, denoted by H}, is given by

(He ), ) 2 @y = (0 He@) 2wy forall v, u e H}(R x LV).

Lemma 4.4 ([60], Propositions 2.1 and 2.2, Lemma 2.8). Assume that assumptions (F1)—(F4)
hold. Then

(i) the linear operator H, has algebraically simple eigenvalue 0 and the kernel of H, is
generated by 0;U,.
(ii) the adjoint operator H} has geometrically simple eigenvalue 0.
(iii) the range of the linear operator H,, denoted by R(H,), is closed in L% (R xLN), and

LR x LN) = R(H,) @ ker(H).
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Proof Define

fu(z,1) fors >0 and z € RV,
0 fors <0 and z € RV,

A(s,z) = {

Replacing k, ¢, A(s) and g’ (U) with e, c., A(s, z) and f,(z, U,) in [60], respectively, we get
the conclusion (i) from Proposition 2.1 of [60], and get the conclusion (ii) from Proposition
2.2 of [60], and get the conclusion (iii) from Lemma 2.8 of [60] and Chapter 6 of [36]. O

Now we define two nonlinear operators. For any e € S¥~!, the nonlinear operator K, :
H3(R x LV) x R x RN — LZ(R x L") is defined by

Ke(,y,n) :=y05(Uc +v) +2V.0,(Up +v) - n+ f(z,Ue +v) — f(z,Ue) + Bv

for all (v, y,n) € Hg x R x RN . For any e € SN=1 the nonlinear operator G, : Hg(R X
LV) x R x RY — H}(R x L) x R is defined by

Gew.y.m) = (Gl . yom), GEv. v m).

where

Go(.y.m) = v+ M (Ke(v, y.m). Go(v. v, n) :=f+ NWe+0? = U2] p dsdz
R

x 1L

for all (v, y,n) € H2 x R x R . In particular, we emphasize here that the domain of the
nonlinear operator G, (-, -, 0) is

Dy = [(v, ) ‘v e 2R xLY), dve LZRxLY), y e ]R}.

But here we only consider the restriction of the operator G, (-, -,0) on (v, y) € H pl x R and
show its Fréchet differentiability in the following lemma.

Lemma 4.5 Assume that assumptions (F1)—(F4) hold. Then for every e € SN =1, the operator
Ge(-,-,0) : Hl} RxLYMyxR — H; (R x LN) x R is continuously Fréchet differentiable.

Proof Since K, : H)(R x LN) x R x {0} - LZ(R x LV) and M, ! : L2(R x L) —
D(M,), it follows that Ge (-, -, 0) : H)(R x LN) x R — H}(R x LV) x R.
Step 1. One has

Atk @ 7) = lim [0 +15,y +17,0) ~ 61w, 7, 0]
= 04+ M, (0 + 70, (Ue + ) + fu(z, Ue + )0 + BD).
It holds from Lemma 4.2 that A1y, ) : H’} xR—H /} is well defined. In addition, one has
[ At @ D)y = 100y + M 1y850 + 705 (Ue + ) + fulz, Ue + )3+ Bl
< CI@ Mgz

which implies that A{|,,) is also bounded, and then is the Gateaux differentiable operator
of ggl (-, -, 0) at the point (v, y). Forany v € H; (R x L), we have

[P@ ) 1 gy = 172 Dp +205D0] 1 = (1 +28) [#20] 11 + (DD 11
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where D denotes any first-order derivative with respect to (s, z) € R x RV, Thus
1201 @y < OV +2)(1+26) [l g @sryy . V0 € Hy@® xLY). (4.8)
Then it follows that

HAll(UIJ/l) = Atl(a,y) H

= sup ALy, @2 7) = All g, y) @ ) | 1
[CRAT IS ,

< swo M ias0n = ) + 7o - v
[CRATIE

+0 (fu(z, Ue +v1) — fulz, Ue + U2))||L2

=M (In =i+ lor—valm) + M swp [(fule Uet 1) = fulz Ue + 02030,
911, 1<1

= M (Iy1 = val + o1 = vall 1)

2N 2
M sup QIfull) ¥ [0 H(fu<z, Ue+ 1) = fulz, Ue + 1)) 51
15,1 <1
0

LN+I1

2
< M 1y =l + oy = 2y ) + C AR a2 T =l 57

where we have used the Sobolev imbedding theorem (see Theorem 4.12 of [1]). Therefore, the
Gateaux differentiable operator A1 |(y,,) is continuous with respect to (v, y). As a conclusion,
g el (-, -, 0) is continuously Fréchet differentiable, and its Fréchet differentiable operator is
3.1 Ge G2 Dlwy) = Atlwy)-

Step 2. It is clear that

U .1 - -
Al (@, 7) 1= lim — [GZ(v+ 1D,y +17.0) — G2 (v, ¥, 0)]
= 2/ U, +v)vp dsdz.
R+ xLN
With similar arguments as those in Step I, we get that QZ(-, -, 0) is continuously Fréchet

differentiable, and its Fréchet differentiable operator is a(,,,y)gg(., S0y = A2le,y. O
Denote Q, := 0(,y)Ge(:, -, 0)](0,0) for all e € SN=1. Then it follows from Lemma 4.5
that the linear operator Q, : H,)(R x L") x R — H}(R x L") x R is defined by

Q.(1,7) = <ﬁ + M7 G8sU, + fu(z, Up)d + B , 2/ U,bp dsdz> .49
R

+xLNV

Apparently, H; x R is a Hilbert space with the inner product (-, -)le «R» Which is defined by

(W, ). 0. ¥)giue = (W, v)1 +py forall (w, p). (v,y) € Hy xR.

The inverse operator of Q, is studied in the following lemma and we postpone its proof
in the appendix. For bistable equations, the corresponding result for one-dimensional case
z € Ris given in Lemma 3.4 of [15], and then the general case z € RY is considered in [25]
but without specific proof details. In the following lemma, we give the rigorous proof for
combustion equations, which is also valid for bistable equations with slight modification.
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Lemma 4.6 Assume that assumptions (F1)—(F4) hold. Then for every e € SN=L the linear
operator Q, : H; RxLY)xR - H; (R x LN) x R is invertible, and the inverse operator

Q;l is bounded.

Theorem 2.8 shows that the mapping ¢ € S¥~! > U, is continuous under the topology
I - | Lo () but indeed, the mapping is also continuous under the topology | - || H2(RXLN)>
that is the following lemma.

Lemma 4.7 Assume that assumptions (F1)—(F4) hold, and that (U,, c.) is a pulsating front
of (1.1). Normalize U, as (2.10). Then the mapping e € SN+ U, is continuous under
the topology || - ||H3(RX]LN), that is,

”UEn —U. ||H3(RxLN) — 0 aslen —e| — 0.

Proof Let {e,},en C SV ™! satisfy lim,, 500 €, = e.
Step 1. It follows from Proposition 3.3 that

U, — Ue| < max{U,,, U} < Kze™ % in [0, +00) x LV, (4.10)
Uy, — Upl < 11— Us, | + |1 — Us| < 2K26° in (—00,0] x LY, (4.11)

where K7, «, Kk are given in Proposition 3.3. Using the Lebesgue dominated convergence
theorem, together with (4.10), (4.11) and Theorem 2.8, one gets

H U, — U, ||L2 — 0 asn — oo. (4.12)
)

Step 2. Note that U,, and U, satisfy the following equations
Me,,Uen =—f(z, Ue,,) - ,BUen and MU, = —f(z,U,) — BU,,
respectively. Then it holds that

Me, (Ue, — Ue)
= (ce — Ce,,)asUe +2V,0,U, - (e — ey) + B(Ue — Uen) + f(z, Ue) — f(z, Uen)

= (Ce — Cen)asUe +2V,0;U, - (e —e,) + [:8 + fulz, tU.+ (1 — f)Uen)] U, — Ue,,)
(4.13)

where T € (0, 1). It follows from Corollaries 3.5 and 3.8 that
95U, V:0,U, € LR x LY) and (U, — Ue) € HI(R x LN) C D(M,,).  (4.14)

Thus by virtue of (4.13), (4.14) and Lemma 4.1, since f, (-, -) is bounded from (1.2), we get
that
[Ue, = Uell gy = € (1ee, = cel + lew = el + |Ue, = Ue]3) (4.15)

where C is a constant independent of . Then it follows from (4.12), (4.15) and Theorem 2.8
that

v, _Ue”H,l — 0 asn — oo.

With similar arguments as above, one obtains

HUen —Ue||H3 — 0 asn — oo.

The proof of Lemma 4.7 is thereby complete. O
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SNfl

We focus on the continuity of the inverse operator Q! with respect to e € in the

following lemma, whose proof is postponed to the appendix.

Lemma 4.8 Assume that assumptions (F1)—(F4) hold. Then the linear operator Qe_l is
uniformly bounded with respect to e € SN~!. Furthermore, the linear operator Qe_l is
continuous with respect to e € SN, that is,

|os! — o — 0 asle, — el — 0.

Now we are ready to prove the Fréchet differentiability of pulsating fronts with respect to
the propagation direction.

Proof of Theorem 2.10 1t follows immediately from Theorem 2.8 and Lemma4.7 that (U, cp)
is continuous in b € RN everywhere at RV \ {0} under the topology || - || H2xR-

Step 1: we prove that (U, cp) is first-order continuously Fréchet differentiable in b € RN
under the topology || - IIH[! <R

It follows from (2.1) and (2.11) that for any b € RN \{0}, (Up, cp) solves the equation
b
cposUp + 055Up + 2V, 0,Up, - m + A Up+ f(z,Up) =0 inR x RV, (4.16)
Now fix arbitrary e € S¥~!, and let & € R" be small such that e + /2 € RV \ {0}. Set

7. P . A h N
Up :=Uppp —Ue, G i=Coypn—ce €R, h:= lgjhl —eeRVN.

One obtains from Corollaries 3.5 and 3.8 that ﬁh e H 3 for all i. Furthermore, Lemma 4.7
yields

|T3] 3 = WWein = Uellyz — 0 as |l > o. (@.17)
From Theorem 2.8, one knows
[Ch| = |Cean — cel = 0 as |h| — 0.
It is trivial to get y
h=h—(e-h)e+o(|h]) as|h| — O. (4.18)

By virtue of (2.10) and (4.16), it holds that
Ge(Un, En, h) = (0,0).
Note G, (0, 0, 0) = (0, 0). By Lemma 4.5, one gets that
(0,0) = Ge(Un. é. i) — G.(0.0,0)

= Ge(Un, én, h) = Ge(Un, &, 0) + Qe(Un, &) + w2 (Un, &)

= (M;l(zvzaer ), o) + @1 (On, 1) + Qo (Tn. &) + o (Tn, &), (4.19)
where o (Uy, h) := (M7 (2V.8,Uy - h). 0) and

@2 (U, &) = o(||(Un, &) sy xz) as hl — 0. (4.20)

Then it follows from (4.19) and Lemma 4.6 that

(U, &) = -0, (M;l (2V.8,U, 1), 0) — 0, Y1 (T, h)) =0, (w2 (U, &)). (421
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One computes
190 (@1 (Th. ) 1y < 2012 1M 1T 2181
Thus one obtains from (4.17) and (4.18) that
|z (w1 (U, 1)) ||lexR = o(|h|) as |h| = 0. (4.22)

‘We claim that
o, (w2 (Un, &) meR =o(|h]) as |h| — O. (4.23)

Since ||(17h, Eh)lalzXR — 0 as |h| — 0, together with (4.20), one has
| @ én) + Q2 (@2(Tn é)) | gy = 1T ) g1 = 12 W2 (T n) | g1
= 5” () P

as |h| — 0. Then it holds from (4.18), (4.21) and (4.22) that
1

2|h|”(Uh Ch HH1><]R — |/’l|” Uh Ch)+Q (w2(Uh ch )”HIX]R
= W |-t (M @v20,0. ), 0) + @, (“"(ﬁ’“ﬁ))HHM
; h
< 07 e | [2vanve - ], + St < oo
p
as |h| — 0, which implies
(T, &) gy = ORI as k] = 0. (4.24)

Consequently, claim (4.23) is valid from (4.20), (4.24) and the fact that Qe‘l is bounded.
It follows from (4.18) and (4.21)—(4.23) that

(Uesh — Ue, Corn — Ce) = —Q;I(Mgl(zvzavye h = (e hyel) 0) + o(|h])

as || — 0 under the topology || - || H)xR> which means that (Up, cp) is Fréchet differentiable
in b € RN everywhere at ¢ € SV~! under the topology | - || HIxR: Denote the Fréchet
derivative of (Up, ¢p) in b at e by (U], c,). Then its form is

(UL, c(h)) = 9, (M;l (2V.9,U, - [(e - hye — h), 0), Vh e RV, (4.25)
Furthermore, for any b € RN \ {0} one can get by (2.11) that

Wrss o) = Wh, ) = (U (= (0. (i = f0)) +o0hD (4.26)

as |h| — 0. Thus, (Up, ¢p) is first-order Fréchet differentiable in b € RV everywhere at
RV \ {0} under the topology || - I er) (R x L) -
By virtue of Lemmas 4.2, 4.3, 4.7 and 4.8, it follows from (4.25) that

|, e.,) = (e, o)

= sup (U, (h), ¢, () — (Us(h), cy(m)) 1 = O asen — e
heSN-1 r
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Therefore by (4.26), (Up, cp) is first-order continuously Fréchet differentiable in b € RV
everywhere at RV \ {0} under the topology | - || H)(RXLN)xR- For convenience, without of

ambiguity, we sometimes use notations U} -h and ¢}, -h as U (h) and ¢, (h), where b, h € RN,

Step 2. Since f € C*(RN*1), we can get that Proposition 3.6 holds for k;;-order deriva-
tives and Lemmas 4.1-4.8 hold for || - || HY for all k € N. Hence with similar arguments as
those in Step 1, one can prove that (U, ¢p) is first-order continuously Fréchet differentiable
in b € RN everywhere at RV \ {0} under the topology || - | gk mx¥)xr Tor any k € N.
Applying the Sobolev imbedding theorem (see Theorem 4.12 of [1]), by virtue of the peri-
odicity, we also obtain that (Up, cp) is first-order continuously Fréchet differentiable under
the topology || - llc2®x&V)xR-

Step 3: we prove that (Up, cp) is second-order continuously Fréchet differentiable in
b € RN under the topology || - || HIxE-

Now fix arbitrary e € S¥~!. We define two nonlinear operators K and G. The operator

Kk Hg(RxLN)x]Rng(RXLN)XRXRNXRN—>L§(RXLN)

e

is defined by
K5 (1, 91, v2, 2, by, ho) i= 9205 (Ue + v1) + o (h1)0sv1 + 9105 (Ug(h) + v2)
+2V 50 - [Ie ilhz| - (eljfil)z"fl (e+h2)]
o [ 1]

lethy ¢
+ fu(@z, Ue + v)(UL(h1) + v2) — fu(z, U Uy (h1) + Bup

+h
+(2V13sv2+2V185Ué(h1))' |: - 2 :|
for all (vy, ¥, v2, V2, hy, hy) € sz x R x Hg x R x RN x RY. The operator
Git HHRxLY) xR x HI R xLV) x RxRY xRV — HJ(R x L") xR
is defined by
Gr(v1, 91, v2, 92, by, h2)

= <v2+M;1(K:(vl,z?l,vz,ﬁz,hl,hz)), 2/R+ . [Us(hi)vy +v2(Ue+v1)]pdsdz)
X

for all (vy, 01, v2, D2, hy, ho) € Hf x R x Hg x R x RN x RV,

For any h, elRN satisfying e + hy € RN \ {0}, denote ﬁhz = Ueqhy, — U, Cpy =
Ce+hy — Ce, and U}/lz(/’ll) = Ue/+h2(hl) - Ué(hl), E;lz(hl) = C;+h2(h1) - C/g(hl) for all
hy € SN~!. Then it holds from Step 2 that

(Uny. Eny Uy, (h1), )y (h1) by ho) € HY x R x HY x R x RN x RV,
Differentiating Eq. (4.16) at b on the direction 2 € RY yields
T
(705 +V2) " (s + V) (U - 1) + (ch - 1), Us + 0, (U - )

+2V0,Up - (= 5hb) + fulz. Un) (Uf - h) =0 4.27)
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inR x RV, By calculation, one can obtain from (4.27) and (2.10) that

G2 (T s T (). G (). . o)
= (0, 2/ (U, (D) Ueiny — Ug(h1)Ue] p dsdz)
RtxLN

= (o, fﬂmw (UZ,0) (h1) = (U2p) (hy) dsdz)
= (0,0) (4.28)
for all |hy| < % and h; € SV, Then by virtue of (4.28) one computes
(0.0) = G Ty s Ty (). &, (). h2) = G2(0,0, Ty (). &, (1), 1, 0)
+ Qo (U, (h1), &, (h1))
for all |hy| < % and h; € S¥~!, where Q, is given in Lemma 4.6. Thus we have
(U}, (h1), &, (h1))
= 062 (T s, T (). G (). s ) = G2(0,0, 4 ). 6, ). 11, 0) |

(4.29)
forall |hz| < § and hy € SV=1 It s trivial that
e+ hy
ey &= 2 (e hetollhzl) as ko > 0 (4.30)
and
hy (e +ho) - hy
le+hal  le+haf (et ho) = hitlehne

=[3(e-hi)(e-h2) — (hi-h2)]e — (e -ho)hi — (e - hi)hay + o(|h2l) (4.31)
as |ha| — 0 uniformly for i € SN-1 Denote
Uy, i=hy — (e-h)e, Wy, :=hy — (e-hy)e,
Wiy = [3(e - h)(e - ha) = (hy - ho)le = (e - ha)hy — (e - hyha

forall iy, hy € RY. Now we define a bilinear operator A* : RY x RV — H; (RxLN) xR,
whose form is

A*(h1, ha)
i= (M [l (h)dsUL(ha) + ¢, (h2)ds UL (h1) + 2V,8,U. (ha) - Wi, + 2V, 8,Ue - Wi,

F2V,05UL(h1) - Why + fuu(z, U UL UL(h2)] 2/+ ., U,(h)U.(h2)p dsdz)
R

x L

forall hy, hy € RV, By calculation, we obtain from Step 2 that
A% 1)
< [ MY |l th)dsUL(ho) + ¢l (h2)ds UL (hy) +2V8,Ue - Wiy, Iz

+ | M 290,000 - By + 290,00 - B
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M | Sz U UL UL )| 1 + 2 [ UL D5 |02

< M (2 el U2+ 1200l ) Tralal + 2 UL sl
M| (02 g 1t + (UL 1h21)
M s 0200 ] |0LR

< C|hi1l|h2], (4.32)

where C is a constant independent of &; and h;. For convenience, define an operator B* :
RN x RN — H;(]R x LN) x R, whose form is

B*(hy, hy)
= QZ(ﬁhz, Chy» ﬁ;/lz(hl), Cp, (1), Iy, hz)

= ;(0.0. T, (h1). &, (11). 11, 0) = A" (h1, )

for all Ay, hy € RN. Since (Up, ¢) is first-order continuously Fréchet differentiable in b
under both topologies || - ||szxR and || - || coxr from Step 2, together with (4.30) and (4.31),
one can get that

| B*(h1, ha) | xR = o(lha|) as |ha| — 0 (4.33)

uniformly for all #; € S¥~!. The proof of (4.33) is long and tedious, but not difficult, thus
we omit it.

Since Q;l is bounded from Lemma 4.6, by virtue of (4.29), (4.32) and (4.33), we conclude
that (Up, ¢p) is second-order Fréchet differentiable in b € RY everywhere at e € S¥=1 under
the topology || - | 5 I xR Denote the second-order Fréchet derivative of (Up, ¢p) in b at e by

(U, c})). Then its form is
(U, )Y (o) (hy) = Q' (A*(hy, ho)) forall hy, hy € RY.
Furthermore, by virtue of Lemmas 4.2, 4.3, 4.7, 4.8 and Step 2, one obtains

(g e2) - (U2

n’ ~en G’CZ)H_)O as e, — e.

Then it follows from (2.11) that (Up, ¢p) is second-order continuously Fréchet differentiable
in b € RN everywhere at RV \ {0} under the topology || - || | (RXLN) xR For convenience,
without of ambiguity, we sometimes use notations Uy - hy - hy and ¢}, - hy - hy as U} (h2) (hy)
and ¢ (h2)(hy), where b, hy, hy € RN,

Step 4. With the same arguments as those in Step 2, we can get that (Uy, cp) is second-order
continuously Fréchet differentiable in b € RY everywhere at RV \ {0} under the topology
Il llc2@xr¥)x - The proof of Theorem 2.10 is thereby complete. O

In the following proposition, we establish some estimates of Fréchet derivatives of U,
with respect to ¢ € S¥ ™!, which are especially independent of ¢ € S¥ 1.

Proposition 4.9 Assume that assumptions (F1)-(F4) hold. Normalize U, as (2.10). Then VU,
is Fréchet differentiable in b, and

(VUp) - hy =V (U}, - hy), (4.34)
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where V denotes the gradient operator with respect to (s, z) € R x RN . In addition, for any
e, hi, hy € SN~ there exists a positive constant K4 independent of e, hy and h», such that

(UL -h1) (s, D], [(UL - ha k) (s, 2|, [ V(U - i) (s, 2)| < Kae™2° (4.35)
forall (s, z) € [0, +00) x RN, and
(U, -h1)(s, 2|, (U ha-hi)(s, 2], V(U - hi)(s, 2)] < Kye? (4.36)

forall (s, z) € (—o0, 0] x RN, where k and ko are given in Proposition 3.3.

Proof Step I: we prove (4.34).
Since f € C®(RN*1), it follows from Step 2 of the proof of Theorem 2.10 that

|Upsn, — Up — Uy, - i | =o(|h1]) as|hi| — 0,

C3(RxRN)

which implies

[VUpsn, — VU, — V(U - hy) | = o(lh1]) as|hi] — 0. (4.37)

|C2(]R><]RN)

Consequently, VUj, is Fréchet differentiable in b € R" under the topology || - llc2mxrry- In
the meantime, (4.34) is valid from (4.37).

Step 2: we prove (4.35).

By virtue of the continuity of U, in e with respect to the topology || - || corxr») and the
monotonicity of U, (s, z) in s, there exists a constant g > 0 such that

U.(s,z) < p forall (s, z) € [¢q2, +00) X RY ande € SV,

where p is defined in (1.3). Thus f,(z, U,) = 0 in [g2, +00) X RN for all e € SV,
Recalling (4.27), the function U}, - h satisfies an equation of the type

0 =N (U, h1)+ (¢, h1)dsUe +2V.0,Ue - (h1 — (e - h1)e) =: No(U, - hy) + § (4.38)

in [g2, +00) X RN forall e, i € SN—1, where N, is defined in Lemma 3.1.
By the continuity of U, in e under the topology || - [|c2gxg~) from Theorem 2.10, there

exists a constant K such that [(U. - h1)(g2,z)| < K forall z € RV and e, h; € SV-L.
Denote

K4 := max {Ee§q2,4K3 ( sup ||cé|| +4N> /K2} ,
SN-1

ec
then
(U, -h1)(g2,2) < K < Kse™2% forallz e RN ande, h; € S¥7L.

By calculation, it holds from Theorem 2.8 and Proposition 3.6 that
2

K ~ _ K K K
/\/e(K4e—fS) 4§ =K 5 (—Ecg n ?) + (ch - 11)3sUp +2V20,U, - (hy — (e - hy)e)

2
< <_K4% + (< +4N)K3> o5
<0

in [g2, +00) x RN foralle, hy; € SN~
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Noting that U} - h; € CER xRN L% (R x LN) from Theorem 2.10, it is easy to verify
that
lim sup (Uef . hl)(s, 7) =0 foreache, h; € sv-1 (4.39)

=
S0+ > 59, zeRN}

which implies

lim sup (Ué “hy — K4e’§5) =0 foralle, hy e SN,

50— +00 (s>s0, 2€RN}

Then applying Lemma 3.1to g = §,0 = +00,h = q2, ¢! = U, - h; and ¢* = Kye 25,
one infers

U, hi(s,z) < Kse 2 in Z;[
foralle, hy € SN~!. Note that —U, - hy = U.(—hy) for all e, h; € SN~!. Consequently
(U - h1)(s.2)| < Kae™2° in [ga, +00) x RY (4.40)

foralle, h; € SNV —1 Furthermore with similar arguments as those in Proposition 3.6, even

if it means increasing K4, one can get that
|D(U] - ) (s, 2)

’

D* (U, - h1) (s, 2)| < K4¢™2* in [g2, +00) x RY (4.41)

foralle, hy € SV-1,
Differentiating Eq. (4.27), it holds that U/ - h - h; solves an equation of the type

—Ne (U~ hy - hy) = (c, - ha)ds (U} - h1) +2V.95(U, - h1) - (hy — (e - hy)e)
+ (cé -/’l])as(Ue, . hz) + (CZ ~hy - h])asUe
+2V.05(U, - ha) - (h1 — (e - hy)e)
+2V,3,U, - (—(e - h))hy — (ha - hy)e)

in [g2, +00) x RN forall e, hy, ho € SV=1. Then by virtue of (4.41) and Proposition 3.6,
with similar arguments as above, even if it means increasing K4, we obtain

(UL - ha - 1) (s, 2)| < Kae™2* in [g, +00) x RY (4.42)

foralle, hy, hp € SN~ Finally (4.35) follows by (4.40)—(4.42).
Step 3: we prove (4.36).
Clearly, there exists a constant g3 < 0 such that

1 =y, < Ue(s,z) <1 forall (s,2) € (—00, 3] x RN and e € SN 71, (4.43)
where y, is given in (1.5). It follows from (4.27) that the function U, - h satisfies
Ne(UL - hy) +8(s, 2, U, - hy) =0 in (—o0, g3] x RY (4.44)
foralle, h; € SN—1, where N, is defined in Lemma 3.1 and
(s, 2,u) == fulz, Udu + (¢, - h1)dsU, +2V.8,U, - (hy — (e - hy)e)

for all (s, z,u) € (—o0, g3] X RN x R. Increasing K4, it follows from (1.5), (3.4), (4.43),
Theorem 2.8 and Proposition 3.6 that
3

No(Kae3*) + (5.2 Kae3*) = [(—K% = ZK%) Ko+ (| ] + 4N)K3] e?5 <0
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in (o0, g3] x RN forall e, hy € SV~'. By Theorem 2.10, there is a constant K such that
(U, - h1)(gq3,2)| < K forall z € RN and e, h; € S¥~!. Even if it means increasing Ky,
one has

(UL -h)(g3,2)| < K < K4e 7% forallz ¢ RN and e, hy € SV

Noting that U, - b € C2R xRV N L%(R x LN) from Theorem 2.10, it is easy to verify
that

lim sup (U, -hi)(s,z) =0 foreache, h € sh-1

.
07700 (5 <59, z€RN}

Lastly, applying Lemma 3.2to g = &, h = g3, 0 = +00, ¢! = U, - hy and ¢* = K4eKT25,
we obtain o
[(U, - hi)(s,2)| < Kae* in (=00, g3] x RY (4.45)

forall e, h; € S¥~!. Then with similar arguments as above and those in Step 2, we can get
(4.36). The proof of Proposition 4.9 is thereby complete. O

5 Curved Fronts in R?

This section is devoted to the existence, uniqueness and stability of curved fronts admitting a
shape similar to a V-shaped curve, namely Theorems 2.12,2.15 and 2.16. Here the asymptotic
behaviors and the Fréchet differentiability of pulsating fronts with respect to the propagation
direction play key roles in our proof. Here we would like to notice that the main strategy in
this section are similar to those for bistable equations, see [26]. However, as a counterpart
to bistable equation [26], the degeneracy of f at u = O gives rise to main difficulties in this
section. To overcome the difficulties, we have to apply sophisticated asymptotic behaviors of
pulsating fronts near the state O to construct more complicated supersolutions, see also [55].
Throughout this section, we investigate the problem in two space dimensions, thatis N = 2
in Eq. (1.1). Set z := (x, y) € R%.

5.1 Existence

At first, we introduce some properties of the hyperbolic function sech(x), which can be
checked easily.

Lemma 5.1 One has

(i) |sech'(x)|, |sech”(x)| < sech(x) forall x € R,
(ii) sech’(x) > 0 for all x < 0; sech’(x) < O forall x > 0,
(iii) there is a positive constant q such that sech” (x) > 0 for all |x| > q.

The following lemma comes from [26], which gives a smooth function with two asymptotic
lines.

Lemma 5.2 ([26], Lemma 2.2) For any angles 0 < a < B < m, there is a smooth function
Y(x) forx € Rwithy = —xcota and y = —x cot 8 being its asymptotic lines and there
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are two positive constants ki and Ks such that

¥'(x) >0 forall x € R,
—cota < Y/ (x) < —cotfB forall x € R,
kysech(x) < ¥'(x) + cota < Kssech(x)  forall x <0,

] .
‘W — s1na‘ < Kssech(x) forall x <0, (5.1)
kysech(x) < —cotB — ¥'(x) < Kssech(x) forall x >0,

N S
‘ /1//’2(X)+1

max {|"(x)|, [ (x)|} < Kssech(x) ~ forallx € R.

— sinﬂ‘ < Kssech(x) forall x >0,

Remark 5.3 1In fact, by the proof of Lemma 2.2 of [26], the function ¥/ (x) has the form

—xcota + ¢sech(x), whenx < —a,
—xcot B + gsech(x), whenx > b,

v(x) = :

where positive constants ¢, a and b are given in its proof.

Now, we construct a vector-valued function of the form

e(x) = (e1(x), ex(x)) = (— J$2111§+1, \/Wz:MHl), Vx € R,

where A is a number to be determined. By Lemma 5.2, every component of e(x) is smooth
and

e(x) — (cosa,sina) as x — —oo and e(x) — (cos B, sin B) as x — +o0.

The derivatives of e(x) can be denoted by

e'(x) = (e} (x), e’2(x)) = (— Ay (x) T, —W/(M)WW?)

(Y2 0x)+1)2 (Y20x)+1)2

and ¢’ (x) = (¢} (x), €4(x)), where

2.1 2.0/ "2
e’l’(x) — _ MY (M)l + 3T XY (é\x),
W2 0x)+1)2 W2 0x)+1)2
2.2 2./ " 2.2 "”2
e/z’(x) — _ Y ()»X)3 _ MYy ()»BX) + 3 YOy (;»x)_
W2 0x)+1)2 W2 0x)+1)2 W2 0x)+1)2

Furthermore, it follows from Lemma 5.2 that there exists a positive constant K¢ such that
¢’ (x)| < AKesech(rx), |e”(x)| < A*Kesech(rx), Vx € R. (5.2)

Let w(s) be a smooth function satisfying o’ (s) > 0 and

0, when s < —1,
w(s) = Jw(s), whens e (—1,1), (5.3)
1, when s > 1.

For ease of reading, we write below some stated assumptions related to Theorem 2.12.
Firstly, « and B are two given angles satisfying 0 < o < B < . Secondly, let cog be a
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constant satisfying

Cy cp

Cap = — = — .
p sina  sin

Thirdly, (Uy (s, x, ¥), co) is the unique pulsating front with propagation direction (cos ¢, sin o)
and (U p(s,x,y), cﬁ) is the unique pulsating front with propagation direction (cos f, sin )
in the sense of Definition 1.1. Fourthly, the function U 07/3 is given by

Ua_ﬁ(t,x, y) & max {Ua(x cosa + ysina —cqt, x,y), Ug(xcos B+ ysinf —cgt, x, y)},

5.4)
which is a subsolution of (1.1). Lastly, denote &, and &g by
£y = xcosa + ysina — cot = sina ((y — cqpt) + x cota), (5.5)
&g :=xcosfB + ysinf —cgt =sinf ((y — Cqpt) + x cot ,3) . (5.6)
Now, we construct two functions £ and 1, where
Y —copt — Y (Ax)/A
E=E(tx,y) = ap (5.7)

VY2 0x) + 1
n=n(,x,y):=y—capt —Y(Ax)/A, (5.8)

where the real number A is to be determined.

Lemma 5.4 Assume that assumptions (F1)-(F4) hold. Then there is a constant §* > 0 such
that the below statement is valid: for each § € (0, §*] there exists a positive constant sar ©))
such that, forany 0 < ¢ < 83_ (8) there is a positive constant AS' (8, €) such that for arbitrary
0<x< )»8'(8, €), the function

UT(t,x,y) i= Uex) (&, X, y) + £sech(x) x [U(n, x, No€) + (1 —w&)]  (5.9)

is a supersolution of Eq. (1.1). Futhermore

lim sup UT (1%, y) — Upy (1. x, y)‘ <e (5.10)
R_)+°Ox2+(y—cagl)2>R2
UT(t,x,y) = Upyy(t, x, y) inR?, (5.11)
3
5U*(t, x,y) >0 inR>. (5.12)

Proof Step I: we prove that U™ is a supersolution.
The strategy is to find two numbers X’ > 1 and X” > 1 and show the inequality

LUT :=8,U" — A U — f(x,y,U") >0, V(t,x,y) e R,
by considering three cases £ > X', & < —X”,and & € [-X", X'], respectively. Denote
Iy ;== (0 — Axyy)(Ue(x)(g-‘, X, y)) and I := (0; — Ax,y)(esech()»x)Ug(n,x, y)).
By virtue of Theorem 2.10 and Proposition 4.9, it follows from calculation that
It = 05Uce(x)&r — Ax,yUe(x) — 2052 Ue(x)§x — 205y Ue(x)&y

— 05 Ueo)Gax + Eyy) — 055Uy (67 + &) — ULl - €/ (x) - € (x)
— Ué(x) e’ (x) — 28xUé(X) e/ (x) — 28SU;(X) e/ (x)&,, (5.13)
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where U, (y) and all of its derivatives are evaluated at (§(z, x, y), x, y). Now, we compute

— __ Cep
b=t
%_ . _)ﬂ///l//” _ 4
i Y2+l /21 ’
_ 1
Sy - \/ma
%_xx _ _A2]/,//24_2A2¢/w/// 3)‘2%/21#/2/2 n )»(l///z—l)léf” (514)
Ye+1 W=+1) (¢/2+1)j
Syy =0,
)\. "
‘sx _el(x) 1;%1//]5
2 2 )»2 /2¢[/12 2 2)“/]/2‘////
éx + g (.‘///2_;’_1)2 S w/2+1)% E

where functions ', ¢, and " are evaluated at Ax. Note that (Ue(y), Ce(x)) SOlves
Ce(x)as Ue(x) + Oy Ue(x) + 2Vx,yas Ue(x) ce(x) + Ax,y Ue(x) + f(xv Y, Ue(x)) =0.
Since e>(x) = &,, by virtue of the above equation and (5.13), one gets that

= (Et + Ce(x))asUe(x) - 28ste(x)(€x —e1(x)) — asUe(x)(Sxx + gyy)
— Ui (62 4 82— 1) = Ulfy - €/0) - €/06) = ULy - € 0)

— 20U}y - € (x) = 20U} ) - € (0)&x + f(x. 3. Uerry) (5.15)

where U,(y) and all of its derivatives are evaluated at (§(¢, x, y), x, y). From Claim 2.9
of [26], there is a positive constant K7 such that

E + Cor) = _\/ﬁ + Co(ry < —K7sech(hx) < 0 forall x € R. (5.16)

Now, it turns to compute /> and one has that
_ §—1 2 Vi 8
I = eésech(Ax)U, ™ 9,Uyn; — eX”sech” (Ax)U,
— 2e8Asech’ (Ax)U2™! x [0, Uy + 05Uqgny]
— £8(8 — Dsech(Ax)US™2 x [(axUO, + 85Uan)* + (8,Uq + aSUany)z]
— e8sech(Gx)US! x [Ax,yUa + 2V, 05Uy - (s 1y) + B5s U (02 + 1)

+ U (cx + 1) |, (5.17)

where U, and all of its derivatives are evaluated at (n(¢, x, y), x, y).
Case 1: £(¢, x,y) > X', where X' > 1 is to be chosen.
In this case, it holds that U™ (¢, x, y) = Uer)(§,x,y) + esech(Ax) x Ug (n,x,y). Thus

LUt =L +5L— f(x.y,U").
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Computing the derivatives of n(z, x, y) yields

Nt = —CaB,

N = =¥’ (Ax),

my =1 (5.18)
NMxx = —MV/(M),

Myy =0,

2402 =¥20x) + 1.

By virtue of (5.17), (5.18) and Lemma 5.1, one gets that

Oy Uy — ¥ (Ax) 05U, 05U,
L= —eUg X A [Asech”()»x) + 28sech’ (Ax) xUa = ¥ 02)3; U — Ssech()\x)w”()\x)si]

o
Uy Uy
Ax,yUq +2Vx y35Uq - (- (Ax), 1)
Uy

(0xUs — ¥/ (00)35 U ) + (9y U + 05U )

Uz
(0x Uy — ¥ 00035 Ug ) + (3yUs + 95Uq)”

UZ

o

— sUg x &sech(ix) [

+34

0ss U, s U,
+ ssYa (1///2()\.)6) + 1) + Caﬁ sYa
Uy Uy

|0x Uy — ¥/ (x)05 Uy |
Uy
Ax,yUa +2Vx y0sUq - (= (x), 1)
Uq
2 2
(0xUs — ¥/ (0x)05Uq )" + (3yUq + 05Uy )
Uz
2 2
(0xUg — ¥ (0x)05Us)” + (0yUs + 05Us)
Uz

s U,
> —essech()»x)Ug[S X A |:A + 26 — 5¢//(Ax);]‘¥j|
o

— 8sech(kx)U§ X § [

+94

dss U, os U,
+ ssYa (1!’/2()\-)5) + 1) +C(xﬂ sYa
Uy Uy

=:J1 + Jo, (5.19)

where U, and all of its derivatives are evaluated at (5(t, x, y), x, y). Recalling (5.7) and
(5.8), it follows from Lemma 5.2 that

E<n= S\/t/f’z(kx) +1< S\/max{cota, —cot B2 4 1. (5.20)
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By virtue of Theorem 2.5, it holds that
Ax,yUoz + 2Vx,yasUa (=¥ (), 1)
Uy

, 2 2
(0e = V' G0Ue)_+ (e 4 00). 220000 1),
a (5.21)
ass Uot

- Y2 0x) + 1) — (Y2 0x) + 1),

o

o U,

Cap e —CapCa
Uy

— 0,

as  — +oo uniformly in (x, y) € R2. Set
Cap
8=

2¢q (max{cota, —cot B}2 + 1)’

Then for any § € (0, 8], there exists a sufficiently large number X{ > 1 such that
I > esech(x)US x 3% (5.22)

for all (n,x,y) € (X!, +00) X R2. Thus by (5.19) and (5.22), there is a small positive
constant AT(S) such that, for arbitrary A < )Lf'(é), one has

I > esech(ux)U? x 5% (5.23)

forall (n, x,y) € (X/l, +00) x RZ, Recalling d;U,(x) < 0, by virtue of (5.2), (5.14)—(5.16),
Propositions 3.3, 3.6, 4.9 and Lemma 5.2, there exists a constant A; > 0 such that

I > —Ajsech(Ax)e™ ¢ + fx, v, Ue) (5.24)
for all (¢, x,y) € [0, +00) x R2, where « is given in Theorem 2.8. Following from Theo-

rem 2.2, we have that there exists a sufficiently large number X} > 1 such that

C C
Uy(n. X, y) > 716—&177 > jle—“, V(0. x,y) € (X}, +00) x R?, (5.25)

where C; is given in Theorem 2.2 and K is given in Theorem 2.8. Denote

K
B 8K /max{cot o, — cot 8}2 + 1 .
By virtue of (5.20) and (5.25), for each § € (0, 5] one has

8

i\’
Us(n,x,y) > (%) e~ %5, Y, x,y) € (X}, +00) x R% (5.26)

Since (1.3) and Proposition 3.3, by virtue of (5.20), (5.23), (5.24) and (5.26), there exists a
sufficiently large number X% > 1 such that

LU =nL+05L—f(x,y,U")

> —Agsech(Ax)e” ¥ + esech(Ax) U x § Capa
p Ci\?® c.ac .
> —Aj x sech(Ax)e™ 3% + <7]> ) CapCa x sech(hx)e 8%
-0 (5.27)
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forall (n, x, y) € (Xg, +00) x RZ. Note that (¢, x, y) > &(t, x, y) from (5.20), thus setting
§* = min{87, 83}, X' = max{X}, X}, X}} and AaL < Af(é), we have LUT > 0 in Case 1.
Case2: (¢, x,y) < —X", where X" > 1 is to be chosen.
In this case, it holds that U (¢, x, y) = Uer)(§, x,y) + esech(Ax). Recalling (5.15),
(5.16) and 93U, (x) < 0, one has
LUY =1 — er*sech”(Ax) — f(x,y,U™)
> —20x Ue(x)(gx —e1(x)) — 0 Ue(x) Exx + gyy)
— 35 Ue(o) (&5 + &5 — 1) = Uglyy - €/ () - €' () = Ufy - € (0)
— 28XUé(x) e (x) — 28SU‘;(X) e/ (X)E,

+ f(x, 9, Uey) = f(x, 9, UT) — ea’sech” (ax), (5.28)

where U, (y) and all of its derivatives are evaluated at (£ (¢, x, y), x, y). Set ef“ ‘= ¥, /2, where
V4 1s defined in (1.5). Then for any ¢ < sf, by virtue of (1.5) and Proposition 3.3, there is a
sufficiently large number X” > 1 such that

£, 3, Uew) = Fx, 3, UY) > %ssech(kx) (5.29)

for all (¢, x,y) € (—oo0, —X") x R2, where « is given in (1.4). By (5.2), (5.14), (5.28),
(5.29), Propositions 3.6, 4.9 and Lemma 5.2, one concludes that there is a constant Ay > 0
such that

LUT > sech(hx) x [—ekz — Ao+ %1.9] (5.30)

for all (§, x, y) € (—o0, —X") x RZ. It is trivial that there exists a constant )\; (¢) > O such
that K
—ex? — Arh + 5¢20 forall 2 € (0, A5 (e)). (5.31)

Therefore setting 83_ < sf“ and A(J)r < k;r (&), (5.30) and (5.31) yield that LU™* > 0 in Case
2.

Case3: — X" <&(t,x,y) < X'.

Recalling (5.14) and (5.18), there is a number A3 > 0 such that

‘(a, - Ax,y)(gsech(xx)[Ug(n, X, M) + (1 — w(é))])‘ < Asgsech(lx)  (5.32)

forall (£, x,y) € [-X”, X'] x R2. It follows from (5.15) and (5.32) that

LU > 1) — f(x,y,U") — Aszesech(rx)
= (& 4 Ce(x)) O Ue(x) — 205x Ue(x) (6 — €1(x)) — 05 Ue(x) (Exx + &yy)
— Oy Ue(ry (57 + &7 — 1) = Ulfyy - €/ (x) - €/ (x) = Uy - € (x)
— 28XUef(x) e/ (x) — 235U6’(x) e/ (X)&
+ f(x. ¥, Ue)) — f(x. 3. UT) — Azesech(ix) (5.33)

for all (£, x,y) € [-X", X'] x R%, where U,(x) and all of its derivatives are evaluated at
(&(t,x,y), x,y). From Proposition 3.9 and (5.16), there exists a number » > 0 such that

(5, + ce(x))as Ue(xy = K7rsech(Ax) (5.34)
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yica,ﬁt

s A
Subcase B1

/4 Case A
<R TN
Subcase B2 Case B

i

Subcase B3 Case A

Fig.1 Several cases to prove (5.38)

for all (£,x,y) € [-X", X'] x R2. By virtue of (5.2), (5.14), Propositions 3.6, 4.9 and
Lemma 5.2, since £ is bounded, there exists a constant A4 > 0 such that

- 28ste(x)(§x —e1(x)) — asUe(x)(Sxx + Syy) - 8ssUe(x)($)% + 5)2 - 1)

— Ue/,/(x) el (x) - e (x) — Ué(x) e’ (x) — 28xUé(X) el (x) — 233Ué(x) e/ (x)&,

> —AgAsech(lx) (5.35)
for all (£, x, y) € [-X”, X'] x R%. By (1.2) there is a number As > 0 such that
F (%9, Ue)) — f(x, 3, UT) > —Asesech(hx). (5.36)
It follows immediately from (5.33)—(5.36) that
LU > sech(Ax) X [K7r — Agh — Ase — Aze], Y(E, x,y) € [-X", X'] x R%. (5.37)
Denote

K7r
Az + As+ As’

Then setting 86“ < 8;(8) and )Lar < )@L(E), LUT > 0 holds in Case 3 by (5.37). All
in all, Step 1 is complete by setting §* = min{s}, 8;}, 83 < min{efr, 8;(5), v,/3} and
Ag < min{A] (8), A3 (¢), 1] (¢)}, where y, is defined in (L.5).

Step 2: we prove (5.10).

‘We claim that

A;(s) = ¢ and 8;_(5) =

lim sup Ue(x)(§,x,y) = Uyg(t, x, y)| =0, (5.38)
R—> 00 x2+(y—capt)?>R?

which yields (5.10) immediately. Denote 7 := X2+ (y — caﬁt)z. The proof of (5.38) is
divided into several cases (see Fig. 1).
Case A: |x| is bounded. In this case, |y — cqpt| is unbounded. By (5.5)—(5.7), one has

Ea gav %‘ﬁ — 400 or ga EDH éﬁ — —OQ.
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Then it follows from Proposition 3.3 that

Uey(§,x,y) — Ua_ﬁ(t,x, y)| > 0 as T — +oo in Case A.

Case B: |x| is unbounded. We only discuss the case x — —o0, and the case x — 400 is
similar. It follows from (5.5), (5.6) and Remark 5.3 that

& = Shbe, — TR, in 2, (5.39)
Y (Ax)/A = —xcota 4 gsech(lx)/1 forall x < —a/A.

Subcase B1: x — —oo and &, — +00. By (5.39), one gets

sin
. ﬂéa and 7 > .Sa
sin o sSin o

£ > —G/A,

which implies £, & — +o00 in Subcase B1. This yields by Proposition 3.3 that
Uer)(§,x,y) — Ua’ﬂ(t,x, y)| = 0 as T — +oo in SubcaseB 1.

Subcase B2: x — —oo and &, is bounded. It holds from (5.39) that £ — +o00, which
yields from Propositions 3.3 and 3.9 that U a_ﬁ = Uy (&y, x, y) in Subcase B2. By virtue of
(5.39), Lemma 5.2, Remark 5.3, Propositions 3.6 and 4.9, one gets

|U€(x)($7xa y) - Ua(ga»xs y)| = |Ue(x)(§’x7 }’) - Uoz(fﬁff )’)| + |Ua(€sx» }’) - Ua(fouxa )7)|
< Ky le(x) — (cosa, sina)| + K3 |§ — &gl

K K
3|$oz|K5 36

< K4 le(x) — (cosa, sina)| + < - + —) sech(\x)
sina A

for all x < —a/). Therefore,

Uery(§,x,y) — U;ﬂ(r,x, y)‘ — 0 as T — +ooin SubcaseB2.

Subcase B3: x — —oo and &, — —oo. It follows from (5.39) that n < &,/ sin «, which
implies & — —o0 in Subcase B3. Thus we obtain from Proposition 3.3 that

Ut €. %3 = Uyt 5, 9| = |1 = Vet (&5, 9] + 11 = UG x. )| = 0

as T — +oo in Subcase B3. In conclusion, the equality (5.38) is valid.
We claim that there exists positive constants v, and C, such that

Usg(t, %, 9| + [ U €. x, )| + U2, x, )]
min {1, e—2v* min{&,/sina, £g/ sin ﬂ}} =

Cy (5.40)

in R x R2. It is sufficient to consider min{&, / sin e, &g/ sin B} > 0. We only discuss the case
x <0, and the case x > 0 1is similar. Since &,/ sina < &g/ sin B, Proposition 3.3 yields that

(Ua € 3, 9)1 + [Up (6 . 3)| < Kz (7550 o7 F) < Kpem2e/sine
for all v < 3k min{sin «, sin 8}/8. It holds from Remark 5.3 that

In — &/ sina| = [ (Ax) /A + x cotar| = |[gsech(Ax)/A| < ¢/A
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Fig.2 The sequence (#;, Xn, Yn)

for all x < —a/A. Then by virtue of Proposition 3.3, (5.7) and (5.8), we obtain that there is
a positive constant v, = v, (8, A) < 3« min{sin &, sin 8}/8 such that

|Uetry €. x, 9)| + UL (. x, )| < Kpem2sbe/sine,

Therefore, the inequality (5.40) is valid.
Step 3: we prove (5.11) by using the sliding method, inspired by Theorem 1.11 of [4].
Denote

0Qp :={(t,x,y) eR’: & > R} and L Qg :={(t,x,y) e R®: & < —R}.

By (5.38) and Proposition 3.3, there are two numbers Ry > 1 and R, > 1 such that

Vs
Uy, x,y) > 1 — ?*7

— Yx .
Vet (€. 2.9) = Uggt.x.9)| < & inl@pr. (54D

and Uy (&y, x,y) < pin 2QR2—1, where p and y, are defined in (1.3) and (1.5).
Denote 4 Qr,, := R\ (} Qr, UIQk,). Since &, is bounded in 4 2, ,, there exists a number
y1 > 0 such that
Ua(Ea- X.3) > 1 i aQry,- (5.42)

By virtue of (5.38), there is a large positive number ¢ such that

_ 1
Ut(t,x,y) — Uy(a, x,¥) > Uery (E, X, y) — Ugp(t. x,y) > —% (5.43)

forall (¢, x, y) € «Qgr;, N{|x| > ¢}. Since &, is bounded in  2r,,, §(f, x, y) is also bounded
in ¢ Q2g,, N{|x| < g}. Then from Proposition 3.9, there exists a number y» > 0 such that

UT(t,x,9) = Ue) (§, %, y) > y2 inoQpp, N{Ix] < q). (5.44)

Since &, (¢, x, y) is bounded in  Qg,,, there is a number ¢’ > 0 such that

Ua(a(t — 7' x. ). x. y) < min {% )/2} in o,y (5.45)
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By (5.42)—(5.45), one gets

U, x,y) > Ug(§a(r = ', x, ¥), %, y) inoQr,,. (5.46)
Define
e =infle>0: UT(t,x,y) > Us(&a(t — 7', x, ), x,y) —&, V(t,x,y) € LQRl} .
(547
It follows from (5.41) that
i 2y% 2Y4 _ Vs 1
U (t7x7 }’) + T = UE(X)(%'PXa y) + T = Uaﬁ(tvx7 )’) + ? > 1 lnaQRla
which implies 0 < &¢* < 2y, /3. We will prove that ¢* = 0, which means
UT(t,x,y) = Uy (Ea(t = 7', x, y), X, y) in ,Qg,. (5.48)

Assume by contradiction that £* > 0. Denote
v(t,x,y) =UN(t,x,y) — Ug(Ea(t — T/, x,y). x, y) + & in;QRl UaQRps

thenv > 0 in (LQ R, U o Qg,, by (5.46). From the definition of ¢*, there exists a sequence of
points {(t,, X, Yn)}nen C g‘QRl such that

v(ty, Xn, yn) = 0 asn — oo. (5.49)

By virtue of (5.38), there is a large positive number Ry > R; such that

*

- e
Ue() (€. %, y) = Ugg (1, %, )| < — in , Qg .

which yields that v(f, x, y) > ¢*/2 in (%‘Qﬁl' Thus there exist a small number o > 0 and a
sequence of points (see Fig.2)

{(tn — 0, in’ yn)}nEN - t&lQE]

satisfying
dist((X,, ¥n), (Xn, y»)) is uniformly bounded w.r.t. n. (5.50)

Notice &* < 2y,/3. By virtue of (1.5), (5.41) and U™ is a supersolution of (1.1), it follows
that

@ — D )(UT +") = fx,y, UT+6%) = 3 — A )UT = f(x,9,UF) 20 (5.51)
in (1,[9le1~ Since Uy (§4(t — T/, x, ¥), x, y) is a solution, one gets that
(O — A y)v(t, x,9) + bi(t,x, y)vo(t, x,y) > 0 in [ Qp, 1. (5.52)

where by (t, x, y) := (f(x, v, Uy) — flx,y, UT + 8*)) /v,and ||by || L is bounded by (1.2).
Below there is a claim, which contradicts the fact that v(z, — o, X, ) > £*/2, thus we
have proved ¢* = 0.

Claim 5.5 There holds

v(ty, — 0, Xy, Yu) = 0 asn — oo.
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Proof Assume that by contradiction, up to a subsequence, there is a number y3 > 0 such
that

v(ty — 0, X, Yn) = v3, YneN.

Since the first-order derivatives of v are bounded, one has

Wty — 0, %, y) > % (5.53)

for all (x, y) in a ball B,(X,, y,) centered at (X,,, y,) with a small radius r independent of n,
for all n € N. Let w, be the solution of an equation of the type

(0 — Ay w(t, x,y) +bi(t, x, Y)w(t,x,y) =0 (5.54)

in a suitable domain E, C jQg, 1, which contains (t, — 0, 1,) X By (%, J,) and the point
(tn, Xn, Yu) away from d E,, independently of n, with initial condition
= % in B%(iny )~7n),
wltn = 0. | decays 00 in B, . T\ By (o )
=0 outside By (X, ¥u),

and with lateral boundary condition w = 0. Furthermore, since (5.50), from the Harnack
inequality, there exists a positive constant C independent of n such that

Wy (ty, Xn, yn) = Cyr, Yn e N.

By virtue of (5.52), (5.53) and the fact that v > Oin }1 Qpg,—1, function v is just a supersolution
of the problem (5.54), thus

V(ty, X, Yn) = Wu(ty, Xn, yn) = Cyr, Yn €N,

which is a contradiction with (5.49). Therefore Claim 5.5 is valid. m]

Similarly, we have

Ut x,y) > Us(£a(t — 7/, x, y), x,y) inOQk,. (5.55)
It follows immediately from (5.46), (5.48) and (5.55) that
UT(t,x,y) > U (£t — 7/, x, y), x,y) inR>. (5.56)
Set
i=inf{r > 0: UT(t,x,y) = Ug(Ea(t — T,x, ), x,y) inR?}. (5.57)

Apparently t* is a well-defined nonnegative number by (5.56). In fact, t* = 0 and we will
prove it by contradiction. Assume 7* > 0 and define

O, x,y) = UT(t,x, ) — Uy (£t — T%, x, ), x, y) inR?,

then ¥ > 0 in R3. Two cases may occur.

Case i inf{0(t,x,y) : (t,x,y) € aQpg,} > 0.

Since the first-order derivatives of Uy (§4(Z, x, y), x, ¥) are bounded, there is a number
79 € (0, T*) such that

Ut(t,x,y) > Uy (6t — 10, X, ¥), X, y) ingQpR,,-

@ Springer



Journal of Dynamics and Differential Equations

Applying the above arguments again, one gets that
Ut(t.x,y) = Ua(6alt = 10.%,y), 2, y) inR’.

This contradicts the minimality of t* and Case i is thus ruled out.
Case ii: inf{0(t,x,y) : (t,x,y) € 4R} =0.
There exists a sequence of points {(#,, X, ¥n)IneN C «$2R,,such that

O (ty, Xn, yn) — 0 asn — oo. (5.58)

Since &, (t — v, x, y) is bounded in  Q2,,, by Proposition 3.9 there are two numbers y4 > 0
and r > 0 such that

Ug ot — 7%, x,9),x, ) <1 —ps

and
Ug(a(t,x, ), x,y) = Uy (6a(t — 7%, x, y), x,y) = rT* (5.59)
for all (¢, x, y) € «Qpg,,. Note that
tp = ity - S, .

sina (5.60)
Y (Ax)/A = —xcot B + gsech(Ax)/1 forall x > b/A.

It follows from (5.6), (5.7), (5.60) and Proposition 3.3 that U,(y)(§, x, y) — lasx — +00
uniformly in 2z ,. Thus there exist two numbers g and Ny such that

(tns Xn, ¥n) € aQ2Rp, N{x < @}, Yn = No. (5.61)
By virtue of (5.38) and (5.59), there is a number g < 0 such that

7-9(ta X, y) = Ue(x)(é» X, )7) - Ua(éa(t - ‘C*v X, y)JC, y)

*

Ua (Ea (1. X, ¥), X, y) — % — Un(Ea(t — 75 %, ), X, y)

v

rt*
— 5.62
5 (5.62)

%

in¢Qg, N{x < g}.
Since U™ is a supersolution and Uy (4 (t — T*, x, y), x, ¥) is a solution of (1.1), one has

(B — Ay )0, x,y) +bo(t, x, y)O(t, x,y) > 0 in R,
where

by(t, x,y) i=[f (x.y. Us (Eat — 7%, x, ¥), x. ¥)) = f(x, . UD)] /9,

and ||b2]| e is bounded by (1.2). Then by virtue of (5.58), (5.61) and the fact that % > 0
in R3, the same arguments as those in Claim 5.5 yield that there exist (see Fig.3) a number
6 > 0 and a sequence of points {(X, y»)}nen such that

{(tn =6, %0, 9,,)}’121\,0 C oS, N{x <G} and (i, — 6, %y, $n) = 0asn — oo,

which is impossible because of (5.62). Therefore Case ii is ruled out.

Asaconsequence, ¥ = 0 which implies that Ut(t,x,y) > Uy(&y, x, y)in R3. Similarly,
we also have UT (¢, x, y) > Ug(ég, x,y) in R3, thus (5.11) is proved. Finally, one can get
immediately (5.12) by calculation. Therefore, we complete the proof of Lemma 5.4. O

Here we note that the construction of the supersolution in Lemma 5.4 is motivated by
Wang and Bu [55] and Guo et al. [26]. Below we prove the existence of curved fronts.
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Yy — C(y!ﬁt
A

Fig.3 The sequence (7, Xn, yn)

Proof of Theorem 2.12 By virtue of Proposition 7.3.1 of [39], let w, (¢, x, y) be the unique
solution of below Cauchy problem

{3,,0 —Ayyw = f(x,y,w) whent > —n, (x,y) € R? (5.63)

w(t, x,y) = Ugg(—n.x,y) whent =—n, (x,y) € R?

for all n € N. By virtue of Lemma 5.4, since Ua_ﬂ is a subsolution, using the comparison
principle, for any n € N, one gets

Ugp(t, X, 9) < wy(t,x,y) <UT(1,x,y) (5.64)

in [—n, +00) x R?. Using the comparison principle again, it holds that the sequence of
functions {w, (¢, x, y)},en is increasing in n. Applying Theorems 5.1.3 and 5.1.4 of [39] to
(5.63), there exists a constant A independent of n € N such that

Wy (- oy - 0 =<
wn (- )”C‘+2'2+"([—n+1,+oo)xR2)

for some 6 € (0, 1) and all n € N. Then letting n — o0, the sequence {w, (¢, X, ¥)}neN
converges to an entire solution V (¢, x, y) of (1.1). Furthermore, it follows from (5.64) that

Upy(t,%,9) <V(t,x,y) <U (@, x,y) inR xR, (5.65)

Thus by virtue of (5.40), we obtain

SV 3) = Uzt x, y) = Cmin f1, ¢ minté/sina g/ sinf |

in R x R2. Then letting ¢ — 0in U yields 0 < V < 1 and (2.13).
It follows from (5.63) that for any T > 0, w, (t 4+ 7, x, y) solves an equation of the type

hw — Ay yw = f(x,y, w) when t > —n, (x,y) € R?
w(t,x,y) =wy,(—n+7t,x,y) whent = —n, (x,y) € R2
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for all n € N. In addition, (5.64) gives that
Wp(—n+7,x,5) = Uppg(=n+17,x,y) = Upg(—n, x, y)
for all (x, y) € R%. Then applying the comparison principle, one gets
wn(t 417, x,y) > wy(t, x,y), V(t,x,y) € (—n, +00) x R?, V1 > 0,

which implies 0, w, (¢, x, y) > 0in (—n, +00) X R2. Lettingn — ooyields o,V (¢,x,y) >0
in R x R2. By virtue of the strong maximum principle, we obtain (2.14). The proof of
Theorem 2.12 is thereby complete. O

5.2 Uniqueness

Proof of Theorem 2.15 Let V/(z, x, y) be an entire solution of (1.1) satisfying (2.15) and
0 < Vi < 1. We will prove that V > V] in R3. 1t follows from (2.13) and (2.15) that

lim sup V(t.x.y) = Ugylt,x, y)’ —0 (5.66)
R=+00,2 4 (y—capt)?>R2
and
lim sup Vit x, y) — Uyt x, y)‘ —o. (5.67)
R—>+00 X24(y—capt)?>R?
Denote

9Qr:={(t.x,y) eR*: &/sina > R}, Qg :={(t.x,y) eR’: &/sina < —R},
OQr:={(t.x.y) eR’: &/sinp >R}, pQr:={(t.x.y) eR’: &/sinp < —R}.

Since the proof of Theorem 2.15 is almost same as Step 3 of the proof of Lemma 5.4, we
only give the outlines for the sake of saving space.
Step 1. By (5.5), (5.6), (5.66) and (5.67), there exist Ry > 1 and R, > 1 such that

% Ve .
Vi, x,y)>1— 5 Vit x,y) > 1= 2 in 3 Qp,—1 U pQpk -1 (5.68)
and
V(t,x,y) < p, Vilt,x,y) < p ingQr,—1 N §QR, 1,

where p and y, are defined in (1.3) and (1.5). Denote Qg,, := R3\(éQR1 U/gQR1 U (2QR2 N

%Q R,)). One can prove that there exists a number 7’ > 0 such that
V(t+1',x,y)> Vilt,x,y) inQp,,. (5.69)
Step 2. Define
eF = inf[e >0: V(t—l—r/,x,y) > Vi(t,x,y) —e&, Y(t,x,9) eéQRl UEQRn} .
One can prove that ¢* = 0, which means
V(t+1'x.y) = Vi(t.x,y) in [ Qp, U pQp,. (5.70)
Similarly, one can prove

V(t+1xy) = Vi(t.x.y) inQQg, NGQk,. (5.71)
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Step 3. It follows from (5.69)~(5.71) that V (t 4+ 7/, x, y) = Vi(z, x, y) in R3. Define
* ;= inf {1' >0: Vit+r1,x,9) > Vi(t,x,y) in R3} .

One can prove that 7* = 0, which implies that V > V; in R3. With similar arguments as
above, by permuting the roles of functions V and Vj, one can also prove that V; > V in R3.
Consequently V; = V in R3. The proof of Theorem 2.15 is thereby complete. O

Using the uniqueness result, we get Remark 2.14.
Proof of Remark 2.14 Apparently for any k € Z,
Vi(t,x,y) :=V(t + Lak/cop, x, y + Lok)

is an entire solution of (1.1) and 0 < V; < 1, where L5 is the period of y. It follows from
(5.5)—(5.8) that the values of &,, £g, & and n at points (¢ + Lok /ceg, X, y + Lok) are invariant
for all k € Z. Then since L is the period of U, (s, x,y) in y forall e € SM=1 one gets

Ut(t,x,y) = Ut (t + Lak/cap, x. y + L2k), Upyp(t.%,9) = Upg(t + Lok/cap. x, y + L2k)
in R x R? for all k € Z. Thus we obtain from (5.10) that

lim sup UT(t+ Lak/cqp. x,y + Lok) — Upp(t + Lok/cap, x,y + Lok)| <e,
R—>+o0 x2+(y—cqpt)?>R?

which implies by (5.65) that

lim sup Vit, x, y) = Upp (. x, y)| = 0.
R—+00 x2+(y—ca,5t)2>R2

Therefore Theorem 2.15 yields that Vi (¢, x,y) = V (¢, x,y) in R3, which completes the
proof. O

5.3 Stability

We construct super- and subsolutions for Cauchy problem (1.1) (ignore initial condition).

Lemma 5.6 For each § € (0,68™] and each 0 < ¢ < 83_(5), there exist positive constants
w(8) and o(§, ) such that for any 0 < A < )\g 4, e),

We(t,x, ) =U (@ox, 4o e M x [UR (e, 1), x, Y (e, 6, ) (1= 001z, x, 1) |

is a supersolution of (1.1) fort > Oand (x, y) € R2, forallo € (0, min{p/4, y,/4}], where
T =1(t):=t—o0e M + o0, and §*, 88_(8), A(_)" (8, €), UT are given in Lemma 5.4, and n,
, p, Vs are given in (5.8), (5.3), (1.3), (1.5), respectively.

Proof The strategy is to find two numbers X’ > 1 and X” > 1 and show the inequality
LW =W, — Ay W — f(x,y, W) >0, V(t,x,y) €[0, +o0) x R?,

by considering three cases n(t, x, y) > X', n(r,x,y) < —=X",and n(z, x, y) € [-X", X'],
respectively. Since U™ is a supersolution of (1.1) by Lemma 5.4, one has

LWS > gope MU + f(x,y, UT) = f(x,y, W))
+ (@ — Axy) (0™ x [US(m, x, o) + (1 — w(n)]) (5.72)
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in R x R2, where 5, U™ and all of its derivatives are evaluated at ((¢), x, y).

Case1: n(t(¢),x,y) > X' and t > 0, where X' > 1 is to be chosen.

In this case, w () = 1. Recalling (5.9) and (5.20), by virtue of Proposition 3.3, there exists
a number X/1 > 1 such that W; < pin{(t,x,y): n(z@),x,y) € (X}, +o0), t > 0}. It
follows from (5.72), (1.3) and (5.12) that

LW > oope ™ ™MUT + (8, — Ax,y)(oe_’”U‘f)
> —ope MUS +oe M x (3 — Ax,y)(Ug) — SUS 0, Uncapon (oe™)?
= —ope MU+ oe M x (0 - A y)(US) (5.73)

in {(t,x,y) : n(x@),x,y) € (X}, +00), t > 0}, where U, and all of its derivatives are
evaluated at (n(z(¢), x, y), x, ¥). Then one can obtain from (5.19), (5.21), (5.22) and (5.73)
that there exists a sufficiently large number X’ > X/ such that

dcapca

4
in {(t,x,y) : n(z(),x,y) € (X', +00), t > 0}. Let 0 < p < Scypca/4. Thus we prove
immediately that LW,;F > 0 in Case 1.

Case 2: n(t(t),x,y) < —X" and t > 0, where X" > 1 is to be chosen.

In this case, w () = 0. Recalling (5.9), (5.20) and (5.29), by virtue of Proposition 3.3, there
exists a number X” > 1 suchthat U™, W} € [1 —y,, L +p]in {(t, x, y) : n(z(t), x,y) €
(=00, —X"), t > 0}. Then it follows from (5.72), (5.12) and (1.5) that

LW > oope MU + f(x, v, U+) — f(x, v, W;) + (0, — Ax_y)(oef’”)
> fx.y. UT) = flx,y, W) —ope ™™

K1 _ _
> ?ae M _ o pe M

LW: > —(I,LLe_'MUg + ae_’”Ug

in {(r,x,y) : n(z(),x,y) € (—oo,—X"), r > 0}. Setting 0 < u < k1/2, one has that
LW} > 0in Case 2.

Case3: — X" <n(t(t),x,y) < X' and t > 0.

It holds from (5.9), (5.14) and (5.18) that

0 0
(U (0. 3)) = Ve (6., ) + esech () o= | (U0 x.3) = 1) 0(®)

—C,
> Dy Up() (€, X, ) el (5.74)

VU200 + 1

in R3, where £ and 7 are evaluated at (z, x, y). Since 7 is bounded in this case, £ is also
bounded. Thus by (5.74), Proposition 3.9 and Lemma 5.2, there exists a number r > 0 such
that

U (t,x,y) > regp inf{(t,x,y) : n(x@t),x,y) € [-X", X1} (5.75)

By Theorems 2.5 and 2.7, Lemma 5.2, (5.72), (5.8) and (5.75), we obtain that
LW, = oue M UF — | full e o™ + (o — Axy) (0e M [US (. x, o) + (1 = wm)])
> Qap_e_’”U;" — | fullpoo ce™H — ae_‘”Ax,y[ (Uf,(n, X, y)— 1) a)(n)]

—ope M 4 ae*/‘t% [ (Ug n,x,y) — 1) w(n)]r/(l‘)
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v

oo pe MUF — | fullp e — o™ — g ™M AL (Udn x, ) = 1) ()]

(enUF =l full o — ) oe™ —ae™ x C(8)

\

in{(t,x,y): n(z(),x,y) € [-X", X'], t > 0}. Set

I fullpee + 1+ C(S)
o> .
Urcap

Then we prove that LW, > 0 in Case 3. The proof of Lemma 5.6 is thereby complete. O

Lemma 5.7 Assume that V is the solution defined in Theorem 2.12.~ Then for any § € (0, §*],
there is a positive constant Aa' (8) such that, for each 0 < A < )\8' (8) there exist positive
constants (1(8) and 9(§, |, A) such that

Vi, x,y; T) = V(T +%,x,9) +oe ™ x [US(n, x, Vo) + (1 — o(0))]

is a supersolution of (1.1) for t > 0 and (x,y) € R? forall T € R and o €
(0, min{p/4, v, /4}], where T = T(t) := t—poe M +po, andn is evaluated at (T +7, x, y),
and 8%, (8), n, w, p, v« coincide with those in Lemma 5.6.

Moreover, for any § € (0, 8*), there is a positive constant 5»8' (8) such that, for each

0<A< )13 (8) there exist positive constants (8), 0(8, ft, 1) and 6°(8, [v, &, M) such that
Vo (tx,y: T) = V(T +2,x,y) —oe ™ x [US(n, x, M) + (1 — o))

is a subsolution of (l.l)kfort > 0and (x,y) € R2, forall T € Rando € (0, o9], where
T =1() :=1t+00e ™ — o0, and n is evaluated at (T + T, x, y), and 8*, n, w, p, Vs
coincide with those in Lemma 5.6.

Proof Step I: we prove that V; > r in {(t,x,y) : |n| < g}, wherer = r(A,q) > Oisa
constant.
Assume by contradiction that there exists a sequence of points {(#,, X,,, Y»)}nen satisfying

Vity, xn, yn) = 0asn — oo and |n(t,, x,, yn)| < ¢ for all n. (5.76)
By (5.75), there is a positive number r; = r;(g) independent of A and ¢, such that
QU™ >rp in{(t,x,y): [nl <q+cap) (5.77)
Set & = r1/16, and fix arbitrary 0 < A < A (8, ) =: AJ (8, ¢), where A§ (8, £) is given in
Lemma 5.4. By virtue of (5.10), one gets that there is a number ¢ = ¢(A) > 0 such that
+ "
Ut x,y) =V, x,y)| < T (5.78)

for all [x| > ¢. Without loss of generality, assume that x, < 0 for all n € N. Let
o Y000 —0) Y Ox)
Yn = Yn + 3 - 5 .

Then |y, — yul < t||¥/||Le < tmax{cota, — cot B}. It is trivial to check that n(z,, x, —
t, ¥n) = n(ty, X, yn), which implies

Mty — T, X0 — 4, Yl < q +cop (5.79)
forall T € [0, 1] and n € N. Since V is a solution of (1.1), it solves an equation of the type

O — Ay DVi = fulx,y, V)V, =0 (5.80)
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in R x R?, where f,(x, y, V) is bounded by (1.2). Using (2.14), (5.76) and (5.80), we obtain
from the Harnack inequality that

Viltw — T, xp —t, y5) — 0 asn — o0
uniformly for t € [0, 1], which yields
V(ty, xnp—t, ) = V(ty —1,x, —t,y,) > 0 asn — oo.

By virtue of (5.77)-(5.79), we reach a contradiction
VitoXn = 50) = Vit = Loxw .50 = 5. ¥n €.

Step 2: we prove that V7 (t, x, y; T) is a supersolution.

By (5.10) (fix A, < A(_)"((S, £4)inU™T,where s, < min{p/8, y./8}),one gets that there exist
X} > land X" > 1suchthat V" < pin{(t,x,y) : n(T +7(1),x,y) € (X}, +00), t >0},
and

V., Vel =y 14yl in{, x,y): (T +7(),x,y) € (—o0, —X"), t = 0}.

With similar arguments as those in Case 1 and Case 2 of the proof of Lemma 5.6, there exists
X' > X1 such that

LV >0 in{(t, x,y): n(T +7(),x,y) € (—o0, —X") U (X', +00), t > 0},

where X’ and X” are independent of A, and p < min{8cagcy /4, k1/2}.

By Step 1, there is a positive constant 5\3' ) = )_La' (8, max{X’, X”}) such that, for any
0 <A< X(J)F(S) there exists r = r(A) such that V; > rin {(t,x,y) : =X" < n(T +
7(1), x,y) < X’}. With similar arguments as those in Case 3 of the proof of Lemma 5.6,
there exists a constant & = §(8, w, ) such that LV;F > 0in {(z,x,y) : n(T +7(1),x,y) €
[—X”, X'], t > 0}. In conclusion, V' is a supersolution of (1.1) for# > 0 and (x, y) € R?,
for all o € (0, min{p/4, y./4}1.

Step 3: we prove that V. (t,x,y; T) is a subsolution.

Let ol < crl = min{p/4, y,/4}. With similar arguments as Step 2, one can get that there
exist X’ > 1and X” > 1 independent of A, such that

LV, <0 in{(t,x,y): n(T +(@0),x,y) € (=00, —X"), 1 =0}

(provided & < «1/2), and

N h A —ar\2 —ft s 0CapC
LV, <ope MUS —sU ' 3,Uycopoft <Ge ’”) —oe ‘”Ug%

—0sUqyé 8 .
< (o p =t g S g iy 581
o

in {(t,x,y) 1 n(T +%(), x,y) € (X', +00), t > 0}.1t follows from Theorems 2.5 and 2.7
that d;Uy /Uy is bounded. If

then by (5.81) there exists a constant /i(§) > 0 such that

LV, <0 in{(t,x,y): n(T + (1), x,y) € (X, +00), t = 0}.
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By Step 1, there is a positive constant ig ¥) = 18“(8, max{X’, X"}) such that, for any
0 < A < AJ (8) there exists 7 = 7() such that

a ~ -~

?(V(T +1,x,y) >F in {(t,x, y): =X"<n(T+71,x,y) < X/}.
T

With similar arguments as those in Case 3 of the proof of Lemma 5.6, we have that
LV, < —@a/le_[”f + [l full oo oce P 4 ae_[”Ax,y[ <Ug(77, X, y) — 1) a)(n)]

rope ™ — oo [ (U3, x5~ 1) 0 ]F0

ot
. Ry .
< (<0iF + I fullim + i+ CL®) oe ™ —oe™™ [ (Uhm.x.» = 1) 0 |#'()
< (<0AF + Wfullpoe + A+ C1(8) + C2(8) x bjao) oe ™ (5.82)

in {(t,x,y): 0T + @), x,y) e[ - X", X], t =0}.If
r 2 o+ i+ Ci(8
cotim T o 2lix it C1®))
2C2(9) wr
then it follows from (5.82) that

)

~

LV, <0 in{(t,x,y): (T +2@),x,y) e[~ X", X], t = 0}.

At last, let 09 := min{alo, 020, 030}.
Allin all, V; is a subsolution of (1.1) for # > 0 and (x, y) € R?, forallo € (0,0°]. O

Now, we are ready to prove the stability of the curved front V (¢, x, y) in Theorem 2.12.

Proof of Theorem 2.16 1t follows from (5.5), (5.6), (5.8), Remark 5.3 and the fact that
—cota < ¥’ < —cot B from Lemma 5.2, that

n(z(0), x,y) <& /sina and n(z(0), x,y) < &g/sin B, V(0,x,y) € R3, VAo > 0. (5.83)

Step 1: we construct supersolutions of Cauchy problem (1.1) with initial value uy(x, y).

Set §; := min{v/K, §*}, where positive constants v, K and §* are given in (2.17), The-
orem 2.8 and Lemma 5.6, separately. For any o € (0, min{p/4, y./4}], there exists from
(2.17) a number R, > 0 such that

ci\ % A A .
uo(x,y) < Ups 0., y) +0 (%) min {1, e*”mm{%/sm‘*»fﬁ/smﬁ’] (5.84)

for all x2 + y2 > R, where the constant C; > 0 is given in Theorem 2.2, and &4, &g are
evaluated at (0, x, y). We claim that
W0, x,y) > uo(x, y) in R? (5.85)

for all o € (0, min{p/4, y./4}], where parameters in Lemma 5.6 are taken as § = &,
=@, 0 =0, pn), Ve e 0, e (8)),and 0 < A < AJ (81, &) is to be determined.
Case 1: min{§,, £g} > 0. By Theorem 2.2, there exists a constant X, > 0 such that

C
Ualn,x,y) 2 e, V1., y) € (Xs F00) x B, (5.86)
Recalling 6; < v/K, we obtain from Lemma 5.6, (5.83), (5.84) and (5.86) that

W (0,x,y) > UT(0,x,y) +0US (0, x,y)
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C .
> Ua_ﬁ(O,x, y)+o <—> e dican

—_

—_

81
2
31
> Ua_ﬁ(O,x, y)+o <7> e V"

81
> U0, x,y) + 0 (%) o~V min{éu/sine, §g/sin f}
> uo(x,y)

in{(x,y): 90, x,y) > Xy, x>+ y?> > R,}. Furthermore, one infers from Proposition 3.9
that
W0, x,y) > UT(0,x,y) +oUSN (X4, x,y) = U0, x,y) + 1 (5.87)

in {(x,y) : n(0,x,y) < X4} for some constant r; > 0. Thus even if it means increasing
R, we obtain from (2.17) that

W (0,2, y) = uo(x, y) in {(x, ) 1 (0, x,¥) < Xu, x* + 3% > Ro).
Note that ¢/ (0) > 0. It follows from (5.7) and Lemma 5.2 that

y — ¥ (Ax)/A
VU20x) + 1

uniformly in {(x,y) : x> 4 y> < R,}. Then by virtue of (5.83), Proposition 3.3 and
Lemma 5.4, we get that there is a number Afr(a) > 0 such that forany 0 < A < )Lfr,

£0,x,y) = — —o00 asA— 0

W0, %,3) = Uet) (6, x, y) + 0 U 6/ sina, x, y) = 1 > up(x, y) (5-88)

in {(x,y): x4+ y2 < R,}. Hence W(;"(O, Xx,y) > ug(x, y) is valid in Case 1.
Case 2: min{§,, £g} < 0. By virtue of (5.83) and Proposition 3.9, one has

W0, x,9) = UT(0,x,y) + cUN (0, x, y) > Ugp0,x,y) +12
for some constant 7, > 0. By (2.17), even if it means increasing R, we get
Wi (0,x,y) = uo(x,y) in{(x,y): x>+ y* > Rs}.
With similar arguments as (5.88), there is a number A;’ (0) > Osuchthatforany0 < A < )»3',
W0, x,y) > uo(x, y) in {(x,y): x> +y> < Ry }.

Therefore W;(O, X,¥) > up(x, y) is valid in Case 2.

In conclusion, claim (5.85) is true for all 0 < A < min{A{ (81, €), A] (0), A5 (o)}

Step 2: we introduce a time sequence based on the periodicity of our problem, and prove
that the Omega-limit set along the time sequence contains only V (t, x, y).

By virtue of (2.16), Step 1 and Lemma 5.6, using the comparison principle, one gets

Uy, %, y) < ut, x,y) < W (1, x,y) in[0, +00) x R (5.89)
forall o € (0, min{p/4, y,/4}]. Define t,, := Lon/cqyp and
uy,(t,x,y) :=u(t+t,,x,y+ Lyn) inR x R?
for all n € N, where L is the period of y. Then #, — 400 as n — oo. By parabolic esti-

mates, we have a sequence of functions {u,, }ren converging locally uniformly to a function
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Uoo(t, x, y) in R x R2, which is an entire solution of (1.1). Since Ua_ﬁ(t+t,,k, x,y+Long) =
Ugp(t,x, y) and Ut (t+ tn,, x,y + Lang) = UT(t, x, y), we obtain from (5.89) that

Upp (1,3, ¥) < un (1, x,y) < U+(f —goe M) oo, x, Y) +oe ) (5.90)

in [—ty,,, +00) x R? forall k € N. Passing to the limit k — oo yields
Upp(t, %, ) < ttoo(t, x,y) <UT (1 + 00, x, ) inR x R,

Let wy, (¢, x, y; g(x,y)) be the unique solution of the following Cauchy problem

ow— Ay yw = f(x,y,w) whent > —m, (x,y) € R?
w(t,x,y) =g,y whent = —m, (x,y) € R2

for all m € N. It follows from the comparison principle that

Wy, ([, X, Vs Ua_lg(_nks X, )’)) Sueo(t,x,y) < wnk,a,a(ts X, Vs U+(_nk +00,x, y))
5.91)
in [—ny, +00) x R2 for all k € N, where parameters ¢ and ¢ are given in W;r . Recalling the
definition of V (¢, x, y) in the proof of Theorem 2.12, one has

V(t,x,y) < ttoo(t, x, y) inR. (5.92)
Furthermore, the comparison principle yields that
Upyp(t +00, %, ¥) < Wape.0 (1, x, y5 Ut (=i + 00, x, y)) < UT(t + 00, x, y)

in [—ng, +00) x R% forall k € N. By parabolic estimates, the sequence {wy, ¢ -} converges,
up to a subsequence, locally uniformly to an entire solution we (¢, x, y) of (1.1) as k — oo,
& — 0 and 0 — 0, which satisfies by (5.10) that

lim sup Weo(t, X, y) — Ua_ﬂ(t, x,y)| =0 (5.93)
R—>+o00 x2+(y—capt)?>R?

and 0 < weo < 1. Then by virtue of Theorem 2.15 and (5.93), we obtain wy, = V in R3,
which implies by (5.91) and (5.92) that u, = V in R3.

Notice that the parameter o(8, 1) is independent of o in Lemma 5.6. For any ¢ > 0,
choose a parameter o1 (%) € (0, min{p/4, y,/4}] such that

‘U+(t — ooy M) 4 oo y) Fope M) _ gt y)‘ <ol + HazUJ“HLoc 001
94

<5 (5.94)

for all (¢, x, y) € [0, +00) X R2 and k € N. Together with (5.90) and (5.94), one has
194
Uy (8%, y) <t (1, %, ) U (1, x,y) + — inl0,+00) x R? (5.95)

for all k£ € N. It follows from (5.95), (5.38) and (5.65) that there exists a number Ry > 0
such that
|ttn, (0, x,¥) = V(0,x, )] <9 in{(x,y) : x> +y* > Ry} (5.96)
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for all k € N. Since {u, }xeny converges locally uniformly to V (¢, x, y) in R x RZ, there is a
number ko (') € N such that

|tn (0,2, ) = V(O,x, )| < 0% in{(x, ) : x2+y? < Ry} (5.97)

for all k > ko. Denote Ty := Ingy - Then by virtue of (5.96), (5.97) and Remark 2.14, one
gets that for any 9 > 0,

<
(5.98)

lu(Ty, x,y) = V(Ty, x, y)| = |un (0, x,y — Longy) = V(0,x, y — Lang,)

for all (x, y) € R2.
Step 3: we construct super- and subsolutions, which are perturbations of V (t, x, y).
It holds from (5.89) and (5.65) that (fix arbitrary parameters of W' in Step 1)

. %, 3) = V5, ] = (W (%, 3) = Ugg(e,x, )| in [0, +00) x B2,

With similar arguments as those in (5.40), we have

\/|Wg-+(t,x, y)| 4 ‘Uojﬁ(t, X, y)’ < Amln {1’ eff)min{éa/sina,%'ﬂ/sinﬁ}}

in R x R2, for some constants U > 0 and A > 0, which yields by (5.98) that for any ¥ > 0,

U(Ty, %, ¥) = V(Ty, x, )| = A9? min {1, e=7minlée/ s p/sinf1} -y, y) € R2,
(5.99)
Letd, := min{v/K, §*}, where K is given in Theorem 2.8. It follows from Proposition 3.9
that there is a constant 73 > 0 such that

U2(0,x,y) = U2(X,, x,y) =13, V(x,y) e R (5.100)
Denote 5 5
C1\* min{p/4, y, /4 2\%
Mo minl1, (E1) mintp/4v/4) (2 0F (5.101)
2 A Cq

where C| is given in Theorem 2.2.
‘We claim that

V0, x,y; Ty) <u(Ty,x,y) < V70, x,y; Tp) (5.102)

inR%forall0 < © < T, where V, and Vj are defined in Lemma 5.7, and parameters are
taken as § = 8,0 = a (V) := AV (2/C1)‘32 in V; and Vg*.

Case i: min{&,, g} > 0. Recalling 6, < v/K, we obtain from Lemma 5.7, (5.83), (5.86),
(5.99) and (5.101) that forany 0 < ¥ < T,

VRO, x, y; Ty) > V(Ty, x, ) +5U2 (0, x, y)

Cci\®
=V(Ty.x,y)+o (%) e 02cam

> V(Ty, x, y) + A92e " minia/sina. &5/sin B}
> u(Ty, x, )
in{(x,y): n(Ty, x,y) > X.}. Furthermore, one has by (5.99)—(5.101) that
VIR0, x, y; Ty) = V(T x,y) + GUR (Xs, x,y) = V(T x,y) +5r3 = u(Ty, x, y)
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in{(x,y): n(Ty,x,y) < Xy} forall0 <9 <T.
Case ii: min{é,, £g} < 0. It follows from (5.83) and (5.99)—(5.101) that

VIO, x,y; Ty) = V(Ty, x, ) +GU2(0,x,y) > V(Ty, x,y) +6r3 > u(Ty, x, y)

in Caseii forall0 < v < T.

All in all, V(-:r 0, x,y; Ty) > u(Ty,x,y)in R2, where parameters in Lemma 5.7 are taken
asd = &, A = AJ (82)/2, b = 11(82), 0 = 8(82, ., M), 0 = & = AP (2/Cy)*. Similarly,
one can get that V> (0, x, y; Ty) < u(Ty, x,y)in R2. Thus claim (5.102) is valid. It follows
from (5.102), Lemma 5.7 and the comparison principle that for any 0 < ¢ < T,

V(5. x, v Ty) < u(Ty +s,x,y) < VI (s, x, 53 Ty), V(s,x,y) €[0, +o0) x R%.
Finally, letting ¥ — 0 which implies 0 — 0, we obtain from Lemma 5.7 that
u(t,x,y) — V(t,x,y) ast — 400

uniformly in R x R2. The proof of Theorem 2.16 is thereby complete. O

Proof of Theorem 2.17 Assume that there exists an entire solution V (¢, x, y) of (1.1) satis-
fying (2.13) for some constant cyg. Then it follows from the same proof of Theorem 1.7 in
Guo et al. [26] that

Cy cp

Co
= = and —— ap, VO € (a, B).
sine  sinf Cap sin 6 7 Cap G2

Below we will rule out the case that ¢y / sin6 > cqg, where 0 € (a, B).
Fix any § € (0, 1). For any 6 € («, p) define

W, (t,x,y: T) :=Up (59, x, y) — o™ x [U} (&, x, o (&) + (1 — 0 ()]

in [0, +00) X R2 for all T € R, where & is evaluated at (T + 1 + poe ™ — g0, x, y), and
&p =&p(t,x,y) :=xcotl + ysinf — cyt, and u, 0, o are some positive constants. In fact,
with similar arguments as those in (5.19), (5.21), (5.22) and in the proof of Lemma 5.7, we
can get that

LW, =W, — Ay W, — f(x,y, W) <0 in[0, +00) x R?, Y0 € (a, B), VT,

where © = u(8,60),0 = 0(8,0, ) and o = o (8,60, i, 0). Since § < 1, there is a number
C = C(0) independent of T such that

Wy 0,x,y; T) =Ug(§s(T,x,y),x,y) — oUS(Eg(T, x,y),x,¥) <0< V(0,x,y)

in {(0,x,y) : &(T,x,y) > C}, forall T € R. Then by similar arguments as those in the
proof of Claim 2.10 in [26], there exists a number T, < 0 such that

Wy (0,x,y; T,) < V(0,x,y), V¥(x,y) eR%
Thus it follows from the maximum principle that
V(t,x,y) = W, (t,x,y; T), Y(t,x,) € [0,+00) x R?,

Finally taking a sequence {(t,, 0, cqgty + R)},en, where t, — +00 as n — oo and the
constant R is large enough, with the same arguments as in the proof of Theorem 1.7 in Guo
et al. [26], we can obtain a contradiction with that cg/ sin€ > cyg for some 6 € («, B). The
proof of Theorem 2.17 is thereby complete. O
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6 Appendix

In this section we give the proofs of Lemmas 4.6 and 4.8 respectively.

Proof of Lemma 4.6 Step 1: we prove that the range of Q., denoted by R(Q,), is closed in
H; x R.
Let (U, 7). (8n.dn), (§.d) € H! x R satisfy

— 0 asn — oco. (6.1)

Qe(in ) = Gnrd) Yn € N, and (@ d) — @D
Hj xR

Denote v, := v, — g,. Then by virtue of (4.9) and (6.1), one has
v = =M (7a0sUe + fu(z, Uo)by + Bi) € D(Me) = D(H,), Vn €N,
Therefore, one further has

He(wp) = Me(Wn) + (fu(z, Ue) + B) vy = — (fu(z, Ue) + B) &0 — Vu0sUe (6.2)
for all n € N. For any w € ker(7})\{0}, there holds

0= (vVl! H:(UJ))L% = (He(vn), w)L% =(—(fulz, Ue) + B) é;n - fnasUe s w)L%
for all n € N, which implies
Vn @sUe, w)2 = — ((fu(z, Ue) + B) gn» w)p2, Vn e N. (6.3)

We claim that (d;U,, w) 2 # 0 for all w € ker(H})\{0}. Assume by contradiction that
05U, w)le7 = 0 for some w € ker(#}) \ {0}. From Lemma 4.4, one knows

dim (ker(H})) =1 and L}(R x L") = R(H,) @ ker(H}).

On the one hand, since w € ker(H*)\{0}, one has d,U, € (ker(H;‘))J‘ = R(H,). On the
other hand, it follows from Lemma 4.4 that the linear operator H, has algebraically simple
eigenvalue O and the kernel of H, is generated by d,U,, thus o,U, ¢ R(H.), which is a
contradiction.

It follows from (6.3) that
|)7n - J7m| = ||fu||L°° * IB

=< ”w”L% ”gn_gm”L%a Vn, m € N.
‘(83Ue,w)L%

Since {g, }nen is a Cauchy sequence in H[} from (6.1), there holds that {},},,er is a Cauchy
sequence in R, then one can assume that {y, },en converges to . By (6.2), we have

He (Wn) = He(m)ll 12 = (I fullpoe + B) 1gn — Emllrz + 195 Uell 2 |Vn — Vil

for all n, m € N, which together with (6.1) yield that {H,(v,)},en is a Cauchy sequence in
L%. Thus one can assume that H, (v, ) converges to g € L%. One gets from (6.2) that

—(fuz, Ue) +B) g — ydUe = g. 6.4)

Since R(H,) is closed in L% from Lemma 4.4, there exists a function v € D(H,) such that
He(v) = g.Setv:=v+adU,+ ¢ € H! where « € R is to be chosen. Clearly,

/+ . UedsUpp dsdz # 0, (6.5)
R+ xL
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because U, > 0, d;U, < 0. Thus we can select « € R such that
2 / U,p dsdz =d. (6.6)
Rt xLN

Since ¥ — g = v + ad; U, € D(H,), it follows that H. (0 — &) = He(v) = g € L2, which
implies
M=) + (fuz. U+ P) (3 — §) = g € L2 (6.7)

Composing (6.7) by M ! and using (6.4), one concludes
U+ M PUe + ful(z, Ue)d + BT) = &. (6.8)

Therefore, Q. (7, 7) = (&, d) by (6.6) and (6.8), where (7, 7) € Hl} x R. This completes
Step 1.

Step 2: we prove that Q, is injective.

Let (v, y) € ker(Q,) C H; x R, then

b= -M; N G3U, + fu(z, U)D + ) € DIM,) = D(H,),
which yields
He(ﬁ) = Meﬁ + fu(Z» Ue)ﬁ + ﬁﬁ = _fasUe-

Since the linear operator H, has algebraically simple eigenvalue O and the kernel of H, is
generated by d;U, from Lemma 4.4, one has ’Hg(ﬁ) =0, then v = 09;U,, so H.(v) = O,
thus y = 0. Furthermore, by virtue of (v, y) € ker(Q,), it holds that

0= 2/ U,vp dsdz = 20/ U,0;U,.p dsdz.
Rt xLN Rt xLN

Combining with (6.5), one gets o = 0, thus v = 0. Therefore, ker(Q,) = 6.
Step 3: we prove that ker(Q}) = 0.
Set (0, 7) € ker(Q}) C H) x R, then for any (i, i) € H} x R, one has

0= ((1;}7 /1) 5 Q:(ﬁ, ?))H} xR — (Qe(ﬁ}v /1) 5 (ﬁ5 )’;))H/lx]R
= (1]) + M;l (fosUe + fu(z, Up)w + Bw) , f))Hl + 2)7/ Uwp dsdz. (6.9)
14 R+XLN
Choosing (w, 1) = (d;U,, 0) in (6.9), it follows from Lemma 4.4 that

0= (M (He(@Ue)), 0) ) +27 /

. U,0sUc.p dsdz = 2)7/ U,0sU.p dsdz.
RTxIL

R+ XLV

Recalling (6.5), one gets y = 0. Choosing (w, ) = (0, 1) in (6.9), one has

0= (M, '(®:U.), 0) g1 (6.10)
Choosing (i, 1) = (1, 0) € D(H,) x R in (6.9), one has
0= (@ + M, (fulz, U)b + ), 0) 1 = (M (He (), B) - 6.11)
Since
L2(R x LY) = R(H.) & ker (1)) (6.12)
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from Lemma 4.4, and since d;U, ¢ R(H,), it follows from (6.10) and (6.11) that
(M P@U), )y =0 (6.13)

where P (9;U,) # 0 is the orthogonal projection of 9;U, onto ker(#}). Moreover, it follows
from Lemma 4.4 that dim (ker(H})) = 1, hence one gets that ker(7{}) is generated by
P(05U,). Together with (6.11)—(6.13), one concludes

(M (w), 0) gy =0 forallw e L2(R x LY). (6.14)
Now choosing (w, 1) = (v,0) € H;} x R in (6.9), it follows from (6.14) that
0= (5 + M, (fulz, U)D + BD), f))ng =@ D)y

As a consequence, v = 0, thus together with y = 0, one gets ker(Q}) = 6.

Step 4: we prove that Q, is surjective.

Since Me_l is a bounded linear operator from Lemma 4.2, it follows that Q, : H x} X
R —> H pl x R is also a bounded linear operator. Since H ; x R is a Hilbert space, since

R(Q,) = R(Q,) in Hl} x R from Step 1, and since ker(Q}) = 6 from Step 3, one concludes

H) xR = R(Q,) ®ker(Q}) = R(Q,) ® 6 = R(Q,).

Therefore, the linear operator Q, is surjective.
Allinall, the linear operator Q, is injective and surjective, thus itis invertible. Furthermore,
since Q, is a bounded linear operator, we get that the inverse operator Q! is also bounded.
O

Proof of Lemma 4.8 Step 1:we prove that Qe_] is uniformly bounded with respecttoe € SN™1.
Assume by contradiction that there exist {e, },en C SN-1 ¢ and {(gn, dn)}nen such that

||(g,1,d,,)||H}X]R=1 VneN, ande, > easn — o0 (6.15)

and
” Qe_n] (gn, dn)HH/g g > 100 asn — oo. (6.16)

Denote

Wns ) = Qg (8o dn) and (B, ) = [y

1
)”ng

(Unv J/n)» Vn € N'
R

Clearly, ||(Vn, Yu)ll g IxR = 1. Using Lemma 4.2 and (4.8), one obtains from calculations
that

|| Qe(ﬁl’lr )711) - Qen (‘6’1’ 77”)||H/£X]R
= | MG GdsUe 4 fuz Ue)n + B3) = MG, GadsUe, + Fuz. U )ou + B3

+ ‘2/ (Ue — Ue, )0y p dsdz
R+ XLV
= (M = MY ndsUe + fuz, Uodin + B | 1y
+M ||)7n(3sUe — 95U,,) + Un (fu(zv Ue) — fu(z, Ue,z)) “L% +2 ” Ue, — Ue ”L%
=< ” (Mgl - Meinl)();navUe + fu(L UE)G” + ﬂﬁ”)HH[E + (M + 2) ” U"n - Ue ” Ht;
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+ M| (e U = fue Vo)) 520

< (M = MDY FudsUe + fu(z, Uo)Bn + By + (M +2) |V, = Ue

AN _2 2

+ MQI full o) VT C |l fua I [2 || U, — Ue|) 5 (6.17)

for all n € N, where C is a constant independent of n, and we have used the Sobolev

imbedding theorem (one can refer to Theorem 4.12 of [1]). Note that || (0,, 7») ||H; r =1

and 9,U, € H;. Then y,0;U, + fu(z, Ue)V, + BV, belongs to H’} (R x LN), and its Hg

norm is uniformly bounded with respect to n. By virtue of (6.17) and Lemmas 4.3 and 4.7,
one gets

| Qe@n, ) = Qe (B, 7)1 = 0 @ n — 00, (6.18)

It follows from (6.15) and (6.16) that

| Qew @ v [ 1 42 1

|2e, (Bn. )7”)||H/§><]R{ = — 0 asn — o0o. (6.19)

I@n vlmixe 1@ 7l
Then, since Qe‘l is bounded by Lemma 4.6, we obtain from (6.18) and (6.19) that
1@, V)l ) e — O asn — oo,

which contradicts the fact that || (v, ;) ”Hg «r = 1.

Step 2. Let {em}men C SN satisfy lim,, . €, = e. For given (g.d) € H) x R
satisfying || (g, d)||H[}X]R < 1, denote

(V. Ym) = Q, ! (g.d) and (v, y) := Q, (g, d).

Then Step 1 yields that || (vy,, ym)IIH;XR < all(g, d)”H,} «R» Where C is a constant indepen-
dent of m € N. With similar arguments as (6.17) and (6.18), one gets

|| Qe (Vs Ym) — Qem (Vm, Vm)”H/! <R 0 asm — o0

uniformly with respect to (g,d) € {(g,d) € H[} xR : ||(g,d)||H/1XR < 1}, which implies
that

1@ vin) = @ gy < (95 1Qe (W, yim) = Qew. V)l y
= ” Qe_] || ” Qe (Vm» Ym) — Leyy (Ui Vm)”H/! xR

— 0 as m — oo (6.20)

uniformly with respect to (g, d) € {(g,d) € H; xR: |(g, d)||ngR < 1}. Eventually, one
concludes from (6.20) that

Q. - = Q. (g.d)— Q. (g.d 0
I — < ||<g,d>sw\l;l;xms1 [9en (&) = Qe Dl ypp >

as m — o0. The proof of Lemma 4.8 is thereby complete. O
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