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Abstract
We are interested in reaction–diffusion systems, with a conservation law, exhibiting a Hopf
bifurcation at the spatial wave number k = 0.With the help of a multiple scaling perturbation
ansatz a Ginzburg–Landau equation coupled to a scalar conservation law can be derived as an
amplitude system for the approximate description of the dynamics of the original reaction–
diffusion system near the first instability. We use the amplitude system to show the global
existence of all solutions starting in a small neighborhood of the weakly unstable ground
state for original systems posed on a large spatial interval with periodic boundary conditions.

Keywords Pattern formation · Conservation law · Amplitude equations · Justification

1 Introduction

We consider reaction–diffusion systems for u with u(x, t) ∈ R
d for d ≥ 2 coupled to a

diffusive conservation law for v with v(x, t) ∈ R, namely

∂t u = D∂2x u + f (u, v), (1)

∂tv = dv∂
2
x v + ∂2x g(u), (2)

where x ∈ R, t ≥ 0, D a diagonal diffusion matrix with entries d j > 0 for j = 1, . . . , d ,
dv > 0 a scalar diffusion coefficient, and f : Rd × R → R

d and g : Rd → R smooth
reaction terms with

f (u, v) = O(|u|(1 + |u| + |v|) and g(u) = O(|u|2)
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Fig. 1 The relevant spectral curves of the linearization around the trivial solution plotted as a function over
the Fourier wave numbers for α̃ − α̃c = ε2 > 0. The left panel shows the real part of the eigenvalue curves
λ0 (in blue), λ1, and λ2 (both in red), the right panel shows the imaginary part (Color figure online)

such that (u, v) = (0, v∗) is a stationary solution for any constant v∗ ∈ R. As a consequence
of the conservation law form the spatial integral of v is conserved in time. The fact that g
only depends on u or that D is a diagonal matrix are no restrictions w.r.t. our purposes. For
a detailed discussion about that see Sect. 6.

We are interested in the behavior of (1)–(2) close to the stationary solutions, w.l.o.g. for
our purposes take (u, v) = (0, 0). The linearization of (1)–(2) at (0, 0),

∂t u = �uu = D∂2x u + ∂u f (0, 0)u, (3)

∂tv = �vv = dv∂
2
x v, (4)

is solved by u(x, t) = eikx+λt û and v(x, t) = eikx+λt v̂ where λ ∈ C, û ∈ C
d , and v̂ ∈ C are

determined by

λû = −Dk2û + ∂u f (0, 0)̂u, (5)

λv̂ = −dvk2v̂. (6)

We find d curves of eigenvalues λ j = λ j (k) ordered as Reλ1(k) ≥ · · · ≥ Reλd(k) for (5) and
λ0(k) = −dvk2 for (6). The associated normalized eigenvectors or normalized generalized
eigenvectors are denoted by ̂U j ∈ C

d for j = 0, . . . , d .
We assume that (1)–(2) depends on a parameter α̃ and that for α̃ = α̃c we have the

following spectral situation.
(Spec) There is an ω0 > 0 such that Reλ j (0)|̃α=α̃c = λ′

j (0)|̃α=α̃c = 0, Reλ′′
j (0)|̃α=α̃c < 0

for j = 1, 2 and Imλ1(0)|̃α=α̃c = −Imλ2(0)|̃α=α̃c = ω0. Moreover, all other eigenvalues
λ j |̃α=α̃c for j = 1, . . . , d have a negative real part. Finally,we assume that ∂α̃Reλ1(0)|̃α=α̃c >

0.
For (1)–(2) from the assumption (Spec) a spectral situation follows as sketched in Fig. 1.
Notation. In order to make the notation more intuitive in the following we use the index

−1 instead of 2, i.e., for example we write λ−1 = λ2.
We introduce the bifurcation parameter ε2 = α̃ − α̃c and insert the ansatz

u(x, t) = εA1(X , T )eiω0t
̂U1(0) + c.c. + O(ε2), (7)

v(x, t) = ε2B0(X , T ), (8)
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with X = εx , T = ε2t , B0(X , T ) ∈ R, and A1(X , T ) ∈ C in (1)–(2). We obtain the system
of amplitude equations

∂T A1 = a0∂
2
X A1 + a1A1 + a2A1B0 − a3A1|A1|2, (9)

∂T B0 = b0∂
2
X B0 + b1∂

2
X (|A1|2), (10)

with coefficients a0, a3 ∈ C, a1, a2, b0, b2 ∈ R, satisfying Rea0 > 0, b0 > 0, a1 > 0, and
Rea3 > 0, consisting of a Ginzburg–Landau equation for A1 coupled to a scalar conservation
law for B0. The amplitude function A1 describes the oscillatory modes concentrated a k = 0
and B0 the conservation law modes concentrated at k = 0.

Example 1.1 In order to make this introduction less abstract the derivation of the amplitude
system will be explained for the following toy problem

∂t u1 = ∂2x u1 + iω0u1 + ε2u1 + u2
1 + u1u−1 + u2−1 + vu1 + vu−1 − u2

1u−1,

∂t u−1 = ∂2x u−1 − iω0u−1 + ε2u−1 + u2
1 + u1u−1 + u2−1 + vu1 + vu−1 − u2−1u1,

∂tv = ∂2x v + ∂2x (u1u−1),

with u−1 = u1. Although it is not of the form of (1)–(2), it shares essential properties with
(1)–(2), in particular, it has qualitatively a spectral picture as plotted in Fig. 1. We make the
ansatz

u1(x, t) = εA1(X , T )eiω0t + ε2A1,0(X , T )

+ε2A1,2(X , T )e2iω0t + ε2A1,−2(X , T )e−2iω0t ,

u−1(x, t) = εA−1(X , T )e−iω0t + ε2A−1,0(X , T )

+ε2A−1,2(X , T )e2iω0t + ε2A−1,−2(X , T )e−2iω0t ,

v(x, t) = ε2B0(X , T ),

with A−1 = A1, etc. For the u1-equation we find:

ε3eiω0t : ∂T A1 = ∂2X A1 + A1 + B0A1

+ 2A1,0A1 + A1,2A−1 + A−1,0A1 + 2A−1,2A−1 − A2
1A−1,

ε2e2iω0t : 2iω0A1,2 = iω0A1,2 + A2
1,

ε2e0iω0t : 0 = iω0A1,0 + A1A−1,

ε2e−2iω0t : −2iω0A1,−2 = iω0A1,−2 + A2−1.

For the u−1-equation we find similar equations and for the v-equation we obtain:

ε4 : ∂T B0 = ∂2X B0 + ∂2X (A1A−1).

If we eliminate the A j,0 and A j,2 by the above algebraic equations we find

∂T A1 = ∂2X A1 + A1 + B0A1 − γ3|A1|2A1,

∂T B0 = ∂2X B0 + ∂2X (|A1|2),
with

− γ3 = − 2

iω0
+ 1

iω0
+ 1

iω0
+ 2

3iω0
− 1 = −1 + 2

3iω0
. (11)

��
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In order to establish the global existence and uniqueness for (9)–(10), in the following we
assume

(Coeff) The coefficients a0, . . . , b1 of (9)–(10) satisfy for the normalized System (18)–
(19), subsequently computed in Remark 2.1, that 1 + α−1β > 0.

Using the same multiple scaling analysis, in [13], in case of no conservation law, i.e.,
in case v = 0 and without the v-equation in (1)–(2), a Ginzburg–Landau equation was
derived, and it was shown that all small solutions develop in such a way that they can be
approximated after a certain time by the solutions of the Ginzburg–Landau equation. The
proof differs essentially from the case when the bifurcating pattern is oscillatory in space
which is based on mode-filters and a detailed analysis of the mode interactions. See [15,
§10] for an overview. In contrast the proof of [13] is based on normal form methods. As
a consequence of the results of [13], the global existence in time of all small bifurcating
solutions and the upper-semicontinuity of the rescaled original system attractor towards the
associated Ginzburg–Landau attractor follows. The result of [13] applies for instance to the
Brusselator, the Schnakenberg, the Gray–Scott or the Gierer-Meinhardt model, cf. [16].

It is the purpose of this paper to prove a similar global existence result for (1)–(2), i.e., in
case of an additional conservation law, with the help of the amplitude system (9)–(10).

This question turns out to be very challenging for the following reason. Since (A1, B0) =
(0, B∗), with constants B∗ ∈ R, is an unbounded family of stationary solutions for (9)–(10),
this amplitude system does not possess an exponentially absorbing ball if posed on the real
line, in contrast to a single Ginzburg–Landau equation if Rea3 > 0. However, assuming
(Coeff) an exponentially attracting ball exists in case of periodic boundary conditions, say

A1(X , T ) = A1(X + 2π, T ) and B0(X , T ) = B0(X + 2π, T ). (12)

Then we have the existence of an absorbing ball and the global existence and uniqueness of
solutions.

Theorem 1.2 Consider the amplitude system (9)–(10)with periodic boundary conditions (12)
and assume that the coefficients a0, . . . , b1 satisfy the condition (Coeff). Then for all s ∈ N0

there exists a CR = CR(s) > 0 such that for all C1 > 0 there exists a T0 = T0(s, C1) > 0
such that to a given initial condition (A1(·, 0), B0(·, 0)) ∈ Hs+1× Hs with ‖A1(·, 0)‖Hs+1 +
‖B0(·, 0)‖Hs ≤ C1 there exists a unique global solution (A1, B0) ∈ C([0,∞), Hs+1 × Hs)

such that additionally ‖A1(·, T )‖Hs+1 + ‖B0(·, T )‖Hs ≤ CR for all T ≥ T0.

Remark 1.3 In case of periodic boundary conditions the Sobolev space Hs can be embedded
in the space Hs

l,u of uniformly local Sobolev functions for s ≥ 0 and so in case of periodic

boundary conditions, the existence of an absorbing ball in Hs+1
l,u × Hs

l,u for (A1, B0) follows,
too. For the definition of the space Hs

l,u see the notations on Page 8.

As already said we are interested in a similar result for the original system (1)–(2) using
the existence of an exponentially attracting absorbing ball for the amplitude system (9)–(10)
and the fact that all solutions of (1)–(2) develop in such a way that after a certain time they
can be approximated by the solutions of the amplitude system (9)–(10).

The 2π-spatially periodic boundary conditions for the amplitude system (9)–(10) cor-
respond to 2π/ε-spatially periodic boundary conditions for the original system (1)–(2),
i.e.,

u(x, t) = u(x + 2π/ε, t) and v(x, t) = v(x + 2π/ε, t). (13)

Then for these periodic boundary conditions and small ε > 0 we have the global existence
and uniqueness of solutions for the original system (1)–(2).
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Theorem 1.4 Consider the original system (1)–(2) with periodic boundary conditions (13)
and assume that the coefficients a0, . . . , b1 of the associated amplitude system (9)–(10) satisfy
the condition (Coeff). Then for all n ≥ 0 there exists a CR > 0 and an ε0 > 0 such that for
all C1 > 0 and all ε ∈ (0, ε0), there exists a t0 = O(1/ε2) > 0 such that to a given initial
condition (u(·, 0), v(·, 0)) ∈ Hn+1

l,u × Hn
l,u with ‖u(·, 0)‖Hn+1

l,u
+ ε−1‖v(·, 0)‖Hn

l,u
≤ C1ε

there exists a unique global solution (u, v) ∈ C([0,∞), Hn+1
l,u × Hn

l,u) such that additionally

‖u(·, t)‖Hn+1
l,u

+ ε−1‖v(·, t)‖Hn
l,u

≤ CRε for all t ≥ t0.

Remark 1.5 Hence, the global existence question can be answered positively at least for
original systems with periodic boundary conditions (13) which correspond in the amplitude
system (9)–(10) to periodic boundary conditions (12). Since the L2-norm of u = 1 on the
interval [−π/ε, π/ε] grows as O(1/

√
ε) with ε → 0, Sobolev spaces are not adequate for

controlling the norm and so spaces have to be used where functions such as u = 1 can be
bounded independently of the small perturbation parameter 0 < ε  1.

Remark 1.6 The threemain ingredients of the global existenceproof are (GL): the existenceof
an exponentially attracting absorbing ball of the amplitude system, (APP): an approximation
result which shows that solutions of the original system (1)–(2) can be approximated on the
naturalO(1/ε2)-time scale of (9)–(10) of the amplitude system via the solutions of (9)–(10),
and (ATT): an attractivity result, which shows that solutions of (1)–(2) to initial conditions
of order O(ε) develop in such a way that after an O(1/ε2)-time scale they are of a form
which allows us to approximate them afterwards by the solutions of (9)–(10).

Remark 1.7 Approximation and attractivity results have been established in [2, 7, 17] in
case of a Turing pattern forming systems coupled to a conservation law. Attractivity and
approximation results in case of a simultaneous Turing and a long wave Hopf bifurcation can
be found in [16].

Remark 1.8 The idea is as follows.Aneighborhood of the origin of the pattern forming system
ismapped by the attractivity (ATT) into a set which can be described by the amplitude system.
The amplitude system possesses an exponentially attracting absorbing ball (GL). Therefore,
by the approximation property (APP) the original neighborhoodof the pattern forming system
is mapped after a certain time into itself. These a priori estimates combined with the local
existence and uniqueness gives the global existence and uniqueness of solutions of the pattern
forming system in a neighborhood of the weakly unstable origin.

Remark 1.9 Examples of reaction–diffusion systems (1)–(2), falling into the class of systems
we are interested in, are for instance theBrusselator, theSchnakenberg, theGray–Scott and the
Gierer-Meinhardt model coupled to a conservation law coming for instance from ecology. As
an example we consider the Brusselator. The system, with the spatially homogeneous trivial
equilibrium as origin, is given by

∂t u1 = d1∂
2
x u1 + (b − 1)u1 + a2u2 + f (u1, u2), (14)

∂t u2 = d2∂
2
x u2 − bu1 − a2u2 − f (u1, u2), (15)

with nonlinear terms

f (u1, u2) = (b/a)u2
1 + 2au1u2 + u2

1u2.

The long-wave Hopf instability occurs at the critical wave number k = 0 for b = bhop f (a) =
1 + a2. For more details see [16]. This system can be brought into the form (1)–(2) by
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introducing a variable v satisfying

∂tv = dv∂
2
x v + ∂2x g(u1, u2),

with g(0, 0) = 0, by replacing b by v+˜b, and by introducing the small bifurcation parameter
ε2 = (˜b − bhop f )/bhop f .

The plan of the paper is as follows. In Sect. 2 we discuss the global existence and unique-
ness of solutions of the amplitude system (9)–(10). The proof will be given in “Appendix D”.
Section3 contains a number of preparations, in particular we eliminate a number of oscilla-
tory terms from (1)–(2) by so called normal form transformations. In Sect. 4 we derive the
amplitude equations and define the Ginzburg–Landau manifold, the set of solutions which
can be approximated by our amplitude system. In Sect. 5 we formulate the attractivity result
which is proven in “Appendix B”, the approximation result which is proven in “Appendix C”
and put them together to conclude on the global existence and uniqueness of solutions of the
original reaction–diffusion system (1)–(2). In Sect. 6 a few further questions are discussed.
Moreover, in “Appendix A” some estimates are provided which are used in the sequel.

Notation. The Sobolev space Hs is equipped with the norm ‖u‖Hs = ∑s
j=0 ‖∂ j

x u‖L2 ,

where ‖u‖2
L2 = ∫ |u(x)|2dx . The space Hs

l,u of s-times locally uniformly weakly differ-

entiable functions is equipped with the norm ‖u‖Hs
l,u

= ∑s
j=0 ‖∂ j

x u‖L2
l,u
, where ‖u‖L2

l,u
=

supx∈R(
∫ x+1

x |u(y)|2dy)1/2, cf [15, §8.3.1]. Fourier transform w.r.t. the spatial variable is
denoted by F and the inverse Fourier transform by F−1. Possibly different constants which
can be chosen independently of the small perturbation parameter 0 < ε  1 are often
denoted with the same symbol C .

2 Analysis of the Amplitude System

We consider

∂T A = a0∂
2
X A + a1A + a2AB − a3A|A|2, (16)

∂T B = b0∂
2
X B + b1∂

2
X (|A|2), (17)

where T ≥ 0, X ∈ R, A(X , T ) ∈ C, B(X , T ) ∈ R, and with coefficients having properties
as specified below the Eqs. (9)–(10). We are interested in the situation of an unstable trivial
solution, i.e., a1 > 0. This is the general form of the amplitude system which appears for a
long wave Hopf bifurcation in a pattern forming system with a conservation law. The system
has been derived for pattern forming systems with a conservation law exhibiting a Turing
instability, too, cf. [8]. In a singular limit spike solutions have been constructed in [10].

Remark 2.1 By rescaling A, B, T , and X and by possibly changing the sign of B, four of the
coefficients can be eliminated. We set

A = cA ˜A, B = cB ˜B, T = cT ˜T , and X = cX ˜X .

We find

∂
˜T

˜A = cT a0c−2
X ∂2

˜X
˜A + cT a1˜A + cT a2cB ˜A˜B − cT a3c2A ˜A|˜A|2,

∂
˜T
˜B = cT b0c−2

X ∂2
˜X

˜B + cT b1c2Ac−2
X c−1

B ∂2X (|˜A|2).
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We first choose cT ∈ R such that cT a1 = 1. Next we set cA > 0 such that cT (Rea3)c2A = 1.
Then we choose cX > 0 such that cT (Rea0)c

−2
X = 1. Finally, we set cB ∈ R such that

cT b1c2Ac−2
X c−1

B = 1 if b1 �= 0. If b1 = 0, subsequently in (19) the term ∂2X (|A|2) will be
away. Defining

β = cT a2cB , α = cT b0c−2
X , γ0 = Im(cT a0c−2

X ), γ3 = Im(cT a3c2A)

and dropping the tildes we finally consider

∂T A = (1 + iγ0)∂
2
X A + A + β AB − (1 + iγ3)A|A|2, (18)

∂T B = α∂2X B + ∂2X (|A|2), (19)

with α > 0 and β, γ0, γ3 ∈ R.

Remark 2.2 Before we discuss the local and global existence of this system we have a short
look at a family of special solutions. There are the X -independent time-periodic solutions
B = b, A = ̂AeiωT with |̂A|2 = 1 + βb and ω = −|̂A|2γ3 for every b with 1 + βb > 0. In
case 1 + βb ≤ 0 we have the stationary solutions B = b and A = 0.

Remark 2.3 Global existence for the classical Ginzburg–Landau equation on the real line,
(18) in case β = 0, can be obtained in C0

b (R) with the maximum principle if γ0 = γ3 = 0.
By the smoothing of the diffusion semigroup, global existence follows in all Cn

b -spaces and
Hm

l,u-spaces for m > 1/2. An approach for general γ0 and γ3 is to work with weighted

energies
∫

R
ρδ(X)|A(X)|2d X , where ρδ(X) = (1 + (δX)2)−1 for δ > 0, cf. [9].

Remark 2.4 However, so far, both approaches described in Remark 2.3 do not give global
existence for the amplitude system (18)–(19) on the real line.Weighted energy estimates gives
via the linear terms ∂2X A and α∂2X B some exponential growth of orderO(δ2). For the classical
Ginzburg–Landau equation one can get rid of these growth rates with the−|A|2A-termwhich
allows for a point-wise estimate

∫

R

ρδ(X)(|A(X)|2 − |A(X)|4)d X ≤
∫

R

ρδ(X)(1 − |A(X)|2)d X . (20)

However, there is no counterpart in (18)–(19) which can stop the growth of the weighted
B-variable.

We help ourselves by considering the amplitude system (18)–(19) with periodic boundary
conditions. 2π-periodicity for (16)–(17) corresponds to L-periodicity for (18)–(19) with
L = 2π

√
a1/a0.

Remark 2.5 In case of periodic boundary conditions, the mean value of B is conserved in
time. However, we could always further assume that the mean value b of B vanishes. If this
would not be the case, we could set B = b + ˜B, with ˜B having a vanishing mean value. Then
we would obtain

∂T A = (1 + iγ0)∂
2
X A + A + β A(b + ˜B) − (1 + iγ3)A|A|2,

∂T ˜B = α∂2X
˜B + ∂2X (|A|2).

Hence, by redefining the coefficient a1 we could always come to a system, for which the
mean value of B vanishes for all T ≥ 0.

The choice of periodic boundary conditions allows us to use classical energy estimates
without weights. In case 1 + α−1β > 0 we have the following global existence result.
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Theorem 2.6 Assume that 1 + α−1β > 0 holds. Fix s ≥ 0, L > 0 and consider (18)–(19)
with L-periodic boundary conditions. Then there exists a C2 > 0 such that for all C1 > 0
there exists a T0 > 0 such that the following holds. For initial conditions (A(·, 0), B(·, 0)) ∈
Hs+1 × Hs with

∫ L
0 B(X , 0)d X = 0 and

‖A(·, 0)‖Hs+1 + ‖B(·, 0)‖Hs ≤ C1

the associated unique global solution (A, B) ∈ C([0,∞), Hs+1 × Hs) satisfies

‖A(·, T )‖Hs+1 + ‖B(·, T )‖Hs ≤ C2

for all T ≥ T0.

Proof See “Appendix D”. ��

3 Some Preparations

All operators appearing in the following are so called multipliers. A linear operator M is
called multiplier if there exists a function ̂M : R → C such that Mu = F−1( ̂MFu), i.e.,
if the associated operator is a multiplication operator in Fourier space. Typical examples are
differential operators, semigroups, or mode-filters, but also the normal form transformations
at the end of this section can be interpreted as multilinear multipliers.

3.1 TheMode-Filters

For estimating the different parts of the solutions we use so called mode-filters. Since we
work in Hn

l,u-spaces we cannot use cut-off functions in Fourier space to extract certain modes
from the solutions. The associated operators in Hn

l,u would not be smooth and so we take a
χ̂ ∈ C∞

0 with

χ̂(k) =
⎧

⎨

⎩

1, for |k| ≤ 0.45˜δ,
0, for |k| ≥ 0.55˜δ,
∈ [0, 1], else,

(21)

for a˜δ > 0 sufficiently small but independent of the small perturbation parameter 0 < ε2 
1. For extracting the modes around the Fourier wave number k = 0 we define a mode-filter
E0 by

̂E0(k )̂u(k) = χ̂(k )̂u(k).

This operator can be estimated as follows.

Lemma 3.1 For every m ∈ N0 the operator E0 is a bounded operator from L2
l,u to Hm

l,u, in
detail, there exist constants Cm such that ‖E0‖L2

l,u→Hm
l,u

≤ Cm.

Proof We use multiplier theory in Hm
l,u-spaces, cf. [15, §8.3.1]. We have

‖E0v‖Hm
l,u

≤ C‖ ̂M‖C2
b
‖v‖L2

l,u
,

with ̂M(k) = (1 + k2)m/2χ̂ (k). ��
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3.2 The Normal FormTransformation

For the subsequent analysis we need a separation of the u-modes into exponentially damped
( j = 3, . . . , d) and critical modes ( j = ±1). In order to do so, we let

P̃±1(k, ε2)u = 1

2π i

∫

�±1

(μI d. − �̃u(k, ε2))−1udμ,

where �̃u = F�uF−1, with �u defined in (3), and where �±1 is a closed curve surrounding
the single eigenvalue λ±1|ε=0,k=0 = ±iω0 anti-clockwise. By the assumption (Spec) the
projections P̃j can be defined for wave numbers in a neighborhood Uρ(0) for a ρ > 0 and
so we set

E±1 = E0 P̃±1, Ec = E1 + E−1, and Es = I d. − Ec,

choosing˜δ < ρ/2 in (21). Moreover, we define scalar-valued projections p̃±1 by

P̃±1(k, ε2)u = ( p̃±1(k, ε2)u)̂U±1(k, ε2)

and e±1 = E0 p̃±1. With these operators we separate our linearized system (3)–(4) in critical
and exponentially damped modes.

Then, in Fourier space, we write

û(k, t) = ĉ1(k, t)̂U1(k) + ĉ−1(k, t)̂U−1(k) + ûs(k, t),

with ĉ±1(k, t) ∈ C, and define c±1 and us to be solutions of

∂t c1 = λ1c1 + f1(c1, us, v), (22)

∂t c−1 = λ−1c−1 + f−1(c1, us, v), (23)

∂t us = �sus + fs(c1, us, v), (24)

∂tv = �vv + ∂2x g(c1, us), (25)

with the additional assumption that the Fourier support of c±1 is contained in the Fourier
support of E0. Moreover, we assume that ûs(k) projected on span{̂U1(k), ̂U−1(k)} vanishes
for |k| ≤ 0.45˜δ. In (22)–(25) the linear operator �s is the restriction of �u to the us-variable
and

f±1(c1, us, v) = e1 f (u, v) = O(|c1|2 + |us |2 + (|u1| + |us |)|v|),
fs(c1, us, v) = Es f (u, v) = O(|c1|2 + |us |2 + (|u1| + |us |)|v|),

g(c1, us) = O(|c1|2 + |us |2).
Since c−1 = c1 we do not explicitly denote the appearance of c−1 in various places.

Since c1 approximately oscillates as eiω0t all quadratic combinations of c1 and c−1 can
be eliminated from the c1-equations by a near identity change of variables

ǔ1 = c1 + O(|c1|2).
A similar statement holds for the c−1-equation. For details see the subsequent Remark 3.3.

Remark 3.2 In a similar way terms vc±1 in the v-equation could be eliminated in case of a
more general nonlinearity in the v-equation.
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After the transform we have a system of the form

∂t ǔ1 = λ1ǔ1 + f̌1(ǔ1, us, v), (26)

∂t us = �sus + f̌s(ǔ1, us, v), (27)

∂tv = �vv + ∂2x ǧ(ǔ1, us), (28)

with

f̌1(ǔ1, us, v) = O(|ǔ1|3 + |ǔ1||us | + |us |2 + (|ǔ1| + |us |)|v|),
f̌s(ǔ1, us, v) = O(|ǔ1|2 + |us |2 + (|ǔ1| + |us |)|v|),

ǧ(ǔ1, us) = O(|ǔ1|2 + |us |2).
Detailed estimates about this transformation and the nonlinear terms are given belowwhen

needed.

Remark 3.3 In lowest order the equation for c1 is of the form

∂t c1 = λ1c1 + N1,1(c1, c1) + N1,−1(c1, c−1) + N−1,−1(c−1, c−1) + h.o.t .

where in Fourier space the Ni, j have a representation

̂Ni, j (ci , c j )[k] =
∫

n̂i, j (k, k − m, m )̂ci (k − m )̂c j (m)dm,

with kernel functions n̂i, j : R3 → C. The quadratic terms can be eliminated by a transform

ǔ1 = c1 + B1,1(c1, c1) + B1,−1(c1, c−1) + B−1,−1(c−1, c−1)

where in Fourier space the Bi, j have a representation

̂Bi, j (ci , c j )[k] =
∫

̂bi, j (k, k − m, m )̂ci (k − m )̂c j (m)dm.

The kernelŝbi, j (k, k − m, m) are solutions of

(λ̃1(k) − λ̃i (k − m) − λ̃ j (m))̂bi, j (k, k − m, m) = n̂i, j (k, k − m, m)

which are well-defined and bounded since

inf
k,m∈U4ρ(0)

|̂λ j1(k) −̂λ j2(k − m) −̂λ j3(m)| ≥ C > 0

for all j1, j2, j3 ∈ {−1, 1}. For more details see [15, §11] or [13, §4].

Remark 3.4 After the transform we have a system of the form

∂t ǔ1 = λ1ǔ1 + N1,1,1(ǔ1, ǔ1, ǔ1) + N1,1,−1(ǔ1, ǔ1, ǔ−1)

+N1,−1,−1(ǔ1, ǔ−1, ǔ−1) + N−1,−1,−1(ǔ−1, ǔ−1, ǔ−1) + h.o.t .

where in Fourier space the Ni, j,k have a similar representation as above. Except of N1,1,−1

the three other terms are non-resonant such that these can be eliminated by a second
transformation.

Example 3.5 Applying the normal form transformation to the system fromExample 1.1 yields
a system of the form

∂t u1 = ∂2x u1 + iω0u1 + ε2u1 + vu1 − γ3u2
1u−1 + h.o.t .
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∂t u−1 = ∂2x u−1 − iω0u−1 + ε2u−1 + vu−1 − γ3u2−1u1 + h.o.t .,

∂tv = ∂2x v + ∂2x (u1u−1) + h.o.t .,

with γ3 given by (11).

4 The Ginzburg–LandauManifold

The notation Ginzburg–Landau manifold or Ginzburg–Landau set, cf. [4], was chosen to
describe the set of initial conditions of the original system (1)–(2) which can be described
by the Ginzburg–Landau approximation. In the non-conservation law case it was shown that
this set is attractive, cf. [1, 4, 12]. In the conservation law case a first result was established
in [2]. We will come back to this in Sect.B. It is the purpose of this section to derive the
amplitude system, to compute a higher order approximation and to define what we will mean
by Ginzburg–Landau manifold.

For possible future applications, similar to [9, 14], we introduce a new perturbation param-
eter δ with 0 < ε ≤ δ  1 and distinguish this parameter from the bifurcation parameter
0 < ε  1.

4.1 Derivation of the Amplitude System

Our starting point for the derivation of the amplitude system is System (22)–(25) which we
write as

Res1 = −∂t c1 + λ1c1 + f1(c1, us, v),

Ress = −∂t us + �sus + fs(c1, us, v),

Resv = −∂tv + �vv + ∂2x g(c1, us).

The so called residuals Res1, Ress , and Resv contain all terms which remain after inserting
an approximation into System (22)–(25).

For the derivation of the amplitude system, cf. Example 1.1, we need an ansatz

c1(x, t) = δA1(X , T )eiω0t + δ2A1,0(X , T )

+δ2A1,2(X , T )e2iω0t + δ2A1,−2(X , T )e−2iω0t ,

c−1(x, t) = δA−1(X , T )e−iω0t + δ2A−1,0(X , T )

+δ2A−1,2(X , T )e2iω0t + δ2A−1,−2(X , T )e−2iω0t ,

us(x, t) = δ2As,2(X , T )e2iω0t + δ2As,0(X , T ) + δ2As,−2(X , T )e−2iω0t ,

v(x, t) = δ2B0(X , T ),

with X = δx and T = δ2t . By equating the coefficients in front of δ2einω0t , with n = 0,±2,
to zero, we find A j,2, A j,0, A j,−2 for j = −1, 1, s as solutions of equations of the form

A j,2 = γ j,2A1A1,

A j,0 = γ j,0A1A−1,

A j,−2 = γ j,−2A−1A−1,

with coefficients γ j,i . The A1, A−1, and B0 satisfy a system of the form
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∂T A1 = a0∂
2
X A1 + ε2

δ2
a1A1 + a2A1B0 − ã4A1|A1|2

+
∑

j=±1,s

a6, j A j,2A−1 +
∑

j=±1,s

a7, j A j,0A1,

∂T B0 = b0∂
2
X B0 + b1∂

2
X (|A1|2),

Eliminating the A j,2, A j,0, A j,−2 for j = −1, 1, s through the above equations gives the
amplitude system

∂T A1 = a0∂
2
X A1 + ε2

δ2
a1A1 + a2A1B0 − a3A1|A1|2, (29)

∂T B0 = b0∂
2
X B0 + b1∂

2
X (|A1|2), (30)

similar to (9)–(10). We formally have

Res1 = O(δ3), Ress = O(δ3), Resv = O(δ4)

for this approximation. In the residual of the c1-equation we have for instance a term
δ3A3

1e3iω0t and in the residual of the v-equation we have for instance a term δ4∂2X (A2
1)e

2iω0t .
In order to show that the amplitude system (29)–(30) makes correct predictions about the

original system (1)–(2) we establish subsequently the approximation Theorem 5.3.

4.2 Construction of a Higher Order Approximation

In order to obtain a more precise approximation we add higher order terms to the previous
approximation. We insert

c1 = ψ1, c−1 = ψ−1, us = ψs v = ψv

with

ψ1(x, t) =
N

∑

m=−N

M1(N ,m)
∑

n=0

δβ1(m)+n A+,m,n(X , T )eimω0t ,

ψ−1(x, t) =
N

∑

m=−N

M1(N ,m)
∑

n=0

δβ−1(m)+n A−,m,n(X , T )eimω0t ,

ψs(x, t) =
N

∑

m=−N

Ms (N ,m)
∑

n=0

δβs (m)+n As,m,n(X , T )eimω0t ,

ψv(x, t) =
N

∑

m=−N

Mv(N ,m)
∑

n=0

δβv(m)+n Bm,n(X , T )eimω0t ,

where N , M1(N , m), Ms(N , m), and Mv(N , m) are sufficiently large numbers such that

Resc = O(δθ+2), Ress = O(δθ+2), Resv = O(δθ+2)

for a given θ ∈ N and where

m −3 −2 −1 0 1 2 3 m

β1(m) 3 2 3 2 1 2 3 m
β−1(m) 3 2 1 2 3 2 3 m
βs(m) 3 2 3 2 3 2 3 m
βv(m) 5 4 5 2 5 4 5 m + 2
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The associated approximation is then denoted with �θ .
The coefficient functions are determined as follows. The functions A+,1,0, A−,−1,0, and

B0,0 satisfy the amplitude system from above. The A+,1,n , A−,−1,n , and B0,n for n ≥ 1
satisfy linearisations of the amplitude system from above with some inhomogeneous terms
which in the end depend on terms A+,1, j , A−,−1, j , and B0, j for 0 ≤ j ≤ n − 1. All other
A+,m,n , A−,m,n , As,m,n , and Bm,n satisfy algebraic equations and can be computed in terms
of the A+,1, j , A−,−1, j , and B0, j for 0 ≤ j ≤ n.

The solutions of this system are uniquely determined by the set of initial conditions
A+,1, j |T =0, A−,−1, j |T =0, and B0, j |T =0 for 0 ≤ j ≤ n.

Definition 4.1 For initial conditions

A+,1,0|T =0 = A1|T =0, A−,−1,0|T =0 = A1|T =0, B0,0|T =0 = B0|T =0

and

A+,1, j |T =0, A−,−1, j |T =0, B0, j |T =0

determined by the construction in “Appendix B.4” for 1 ≤ j ≤ n and (A1, B0) satisfying
(29)–(30) we call the set of approximate solutions

(u, v)(·, t) = �θ(A1(·, T ), B0(·, T ))

for the original system (1)–(2) the Ginzburg–Landau manifold, where �θ is the associated
higher order approximation defined above.

5 The Global Existence and Uniqueness Result

Throughout the rest of this paper we replace the boundary conditions (13) by the boundary
conditions

u(x, t) = u(x + 2π/δ, t) and v(x, t) = v(x + 2π/δ, t). (31)

with 0 < ε ≤ δ  1 and set later on δ = ε.

Remark 5.1 There is local existence and uniqueness of (mild) solutions

(u, v) ∈ C([0, t0], Hn+1
l,u × Hn

l,u)

of (1)–(2) for initial conditions (u0, v0) ∈ Hn+1
l,u × Hn

l,u if n ≥ 0 where the existence time
t0 > 0 only depends on ‖u0‖Hn+1

l,u
+ ‖v0‖Hn

l,u
. This can be established with the standard

fixed point argument for semilinear parabolic equations, cf. [5]. For n ≥ 0 the right-hand
side of the variation of constant formula associated to (1)–(2) is a contraction in a ball
in C([0, t0], Hn+1

l,u × Hn
l,u) for t0 > 0 sufficiently small using that the nonlinear terms

( f (u, v), ∂x g(u)) are smooth mappings from Hn+1
l,u × Hn

l,u to Hn
l,u × Hn

l,u and that the linear

semigroups (eD∂2x t , edv∂2x t∂x ) map Hn
l,u × Hn

l,u to Hn+1
l,u × Hn

l,u with an integrable singularity

t−1/2.

Hence, for establishing the global existence and uniqueness of (mild) solutions we need
to bound the solutions in Hn+1

l,u × Hn
l,u , i.e., if we establish an a priori bound

sup
t∈[0,∞)

(‖u(t)‖Hn+1
l,u

+ ‖v(t)‖Hn
l,u

) ≤ C3 < ∞, (32)
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where C3 is a constant only depending on ‖u0‖Hn+1
l,u

+ ‖v0‖Hn
l,u
, then the local existence and

uniqueness theorem can be applied again and again and the local solutions can be continued
to global solutions

(u, v) ∈ C([0,∞), Hn+1
l,u × Hn

l,u).

The necessary a-priori estimates (32) for (1)–(2) can be obtained in a sufficiently smallO(δ)-
neighborhood of theweakly unstable origin with the help of an attractivity and approximation
result for the Ginzburg–Landau manifold and the existence of an absorbing ball for the
amplitude system.

The attractivity theorem is as follows

Theorem 5.2 For all R0 > 0, n ≥ 0, and all θ ∈ N0 the following holds. Consider (1)–(2)
with initial conditions (u0, v0) ∈ Hn+1

l,u × Hn
l,u satisfying

‖u0‖Hn+1
l,u

+ δ−1‖v0‖Hn
l,u

≤ R0δ.

Then there exists a time T1 ∈ (0, 1), a δ1 > 0, an R1 > 0 and a C1 > 0, all only depending
on R0, θ , and n, such that for all δ ∈ (0, δ1), all ε ∈ (0, δ], and all m > 1/2 there are
(A1(·, 0), B0(·, 0)) ∈ Hm+1

l,u × Hm
l,u with

‖A1(·, 0)‖Hm+1
l,u

+ ‖B0(·, 0)‖Hm
l,u

≤ R1

such that the solution (u, v), with the initial conditions (u0, v0), satisfies at a time t = T1/δ2

that

‖(u, δ−1v)|t=T1/δ2 − (�θ,u, �θ,v)(A1(·, 0), B0(·, 0))‖Hm+1
l,u ×Hm

l,u
≤ Cδθ .

Proof See “Appendix B”. ��
The dynamics on the Ginzburg–Landau manifold is determined by the amplitude system

(29)–(30).Although theGinzburg–Landaumanifold, constructed above, is not invariant under
the flow of the original system (1)–(2), it is a good approximation of the flow near the
Ginzburg–Landau manifold. This is documented in the following approximation theorem.

Theorem 5.3 For all R2, T0, C2 > 0, n ≥ 0 and all θ ∈ N0 there exists C3, δ0 > 0 and
m ≥ 0 such that for all 0 ≤ ε ≤ δ ≤ δ0 the following holds: Let (A1, B0) be a solution of
(29)–(30) with

sup
T ∈[0,T0]

(‖A1(·, T )‖Hm+1
l,u

+ ‖B0(·, T )‖Hm
l,u

) ≤ R2,

with initial conditions (A1, B0)|T =0 = (A1(·, 0), B0(·, 0)), and (u0, v0) ∈ Hn+1
l,u × Hn

l,u
with

‖(u0, δ
−1v0) − (�θ,u, �θ,v)(A1(·, 0), B0(·, 0))‖Hn+1

l,u ×Hn
l,u

≤ C2δ
θ .

Then there exists a solution (u, v) of (1)–(2) with initial condition (u, v)|t=0 = (u0, v0) and

sup
0≤t≤T0/δ2

‖(u, δ−1v)(·, t) − (�θ,u, �θ,v)(A1, B0)(·, t)‖Hn+1
l,u ×Hn

l,u
≤ C3δ

θ .

Proof See “Appendix C”. ��
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Nowwehave all ingredients for establishing a global existence result through some a-priori
bound (32). For θ ≥ 3 the following holds:

(a) We start with the attractivity, cf. Theorem 5.2. For a sufficiently large R0 > 0 we obtain
R1 > 0, T1 > 0, and A1(·, 0) and B0(·, 0) with

‖A1(·, 0)‖Hm+1
l,u

+ ‖B0(·, 0)‖Hm
l,u

≤ R1

such that the solution (u, v), with the initial conditions (u0, v0), satisfies

‖(u, δ−1v)|t=T1/δ2 − (�θ,u, �θ,v)(A1(·, 0), B0(·, 0))‖Hn+1
l,u ×Hn

l,u
≤ Cδθ

for δ > 0 sufficiently small.
(b) According to Theorem 1.2 and Remark 1.3, in case of periodic boundary conditions (12),

the amplitude system (29)–(30) possesses anabsorbingballof radiusCR in Hm+1
l,u ×Hm

l,u .
Solutions of (29)–(30) starting in the ball of the above radius R1 need a time T0 to come
to the absorbing ball of radius CR .

(c) We have to make sure that the original ball R0δ for the original reaction–diffusion system
(1)–(2) is so big that the Ginzburg–Landau embedding of the absorbing ball for the
amplitude system (29)–(30) of radius CR is contained in this ball. In detail, for A1 and
B0 satisfying

‖A1(·, T0)‖Hm+1
l,u

+ ‖B0(·, T0)‖Hm
l,u

≤ CR

we need that the starting radius R0 is so big that

‖(�θ,u, �θ,v)(A1, B0)(·, T0/δ
2)‖Hn+1

l,u ×Hn
l,u

≤ R0δ/2.

(d) Finally we use the approximation property, i.e., that the amplitude systems (29)–(30)
makes correct predictions about the dynamics of the original system, cf. Theorem 5.3.
Then the triangle inequality guarantees that

‖(u, δ−1v)|(T1+T0)/δ2‖Hn+1
l,u ×Hn

l,u

≤ ‖(�θ,u, �θ,v)(A1, B0)(·, T0/δ
2)‖Hn+1

l,u ×Hn
l,u

+ sup
0≤t≤T0/δ2

‖(u, δ−1v)(·, T1/δ
2 + t) − (�θ,u, �θ,v)(A1, B0)(·, t)‖Hn+1

l,u ×Hn
l,u

≤ R0δ/2 + C3δ
θ ≤ 3R0δ/4

for δ > 0 sufficiently small. Thus, after a time (T1 + T0)/δ2 the flow of the original
reaction–diffusion system (1)–(2) has mapped the rescaled initial ball of radius R0δ into
the smaller rescaled ball of radius 3R0δ/4. Since the magnitude of the solution (u, v) is
also controlled between t = 0 and t = (T1 + T0)/δ2 by our estimates, we established an
a priori bound (32). Thus, with the above arguments the global existence and uniqueness
of the solutions of (1)–(2) follows for δ > 0 sufficiently small.

Remark 5.4 We remark that from a technical point of view, in contrast to previous approaches,
we moved the first step of the approximation result as stated [9, 11, 14] to the attractivity
result. This allows us to combine the attractivity and approximation result more easily.
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6 Discussion

Before we give proofs of the attractivity theorem 5.2, the approximation theorem 5.3, and
of Theorem 2.6 we would like to close the paper by discussing two other points, namely
the restriction to a nonlinearity g = g(u) and the global existence question in case that the
periodic boundary conditions (12) and (13) are dropped.

Remark 6.1 For us, (1)–(2) is a toy model which already contains many features which are
relevant for the global existence question addressed in this paper. The major restriction of our
model (1)–(2) seems to be the assumption that g(u) = O(|u|2) only depends on u. However,
an additional dependence on v without further smoothing would lead to a quasilinear system
and to functional analytic difficulties having to do with the quasilinearity of such a system,
but not with the question addressed in this paper. Alternatively, instead of (2), one could
consider the following semilinear toy problems

∂tv = dv∂
2
x v + ∂2x (1 − ∂2x )−1g(u, v) or ∂tv = −∂4x v + dv∂

2
x v + ∂2x g(u, v),

with g(u, v) = O(|u|2 + |v|2). Since we are not interested in the sideband unstable situation
in the v-equation at the wave number k = 0, cf. [3], in these alternative models for notational
simplicitywewould assume g(u, v) = O(|u|2+|v|2)) instead of g(u, v) = O(|u|2+|v|). It is
essential to remark that, w.r.t. the scaling used above, a term |v|2 is of higher order than a term
|u|2 and will not appear in the amplitude system (29)–(30). In hydrodynamical applications
the quasilinearity of the problem often cannot be avoided, cf. [18]. Global existence by the
above approach is a problem which is unsolved in quasilinear situations even without a
conservation law so far.

Remark 6.2 In this remark we would like to discuss a few observations about the global
existence problem if the periodic boundary conditions (12) and (13) are dropped.We consider
the situation when in lowest order in (9)–(10) the B-equation decouples from the A-equation,
i.e., b1 = 0. In this case the amplitude system in normal form is given by

∂T A = (1 + iγ0)∂
2
X A + A + β AB − (1 + iγ3)A|A|2, (33)

∂T B = α∂2X B. (34)

By the maximum principle B stays bounded and for A a uniform bound in time can be
established with the weighted energy method explained in Remark 2.3. Hence, the solutions
of the amplitude system exist globally in time and stay uniformly bounded. However, due to
the B-equation the system does not possess an absorbing ball.

Adding the higher oder terms to the B-equation gives a system of the form

∂T B = dv∂
2
X B + ∂2X (O(ε)).

With the variation of constant formula we obtain

B(T ) = edv∂2X T B(0) +
∫ T

0
edv∂2X (T −τ)∂2X (O(ε))dτ

and using the estimate

‖edv∂2X T ∂2−2ϑ
X ‖Hn

l,u→Hn
l,u

≤ CT ϑ−1

we expect

B(T ) − edv∂2X T B(0) = O(ε

∫ T

0
(T − τ)ϑ−1dτ) = O(εT ϑ)
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for a ϑ > 0 arbitrarily small, but fixed. Hence, in the A-equation the term AB can grow
as O(εT ϑ)A. It can be expected that it can be balanced with the −A|A|2-term as long
εT ϑ ≤ O(1), i.e. for T ≤ O(ε−1/ϑ ), i.e., on arbitrary long, but fixed, time scales w.r.t. ε.
With more advanced estimates we even would obtain

B(T ) − edv∂2X T B(0) = O(C + ε

∫ T −1

0
(T − τ)−1dτ) = O(C + ε ln T ),

respectively T ≤ O(exp(1/ε)). It will be the subject of future research to make these argu-
ments rigorous by iterating the attractivity and approximation result for a growing sequence
of perturbation parameters δ. Note that an iteration, as used in [9, 14] with a sequence of
suitable chosen δ j s, is not possible in case of periodic boundary conditions.

A The Analytic Set-Up

This section contains a few preparations for the subsequent proofs of the attractivity and
approximation result.

(i) It turns out to be advantageous that all variables in (26)–(28) have the same regularity,
i.e., we introduce the new variable v̌ by

v = 〈∂x 〉v̌ = (1 − ∂2x )1/2v̌

such that (26)–(28) becomes

∂t ǔ1 = λ1ǔ1 + f̌1,n(ǔ1, us, v̌), (35)

∂t us = �sus + f̌s,1(ǔ1, us, v̌), (36)

∂t v̌ = �vv̌ + ∂2x ǧ1(ǔ1, us), (37)

with

f̌1,n(ǔ1, us, v̌) = f̌1(ǔ1, us, 〈∂x 〉v̌)

= O(|ǔ1|3 + |ǔ1||us | + |us |2 + (|ǔ1| + |us |)|v̌|),
f̌s,n(ǔ1, us, v̌) = f̌s(ǔ1, us, 〈∂x 〉v̌)

= O(|ǔ1|2 + |us |2 + (|ǔ1| + |us |)|v̌|),
ǧ1(ǔ1, us) = 〈∂x 〉−1ǧ(ǔ1, us)

= O(|ǔ1|2 + |us |2).
As a consequence, the nonlinearities f̌s,n and ∂2x ǧ1 are smooth mappings from Hs+1

l,u to

Hs
l,u . The mapping f̌1,n is arbitrarily smooth due to its compact support in Fourier space.

(ii) We introduce the scaling operator

(Sδu)(x) = u(δx)

and the scaled spaces Hs,δ
l,u = Hs

l,u equipped with the norm

‖u‖Hs,δ
l,u

= ‖S1/δu‖Hs
l,u
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(iii) Before we start with estimating the linear semigroups we define the Hs
l,u-norm for s ∈

(0, 1) by

‖u‖Hs
l,u

= ‖u‖L2
l,u

+ ‖∂x 〈∂x 〉s−1u‖L2
l,u

, (s ∈ (0, 1)).

For n ∈ N0 and s ∈ (0, 1) we set

‖u‖Hn+s
l,u

= ‖u‖Hn
l,u

+ ‖∂n
x u‖Hs

l,u
.

We need

Lemma A.1 For s, r ≥ 0 there exists a σ > 0, a C ≥ 1 such that for 0 < ε ≤ δ ≤ 1 and all
t ≥ 0 the following estimates hold:

‖eλ1t‖Hs
l,u→Hs+r

l,u
≤ C(1 + t−r/2)eCε2t ,

‖eλ1t‖Hs,δ
l,u →Hs+r,δ

l,u
≤ C(1 + (δ2t)−r/2))eCε2t ,

‖e�s t‖Hs
l,u→Hs+r

l,u
≤ Ce−σ t (1 + t−r/2),

‖e�s t‖Hs,δ
l,u →Hs+r,δ

l,u
≤ Ce−σ t (1 + (δ2t)−r/2)),

‖e�v t‖Hs
l,u→Hs+r

l,u
≤ C(1 + t−r/2),

‖e�v t‖Hs,δ
l,u →Hs+r,δ

l,u
≤ C(1 + (δ2t)−r/2)).

Proof These estimates have been established in a number of papers, cf. [15, §10]. ��
Remark A.2 Werefrain from recalling a complete proof ofLemmaA.1. It is basedon estimates
like

sup
k∈R

|e−k2t (ik)n | ≤ Ct−n/2

for n ∈ N0 and on estimates likêλ1(k) ≤ −αk2 for an α > 0. For real-valued n ≥ 0 with
n = n0 + s with n0 ∈ N and s ∈ [0, 1) we use

sup
k∈R

|e−k2t k〈k〉s−1| ≤ sup
k∈R

|e−k2t |k|s | sup
k∈R

||k|1−s〈k〉s−1| ≤ Ct−s/2.

B Proof of the Attractivity Theorem 5.2

In order to prove the attractivity result we have to show that the solution (u, v) of (1)–(2) to
a small, but otherwise arbitrary initial condition (u0, v0) ∈ Hn+1

l,u × Hn
l,u develops in such a

way that after a certain time it can be written in the form stated in (7)–(8), i.e., after that time
wemust be able to extract functions A1 and B0 which are functions of the long spatial variable
X = δx . For the derivation of the amplitude system (29)–(30) we make a Taylor expansion
w.r.t. the small perturbation parameter δ, with 0 < ε ≤ δ  1, and among other things we
use that ∂m

x A1(δx) = O(δm) and ∂m
x B0(δx) = O(δm). In the end this means that we have

to prove estimates such as ∂m
x ((E1u(·, t))) = O(δm+1) and ∂m

x (E0v(·, t)) = O(δm+2) for
t > 0 sufficiently large with initial conditions of (1)–(2) satisfying the estimates assumed in
Theorem 5.2.
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Remark B.1 By looking at the Fourier representation of the linearized problemwe see that the
u-solution and the v-solution are exponentially damped for all wave numbers except around
k = 0 where in physical space the solutions are of order O(δ). By nonlinear interaction no
other modes of order O(δ) are created.

B.1 The First Attractivity Step

We consider (1)–(2) after applying the normal form transformation from Sect. 3.2, i.e., in the
following we consider (35)–(37).

(1) We start with solutions of order ǔ1 = O(δ), us = O(δ) and v̌ = O(δ2). Setting ǔ1 = δũ1,
us = δũs , and v̌ = δ2ṽ gives

∂t ũ1 = λ1ũ1 + ˜f1(̃u1, ũs, ṽ), (38)

∂t ũs = �s ũs + ˜fs (̃u1, ũs, ṽ), (39)

∂t ṽ = �vṽ + ∂2x g̃(̃u1, ũs), (40)

with

˜f1(̃u1, ũs, ṽ) = O(δ2 |̃u1|3 + δ|̃u1||̃us | + δ|̃us |2 + δ2(|̃u1| + |̃us |)|̃v|),
˜fs (̃u1, ũs, ṽ) = O(δ|̃u1|2 + δ|̃us |2 + δ2(|̃u1| + |̃us |)|̃v|),

g̃(̃u1, ũs) = O(|̃u1|2 + |̃us |2).
Considering the variation of constant formula

ũs(t) = e�s t ũs(0) +
∫ t

0
e�s (t−τ)

˜fs (̃u1, ũs, ṽ)(τ )dτ,

it is easy to see that us = O(δ2) for instance for t = 1/δ1/4 using the exponential decay
‖e�s t‖Hn+1

l,u →Hn+1
l,u

≤ Ce−σ t for a σ > 0 independent of 0 < ε ≤ δ  1 under the

assumption that ˜fs (̃u1, ũs, ṽ) = O(δ) for t ∈ [0, 1/δ1/4]. However, since there is no δ1/4

in front of the nonlinear terms in the ṽ-equation we cannot guarantee that ṽ = O(1) for
t = δ−1/4. In order to guarantee this, some extra work has to be done. Since the argument
follows the arguments of next (more complicated) step 2) we assume for a moment that
we have proved ǔc = O(δ), us = O(δ2) and v = O(δ2) for t = 1/δ1/4 and close the
gap in the proof in Remark B.2 after completing step 2).

(2) We start (35)–(37) again, but now for initial conditions ǔc = O(δ), us = O(δ2), and
v = O(δ2). Setting ǔ1 = δũ1, us = δ2ũs and v = δ2ṽ. We find now

∂t ũ1 = λ1ũ1 + ˜f1(̃u1, ũs, ṽ), (41)

∂t ũs = �s ũs + ˜fs (̃u1, ũs, ṽ), (42)

∂t ṽ = �vṽ + ∂2x g̃(̃u1, ũs), (43)

with

˜f1(̃u1, ũs, ṽ) = O(δ2 |̃u1|3 + δ2 |̃u1||̃us | + δ3 |̃us |2 + δ2(|̃u1| + δ|̃us |)|̃v|),
˜fs (̃u1, ũs, ṽ) = O(|̃u1|2 + δ|̃u1||̃us | + δ2 |̃us |2 + δ(|̃u1| + δ|̃us |)|̃v|),

g̃(̃u1, ũs) = O(|̃u1|2 + δ|̃u1||̃us | + δ2 |̃us |2).
Since attractivity happens on an O(1/δ2)-time scale we have to control the solutions of

the last system on this long time scale. The first equation is not a problem since in front of
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all nonlinear terms there is a factor δ2. In the second equation there is linear exponential
damping which allows us to control all nonlinear terms in this equation. The main difficulty
to control the solutions on the long O(1/δ2)-time scale is the missing δ2 in front of the
nonlinear terms in the third equation. In order to get this missing δ2 we need that ũ1 is two
times differentiable w.r.t. the long space variable X . In detail, we need that these derivatives
are O(1)-bounded. However, this is a problem since this exactly what we are going to prove
and what is not true for t = 0.

(a) We proceed as follows to get rid of this problem. We consider the variation of constant
formula

ũ1(t) = eλ1t ũ1(0) +
∫ t

0
eλ1(t−τ)

˜f1(̃u1, ũs, ṽ)(τ )dτ,

ũs(t) = e�s t ũs(0) +
∫ t

0
e�s (t−τ)

˜fs (̃u1, ũs, ṽ)(τ )dτ,

ṽ(t) = e�v t ṽ(0) +
∫ t

0
e�v(t−τ)∂2x g̃(̃u1, ũs)(τ )dτ.

For this systemwe are now going to establish a priori estimates which in combinationwith the
local existence and uniqueness theorem will guarantee the long time existence of solutions
on the long O(1/δ2)-time scale.

We set

Sc,0(t) = sup
τ∈[0,t]

‖ũ1(τ )‖Hn+1
l,u

, Ss,0(t) = sup
τ∈[0,t]

‖ũs(τ )‖Hn+1
l,u

,

and

Sv,0(t) = sup
τ∈[0,t]

‖̃v(τ)‖Hn+1
l,u

.

Moreover, we need the quantity

Sc,1(t) = Sc,0(t) + sup
τ∈[0,t]

τ 1/2‖∂x ũ1(τ )‖L2
l,u

.

Before we start, we remark that all Hs
l,u-norms for ũ1 are equivalent due to the compact

support of ũ1 in Fourier space.
(i) We estimate

‖ũ1(t)‖Hn+1
l,u

≤ ‖eλ1t ũ1(0)‖Hn+1
l,u

+
∫ t

0
‖eλ1(t−τ)‖Hn+1

l,u →Hn+1
l,u

‖ ˜f1(̃u1, ũs, ṽ)(τ )‖Hn+1
l,u

dτ

≤ C‖ũ1(0)‖Hn+1
l,u

+ C
∫ t

0
‖ ˜f1(̃u1, ũs, ṽ)(τ )‖Hn+1

l,u
dτ

≤ C Sc,0(0) + Cδ2t(Sc,0(t)
3 + Sc,0(t)Ss,0(t) + Sc,0(t)Sv,0(t)

+δ(Ss,0(t)
2 + Ss,0(t)Sv,0(t))),

where we used the semigroup estimate from Lemma A.1 and the bound on ˜f1 after (43).
(ii) Next we find

t1/2‖∂x ũ1(t)‖L2
l,u

≤ t1/2‖∂x eλ1t ũ1(0)‖L2
l,u
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+t1/2
∫ t

0
‖∂x eλ1(t−τ)‖Hn+1

l,u →L2
l,u

‖ ˜f1(̃u1, ũs, ṽ)(τ )‖Hn+1
l,u

dτ

≤ C‖ũ1(0)‖Hn+1
l,u

+ t1/2
∫ t

0
(t − τ)−1/2‖ ˜f1(̃u1, ũs, ṽ)(τ )‖Hn+1

l,u
dτ

≤ C Sc,0(0) + Cδ2t1/2
∫ t

0
(t − τ)−1/2dτ

×(Sc,0(t)
3 + Sc,0(t)Ss,0(t) + Sc,0(t)Sv,0(t) + δ(Ss,0(t)

2 + Ss,0(t)Sv,0(t)))

≤ C Sc,0(0) + Cδ2t(Sc,0(t)
3 + Sc,0(t)Ss,0(t) + Sc,0(t)Sv,0(t)

+δ(Ss,0(t)
2 + Ss,0(t)Sv,0(t))),

where we used the semigroup estimate from Lemma A.1 with r = 1 and again the bound on
˜f1 after (43).

(iii) For the exponentially damped part we use that
∫ t

0
‖e�s (t−τ)‖Hn

l,u→Hn+1
l,u

dτ ≤
∫ t

0
e−σ(t−τ)(1 + (t − τ)−1/2)dτ = O(1)

uniformly in t ≥ 0, and the bound on ˜fs after (43), and so we find

‖ũs(t)‖Hn+1
l,u

≤ ‖e�s t ũs(0)‖Hn+1
l,u

+
∫ t

0
‖e�s (t−τ)‖Hn

l,u→Hn+1
l,u

‖ ˜fs (̃u1, ũs, ṽ)(τ )‖Hn
l,u

dτ

≤ ‖ũs(0)‖Hn+1
l,u

+
∫ t

0
e−σ(t−τ)(1 + (t − τ)−1/2)‖ ˜fs (̃u1, ũs, ṽ)(τ )‖Hn

l,u
dτ

≤ C Ss,0(0) + C(Sc,0(t)
2 + δSc,0(t)Ss,0(t) + δ2Ss,0(t)

2

+δSv,0(t)(Sc,0(t) + δSs,0(t))).

(iv) The estimates for the ṽ-variable are obtained from

‖̃v(t)‖Hn+1
l,u

≤ C ‖̃v(0)‖Hn+1
l,u

+
∫ t

0
‖e�v(t−τ)∂x‖Hn+1

l,u →Hn+1
l,u

‖∂x g̃(̃u1, ũs)(τ )‖Hn+1
l,u

dτ

≤ C Sv,0(0) + C
∫ t

0
(t − τ)−1/2τ−1/2dτ Sc,0(t)Sc,1(t)

+C
∫ t

0
(t − τ)−1/2dτ(δSc,0(t)Ss,0(t) + δ2Ss,0(t)Ss,0(t))

≤ C Sv,0(0) + C Sc,0(t)Sc,1(t) + Cδt1/2(Sc,0(t)Ss,0(t) + δSs,0(t)
2),

where the semigroup term is estimated with Lemma A.1 with r = 1, where we used that all
Hs

l,u-norms for ũ1 are equivalent due to its compact support in Fourier space, and where we
used estimates like

|τ−1/2τ 1/2∂x ũ1(τ )| ≤ τ−1/2Sc,1(t).

(v) Taking the sup w.r.t. t on the left-hand side gives the inequalities

Sc,0(t) ≤ C Sc,0(0) + CT (Sc,0(t)
3 + Sc,0(t)Ss,0(t) + Sc,0(t)Sv,0(t)
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+δ(Ss,0(t)
2 + Ss,0(t)Sv,0(t))),

Sc,1(t) ≤ C Sc,0(0) + CT (Sc,0(t)
3 + Sc,0(t)Ss,0(t) + Sc,0(t)Sv,0(t)

+δ(Ss,0(t)
2 + Ss,0(t)Sv,0(t))),

Ss,0(t) ≤ C Ss,0(0) + C(Sc,0(t)
2 + δSc,0(t)Ss,0(t) + δ2Ss,0(t)

2

+δSv,0(t)(Sc,0(t) + δSs,0(t))),

Sv,0(t) ≤ C Sv,0(0) + C Sc,0(t)Sc,1(t) + CT 1/2(Sc,0(t)Ss,0(t) + δSs,0(t)
2).

For δ > 0 and T > 0 sufficiently small the last two inequalities allow to estimate Ss,0(t) and
Sv,0(t) in terms of Ss,0(0), Sv,0(0), Sc,0(t), and Sc,1(t). Replacing then Ss,0(t) and Sv,0(t) in
the first two inequalities by these estimates and choosing δ0 > 0 and T1 = O(1) sufficiently
small, gives the existence of a C1 = O(1) with

Sc,0(t) + Sc,1(t) + Ss,0(t) + Sv,0(t) ≤ C1 (44)

for all t ∈ [0, T1/δ2] and δ ∈ (0, δ0).

Remark B.2 It remains to close Step 1), i.e., we have to prove that ǔ1 = O(δ), us = O(δ)

and v̌ = O(δ2) tor t ∈ [0, 1/δ1/4]. In order to do so, we follow the argument in Step 2) but
now with us = δũs instead of us = δ2ũs . Moreover, we set

Su,0(t) = sup
τ∈[0,t]

‖ũ1(τ )‖Hn+1
l,u

+ sup
τ∈[0,t]

‖ũs(τ )‖Hn+1
l,u

,

and

Su,1(t) = Su,0(t) + sup
τ∈[0,t]

τ 1/2‖∂x ũ1(τ )‖L2
l,u

+ sup
τ∈[0,t]

τ 1/2‖∂x ũs(τ )‖L2
l,u

With exactly the same calculations as in 2) we end up with the inequalities

Su,0(t) ≤ C Su,0(0) + Cδt(Su,0(t)
2 + δSu,0(t)Sv,0(t)),

Su,1(t) ≤ C Su,0(0) + Cδt(Su,0(t)
2 + δSu,0(t)Sv,0(t)),

Sv,0(t) ≤ C Sv,0(0) + C Sc,0(t)Sc,1(t).

The last inequality allows to estimate Sv,0(t) in terms of Sv,0(0), Su,0(t), and Su,1(t). Replac-
ing then Sv,0(t) in the first two inequalities by this estimate and then choosing δ0 > 0
sufficiently small, gives the existence of a C1 = O(1) with

Su,0(t) + Su,1(t) + Sv,0(t) ≤ C1 (45)

for all t ∈ [0, 1/δ1/4] and δ ∈ (0, δ0).

B.2 The Second Attractivity Step

Our estimates from the first attractivity step also guarantee that the solutions ũ1, ũs , and ṽ

of (26)–(28) are O(1)-bounded in H1,δ
l,u , Hn+1

l,u , and Hn+1
l,u , respectively, on time intervals of

length O(1/δ2), for instance considering (45) for t ∈ [T1/(2δ2), T1/δ2].
In the next step we prove that under these assumptions ũs and ṽ will be in H1/2,δ

l,u after an

O(1/δ2)-time scale. Since we have the existence and uniqueness of solutions it is sufficient
to establish the bounds on this long time interval.

(i) We split

˜fs (̃u1, ũs, ṽ) = ˜fs,a (̃u1) + ˜fs,b (̃u1, ũs, ṽ),
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with

˜fs,a (̃u1) = O(|̃u1|2),
˜fs,b (̃u1, ũs, ṽ) = O(δ|̃u1||̃us | + δ2 |̃us |2 + δ(|̃u1| + δ|̃us |)|̃v|),

and find for t ≤ T1/δ2 with T1 = O(1) that

t1/4‖∂x 〈∂x 〉−1/2ũs(t)‖Hn+1
l,u

≤ t1/4‖∂x 〈∂x 〉−1/2e�s t ũs(0)‖Hn+1
l,u

+t1/4
∫ t

0
‖e�s (t−τ)‖Hn

l,u→Hn+1
l,u

‖∂x 〈∂x 〉−1/2
˜fs,a (̃u1)(τ )‖Hn

l,u
dτ

+t1/4
∫ t

0
‖∂x 〈∂x 〉−1/2e�s (t−τ)‖Hn

l,u→Hn+1
l,u

‖ ˜fs,b (̃u1, ũs, ṽ)(τ )‖Hn
l,u

dτ

≤ Ct1/4t−1/4e−σ t‖ũs(0)‖Hn+1
l,u

+t1/4
∫ t

0
e−σ(t−τ)(1 + (t − τ)−1/2)‖∂x 〈∂x 〉−1/2

˜fs,a (̃u1)(τ )‖Hn
l,u

dτ

+t1/4
∫ t

0
e−σ(t−τ)(1 + (t − τ)−3/4)‖ ˜fs,b (̃u1, ũs, ṽ)(τ )‖Hn

l,u
dτ

≤ C Ss,0(0) + Cδ1/2t1/4Sc,1(T1/δ
2)2

+δt1/4(Sc,0(t)Ss,0(t) + δSs,0(t)
2 + Sv,0(t)(Sc,0(t) + δSs,0(t)))

which is O(1) for t = T1/δ2.
(ii) Similarly, we find for t ≤ T1/δ2 with T1 = O(1) that

t1/4‖∂x 〈∂x 〉−1/2ṽ(t)‖Hn+1
l,u

≤ Ct1/4‖∂x 〈∂x 〉−1/2e�v t ṽ(0)‖Hn+1
l,u

+t1/4
∫ t

0
‖∂x 〈∂x 〉−1/2(e�v(t−τ)∂x )‖Hn+1

l,u →Hn+1
l,u

‖∂x g̃b (̃u1, ũs)(τ )‖Hn+1
l,u

dτ

≤ C Sv,0(0) + Ct1/4
∫ t

0
(t − τ)−3/4dτδSc,1(T1/δ

2)2

+Ct1/4
∫ t

0
(t − τ)−3/4dτ(δSc,0(t)Ss,0(t) + δ2Ss,0(t)Ss,0(t))

≤ C Sv,0(0) + Cδt1/2Sc,1(T1/δ
2)2 + Cδt1/2(Sc,0(t)Ss,0(t) + δSs,0(t)

2)

which is O(1) for t = T1/δ2.

B.3 The Attractivity Induction Steps

Our estimates from the first two attractivity steps so far guarantee that the solutions ũ1, ũs , and
ṽ of (26)–(28) areO(1)-bounded in H1,δ

l,u , H1/2,δ
l,u ∩ Hn+1

l,u , and H1/2,δ
l,u ∩ Hn+1

l,u , respectively,

on time intervals of length O(1/δ2).
In the next step we prove that under these assumptions ũ1 will be in H3/2,δ

l,u after an

O(1/δ2)-time scale. After this we show that this implies that ũs and ṽ will be in H1,δ
l,u after an
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O(1/δ2)-time scale. In the next step we show that ũ1 will be in H2,δ
l,u after an O(1/δ2)-time

scale, etc. We will do this by induction. Again it is sufficient to establish the bounds.
(i) In the first step we assume that

Um,c(t) = sup
τ∈[0,t]

‖ũ1(τ )‖Hm,δ
l,u

, Um−1/2,s(t) = sup
τ∈[0,t]

‖ũs(τ )‖
Hm−1/2,δ

l,u
,

and

Um−1/2,v(t) = sup
τ∈[0,t]

‖̃v(τ)‖
Hm−1/2,δ

l,u

are finite and of order O(1). We find for t ≤ T1/δ2 with T1 = O(1) that

t1/4‖∂x 〈∂x 〉−1/2ũ1(t)‖Hm,δ
l,u

≤ t1/4‖∂x 〈∂x 〉−1/2eλ1t ũ1(0)‖Hm,δ
l,u

+t1/4
∫ t

0
‖∂x 〈∂x 〉−1/2eλ1(t−τ)‖

Hm−1/2,δ
l,u →Hm,δ

l,u
‖ ˜f1(̃u1, ũs, ṽ)(τ )‖

Hm−1/2,δ
l,u

dτ

≤ C‖ũ1(0)‖Hm,δ
l,u

+t1/4
∫ t

0
(t − τ)−1/4(δ2(t − τ))−1/4‖ ˜f1(̃u1, ũs, ṽ)(τ )‖

Hm−1/2,δ
l,u

dτ

≤ C‖ũ1(0)‖Hm,δ
l,u

+ Cδ3/2t1/4
∫ t

0
(t − τ)−1/2dτ

×(Um,c(t)
3 + Um,c(t)Um−1/2,s(t) + Um,c(t)Um−1/2,v(t)

+δUm−1/2,s(t)
2 + δUm−1/2,s(t)Um−1/2,v(t))

≤ C‖ũ1(0)‖Hm,δ
l,u

+ Cδ3/2t3/4(Um,c(t)
3 + Um,c(t)Um−1/2,s(t)

+Um,c(t)Um−1/2,v(t) + δUm−1/2,s(t)
2 + δUm−1/2,s(t)Um−1/2,v(t))

which is O(1) for t = T1/δ2 and so ũ1(t) ∈ Hm+1/2,δ
l,u for t = O(1/δ2).

(ii) In the second induction stepwe assume thatUm+1/2,c(t),Um−1/2,s(t), andUm−1/2,v(t)
are finite and of order O(1). We find for t ≤ T1/δ2 with T1 = O(1) that

t1/4‖∂x 〈∂x 〉−1/2ũs(t)‖Hm−1/2,δ
l,u

≤ t1/4‖∂x 〈∂x 〉−1/2e�s t ũs(0)‖Hm−1/2,δ
l,u

+t1/4
∫ t

0
‖e�s (t−τ)‖

Hm−1/2,δ
l,u →Hm−1/2,δ

l,u
‖∂x 〈∂x 〉−1/2

˜fs,a (̃u1)(τ )‖
Hm−1/2,δ

l,u
dτ

+t1/4
∫ t

0
‖∂x 〈∂x 〉−1/2e�s (t−τ)‖

Hm−1/2,δ
l,u →Hm−1/2,δ

l,u
‖ ˜fs,b (̃u1, ũs, ṽ)(τ )‖

Hm−1/2,δ
l,u

dτ

≤ Ct1/4t−1/4e−σ t‖ũs(0)‖Hm−1/2,δ
l,u

+t1/4
∫ t

0
e−σ(t−τ)‖∂x 〈∂x 〉−1/2

˜fs,a (̃u1)(τ )‖
Hm−1/2,δ

l,u
dτ

+t1/4
∫ t

0
e−σ(t−τ)(t − τ)−1/4‖ ˜fs,b (̃u1, ũs, ṽ)(τ )‖

Hm−1/2,δ
l,u

dτ

≤ C‖ũs(0)‖Hm−1/2,δ
l,u

+ Cδ1/2t1/4Um+1/2,c(T1/δ
2)2
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+δt1/4(Um+1/2,c(t)Um−1/2,s(t) + δUm−1/2,s(t)
2

+Um−1/2,v(t)(Um+1/2,c(t)(t) + δUm−1/2,s(t)))

which is O(1) for t = T1/δ2 and so ũs(t) ∈ Hm,δ
l,u for t = O(1/δ2).

(iii) In the second part of the second induction step we assume again that Um+1/2,c(t),
Um−1/2,s(t), and Um−1/2,v(t) are finite and of order O(1). We find for t ≤ T1/δ2 with
T1 = O(1) that

t1/4‖∂x 〈∂x 〉−1/2ṽ(t)‖Hn+1
l,u

≤ Ct1/4‖∂x 〈∂x 〉−1/2e�v t ṽ(0)‖
Hm−1/2,δ

l,u

+t1/4
∫ t

0
‖∂x 〈∂x 〉−1/2(e�v(t−τ)∂x )‖Hm−1/2,δ

l,u →Hm−1/2,δ
l,u

‖∂x g̃b (̃u1, ũs)(τ )‖
Hm−1/2,δ

l,u
dτ

≤ C ‖̃v(0)‖
Hm−1/2,δ

l,u
+ Ct1/4

∫ t

0
(t − τ)−3/4dτδUm+1/2,c(T1/δ

2)2

+Ct1/4
∫ t

0
(t − τ)−3/4dτ(δUm+1/2,c(t)Um−1/2,s(t) + δ2Um−1/2,s(t)

2)

≤ C ‖̃v(0)‖
Hm−1/2,δ

l,u
+ Cδt1/2Um+1/2,c(T1/δ

2)2

+Cδt1/2(Um+1/2,c(t)Um−1/2,s(t) + δUm−1/2,s(t)
2)

which is O(1) for t = T1/δ2 and so ṽ(t) ∈ Hm,δ
l,u for t = O(1/δ2).

B.4 Attractivity of the Ginzburg–LandauManifold

In the first step we proved that the solutions of (22)–(25) develop in such a way that for
arbitrary large but fixed m we have

δ−1‖c1|T1/δ2‖Hm,δ
l,u ∩Hn+1

l,u
+ δ−2‖us |T1/δ2‖Hm,δ

l,u ∩Hn+1
l,u

+ δ−2‖v|T1/δ2‖Hm,δ
l,u ∩Hn

l,u
= O(1).

Then, we set

c1 = ψ1 + δ2R1,1,

c−1 = ψ−1 + δ2R−1,1,

us = ψs + δ2Rs,1,

v = ψv + δ3Rv,1.

where ψ1, ψ−1, ψs , and ψv were defined in Sect. 4.2. In the following we explain how to
choose the A±,m,n , As,m,n , and Bm,n initially such that in the end the δ2R±1,1, δ2Rs,1, and
δ3Rv,1 will become smaller and smaller.

We start with A+,1,0|T =0 = δ−1c1|t=T1/δ2 , A−,1,0|T =0 = δ−1c−1|t=T1/δ2 , As,0|T =0 =
δ−2us |t=T1/δ2 , and B0,0|T =0 = δ−2E0v|t=T1/δ2 . We choose the other A±,m,n , As,m,n , and
Bm,n as in Sect. 4.2. However, by this choice we cannot guarantee that the remaining parts of
the solution δ2R1,1, δ2R−1,1, δ2Rs,1, and δ3Rv,1 are smaller than the displayed orders w.r.t.
δ.

These estimates can be improved by the following procedure. For t = T1/δ2 we have

c1(δx, T1/δ
2) = (δA+,1,0(δx, 0) + δ2A+,1,1(δx, 0) + δ3A+,1,2(δx, 0) + . . .)

+(δ2A+,2,0(δx, 0) + δ3A+,2,1(δx, 0) + δ4A+,2,2(δx, 0) + . . .)
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+(δ2A+,0,0(δx, 0) + δ3A+,0,1(δx, 0) + δ4A+,0,2(δx, 0) + . . .)

+(δ2A+,−2,0(δx, 0) + δ3A+,−2,1(δx, 0) + δ4A+,−2,2(δx, 0) + . . .)

+O(δ3).

We set

A+,1,0(δx, 0) = δ−1c1(δx, T1/δ
2).

By this choice and the construction of the improved approximation in Sect. 4.2 we obtain
initial conditions for δ2A+,2,0(δx, 0), δ2A+,0,0(δx, 0), and δ2A+,−2,0(δx, 0). Therefore, for
a cancelation of the O(δ2)-terms we set

δ2A+,1,1(δx, 0) = −(δ2A+,2,0(δx, 0) + δ2A+,0,0(δx, 0) + δ2A+,−2,0(δx, 0)).

Similarly, by the choice of A+,1,0(δx, 0) and B0,0(δx, 0) higher order O(δm+2)-terms are
determined. The A+,1,m(δx, 0) can then be used to adjust the initial conditions at order
O(δm+2).

Next we consider the B-equation. There we have

v(δx, T1/δ
2) = (δ2B0,0(δx, 0) + δ3B0,1(δx, 0) + δ4B0,2(δx, 0) + . . .)

+(δ4B2,0(δx, 0) + δ5B2,1(δx, 0) + δ6B2,2(δx, 0) + . . .)

+(δ4B−2,0(δx, 0) + δ5B−2,1(δx, 0) + δ6B−2,2(δx, 0) + . . .)

+O(δ5).

We set

B0,0(δx, 0) = δ−2v(δx, T1/δ
2).

By this choice, the choice of A+,1,0(δx, 0), and the construction of the improved approxima-
tion in Sect. 4.2 we obtain initial conditions for δ4B2,0(δx), δ4B−2,0(δx), etc.. The B0,m(δx)

can then be used to adjust the initial conditions at order O(δm+2).
Finally, we come to the us-equation. We have for t = T1/δ2 that

us(δx, T1/δ
2) = (δ2As,2,0(δx, 0) + δ3As,2,1(δx, 0) + δ4As,2,2(δx, 0) + . . .)

+(δ2As,0,0(δx, 0) + δ3As,0,1(δx, 0) + δ4As,0,2(δx, 0) + . . .)

+(δ2As,−2,0(δx, 0) + δ3As,−2,1(δx, 0) + δ4As,−2,2(δx, 0) + . . .)

+O(δ3) + δ2Rs,0(δx, 0).

By the choice of A+,1,0(δx, 0) and B0,0(δx, 0) the As,2,0(δx, 0), As,0,0(δx, 0), and
As,−2,0(δx, 0) are determined. However, in general there is a mismatch between the solution
on the left-hand side and the approximation terms on the right-hand side and so we need
an initial correction δ2Rs,0(δx, 0) on the right-hand side. Since the linear semigroup e�s t

decays with some exponential rate the variation of constant formula immediately yields

δ2Rs,0(δx, 1/δ1/4) = O(δ3).

Then we can go on and adjust the next order initial conditions in the c1- and v-equation. An
iteration of this procedure finally yields the statement of Theorem 5.2.
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C Proof of the Approximation Theorem 5.3

We consider (1)–(2) after diagonalization and application of the normal form transformation
from Sect. 3.2, i.e., we consider (26)–(28). We introduce the error functions by

(ǔ±1, us, v) = (δ�̌±1, δ
2�s, δ

2�v) + (δθ R±1, δ
θ+1Rs, δ

θ+1Rv) (46)

where (δ�̌±1, δ
2�s, δ

2�v) are the components of the Ginzburg–Landau approximation for
(26)–(28). We look for an O(1)-bound for

‖R±1‖H1,δ
l,u

+ ‖Rs‖Hn+1
l,u

+ ‖Rv‖Hn
l,u

.

on the long O(1/δ2)-time scale.

Remark C.1 This choice of norms allows us to use the ∂2x in front of nonlinearity in the v-
equation as follows. One ∂x is transformed into a δ by using the smoothing of the linear
semigroup, i.e.,

edv∂2x t∂x = O(t−1/2) = δO(T −1/2)

where T = δ2t . The second ∂x is transformed into a δ by using the estimate

‖∂x u‖Hm,δ
l,u

≤ Cδ‖u‖Hm+1,δ
l,u

.

Thus, in sum we obtain a factor δ2 which allows us to bound the solutions on the long
O(1/δ2)-time scale.

Inserting the ansatz (46) into (26)–(28) and applying the variation of constant formula
gives for the error (R1, Rs, Rv) that

R1(t) = e�u t E1R1|t=0 +
∫ t

0
e�u (t−τ)E1N1(R(τ ))dτ,

Rs(t) = e�u t Es Rs |t=0 +
∫ t

0
e�u(t−τ)Es Ns(R(τ ))dτ,

Rv(t) = e�v t Rv|t=0 +
∫ t

0
(e�v(t−τ)∂x )(∂x Nv(R(τ )))dτ,

with

‖N1(R)‖Hn+1
l,u

≤ C(δ2 R̃ + δ3 R̃2) + Cresδ
2,

‖Ns(R)‖Hn+1
l,u

≤ C‖R1‖H1,δ
l,u

+ C(δ R̃ + δ R̃2) + Cres,

‖∂x Nv(R)‖Hn
l,u

≤ Cδ‖R1‖H1,δ
l,u

+ C(δ R̃ + δ2 R̃2) + Cresδ
2

where R̃ = R̃(t) is defined by

R̃(t) := ‖R1(t)‖H1,δ
l,u

+ ‖Rs(t)‖Hn+1
l,u

+ ‖Rv(t)‖Hn
l,u

, (47)

and where CRes stands for the O(1)-constants coming from the residual terms.
In the following CIR denotes O(1)-constants which are obtained when integrating the

residual terms or O(1)-constants coming from the initial conditions. We obtain

‖R1(t)‖H1,δ
l,u

≤ CIR +
∫ t

0
C(

δ√
t − τ

+ δ2)(R̃(τ ) + δ R̃(τ )2) dτ,
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‖Rs(t)‖Hn+1
l,u

≤ CIR +
∫ t

0
Ce−σ(t−τ)

(

1 + (t − τ)−1/2)

×(‖R1(τ )‖H1,δ
l,u

+ δ(R̃(τ ) + R̃(τ )2) dτ,

‖Rv(t)‖Hn
l,u

≤ CIR +
∫ t

0

Cδ√
t − τ

(

R̃(τ ) + δ R̃(τ )2
)

dτ

using Lemma A.1. Next we introduce

qc(t) = sup
τ∈[0,t]

‖R1(τ )‖H1,δ
l,u

,

qs(t) = sup
τ∈[0,t]

‖Rs(τ )‖Hn+1
l,u

,

qv(t) = sup
τ∈[0,t]

‖Rv(τ )‖Hn
l,u

.

We immediately obtain

qs(t) ≤ CIR + Cq(t) + Cδ((q(t) + qs(t)) + (q(t) + qs(t))
2),

where

q(t) = qc(t) + qv(t).

ForCδ(1+(q(t)+qs(t))) ≤ 1/2 this yieldsqs(t) ≤ C(q(t)+CIR) and then as a consequence

qc(t) ≤ CCIR +
∫ t

0
C

(

δ√
t − τ

+ δ2
)

(q(τ ) + δq(τ )2) dτ,

qv(t) ≤ CCIR +
∫ t

0

Cδ√
t − τ

(q(τ ) + δq(τ )2) dτ.

Adding these two inequalities yields

q(t) ≤ CCIR +
∫ t

0
C

(

δ√
t − τ

+ δ2
)

(q(τ ) + δq(τ )2) dτ

≤ CCIR +
∫ t

0
2C

(

δ√
t − τ

+ δ2
)

q(τ ) dτ

if δq(τ ) ≤ 1. With T = δ2t and q̃(T ) = q(t) this can be written as

q̃(T ) ≤ CCIR +
∫ T

0
2

(

C√
T − τ̃

+ 1

)

q̃(τ̃ ) dτ̃ .

Since this equation is independent of δ, Gronwall’s inequality immediately yields the
existence of a constant Mq = O(1) such that

sup
T ∈[0,T0]

q̃(T ) =: Mq < ∞

or equivalently

sup
t∈[0,T0/δ2]

q(t) = Mq < ∞.

Then

qs(t) ≤ Ms := C(CIR + Mq).
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Choosing δ0 > 0 so small that δ0Mq ≤ 1 and Cδ0(1+ Mq + Ms) ≤ 1/2 we proved the error
estimates stated in Theorem 5.3. ��

D Proof of Theorem 2.6

In the following L = O(1) is fixed. Therefore, it is not a problem that the subsequent estimates
depend very badly on L for L → ∞. For B, with vanishing mean value, we have Poincaré’s
inequality

(∫ L

0
|∂−1

X B|2d X

)1/2

≤ L

2π

(∫ L

0
|B|2d X

)1/2

, (48)

where ∂−1
X B is defined via its Fourier transform ̂B(k)/ik using ̂B(0) = 0. Since

Re
∫ L
0 iγ0|∂X A|2d X = 0 and Re

∫ L
0 iγ3|A|4d X = 0 we find

1

2

d

dT

∫ L

0
|A|2d X =

∫ L

0
−|∂X A|2 + |A|2 − |A|4 + β B|A|2d X ,

1

2

d

dT

∫ L

0
|∂−1

X B|2d X =
∫ L

0
−α|B|2 − B|A|2d X .

In case β > 0 we estimate

1

2

d

dT

∫ L

0
|A|2 + β|∂−1

X B|2d X

≤
∫ L

0
−|∂X A|2 + |A|2 − |A|4 + β B|A|2 − αβ|B|2 − β B|A|2d X

≤
∫ L

0
|A|2 − |A|4 − αβ|B|2d X

≤
∫ L

0
1 − |A|2 − (2π)2L−2αβ|∂−1

X B|2d X ,

where we have used (48). Thus, we find

lim sup
T →∞

∫ L

0
|A|2 + β|∂−1

X B|2d X ≤ L max

(

1,
L2

(2π)2α

)

=: C∞,0.

For estimating the higher order derivatives we keep some of the negative terms in the above
calculations. Doing so, we also find

1

2

d

dT

∫ L

0
|A|2 + β|∂−1

X B|2d X (49)

≤
∫ L

0
−|∂X A|2 − αβ|B|2 + 1 − |A|2 − (2π)2L−2αβ|∂−1

X B|2d X .

Next we compute

1

2

d

dT

∫ L

0
|∂X A|2 + β|B|2d X

≤
∫ L

0
−|∂2X A|2 + |∂X A|2 − 2|A|2|∂X A|2 − Re((1 + iγ3)A2(∂X A)2)
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+β(∂X A)∂X (B A) + β(∂X A)∂X (B A) − αβ|∂X B|2 − β(∂X B)∂X |A|2d X

≤
∫ L

0
−|∂2X A|2 + |∂X A|2 − αβ|∂X B|2

−Re((1 + iγ3)A2(∂X A)2) + 2β B|∂X A|2d X .

We add γ times the inequality (49) to the last inequality. and use that we already know that
∫ L
0 |A|2d X and

∫ L
0 |∂−1

X B|2d X are bounded. On the right hand side of the new inequality
for γ > 1 we have the negative terms

−(γ − 1)
∫ L

0
|∂X A|2d X , −

∫ L

0
αβγ |B|2d X/2, and −

∫ L

0
|∂2X A|2d X

which we use to estimate the remaining non-negative terms on the right hand side of the new
inequality.

Using Young’s inequality, an interpolation inequality for ‖∂X A‖2
C0

b
, that

∫ L
0 |A|2d X ≤ C

and
∫ L
0 |∂−1

X B|2d X ≤ C for a C > 0 uniformly in time, we estimate for every δ > 0 that

∣

∣

∣

∣

∫ L

0
Re((1 + iγ3)A2(∂X A)2)d X

∣

∣

∣

∣

≤ (1 + |γ3|)‖A‖2L2‖∂X A‖2
C0

b

≤ C‖∂X A‖L2‖∂2X A‖L2

≤ 1

2δ
C2‖∂X A‖2L2 + δ

2
‖∂2X A‖2L2 ,

∣

∣

∣

∣

∫ L

0
B|∂X A|2d X

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ L

0
|(∂−1

X B)∂X (|∂X A|2)d X

∣

∣

∣

∣

≤ 2‖∂−1
X B‖L2‖∂2X A‖L2‖∂X A‖C0

b

≤ C‖∂2X A‖3/2
L2 ‖∂X A‖1/2

L2

≤ 6

δ
C4/3‖∂X A‖2L2 + δ

2
‖∂2X A‖2L2 .

Therefore, by choosing γ sufficiently large, in case of periodic boundary conditions, we have
established a-priori estimates for A ∈ H1 and B ∈ L2. Since we also have local existence
and uniqueness in these spaces for (18)–(19) global existence in H1 × L2 follows, too. The
global existence for A ∈ Hs+1 and B ∈ Hs follows by using the smoothing properties of
the diffusion semigroup.

In case β ≤ 0 with 1+ α−1β > 0 we proceed similarly. However, there is no cancelation
and so we compute

1

2

d

dT

∫ L

0
|A|2 + q|∂−1

X B|2d X

≤
∫ L

0
−|∂X A|2 + |A|2 − |A|4 + β B|A|2 − αq|B|2 − q B|A|2d X

≤
∫ L

0
|A|2 − r |A|4 − rαβ|B|2d X

under the assumption that we can establish an estimate

(q − β)B|A|2 ≤ (1 − r)αq|B|2 + (1 − r)|A|4 (50)
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for an r ∈ (0, 1]. If we have established such an estimate we can proceed as above to establish
the global existence of solutions However, the constant C∞,0 has to be modified since we
no longer have r = 1. A simple calculation shows that the required estimate (50) can be
established for α, β satisfying 1 + α−1β > 0 if r > 0 is chosen sufficiently small and
q = 2α + β. We refrain from optimizing the bound around β = 0. ��
Remark D.1 In case of periodic boundary conditions the Hs-space can be embedded in Hs

l,u .
Together with the smoothing in case of periodic boundary conditions we have established
the existence of an absorbing ball for spatially periodic A ∈ Hs+1

l,u and B ∈ Hs
l,u , too.

Remark D.2 Dropping the periodic boundary conditions for the problem on the real line the
global existence question remains an open problem.

Remark D.3 We expect that the condition 1 + α−1β > 0 is sharp. The reason is as follows.
In case γ0 = γ3 = 0 stationary solutions can be obtained by a simple integration of the
conservation law (19) giving αB = −|A|2 + b, where b ∈ R is an arbitrary constant.
Inserting this into (18) yields

0 = ∂2X A + (1 + α−1βb)A − (1 + α−1β)A|A|2.
Hence, the coefficient in front of the effective nonlinear terms is only negative for 1+α−1β >

0. See also [6].
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