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Abstract
Let ξ be a real analytic vector field with an elementary isolated singularity at 0 ∈ R

3 and
eigenvalues ±bi, c with b, c ∈ R and b �= 0. We prove that all cycles of ξ in a sufficiently
small neighborhood of 0, if they exist, are contained in the union of finitely many subanalytic
invariant surfaces, each one entirely composed of a continuum of cycles. In particular, we
solve Dulac’s problem for such vector fields, i.e., finiteness of limit cycles.
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1 Introduction and Statements

Dulac’s problem is a central topic in the study of the dynamics of real analytic vector fields. In
general terms, it consists in proving that there are no infinitelymany limit cycles accumulating
and collapsing to a singular point. Recall that in general, a cycle (or a closed orbit) of a vector
field in a given manifold M is the image of a non-trivial periodic solution γ : R → M (also
denoted by γ ), and a limit cycle is a cycle possessing a neighborhood free of other cycles.
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In dimension two, the problem was answered by Dulac in 1923 [9], but his proof had
an important gap. It was solved nearly 70 years after by Ilyashenko [15] and Écalle [11],
with two independent and different proofs, both very intricate. Recently, alternative proofs
in some particular cases have been published, using o-minimal geometry [8, 12, 17, 30].
Dulac’s result can be used to prove the finiteness statement of (the second part of) Hilbert’s
16th problem. Namely, any polynomial vector field in R

2 has finitely many limit cycles (see
Ilyashenko’s survey [16] for more information).

Non-accumulation of limit cycles for planar analytic vector fields implies a stronger prop-
erty: either there are none in a neighborhood, or there is a continuum family of nested cycles
filling a whole punctured neighborhood (a central configuration). In fact, given a cycle γ , we
can define the Poincaré first return map in a transversal segment at some point p ∈ γ . It is
an analytic local diffeomorphism whose fixed points correspond exactly to cycles in a neigh-
borhood of γ . Thus, there are necessarily finitely many of them or they form a continuum
annulus around γ . This is also the argument for proving Dulac’s result in the easiest case in
dimension two (apart, of course, from the trivial hyperbolic or semi-hyperbolic situations,
when no local cycles exist). Namely, the case where the linear part of the vector field has
purely imaginary non-zero eigenvalues (a so-called Hopf singularity) since after a blowing-
up centered at zero, the exceptional divisor is a cycle and the Poincaré first return map is an
analytic map. Hence, the set of fixed points is an analytic set and it can only be either a finite
set or a continuum.

In this paper, we solve Dulac’s problem for analytic three-dimensional vector fields with
isolated singularity with a pair of conjugated imaginary non-zero eigenvalues (a three-
dimensional Hopf singularity). In fact, we determine a finite number of invariant surfaces
where local cycles may be placed and theses surfaces present a central configuration. Let us
provide precise statements.

Denote byXω(R3, 0) the family of germs of analytic vector fields ξ at 0 ∈ R
3, singular at

the origin, that is, ξ(0) = 0. If ξ ∈ Xω(R3, 0) and U is an open neighborhood of 0 where (a
representative of) ξ is defined, we denote by CU = CU (ξ) the union of all cycles of ξ |U (that
is, entirely contained in U ). It is called the cycle-locus of ξ in U . Notice that this cycle-locus
depends strongly on the neighborhood U and that it does not behave as a germ of a set that
we can associate to the germ ξ (i.e., if U ′ ⊂ U we can only assert that CU ′ ⊂ CU , but not
CU ′ = U ′ ∩ CU ).

Consider the following family:

H3 := {ξ ∈ Xω(R3, 0) : Spec(Dξ(0)) = {±bi, c}, where b, c ∈ R and b �= 0}.
Observe that any ξ ∈ H3 has a unique formal invariant curve ̂� = ̂�ξ at 0, which is non-
singular and tangent to the eigenspace corresponding to the eigenvalue c. It is called the
(formal) rotational axis of ξ . When c �= 0 (the semi-hyperbolic case), the rotational axis
is convergent and provides an analytic invariant curve, since in this case ̂� coincides with
the stable or unstable manifold of ξ (see for instance [7]). On the contrary, when c = 0 (the
completely hyperbolic case or zero-Hopf singularity), the rotational axiŝ�may be convergent
or not, although there is always an invariant C∞-curve whose Taylor expansion at 0 coincides
with ̂�. This is a result by Bonckaert and Dumortier in [3] in the case where ξ has an isolated
singularity since ξ satisfies the required Łojasiewicz inequality condition in this case). It is
trivially true if the singularity is not isolated since, in this case, ̂� coincides with the singular
locus Sing(ξ), an analytic curve. Notice that in the semi-hyperbolic case, ξ has an isolated
singularity.

The main result in this paper can be stated as follows.
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Theorem 1.1 (Structure of cycle-locus) Let ξ ∈ H3 with isolated singularity. Then there is
some neighborhood U of 0 ∈ R

3, where a representative of ξ is defined, for which exactly
one of the following possibilities holds:

(i) CU (ξ) = ∅.
(ii) There is a finite non-empty family S = {S1, . . . , Sr } of connected regular analytic two-

dimensional submanifolds of U\{0}, mutually disjoint, invariant for ξ , subanalytic sets
in U and satisfying S j ∩ U = S j ∪ {0} for any j , such that, for any element V ⊂ U in
some neighborhood basis at 0, we have

CV (ξ) = (S1 ∪ S2 ∪ · · · ∪ Sr ) ∩ V .

As a consequence, Dulac’s property is true for these vector fields:

Corollary 1.2 Let ξ ∈ H3 with an isolated singularity. Then there are not infinitely many
limit cycles of ξ accumulating and collapsing to 0 ∈ R

3.

Fig. 1 Illustration of case (ii). Each surface has a center configuration

In the second possibility (ii), see Fig. 1, the germs of the surfaces S j ∈ S are uniquely
determined. Each of them, in a sufficiently small neighborhood, is composed of a continuum
of nested cycles around the singularity, i.e., each S j is a surface with a central configuration
as in the planar case (although S j could be singular at the origin). Let us call each S j ∈ S
a limit central surface, by analogy with the concept of limit cycle. The following example
defines two limit central surfaces, both being singular at the origin.

Example 1.3 Consider the following vector field in H3.

ξ = (−y − xz2 + x(x2 + y2))
∂

∂x
+ (x − yz2 + y(x2 + y2))

∂

∂ y
+ (z3 − z(x2 + y2))

∂

∂z
.

It has isolated singularity. The two half-cones S1 = {(x, y, z) : x2 + y2 − z2 = 0, z > 0}
and S2 = {(x, y, z) : x2 + y2 − z2 = 0, z < 0} are invariant. The restriction of ξ to any of
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the surfaces Si is ξ |Si = −y ∂
∂x + x ∂

∂ y , which proves that ξ defines a central configuration in
Si , for i = 1, 2.

As an application of Theorem 1.1 to this example, one can see that there are not cycles
outside S1 ∪ S2 in a neighborhood of 0.

The result stated in Theorem 1.1 for the semi-hyperbolic case (c �= 0) has been already
proved by Aulbach [1], in a more general situation of n-dimensional analytic vector fields
with a pair of purely imaginary non-zero eigenvalues and n − 2 eigenvalues with non-zero
real part. Before Aulbach, the same situation has been considered in the literature by other
authors [18, 19, 27, 28], under the assumption that the vector field has a first integral (as in the
classical Lyapunov’s result [20]). Using that any center manifold contains every local cycle
(see [6]), one obtains that the possibility (ii) can only occur for a unique limit central surface
(r = 1), which coincides with the center manifold W c of ξ (hence unique, non-singular and
analytic in this case).

Vector fields with a Hopf singularity in the completely non-hyperbolic case (c = 0) have
been studied in the literature. For instance, Dumortier in [10] considered such vector fields
of class C∞ at 0 ∈ R

3, satisfying two Łojasiewicz-type inequalities: one for the vector field
itself, which implies that 0 is an isolated singularity; and a second one for the infinitesi-
mal generator of the Poincaré first-return map associated to the cycle that appears after the
blowing-up of an invariant C∞ realization of ̂�. He obtains a complete description of the
asymptotic behavior of all trajectories in a neighborhood of the origin, as well as aweak topo-
logical classification of the vector field. However, those assumptions prevent the existence
of any local cycle (that is, one has only the possibility (i) of Theorem 1.1). In our situation
where ξ is analytic, Łojasiewicz’s inequality for ξ is equivalent to the property of isolated
singularity, but we do not require the second assumption, thus permitting the existence of
cycles and hence the possibility (ii).

We should mention that vector fields in H3 have also been considered in families for
different purposes. We can mention Guckenheimer and Holmes [14], where there is a com-
plete description of the bifurcation diagrams for small codimension singularities; Baldoma,
Ibáñez and Martínez-Seara [2] where the appearance of certain chaotic behavior, associated
to a Shilnikov configuration, is studied; García [13], where, for each k ∈ N, it is shown the
existence of a bound for the number of limit cycles, appearing in certain generic families
inside H3, which make at most k turns around the rotational axis.

Let us summarize the ideas for the proof of Theorem 1.1 and the plan of the article.
In Sect. 2, we propose a simple proof in the semi-hyperbolic case, in spite of the existing

references already mentioned for this situation. Our aim, apart for the sake of completeness,
is to introduce some of the arguments involved in the proof of the general case, absent in
Aulbach’s proof [1] but appearing in Dumortier’s work [10]. Namely, blowing-up techniques
and Poincaré first return map along the cycles emerging from the blowing-up.

The rest of the article is devoted to the proof in the completely non-hyperbolic case.We fix
a formal normal form ξ̂ (for instance in the sense of Takens [31]) and a sequence of analytic
vector fields {ξ�}� that approximate ξ̂ . The approximation must be understood in terms of jet
equalities, that is, j�(ξ�) = j�(ξ̂ ). Neither the formal normal form ξ̂ nor the sequence {ξ�}� are
univocally determined. However, once ξ̂ is fixed, we choose the vector fields ξ� to be analyti-
cally conjugated to ξ . Thus, it is enough to proveTheorem1.1 for some ξ�,with � large enough.

In Sect. 3, we use blowing-ups to study ξ̂ and its jets approximations ξ�. The rotational
axis ̂� is not necessarily convergent and we cannot blow it up (or any realization of it) if we
want to preserve analyticity. Starting from the blowing-up of the origin, we define recursively
sequences of admissible blowing-ups: a composition of blowing-ups centered at either the
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infinitely near points of ̂� (characteristic singularities) or invariant closed circles of the cor-
responding strict transforms of ξ̂ (characteristic cycles). The main result of this section is a
reduction of singularities of the normal form ξ̂ adapted to our problem. This process may be
understood as a refinement, for this situation, of Panazzolo’s result on reduction of singular-
ities of general three-dimensional analytic vector fields [26] (notice that a Hopf singularity
is already in the final elementary situation in the sense of Panazzolo). Essentially, the formal
normal form ξ̂ can be viewed as a vector field of revolution by rotating a planar vector field
η̂; the adapted reduction of singularities corresponds to the reduction of singularities of η̂.
In a second part of Sect. 3, we discuss how to apply sequences of admissible blowing-ups to
the jet approximations ξ�. We find lower bounds for � so that certain dynamical properties
of ξ̂ , that depend on a finite jet, are inherited by ξ�. In particular, the characteristic cycles are
actual cycles of the strict transform of ξ�.

In Sect. 4, we prove that, after any sequence of admissible blowing-ups, the characteristic
cycles and the characteristic singularities are the only possible limit sets of families of cycles
of the transform of ξ�, provided that � is large enough. Thus, in order to prove Theorem 1.1,
we only search for cycles near the characteristic cycles and characteristic singularities.

In Sect. 5, we study the different local situations appearing after an adapted reduction
of singularities π : (M, E) −→ (R3, 0) of ξ̂ . We have specific monotonic functions along
the trajectories of the transformed vector field˜ξ� = π∗ξ� in neighborhoods of characteristic
singularities or corner-characteristic cycles, preventing the existence of cycles of˜ξ� in suffi-
ciently small neighborhoods of them. Around a non-corner characteristic cycle γ , we work
with the associated Poincaré first return map Pγ of˜ξ�. First, we find a formal invariant non-
singular surface Sγ of˜ξ� supported byγ and transversal to the divisor, using that this is the case
for the transform π∗ξ̂ of ξ̂ . This surface Sγ provides a formal invariant curve 
γ for Pγ and,
around 
γ , we can describe the periodic orbits of Pγ . Namely, there is a conic neighborhood
�γ around 
γ such that: if 
γ � Fix(Pγ ), there are not periodic points of Pγ inside �γ ; if,
otherwise, 
γ ⊆ Fix(Pγ ), then 
γ is exactly the set of periodic points (thus fixed) inside�γ .

Finally in Sect. 6, we give the proof of Theorem 1.1 gathering the results of the previous
sections. First, we fix a vector field ξ� to which the reduction of singularities π can be applied.
By means of the results in Sects. 4 and 5, cycles of˜ξ� sufficiently near to (but not contained
in) the divisor E can only be located in neighborhoods of the non-corner characteristic cycles
γ . Moreover, the conic neighborhoods �γ above provide solid conic neighborhoods ˜�γ of
Sγ in such a way that if a cycle of ˜ξ� is contained in ˜�γ , then the curve 
γ is contained
in Fix(Pγ ) and supports a continuum of cycles inside the saturation of 
γ by the flow, an
analytic surface around γ . The projection of this surface under π provides a limit central
surface. This would finish the proof of Theorem 1.1 if we could guarantee that all cycles of
˜ξ� in a neighborhood of γ are contained in the cone ˜�γ . This is achieved by “opening” the
cones �γ to actual neighborhoods of γ by means of further blowing-ups. In this way, it is
possible that we need a larger jet approximation ξ�′ with �′ ≥ �, for which the order of its
cones could change, a priori. We overcome this last difficulty showing that the order of a cone
around γ where the cycles have the desired properties may be uniformly bounded for �′ ≥ �.

Notation and Conventions About the Power Series

If A is a R−algebra and x = (x1, . . . , xn) are variables, A[[x]] denotes the R−algebra of
formal power series in x with coefficients in A. Elements f ∈ A[[x]] are written as
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f =
∑

α∈Nn≥0

fαxα,where xα := xα1
1 · · · xαn

n if α = (α1, . . . , αn).

For any k ≥ 0, the k−jet of f is defined as

jk( f ) = jxk ( f ) :=
∑

α:|α|≤k

fαxα

where |α| := α1 + · · · + αn . The order of f , denoted by ν( f ) is the first k ≥ 0 (or +∞ if it
does not exist) such that jk( f ) �= 0. If we separate the variables into two groups x = (y, z)
where y = (y1, . . . , yr ) and z = (z1, . . . , zs), the k−jet jzk ( f ) of f with respect to the
variable z is the k−jet of f as an element of A[[y]][[z]] under the natural identification
A[[x]] ∼→ A[[y]][[z]], that is, the jet jzk ( f ) is given by

jzk ( f ) :=
∑

|β|≤k

⎛

⎝

∑

γ∈Nr≥0

f(γ,β)yγ

⎞

⎠ zβ .

We will use freely the following basic properties of jets:

• jk( f · g) = jk( jk( f ) · jk(g)), for f , g ∈ A[[x]]. In fact, this property can be refined: if
k ≥ max{ν( f ), ν(g)}, then jk( f · g) = jk( jk−ν(g)( f ) · jk−ν( f )(g)).

• jk( f −1) = jk(( jk( f ))−1) if f is a unit in A[[x]].
• jzk ( f (x1, . . . , xi + a, . . . , xn)) = jzk ( f )(x1, . . . , xi + a, . . . , xn) for i ≤ r and a ∈ A.
• jk( f ) = jk( jzk ( f )).

We extend the use of k−jets (respectively with respect to z) for formal vector fields η̂ =
η1

∂
∂x1

+ · · ·+ ηn
∂

∂xn
with η j ∈ A[[x]] or tuples F = ( f1, . . . , fm) ∈ A[[x]]m in the obvious

way

ju
k (η̂) := ju

k (η1)
∂

∂x1
+ · · · + ju

k (ηn)
∂

∂xn
, ju

k (F) := ( ju
k ( f1), . . . , ju

k ( fm)),

with u = x (respectively u = z).
When A is a normed space, the subalgebra of convergent series with coefficients on A is

the subalgebra of A[[x]] defined by
A{x} :=

⋃

δ>0

A{x}δ

where, by definition, a series f = ∑

α∈Nn≥0
fαxα ∈ A[[x]] belongs to A{x}δ if there exists

C > 0 such that || fα|| < Cδ|α| for anyα. Themain examples for the algebra of the coefficients
used along the article are the following:

• A = R with the standard norm of the absolute value.
• A = R[cos θ, sin θ ], the algebra of trigonometric polynomials, whose elements are consi-

dered indistinctively as a function on R or on S
1, via the covering τ : θ → (cos θ, sin θ).

It will be endowed with the supremum norm || f || := supθ∈R f (θ). Notice that given
a convergent series F ∈ R[cos θ, sin θ ]{x}δ , its partial sums converge absolutely and
uniformly in the compact sets of the neighborhood V = S

1 × (−δ, δ)n of S
1 × {0} (or

the neighborhood V = R × (−δ, δ)n of R × {0}), thus providing an analytic function
that we denote again f .
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• In the case of A = R[z] (respectively R[cos θ, sin θ, z]), where z = (z1, . . . , zr ), there
is no unique natural norm on A. We will consider a norm for each compact set K of R

r

(resp. S
1 × R

r ) with non-empty interior, defined by

|| f ||K := sup
a∈K

{| f (a)|}.

Denoting AK = (A, || · ||K ) such a normed space, we have the corresponding algebra
of convergent series AK {x}. We define the algebra of convergent series with coefficients
in A as the intersection of algebras AK {x} where K runs all compact sets of such form.
With an abuse of notation, we name this algebra A{x} for convenience. Each element
f ∈ A{x} defines an analytic function on a neighborhood ofR

r ×{0} (resp. S1×R
r ×{0})

in R
r × R

n (resp. in S
1 × R

r × R
n).

Moreover, for a formal vector field ξ̂ , we will use the expression ξ̂ (z) to denote the formal
series obtained by the application of the formal derivation ξ̂ to the function z, and it coincides
with the coefficient of ∂

∂z in ξ̂ .

2 The Semi-hyperbolic Case

In this section, we provide a proof of Theorem 1.1 in the semi-hyperbolic case, i.e., the linear
part Dξ(0) has eigenvalues {±bi, c} with both b, c different from zero.

Assume for instance that c < 0. Then, the stable manifold W s of ξ at 0 is one-dimensional
and, as we have said, it coincides with the rotational axis, which is therefore convergent. Fix
some center manifold W c of ξ at 0 of class Ck , with k ≥ 2. In general, it is not analytic, nor
unique. But it contains any cycle of ξ that is contained in a sufficiently small neighborhood
U of the origin, i.e., CU (ξ) ⊂ W c (see [6]).

Take a neighborhood U0 inside which, both the stable manifold W s and the chosen center
manifold W c are regular embedded submanifolds, and such that CU0(ξ) ⊂ W c. Let π :
M → U0 be the polar blowing-up with center W s . It is a proper analytic map. The divisor
E = π−1(W s) is a cylinder and the fiber γ = π−1(0) over the origin is a cycle of the
transformed vector field˜ξ := π∗ξ . The strict transform ˜W c = π−1(W c\{0}) is a surface of
class Ck−1, invariant for˜ξ and transversal to E . Moreover, γ = E ∩ ˜W c.

Now, consider a point a ∈ γ , and two nested analytic discs �′ ⊂ � transverse to ˜ξ

close to a so that the Poincaré first-return map Pγ : �′ → � of˜ξ associated to γ is well
defined and analytic. Notice that if ζ is any cycle of˜ξ such that ζ ∩ � = ζ ∩ �′, then the
intersection ζ ∩� is a periodic orbit of Pγ (see Fig. 2). In particular, if ζ is the inverse image
by π of a cycle inside CU0(

˜ξ), then, ζ is contained in ˜W c. Taking into account that W c is
two-dimensional and using classical arguments based on the Jordan Curve Theorem (see for
instance [25]), we conclude in this case that ζ cuts �′ in a single point, necessarily a fixed
point of Pγ . Hence, the family of cycles of ξ in a given neighborhood of the origin are in
bijection with the set of fixed points Fix(Pγ ) of Pγ not in E , and hence, Fix(Pγ ) is contained
in the intersection H = ˜W c ∩ �′. Let us prove now Theorem 1.1.

Suppose that item (i) does not hold, i.e., CU (ξ) �= ∅ for any open neighborhood U of 0.
Then we have infinitely many cycles of ξ that accumulate and collapse to 0. By the above,
there are infinitely many fixed points of Pγ in H accumulating to the point a. Being Pγ an
analytic map, its set Fix(Pγ ) of fixed points is an analytic set of positive dimension. Since
Fix(Pγ ) ⊂ H and H is a curve of class Ck−1 (transversal intersection of ˜W c and �′), we
conclude that H = Fix(Pγ ).

Let ˜U be a neighborhood of γ in M satisfying:
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Fig. 2 Definition of the Poincaré map Pγ

• ˜U ∩ � = �′.
• ˜U ∩ ˜W c is the saturation of H ∩ ˜U by the flow of˜ξ .
• U = π(˜U ) is contained in U0.

We get that U is a neighborhood of 0 and CU (ξ) = W c ∩ U\{0}. Notice also that ˜W c ∩ ˜U is
an analytic set since H is an analytic curve. Since π is proper, we conclude that W c ∩ U is
a subanalytic set and Theorem 1.1 is proved.

Remark 2.1 The proof above shows that, in the semi-hyperbolic case, there is at most one
limit central surface S1. Moreover, if S1 exists, then S1 = W c is a center manifold which is
unique and analytic (using Tamm’s Theorem [32], because W c is of class Ck and subanalytic
in this case).

3 Admissible Blowing-Ups and Adapted Reduction of Singularities

Consider a vector field ξ in the family H3 with completely non-hyperbolic linear part, that
is, Spec(ξ) = {±bi, 0}. Without loss of generality for the study of the foliation generated by
ξ , we will assume b = 1. In some coordinates, the vector field is written as

ξ = (−y + A1(x, y, z))
∂

∂x
+ (x + A2(x, y, z))

∂

∂ y
+ (A3(x, y, z))

∂

∂z
, (1)

with A1, A2, A3 ∈ R{x, y, z} of order at least two.

3.1 Formal Normal Form and Truncated Normal Forms

Using Takens’ theorem on normal forms (see [31]), there exists a formal automorphism at 0,
expressed in terms of the chosen coordinates as

ϕ̂(x, y, z) = (x + ϕ̂1(x, y, z), y + ϕ̂2(x, y, z), z + ϕ̂3(x, y, z)) ∈ R[[x, y, z]]3,
with j1(ϕ̂ j ) = 0 for j = 1, 2, 3, such that the formal vector field ξ̂ = ϕ̂∗(ξ) is written in the
form

ξ̂ = T (x2 + y2, z)

(

−y
∂

∂x
+ x

∂

∂ y

)

+ R(x2 + y2, z)

(

x
∂

∂x
+ y

∂

∂ y

)

+Z(x2 + y2, z)
∂

∂z
, (2)

where R, T , Z ∈ R[[u, v]] and T (0, 0) = 1. Note that R(u, v), Z(u, v) ∈ (u, v) and
Z(0, v) ∈ (v2). Remark also that neither the automorphism ϕ̂ need to be convergent, nor the
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components of ξ̂ need to belong to R{x, y, z}. Any formal vector field ξ̂ as in (2) obtained
as above is called a formal normal form of ξ . We remark that ξ̂ is not uniquely determined
by ξ .

Remark 3.1 The z-axis is sent to the formal rotational axiŝ� of ξ by ϕ̂, that is,̂� = ϕ̂(0, 0, z).
On the other hand, since ϕ̂ must preserve the (formal) singular locus, the hypothesis that ξ

has isolated singularity implies that Z(0, v) �= 0.

Once we fix a formal normal form ξ̂ of ξ given by ξ̂ = ϕ̂∗ξ , we can consider truncated
normal forms of ξ in the following way. For any � ∈ N≥2, let ϕ� be the polynomial tangent
to the identity diffeomorphism of (R3, 0) given by

ϕ�(x, y, z) = ( j�+1ϕ̂)(x, y, z) = ( j�+1(x ◦ ϕ̂), j�+1(y ◦ ϕ̂), j�+1(z ◦ ϕ̂)).

The vector field ξ� = (ϕ�)
∗(ξ) has the same �− jet as the formal one ξ̂ in coordinates (x, y, z),

that is, j�(ξ�) = j�(ξ̂ ). Notice that the vector field ξ� is analytically conjugated to ξ and
formally conjugated to ξ̂ for any �. More precisely, we have the following formal equation:

ξ̂ = ψ∗
� ξ�, where ψ� := ϕ−1

� ◦ ϕ̂. (3)

It is sufficient to prove Theorem 1.1 for ξ� for any �. The strategy is the following: we use
ξ̂ as a guiding vector field so that, after a sequence of blowing-ups, we get a transform of
ξ̂ with a specific good expression. Both the choice of the sequence of blowing-ups and the
expression of the transform will depend only on a finite jet of ξ̂ , allowing us to choose �

sufficiently large so that all the construction is applied to ξ�.
The blowing-ups will be real (oriented) ones, thus generating boundary and corners, either

with center at a point or at an analytic curve isomorphic to the circle S
1. See for instance the

work [24] for intrinsic and general definitions of real blowing-ups.

3.2 The First Blowing-Up

The first blowing-up to be done is the real blowing-up σ0 : (M0, E0) −→ (R3, 0)with center
at the origin. The blown-up space M0 is a manifold having the divisor E0 = σ−1

0 (0) as its
boundary. This divisor is homeomorphic to a sphere and represents the space of all the half-
lines through 0. The morphism σ0 defines an analytic isomorphism from M0\E0 to R

3\{0}.
We consider M0 covered by three charts (C0, (θ, z(0), ρ(0))), (C∞, (x (∞), y(∞), z(∞))) and
(C−∞, (x (−∞), y(−∞), z(−∞))) where C0 � S

1 × R × R≥0 and C±∞ � R
2 × R≥0. In these

charts, the expression of σ0 is given by:

In C0 :
⎧

⎨

⎩

x = ρ(0) cos θ

y = ρ(0) sin θ

z = ρ(0)z(0)
(cos θ, sin θ) ∈ S

1, z(0) ∈ R, ρ(0) ≥ 0 (4)

In C∞ :
⎧

⎨

⎩

x = x (∞)z(∞)

y = y(∞)z(∞)

z = z(∞)

x (∞), y(∞) ∈ R, z(∞) ≥ 0 (5)

In C−∞ :
⎧

⎨

⎩

x = x (−∞)z(−∞)

y = y(−∞)z(−∞)

z = −z(−∞)

x (−∞), y(−∞) ∈ R, z(−∞) ≥ 0. (6)
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Remark 3.2 Strictly speaking, C0 is not the domain of a usual chart of M0, since it is not
homeomorphic to an open set of R

2 × R≥0. Considering the usual covering C̃0 = R
2 × R≥0

with τ : C̃0 −→ C0 given by (θ, z, ρ) �→ (sin θ, cos θ, z, ρ), we can treat θ as a true
coordinate (and we will tacitly do), so that σ0 ◦ τ has the expression in (4). This convention
justifies our abuse of terminology in expressions like “a chart (C0, (θ, z(0), ρ(0)))”.

The origins of the chartsC∞ andC−∞ will be denoted by γ∞ and γ−∞, respectively. They
are the points of the divisor E0 corresponding to the half-lines contained in the z−axis and
they are the only points of E0 not covered byC0.More explicitly, σ0(C0) = R

3\{x = y = 0}.
We define the (total) transform of ξ̂ by σ0 in the chart C0 as the pull-back

ξ̂ (0) := (σ0|C0)
∗ξ̂ .

Using simplified notation (z, ρ) := (z(0), ρ(0)) and Eqs. (2) and (4), the vector field ξ̂ (0) is
given by

ξ̂ (0) = Bθ (z, ρ)
∂

∂θ
+ Bz(z, ρ)

∂

∂z
+ Bρ(z, ρ)

∂

∂ρ
, (7)

where Bθ (z, ρ) = T (ρ2, ρz), Bz(z, ρ) = 1
ρ

Z(ρ2, ρz) − z R(ρ2, ρz) and Bρ(z, ρ) =
ρR(ρ2, ρz). Notice that, by the definition of the blowing-up, we have that Bθ , Bz, Bρ ∈
R[z][[ρ]] since z is replaced by zρ. Moreover, (Bz, Bρ) �= (0, 0) since Z(u, v) �= 0 by
Remark 3.1 and ρ divides Bz, Bρ .

The coefficient Bθ (z, ρ) is a unit in R[z][[ρ]] since Bθ (z, 0) = 1. This allows us to
consider θ as the “time variable" and, consequently, ξ̂ (0) is completely described by the
associated two dimensional formal vector field η̂0 given by the system of formal ODEs

η̂0 :
{

dz
dθ

= Bθ (z, ρ)−1Bz(z, ρ) = ρn(0)
Az(z, ρ)

dρ
dθ

= Bθ (z, ρ)−1Bρ(z, ρ) = ρn(0)
Aρ(z, ρ).

(8)

In this expression, Ai ∈ R[z][[ρ]] for i = z, ρ and n(0) is the maximum exponent n such
that ρn divides both Bρ and Bz . The associated reduced vector field is by definition η̂′

0 :=
ρ−n(0)

η̂0.
There are two possible scenarios determined in the following definition.

Definition 3.3 The blowing-up σ0 is called non-dicritical if Aρ(z, 0) ≡ 0 and dicritical
if Aρ(z, 0) �= 0. Alternatively, we say that E0 is non-dicritical or that E0 is dicritical,
respectively.

Despite of the fact that η̂0 is just formal, the restriction η̂′
0|F0 to the curve F0 := E0∩{θ =

0} is a well defined vector field (under the natural identification {θ = 0} ∼= R
2, (0, z, ρ) =

(z, ρ)). This restriction has polynomial coefficients in the coordinate z. Therefore, its singular
locus:

Sing(η̂′
0|F0) := {a ∈ F0 : η̂′

0|F0(a) = 0} = {(z, 0) : Aρ(z, 0) = Az(z, 0) = 0}
is finite. Singular points are points where we have to focus in order to define successive
blowing-ups. But, in the dicritical case, we have to add those non-singular points where the
vector field is tangent to the divisor. To be used for later, we recall the definition of such non-
transversal points in the general situation of a normal crossing divisor (see Cano, Cerveau
and Deserti’s book [5] in the complex holomorphic context).

Let χ be a formal vector field defined at 0 and F a non-empty normal crossing divisor.
Consider a chart (U , (x, y)) centered at 0 where F = {xyε = 0} and the coefficients of the
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vector field in these coordinates belong to R[y][[x]] if ε = 0 or to R[y][[x]] ∩ R[x][[y]] if
ε = 1. Take any point a = (a1, a2) ∈ F ∩ U , the vector field χa := χ(x̃ + a1, ỹ + a2) is
well defined as a formal vector field in coordinates (x̃, ỹ).

Definition 3.4 Let F be a non-empty normal crossing divisor and let χ be a formal vector
field defined at F . The adapted singular locus S̃ing(χ, F) of χ relatively to F , is the set of
points p ∈ F in which either χ(p) = 0 or C ∪ F has no normal crossings at p, where C is
the formal invariant curve of χ through p.

Applied to our reduced vector field η̂′
0 and to F0, we have

(a) If E0 is non-dicritical, then S̃ing(η̂′
0, F0) = Sing(η̂′

0|F0).

(b) If E0 is dicritical, then S̃ing(η̂0, F0) = Sing(η̂′
0|F0) ∪ {(z, 0) : Aρ(z, 0) = 0}

In both cases, the adapted singular locus S̃ing(η̂0, F0) is finite.

We define also the transforms ξ̂ (∞) := (σ0|C∞)∗ξ̂ and ξ̂ (−∞) := (σ0|C−∞)∗ξ̂ of ξ̂ in the charts
C∞, C−∞, respectively. The expressions for ξ̂ (∞), using simplified notation (x, y, z) :=
(x (∞), y(∞), z(∞)) is the following:

ξ̂ (∞) = R(∞)(x2 + y2, z)

(

x
∂

∂x
+ y

∂

∂ y

)

+ T (∞)(x2 + y2, z)

(

−y
∂

∂x
+ x

∂

∂ y

)

+ Z (∞)(x2 + y2, z)
∂

∂z
,

(9)

where R(∞), T (∞), Z (∞) ∈ R[x2 + y2][[z]] are given by:

R(∞)(x2 + y2, z) = R((x2 + y2)z2, z) − 1

z
Z((x2 + y2)z2, z),

T (∞)(x2 + y2, z) = T ((x2 + y2)z2, z) and

Z (∞)(x2 + y2, z) = Z((x2 + y2)z2, z).

In a similar way, we obtain expressions for ξ̂ (−∞).

3.3 Characteristic Cycles and Successive Blowing-Ups

Recall that the adapted singular locus S̃ing(η̂′
0, F0) of η̂′

0 relative to F0 is finite. Its elements,
belonging to F0 = {θ = ρ(0) = 0} are determined by the z(0)−coordinate in the chart C0.
Denote them by

S̃ing(η̂′
0, F0) = {(ω(0)

i , 0) : i = 1, . . . , m0}, with ω
(0)
i < ω

(0)
j if i < j .

Definition 3.5 The characteristic cycles of ξ̂ in M0 are the connected components of the
set S

1 × S̃ing(η′
0|F0) ⊂ C0, that is, the circles in the divisor E0 given by γi := {z(0) =

ω
(0)
i , ρ(0) = 0} for i = 1, 2, . . . , m0. The origins γ∞, γ−∞ of the charts C∞ and C−∞ (cf.

Eqs. (5) and (6)) are called the characteristic singularities of ξ̂ in M0. We use the term char-
acteristic elements to refer to either the characteristic cycles or characteristic singularities.

In the rest of this section, we inductively define certain sequences of blowing-ups attached
to ξ̂ starting from the data defined above for the first blowing-up σ0. More precisely, consider
the tuple M0 := (M0, σ0,A0,D0), where:
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• A0 is the atlas of M0 composed by the charts C−∞, C0, C∞,
• D0 is the family of characteristic elements of ξ̂ in M0, that is, D0 := {γ−∞, γ1, . . . ,

γm0 , γ∞}.
By definition, we say thatM0 is a sequence of admissible blowing-ups of length l = 0 for ξ̂ .
Suppose that we have already defined sequences of admissible blowing-ups for ξ̂ of length
l − 1, consisting on tuples M = (M, π,A,D) satisfying the following hypothesis:

(H1) π : (M, E) −→ (R3, 0) is a sequence of (real) blowing-ups with smooth analytic
closed centers and factorizing through σ0 (i.e., π = σ0 ◦ π̄ , where π̄ : M −→ M0 is
either the identity or a sequence of blowing-ups with smooth analytic closed centers).

(H2) D = {γI }I∈I is a finite family of disjoint closed subsets of the divisor E = π−1(0),
such that:

– There are two elements in D with indices IM∞ = (∞, s. . .,∞) and IM−∞ = (−∞, t. . .

,−∞) for some s, t ∈ N≥1, that are the two points where E intersects the strict trans-
form π∗({x = y = 0}) of the z−axis. They are called the characteristic singularities
of ξ̂ in M .

– The rest of the elements γI , with I �= IM−∞, IM∞ , are analytic embedded circles called
characteristic cycles (of ξ̂ in M).

– The intersection of any pair of components of E is an element of D. Each of them
is called a corner characteristic cycle. The corner characteristic cycles are those
indexed by tuples I = (i1, . . . , ir ) �= IM−∞, IM∞ for which ir = ±∞.

(H3) A = {CJ }J∈J is an atlas of M with the following properties:

(1) There are charts (CJ , (x (J ), y(J ), z(J ))) centered at the characteristic singularities
γJ , with J ∈ {IM∞ , IM−∞}, satisfying E ∩CJ = {z(J ) = 0}. Moreover, the expression
of π in the chart CJ with J = IMε∞, for ε = ±1, is

π(x (J ), y(J ), z(J )) = ((z(J ))r x (J ), (z(J ))r y(J ), εz(J ))

with r ∈ N≥1 (r and ε depend on J ). Furthermore, the coefficients of ξ̂ (J ) :=
(π |CJ )

∗ξ̂ belong to R[x (J ), y(J )][[z(J )]].
(2) If J /∈ {IM∞ , IM−∞}, the chart (CJ , (θ, z(J ), ρ(J ))) is defined for θ ∈ R, z(J ) in R

or R≥0 and ρ(J ) ∈ R≥0 (with the same convention as in Remark 3.2), and satisfies
E ∩CJ = {ρ(J )(z(J ))ε = 0}with ε = 0 or 1 according to z(J ) being defined either in
R or R≥0, respectively. In the case ε = 0, the chart CJ is a non-corner chart and the
characteristic cycles contained in E ∩ CJ are given by equations {z(J ) = ai , ρ

(J ) =
0}, where {ai }i is a finite collection of real numbers. In the case ε = 1, the chart
CJ is a corner chart and the family of characteristic cycles contained in E ∩ CJ

consists of a unique corner characteristic cycle given by {z(J ) = 0, ρ(J ) = 0} and a
collection of non-corner characteristic cycles given either by {z(J ) = b j , ρ

(J ) = 0} j

for a family {b j } j of positive numbers or by {z(J ) = 0, ρ(J ) = ck}k for a family
{ck}k of positive numbers.

(3) For any J /∈ {IM∞ , IM−∞} the expression of π |CJ is polynomial in (cos θ, sin θ, z(J ),

ρ(J )) and the transformed vector field ξ̂ (J ) := (π |CJ )
∗ξ̂ written, with simplified

notation (θ, z, ρ) = (θ, z(J ), ρ(J )), as

ξ̂ (J ) = B(J )
θ (z, ρ)

∂

∂θ
+ B(J )

z (z, ρ)
∂

∂z
+ B(J )

ρ (z, ρ)
∂

∂ρ
, (10)
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satisfies that, for i = θ, z, ρ, the coefficient B(J )
i belongs to R[z][[ρ]] if CJ is a

non-corner chart, or to both algebras R[z][[ρ]] and R[ρ][[z]], if CJ is a corner char-
acteristic chart. In any case, B(J )

θ (z, 0) = 1 and hence it is a unit of the corresponding
algebra.

When J = IM−∞ or J = IM∞ , we define n(J ) to be the maximum n such that ξ̂ (J )(z(J )) =
(z(J ))n · B̃(x (J ), y(J ), z(J )) with B̃ an element in R[x (J ), y(J )][[z(J )]].

Observing (H3)-(2), for J /∈ {IM∞ , IM−∞}, we define the vector field associated to the

transform ξ̂ (J ), as the formal two dimensional vector field η̂J given by the following system
of ODEs (using (10) and simplifying (z, ρ) = (z(J ), ρ(J ))):

η̂J :
{

dz
dθ

= B(J )
θ (z, ρ)−1B(J )

z (z, ρ) = ρn(J )
1 zn(J )

2 A(J )
z (z, ρ)

dρ
dθ

= B(J )
θ (z, ρ)−1B(J )

ρ (z, ρ) = ρn(J )
1 zn(J )

2 A(J )
ρ (z, ρ).

(11)

Here, n(J )
1 is themaximum n such that ρn divides both B(J )

ρ and B(J )
z (and thus, A(J )

ρ and A(J )
z

are formal series not both together divisible by ρ). On the other hand, if CJ is a non-corner
chart, we take n(J )

2 = 0, and, if CJ is a corner chart, we take n(J )
2 to be the maximum m such

that zm divides both B(J )
ρ and B(J )

z . We define n(J ) := max{n(J )
1 , n(J )

2 } in all cases.
It is clear that M0 fulfills (H1-H3). Now, a sequence of admissible blowing-ups for ξ̂ of

length l is a tupleM′ := (M ′, π ′,A′,D′) built from a sequence of admissible blowing-ups
M = (M, π,A,D) of length l − 1 in such a way that π ′ = π ◦ σγI , where

σγI : M ′ −→ M

is the blowing-up centered at some γI ∈ D. The expression of σγI in charts and the descrip-
tion of the families D′,A′ are exposed in what follows (see Fig. 3 for an illustration of the
different situations).We consider two cases: the blowing-up σγI is centered at a characteristic
singularity or at a characteristic cycle.

(i) First case. The blowing-up σγI is centered at the singular point γI with I = IM∞ (or
analogously for I = IM−∞). Put J = I , J∞ = (J ,∞) and J0 = (J , 0). The point γI is
the origin of a chart (CJ , (x (J ), y(J ), z(J ))) ∈ A where the divisor E = π−1(0) is given
by {z(J ) = 0}. Then, the exceptional divisor σ−1

γI
(γI ) is covered by two charts of M ′, say

(CJ∞ , (x (J∞), y(J∞), z(J∞))) and (CJ0 , (θ, z(J0), ρ(J0))), so that σγI is written as:

In CJ0 :
⎧

⎨

⎩

x (J ) = ρ(J0) cos θ

y(J ) = ρ(J0) sin θ

z(J ) = ρ(J0)z(J0)
θ ∈ R, z(J0), ρ(J0) ≥ 0 (12)

In CJ∞ :
⎧

⎨

⎩

x (J ) = x (J∞)z(J∞)

y(J ) = y(J∞)z(J∞)

z(J ) = z(J∞)

x (J∞), y(J∞) ∈ R, z(J∞) ≥ 0. (13)

We set the atlas of M′ to be A′ = (A\{CJ }) ∪ {CJ0 , CJ∞} (under the identification σγJ :
M ′\σ−1

γJ
(γJ ) → M\γJ ). The chart CJ0 is a corner chart in this case.

Let us defineD.We consider first the vector field ξ̂ (J∞) := (σγI |CJ∞ )∗ξ̂ (I ). Define n(J∞) as

themaximum n ∈ N such that (z(J∞))n divides ξ̂ (J∞)(z(J∞)). In the chartCJ∞ , the expression
of the vector field ξ̂ (J∞) is similar to (9). The origin of CJ∞ is named γJ∞ . Secondly, consider
the formal vector field ξ̂ (J0) := (σγI |CJ0

)∗(ξ̂ (I )). Use the expression in (10) for ξ̂ (I ), and
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Fig. 3 Several sequences of admissible blowing-ups

rename (z, ρ) = (z(J0), ρ(J0)). Then, ξ̂ (J0) is given by

ξ̂ (J0) = B(J0)
θ (z, ρ)

∂

∂θ
+ B(J0)

z (z, ρ)
∂

∂z
+ B(J0)

ρ (z, ρ)
∂

∂ρ
, (14)

where B(J0)
θ ∈ R[z][[ρ]] is a unit in the algebra R[z][[ρ]] (because B(J0)

θ (z, 0) = 1) and

B(J0)
z = ρn

(J0)

1 zn
(J0)

2 B̃(J0)
z , B(J0)

ρ = ρn
(J0)

1 zn
(J0)

2 B̃(J0)
ρ , B̃(J0)

ρ , B̃(J0)
z ∈ R[z][[ρ]], (15)

where n(J0)
1 , n(J0)

2 are defined similarly as we have defined n(J )
1 and n(J )

2 . The vector field
associated to ξ̂ (J0) is the two dimensional vector field η̂J0 with coefficients in R[z][[ρ]],
defined in a similar manner as η̂0 in (8). That is,

η̂J0 = ρn
(J0)

1 zn
(J0)

2

(

A(J0)
z (z, ρ)

∂

∂z
+ A(J0)

ρ (z, ρ)
∂

∂ρ

)

, (16)

where A(J0)
k = B̃(J0)

k · (B(J0)
θ )−1 for k = z, ρ. The vector field η̂′

J0
:= 1

ρ
n
(J0)

1 zn
(J0)

2

η̂J0 is called

the reduced vector field associated to ξ̂ (J0). We distinguish two cases:

• The blowing-up σγI is non-dicritical if A(J0)
ρ (z, 0) ≡ 0. In this case, we say that the

divisor σ−1
γI

(γI ) is a non-dicritical component of the total divisor E ′ := (π ′)−1(0).

• The blowing-up σγI is dicritical if A(J0)
ρ (z, 0) �= 0 and σ−1

γI
(γI ) a dicritical component

of the total divisor E ′.

Put E J0 := σ−1
γI

(γI ) ∩ CJ0 and FJ0 := E J0 ∩ {θ = 0} and consider S̃ing(η̂′
J0

, FJ0) the
adapted singular locus of η̂′

J0
relatively to FJ0 , it is a finite set, taking into account that the

coefficients of η̂′
J0
belong to R[z][[ρ]]. Denote those elements contained in the regular part
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ḞJ0 := FJ0 ∩ {z > 0} of FJ0 as (in coordinates (z(J0), ρ(J0)))

S̃ing(η̂′
J0 , FJ0) ∩ ḞJ0 = {(ω(J0)

i , 0) : i = 1, . . . , m J0}, with 0 < ω
(J0)
i < ω

(J0)
j if i < j .

The circles γI ,i := {z = ω
(J0)
i , ρ = 0} ⊂ E J0 for each i = 1, . . . , m J0 are by definition the

non-corner characteristic cycles in CJ0 . The circle γI ,−∞ := {z = 0, ρ = 0} is by definition
a corner characteristic cycle.

Gathering all the above objects, we define the family D′ := {γI }I∈I′ of characteristic
elements of M′, where

I ′ = (I\{I }) ∪
⎛

⎝

m J0
⋃

i=1

{(I , i)}
⎞

⎠ ∪ {(I ,−∞), (I ,∞)}.

The elements of D′ are subsets of E ′ = (π ′)−1(0), once we identify γL = σ−1
γI

(γL) for
L ∈ I\{I }. They are either the two points γ∞,...,∞ and γ−∞,...,−∞ (whose indices are
denoted also by IM

′
∞ and IM

′
−∞, respectively) called the characteristic singularities of ξ̂ in

M′ or circles (the characteristic cycles of ξ̂ in M′).
(ii) Second case. σγI is centered at one of the characteristic cycles γI ∈ D with I =

(i1, . . . , ir ). It can be a corner characteristic cycle (in which case ir = ±∞) or not. The
charts after the blowing-up σγI are defined in a different manner in each case. In order to
simplify the notation, name I ′ = (i1, . . . , ir−1).

(a) When γI is a corner characteristic cycle, it can be seen as {ρ(J ) = 0, z(J ) = 0} in a
chart CJ by (H3). Put J0 = (I , 0) and J∞ = (I ,∞). The set σ−1

γI
(γI ) is covered by two

new charts (CJ∞ , (θ, z(J∞), ρ(J∞))) and (CJ0 , (θ, z(J0), ρ(J0))), where the blowing-up σγI is
written as:

In CJ∞ :
⎧

⎨

⎩

θ = θ

z(J ) = z(J∞)

ρ(J ) = ρ(J∞)z(J∞)

, θ ∈ R, z(J∞), ρ(J∞) ≥ 0, (17)

In CJ0 :
⎧

⎨

⎩

θ = θ

z(J ) = ρ(J0)z(J0)

ρ(J ) = ρ(J0)
, θ ∈ R, z(J0), ρ(J0),≥ 0. (18)

The new atlas is defined by A′ := (A\{CJ }) ∪ {CJ0 , CJ∞}, where we have identified
M ′\σ−1

γI
(γI ) and M\γI via σγI .

To determine the new family D′ of characteristic elements in this case, we write the
transformed formal vector fields ξ̂ (J0) := (σγI |CJ0

)∗ξ̂ (J ), ξ̂ (J∞) := (σγI |CJ∞ )∗ξ̂ (J ) in the two
charts. Both are similar and, in fact, to determineD′ only one of the expressions is sufficient.
Considering for instance the chart CJ0 , and with similar computations and notations as in the
precedent paragraphs, we write (simplifying (z, ρ) = (z(J0), ρ(J0)))

ξ̂ (J0) = B(J0)
θ (z, ρ)

∂

∂θ
+ B(J0)

z (z, ρ)
∂

∂z
+ B(J0)

ρ (z, ρ)
∂

∂ρ
, (19)

where B(J0)
θ , B(J0)

z , B(J0)
ρ ∈ R[z][[ρ]] and B(J0)

θ is a unit. The vector field associated to ξ̂ (J0)

is η̂J0 := (B J0
θ )−1B(J0)

z
∂
∂z + (B J0

θ )−1B(J0)
ρ

∂
∂ρ
. We put

η̂J0 = ρn
(J0)

1 zn
(J0)

2 η̂′
J0 = ρn

(J0)

1 zn
(J0)

2

(

A(J0)
z (z, ρ)

∂

∂z
+ A(J0)

ρ (z, ρ)
∂

∂ρ

)

,
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where the natural numbers n(J0)
k for k = 1, 2 are defined as in case (i). The vector field η̂′

J0
is the reduced associated vector field. We distinguish the cases when σγI , or the component

E J0 := σ−1
γI

(γI ), is dicritical (A(J0)
ρ (z, 0) �= 0) or non-dicritical (A(J0)

ρ (z, 0) ≡ 0). Put

FJ0 := E J0 ∩ {θ = 0}, ḞJ0 := FJ0 ∩ {z > 0} and denote

S̃ing(η̂′
J0 , FJ0) ∩ ḞJ0 = {(ω(J0)

i , 0) : i = 1, . . . , m J0}, with 0 < ω
(J0)
i < ω

(J0)
j if i < j .

With these data, we set:

γI ,i : = S
1 × {(z(J0), ρ(J0)) = (ω

(J0)
i , 0)}, i = 1, . . . m J0

γI ,−∞ : = S
1 × {(z(J0), ρ(J0)) = (0, 0)} ⊂ CJ0

γI ,∞ : = S
1 × {(z(J∞), ρ(J∞)) = (0, 0)} ⊂ CJ∞

and we define the family of characteristic elements of M′ as D′ := {γI }I∈I , where

I ′ = (I\{I }) ∪ {(I , i)}m J0
i=1 ∪ {(I ,−∞)} ∪ {(I ,∞)},

again identifying γL with σ−1
γI

(γL) for L ∈ I\{I }. Notice that, among the new characteristic
cycles, γI ,∞, γI ,−∞ are corner cycles and the other ones are non-corner characteristic cycles.

(b) When γI is a non-corner characteristic cycle (that is, by (H2), when I = (i1, . . . , ir )
with ir �= ±∞), it can be seen as the set γI = {z(J ) = ω

(J )
k , ρ(J ) = 0} for some ω

(J )
k

in the domain of z(J ) of a chart CJ , by (H3). Set J−∞ := (I ,−∞), J∞ := (I ,∞) and
J0 := (I , 0). The blowing-up σγI : (M ′, E ′) −→ (M, γI ) of γI is given in three new charts
(Cu, (θ, z(u), ρ(u))), for u ∈ {J∞, J0, J−∞}, by

In CJ∞ :
⎧

⎨

⎩

θ = θ

z(J ) = z(J∞) − ω
(J )
k

ρ(J ) = ρ(J∞)z(J∞)

θ ∈ R, ρ(J∞), z(J∞) ≥ 0. (20)

In CJ0 :
⎧

⎨

⎩

θ = θ

z(J ) = ρ(J0)(z(J0) − ω
(J )
k )

ρ(J ) = ρ(J0)
θ ∈ R, z(J0) ∈ R, ρ(J0) ≥ 0. (21)

In CJ−∞ :
⎧

⎨

⎩

θ = θ

z(J ) = −z(J−∞) + ω
(J )
k

ρ(J ) = ρ(J−∞)z(J−∞)

θ ∈ R, ρ(J−∞), z(J−∞) ≥ 0. (22)

The new atlas is A′ := (A\{CJ }) ∪ {CJ0 , CJ∞ , CJ−∞}. The family D′ of characteristic
elements of ξ̂ in M′ is defined analogously as in case (a), studying the corresponding
transformed vector field ξ̂ (J0) = (σγI |CJ0

)∗ξ̂ (J ), its associated two-dimensional vector field
η̂J0 and the adapted singular locus of the reduced associated vector field η̂′

J0
relatively to

FJ0 = CJ0 ∩ σ−1
γI

(γI ) ∩ {θ = 0}. We just observe the following:

• The chartsCJ∞ andCJ−∞ are corner charts and the curves γJ∞ = {z(J∞) = 0, ρ(J∞) = 0}
and γJ−∞ = {z(J−∞) = 0, ρ(J−∞) = 0} are corner characteristic cycles.

• The chart CJ0 is a non-corner chart and contains the new non-corner characteristic

cycles γI ,i where γI ,i = S
1 × {(ω(J0)

i , 0)}, i = 1, . . . , m J0 being S̃ing(η̂′
J0

, FJ0) =
{(ω(J0)

i , 0), i = 1, . . . , m J0}.
From the construction, we can check that the hypothesis (H1-H3) are fulfilled forM′. Thus,
we have defined admissible sequences of blowing-ups of ξ̂ of any length.
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Remark 3.6 By construction, a non-corner characteristic cycle γI ∈ D is defined in some
chart CJ by equations γI = {z(J ) = ω

(J )
k , ρ(J ) = 0} for some k ∈ N≥1. It may happen that

the same characteristic cycle γI is defined in a corner chart CJ̃ by {z( J̃ ) = 0, ρ( J̃ ) = c}, for
some c ∈ R.

Remark 3.7 Notice that for anygiven sequenceof admissible blowing-upsM = (M, π,A,D)

and for any chart CJ of A, the associated vector field η̂J is not identically zero. This can be
seen from the construction of M and using Remark 3.1.

3.4 Adapted Reduction of Singularities

Recall (see the book [5]) that a formal vector field χ = A(x, y) ∂
∂x + B(x, y) ∂

∂ y at (R2, 0) has
a (real) simple singularity if Sing(χ) = {0}, the eigenvalues λ1, λ2 of the linear part Dχ(0)
are real and at least one of them is different from zero, for instance λ2 �= 0, and λ1

λ2
/∈ Q>0.

In this case, χ has exactly two formal invariant curves, also called separatrices, which are
tangent to the corresponding eigenspaces, non-singular and mutually transverse. We need an
extended notion of simple singularity, also taken from that reference, that takes into account
the existence of a divisor and the possibility that the singularity is not isolated.

Definition 3.8 Let F = {xyε = 0}, where ε ∈ {0, 1}, be a normal crossing divisor at 0 ∈ R
2.

A formal vector field χ at (R2, 0) has an adapted simple singularity relatively to F if one
of the two following situations occurs:

(1) Sing(χ) = {0}, the singularity is simple and each component of F is invariant for χ

(thus, if ε = 1, the two components of F are the two separatrices).
(2) ε = 0, there is a formal non-singular curve 
 transversal to F = {x = 0} given by an

equation 
 = {y − ĝ(x) = 0} contained in Sing(χ), and χ = (y − ĝ(x))r χ̄ , with r ≥ 1,
such that either χ̄ is non-singular at 0 and F is the only invariant curve of χ̄ through 0,
or χ̄ has a simple singularity at 0 and the set of separatrices of χ̄ at 0 is {F, 
}.

To distinguish the two cases of this definition, in the situation of (2), we say that χ has
a non-saturated adapted simple singularity. Usually in this situation, one divides χ by an
equation of Sing(χ) to get the situation in (1) or a non-singular point. However for us, the
vector field χ will come from some three dimensional vector field, hence it will be important
to keep unaltered the singular locus placed outside the divisor.

Before introducing the reduction of singularities of ξ̂ adapted to our problem, we recall
Seidenberg’s Theorem ([29]) of reduction of singularities of a two dimensional analytic (or
formal) vector field ξ , following the lines of the book [5]. In this reference, it is assumed that
the vector field is saturated, i.e. that χ has an isolated singularity at the origin. For us, it is
important to consider the non-saturated case: that χ writes as χ = f χ̄ , where f is non-zero,
non-unit and a generator of Sing(χ). Moreover, we cannot “saturate" χ just by dividing by
f since we treat the formal case and we want to preserve the analytic nature of the given
coordinates. Instead, we adapt the result in [5] to the non-saturated case, which only involves
a slightlymodification and encompasses both a reduction of singularities of the singular locus
of χ and a reduction of singularities of χ̄ . For the sake of completeness, we provide here a
precise statement and we sketch the modifications to be made for its proof.

Theorem 3.9 Let χ be a formal vector field at (R2, 0) not identically zero, saturated or not,
F (0) be a normal crossings divisor and 0 ∈ S̃ing(χ, F (0)). Then there is a composition of
a finite number of punctual blowing-ups π : (Ñ , F̃) → (R2, F (0)) fulfilling the following
conditions:
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(a) For any point q ∈ F̃ = π−1(F (0)), if χ ′
q is the strict transform of χ by π at q (that is,

χ ′
q = 1

ukvl π
∗(χ), where uvε is a local reduced equation of F̃ at q (ε = 0 or 1) and k, l

are maximal so that χ ′
q has no pole), then q ∈ S̃ing(χ ′

q , F̃) if and only if q ∈ Sing(χ ′
q).

(b) If q ∈ F̃ is a singular point of χ ′
q , then q is an adapted simple singularity relatively to

F̃ (cf. Definition 3.8).
(c) Any dicritical component is isolated as a dicritical component (i.e. any other component

that intersects it is non dicritical).

Proof In the case where χ has as an isolated singularity at 0, the existence of the reduction of
singularities τ is given by the result in [5], where one eliminates points in the adapted singular
locus relatively to the divisor that are not singular points (to get (a)). In the case where the
singular locus S := Sing(χ) of χ at 0 is not reduced to {0} (thus S is a finite union of formal
curves), we first consider a reduction of singularities ψ : (N (1), F (1)) → (R2, F (0)) of S.
Then, let χ ′

1 be the strict transform of χ by ψ , we blow up any q ∈ S̃ing(χ ′
1, F (1)) that is not

a singular point to get (a). After that, we may assume that such strict transform, named χ ′
q ,

either has an isolated singularity at q (and hence we apply again [5]) or q is a point in the
strict transform S(1)

q of the curve S by ψ . In this last case, there are coordinates (x, y) at q
such that F (1) = {x = 0}, and χ ′

q is written as χ ′
q = (y − ĝ(x))r χ̄ ′

q , where {y − ĝ(x) = 0}
is an equation of S(1)

q , r ≥ 1 and χ̄ ′
q has at most an isolated singularity at q .

If χ̄ ′
q(q) = 0, after a reduction of singularities of χ̄ ′

q , we may assume that q is a simple

singularity of χ̄ ′
q . By further blowing-ups, we separate S̃(1)

q from the two separatrices of χ̄ ′
q

unless one of them coincides with S̃(1)
q . We will get in this way adapted simple singular-

ities of (the transform of) χ̃ ′
q either saturated (cf. Definition 3.8-(1)) or non saturated (cf.

Definition 3.8-(2)).
When χ̄ ′

q(q) �= 0, if 
 is the formal solution of χ̄ ′
q through q , a new blowing-up at q

produces an adapted simple singularity for the transform of χ̄ ′
q at the point corresponding to

the tangent line of 
. If 
 coincides with S̃(1)
q , we get an adapted simple singular point for

χ̃ ′
q . Otherwise, by further blowing-ups, we separate 
 from S̃(1)

q and we get either adapted
simple singularities or points in the situation already treated.

Note that condition (c) is obtained as a consequence of the result in [5] since only normal
crossings are allowed. ��

Now, we can state the result which gives the reduction of singularities of a formal normal
form ξ̂ of a vector field ξ ∈ H3 with isolated singularity.

Proposition 3.10 (Adapted resolution of singularities) Let ξ̂ be a formal vector field written
as in Eq. (2) with isolated singularity at 0 ∈ R

3. Then there exists a sequence of admissible
blowing-ups M = (M, π,A,D) for ξ̂ with A = {CJ }J∈J , D = {γI }I∈I and total divisor
E = π−1(0) such that

(1) For J ∈ {IM∞ , IM−∞}, the transformed vector field ξ̂ (J ) = (π |CJ )
∗ξ̂ satisfies ξ̂ (J )(z(J )) =

(z(J ))t · G where t ≥ 1 and G is a unit in R[[x (J ), y(J ), z(J )]].
(2) For any J ∈ J \{IM∞ , IM−∞}, the singularities of the reduced associated vector field η̂′

J
are adapted simple singularities relatively to the divisor E ∩ CJ ∩ {θ = 0}.

(3) If E0 is a dicritical component of E, then E0 is isolated as a dicritical component
(i.e. any other component that intersects E0 is non dicritical). Moreover, for any J ∈
J \{IM∞ , IM−∞}, one has S̃ing(η̂′

J , F0,J ) = ∅ where F0,J = E0 ∩ CJ ∩ {θ = 0}, in
particular, η̂′

J is everywhere transversal to F0,J .
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Proof FromRemark 3.1, there exists a term c j z j in the coefficient ξ̂ (z)with c j �= 0. Assume,
without loss of generality, that j is the minimum exponent with this condition. Notice that
j > 0. Write ξ̂ (z) ∈ R[[x, y, z]] as

ξ̂ (z) = Z(x2 + y2, z) = zt0G(x, y, z) = zt0
∞
∑

k=ν(G)

Gk(x, y, z),

where Gk is an homogeneous polynomial of degree k for each k, t0 ≥ 0 is defined as
the maximum integer such that zt0 divides ξ̂ (z) and ν(G) is the order of G as a series as
defined in the Introduction. Then G j−t0(x, y, z) contains the monomial c j z j−t0 (notice that
j ≥ t0 and the equality holds if and only if ν(G) = 0). Consider the first blowing-up σ0
and study ξ̂ (∞)(z(∞)), where ξ̂ (∞) = (σ0|C∞)∗ξ̂ . Omitting super-indices for the coordinates
(x (∞), y(∞), z(∞)), we have:

ξ̂ (∞)(z) = zt0
∞
∑

k=ν(G)

Gk(x, y, 1)zk = zt1
∞
∑

k=ν(G)

Gk(x, y, 1)zk−ν(G),

where t1 = t0 + ν(G) ≥ t0. Rewrite the series G(1) := ∑∞
k=ν(G) Gk(x, y, 1)zk−ν(G) in

homogeneous components:

ξ̂ (∞)(z) = zt1G(1)(x, y, z) = zt1
∞
∑

k=ν(G(1))

G(1)
k (x, y, z).

If j = t1, we see that G(1)
0 = c j and thus G(1) is a unit, which gives statement (1) of the

proposition for t = t1. Otherwise, if t1 < j , we see that G(1)
j−t0

(x, y, z) contains the term

c j z j−t1 . Notice that, in this case, we have t1 ≥ t0 since, otherwise, if t1 = t0 then ν(G) = 0
and j = t0 = t1. Thus, j − t0 > j − t1 ≥ 0. By recurrence over j − t0, there exists an
admissible sequence of blowing-ups ˜M = ( ˜M, π̃ , ˜A, ˜D)with π̃ a composition of s blowing-
ups at the corresponding characteristic singularities γ

I
Mi∞

such that, defining t0, t1, . . . , ts as

above, we have j = ts . We conclude (1) for π̃∗ξ̂ at the characteristic singularity γI ˜M∞
with

t = ts . Analogously, up to blowing-up repeatedly the characteristic singularity γ
I

˜M−∞
, we may

assume that (1) holds at γ
I

˜M−∞
.

According to the construction of sequences of admissible blowing-ups in the Sect. 3.3, ˜A
is composed by the two charts C

I
˜M−∞

and CI ˜M∞
and a finite number of charts named:

{CJ }J∈ ˜J0
, where ˜J0 = {0, (∞, 0), . . . , (∞, . . . ,∞, 0), (−∞, 0), . . . , (−∞, . . . ,−∞, 0)}

with coordinates of the form (θ, z, ρ) ∈ R × (R≥0)
2, except for the first one with z taking

values in R. For any J ∈ ˜J0, consider the transformed vector field ξ̂ (J ) = (π̃ |CJ )
∗ξ̂ and the

corresponding reduced associated vector field η̂′
J . Denote by Ẽ := π̃−1(0) the total divisor

of ˜M. Notice that the coordinate θ is well defined in the union U = ⋃

J∈ ˜J0
CJ so that

F̃ := Ẽ ∩ {θ = 0} ∩ U has a perfect sense. In fact, F̃ = Ẽ ∩ π−1({y = 0, x > 0}). Now,
given J ∈ ˜J0, we apply Theorem 3.9 at each point a ∈ S̃ing(η̂′

J , F̃) in order to obtain a
reduction of singularities τa of the two dimensional vector field η̂′

J at a adapted to F̃ .
Notice that in the sequence of blowing-ups that Theorem 3.9 provides, we start blowing

up with center at points a ∈ S̃ing(η̂′
J , F̃) for the different J ∈ ˜J0. The points in S̃ing(η̂′

J , F̃)

correspond exactly to the family of characteristic cycles of ˜M (elements of ˜D). Considering
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admissible blowing-ups σγI centered at those γI ∈ ˜D, the restriction σγI |{θ=0} is exactly
the blowing-up centered at the corresponding point γI ∩ {θ = 0} of the two-dimensional
vector field η̂′

J . Moreover, this property repeats for the subsequent points to be blown up to
achieve τa and the corresponding strict transform of η̂′

J . In other words, having defined the

sequence of blowing-ups τa as above, satisfying (a), (b) and (c) for any a ∈ S̃ing(η̂′
J , F̃)

and for any J ∈ ˜J0, the composition of these sequences of two dimensional blowing-ups τa

provides a sequence of admissible blowing-ups M = (M, π,A,D) factorizing through π̃

(i.e. π = π̃ ◦π ′) such thatM satisfies (2) and (3) of the statement. Since π ′ does not modify
the characteristic singularities γ

I
˜M−∞

, γ
I

˜M−∞
, we have also (1), and we are done. ��

Remark 3.11 Notice that after an adapted reduction of singularities, the non-corner charac-
teristic cycles that we obtain are contained in non-dicritical components of the total divisor.

3.5 Behavior of Jet Approximations of Normal Forms Under Blowing-Ups

In this section, we study the effect of sequences of admissible blowing-ups to the jet approx-
imations ξ� of the formal normal form ξ̂ , for convenient values of �. First, we establish the
jet dependence of the transform of ξ̂ by such blowing-ups in the different charts.

Proposition 3.12 Let ξ̂ be a formal normal form of ξ ∈ H3. Consider an admissible sequence
of blowing-ups M = (M, π,A,D) for ξ̂ of length l > 0, with A = {CJ }J∈J . For every
J ∈ J and for every k ≥ 1, if u is a coordinate of the chart CJ such that {u = 0} ⊂ E =
π−1(0), then we have

ju
k (ξ̂ (J )) = ju

k ((π |CJ )
∗ jk+l+1(ξ̂ )). (23)

Proof The proof uses the following standard fact.

Fact Let η be a vector field with coefficients in A[[x1, . . . , xn]] and let τ be a quadratic
morphism of the form τ(x1, . . . , xn) = (x1xi , . . . , xi−1xi , xi , xi+1xi , . . . , xn xi ). Then,

j xi
k (τ ∗η) = j xi

k (τ ∗ jk+1(η))

j
x j
k (τ ∗η) = j

x j
k (τ ∗ j

x j
k (η)) = j

x j
k (τ ∗ j

x j
k+1(η)), j �= i .

(24)

We proceed by induction on the length l ofM. If l = 0, that is, π = σ0 is the blowing-up
of the origin 0 ∈ R

3 described in Sect. 3.2. We have (with simplified notation ρ := ρ(0), z :=
z(0))

jρk ((σ0|C0)
∗ξ̂ ) = jρk ((σ0|C0)

∗ jk+1(ξ̂ )),

j z
k ((σ0|C∞)∗ξ̂ ) = j z

k ((σ0|C∞)∗ jk+1(ξ̂ )),

j z
k ((σ0|C−∞)∗ξ̂ ) = j z

k ((σ0|C−∞)∗ jk+1(ξ̂ )),

(25)

which proves the result.
Suppose l > 0 and that π = π̃ ◦ σγI , where σγI is the blowing-up centered at some

characteristic element γI of a sequence of admissible blowing-ups ˜M = ( ˜M, π̃ , ˜A, ˜D) of
length l −1. It is enough to study the transform ξ̂ (J ) in the chartsCJ when σ−1

γI
(γI )∩CJ �= ∅,

since the map σγI is an isomorphism out of σ−1
γI

(γI ). According to the construction of M
from ˜M and using the same notations as in Sect. 3.3, we have several cases:

123



Journal of Dynamics and Differential Equations

(1) The point γI is the origin of a chart (CJI , (x (JI ), y(JI ), z(JI ))) of ˜A (for instance I = I ˜M∞ )
where z(JI ) = 0 is the equation of the divisor ˜E ∩ CJI , and J = IM∞ = (∞, s. . .,∞).
In this case, u = z(J ) is the only coordinate of the chart CJ in the conditions of the

statement. Using the induction hypothesis j z(JI )

k′ (ξ̂ (JI )) = j z(JI )

k′ ((π |CJI
)∗ jk′+(l−1)+1(ξ̂ ))

for k′ = k + 1, we have that

ju
k (ξ̂ (J )) = ju

k ((σγI |CJ )
∗ξ̂ (I )) = ju

k ((σγI |CJ )
∗ j z(JI )

k+1 (ξ̂ (I )))

= ju
k ((σγI |CJ )

∗ j z(JI )

k+1 ((π̃ |CI )
∗( j(k+1)+(l−1)+1(ξ̂ )))

= ju
k ((σγI |CJ )

∗((π̃ |CI )
∗( jk+l+1(ξ̂ )))

= ju
k ((π |CJ )

∗( jk+l+1(ξ̂ ))

(2) The point γI is the origin of a chart (CJI , (x (JI ), y(JI ), z(JI ))) of ˜A where z(JI ) = 0 is
the equation of the divisor ˜E ∩ CJI and σγI |CJ : CJ → CJI has the same expression as
(4) for σ0, considering coordinates (θ, z(J ), ρ(J )) for CJ and with the obvious change
of notation. Notice that in CJ the two coordinates u = ρ(J ) and u = z(J ) are in the
conditions of the statement. By the induction hypothesis, renaming z = z(JI ) for sim-
plicity, we have, for any k ≥ 1, that j z

k (ξ̂ (JI )) = j z
k ((π̃ |CJI

)∗ jk+l(ξ̂ )). By the fact that

jk(χ) = jk( j z
k (χ)) for any vector field χ , we also have jk(ξ̂ (JI )) = jk((π̃ |CJI

)∗ jk+l(ξ̂ )).

From this last equality, the result follows for u = ρ(J ) similarly to the case of the first
blowing-up σ0. For u = z(J ), it is a consequence of the second equation of (24).

(3) γI is a characteristic cycle of ˜M. Taking into account Remark 3.6, we may assume
γI ⊂ {ρ(JI ) = 0} for some chart (CJI , (θ, z(JI ), ρ(JI ))) ∈ Ã. Let us put for simplicity
(z, ρ) = (z(JI ), ρ(JI )). We distinguish two cases:

(a) γI is a corner characteristic cycle. In this case, σ−1
γI

(γI ) is covered by two charts

(CJ , (θ, z(J ), ρ(J ))) with J = J∞, J0, for which the expression of σγI is given
by (17) and (18), respectively. By symmetry, both are treated similarly, and we
assume the case J = J∞. Notice that the coordinates u = z(J ) and u = ρ(J ) are in
the condition of the statement. For u = z(J ), we have, for any k ≥ 1:

ju
k (ξ̂ (J )) = ju

k ((σγI |CJ )
∗ jk+1(ξ̂

(JI ))) = ju
k ((σγI |CJ )

∗ jk+1( j z
k+1(ξ̂

(JI ))))

= ju
k ((σγI |CJ )

∗ jk+1( j z
k+1((π̃ |CJI

)∗( jk+l+1(ξ̂ )))))

= ju
k ((σγI |CJ )

∗ jk+1((π̃ |CJI
)∗( jk+l+1(ξ̂ ))))

= ju
k ((σγI |CJ )

∗(π̃ |CJI
)∗( jk+l+1(ξ̂ ))) = ju

k ((π |CJ )
∗( jk+l+1(ξ̂ ))).

(26)

Here, we have used the first formula of Eq. (24) for the quadratic map σγI in the first
and fifth equalities, general properties of jets (cf. Sect. 1) in the second and fourth
equalities and the induction hypothesis in the third equality. This proves (23) for
u = z(J ). For u = ρ(J ), we have, for any k ≥ 1:

ju
k (ξ̂ (J )) = ju

k ((σγI |CJ )
∗ jρk+1(ξ̂

(JI )))

= ju
k ((σγI |CJ )

∗ jρk+1((π̃ |CJI
)∗( jk+l+1(ξ̂ ))))

= ju
k ((σγI |CJ )

∗(π̃ |CJI
)∗( jk+l+1(ξ̂ ))) = ju

k ((π |CJ )
∗( jk+l+1(ξ̂ ))),

(27)

where we have used the second formula of (24) for the quadratic map σγI in the
first and third equality and the induction hypothesis in the second equality. This
proves (23) for u = ρ(J ).
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(b) γI is a non-corner characteristic cycle. In this case σ−1
γI

(γI ) is covered by three
charts CJ∞ , CJ0 and CJ−∞ , for which the expression of σγI is given by Eqs. (20),
(21) and (22), respectively. In the chart (CJ∞ , (θ, z(J∞), ρ(J∞))), the two coordinates
u = z(J∞) and u = ρ(J∞) are in the hypothesis of the statement. The proof of the
result is analogous to the one in case (a), namely Eqs. (26) and (27). The chart CJ−∞
is similar to CJ∞ . Finally, in the chart (CJ0 , (θ, z(J0), ρ(J0))) only u = ρ(J0) is in the
hypothesis of the statement. The proof for this coordinate is just the same sequence
of equalities as in (26) with the interchange of the role of the coordinates z and ρ in
CJI .

��
Now, let us discuss the validity of Proposition 3.12 for the jets approximations of the

normal form ξ�.
Consider the first blowing-up σ0 at 0 ∈ R

3, a singular point of ξ� for any �. Being ξ�

analytic, the total transform σ ∗
0 ξ� exists and is analytic in a neighborhood of the divisor

E0 = σ−1
0 (0). Moreover, in terms of coordinates of the charts C−∞, C0, C∞ (cf. Sect. 3.2),

we can prove (see for instance the computations in [1, sec. 3])

(a) For (C∞, (x (∞), y(∞), z(∞))) (and analogously for C−∞) the coefficients of ξ
(∞)
� :=

(σ0|C∞)∗ξ� belong to R[x (∞), y(∞)][[z(∞)]] ∩R{x (∞), y(∞), z(∞)}. In fact, they belong
to the algebraR[x (∞), y(∞)]{z(∞)} of convergent series with polynomial coefficients (cf.
notations at the end of Sect. 1).

(b) For (C0, (θ, z, ρ)), the coefficients of ξ (0)
� := (σ0|C0)

∗ξ� belong toR[cos θ, sin θ, z][[ρ]]∩
R[cos θ, sin θ ]{z, ρ}. In fact, they belong to R[cos θ, sin θ, z]{ρ}.

Finally, taking into account that � ≥ 1 (i.e. ξ� has the same linear part as ξ or ξ̂ ), we may
observe that ξ (J )

� |E0∩CJ = ξ̂ (J )|E0∩CJ for any J ∈ {−∞, 0,∞}. In particular, the character-
istic elements of ξ̂ in E0 are invariant for the transform σ ∗

0 ξ�, then σ ∗
0 ξ� admits a transform

which is analytic if we blow up again one of those characteristic elements. Using recursively
the same kind of arguments, and with a similar proof, we obtain the following version of
Proposition 3.12 for the jets approximations of the normal form.

Proposition 3.13 LetM = (M, π,A,D) be an admissible sequence of blowing-ups of length
l with A = {CJ }J∈J . Then, for � ≥ l + 1 and J ∈ J , the transform ξ

(J )
� := (π |CJ )

∗ξ� is
analytic. Moreover, for any k ∈ N, if u is a coordinate of CJ such that {u = 0} ⊂ E = π−1(0)
and � ≥ k + l + 1, then, we have

ju
k (ξ

(J )
� ) = ju

k (ξ̂ (J )).

Remark 3.14 Asapart of the proof,we can see that the restriction of ξ (J )
� and ξ̂ (J ) to the divisor

coincide. Hence, the characteristic elements γI ∈ D are invariant for the total transformπ∗ξ�.
They are called characteristic singularities or characteristic cycles, accordingly, of ξ

(J )
� .

Moreover, we observe that the coefficients of ξ
(J )
� are convergent series in the coordinates of

the chart CJ , i.e., they satisfy the corresponding property (a), respectively (b), above when
J ∈ {IM−∞, IM∞ } (resp. J /∈ {IM−∞, IM∞ }). In the last case, we can also interchange the roles
of the coordinates z and ρ if CJ is a corner chart.

Recall, from Sect. 3.3, the definition of the associated two dimensional vector fields
η̂′

J to ξ̂ (J ) for J ∈ J \{IM∞ , IM−∞} and the corresponding reduced vector fields η̂′
J =

(ρn(J )
1 zn(J )

2 )−1η̂J , where (θ, z, ρ) are the coordinates in CJ . Write the transform ξ
(J )
� as

ξ
(J )
� = B(J )

�,θ (θ, z, ρ)
∂

∂θ
+ B(J )

�,z (θ, z, ρ)
∂

∂z
+ B(J )

�,ρ (θ, z, ρ)
∂

∂ρ
. (28)
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Then, the associated (to ξ
(J )
� ) system of ODEs η�,J is defined as:

{

dz
dθ

= B(J )
�,ρ (θ, z, ρ) · (B(J )

�,θ (θ, z, ρ))−1

dρ
dθ

= B(J )
�,z (θ, z, ρ) · (B(J )

�,θ (θ, z, ρ))−1
(29)

Recall also that, if J ∈ {IM∞ , IM−∞} and we use simplified notation (x, y, z) :=
(x (J ), y(J ), z(J )), we have defined n(J ) as the maximum n ∈ N such that ξ̂ (J )(z) is divisible
by zn . As well, if J ∈ J \{IM∞ , IM−∞}, we have defined n(J ) := max{n(J )

1 , n(J )
2 }. With those

notations, we have the following Corollary of Proposition 3.13.

Corollary 3.15 Let M = (M, π,A,D) be an admissible sequence of blowing-ups of length
l > 0 with A = {CJ }J∈J . Define �M := max{n(J ) : J ∈ J } + l + 1. Fix k ∈ N≥0.

(1) Let J ∈ J \{IM−∞, IM∞ } and put (z, ρ) := (z(J ), ρ(J )). For every � ≥ �M + k, the mono-

mial (ρ)n(J )
1 (z)n(J )

2 divides the system η�,J . Moreover, putting η′
�,J := (ρn(J )

1 zn(J )
2 )−1η�,J ,

if u is a coordinate with {u = 0} ⊂ E ∩ CJ , then

ju
k (η′

�,J ) = ju
k (η̂′

J ).

(2) Let J ∈ {IM−∞, IM∞ } and put (x, y, z) := (x (J ), y(J ), z(J )). For every � ≥ �M + k, the

series ξ
(J )
� (z) is divisible by zn(J )

, and

j z
k

(

z−n(J )

ξ
(J )
� (z)

)

= j z
k

(

z−n(J )

ξ̂ (J )(z)
)

.

Proof Both statements are direct consequence of the jet equality stated in Proposition 3.13.
Since k + �M ≥ n(J )

i + l + 1 for i = 1, 2 and for very J ∈ J \{IM−∞, IM∞ } and k + �M ≥
n(J ) + l + 1 when J ∈ {IM−∞, IM∞ }, we have that the monomials of type (ρ(J ))n(J )

1 (z(J ))n(J )
2

divide the system η�,J when J ∈ J \{IM−∞, IM∞ }, or (z(J ))n(J )
divides ξ

(J )
� (z(J )) when

J ∈ {IM−∞, IM∞ }. ��

3.6 Lifting of Automorphisms by Admissible Blowing-Ups

Recall fromEq. (3) that there is a formal automorphismψ� at 0 ∈ R
3 that conjugates ξ̂ and ξ�,

that is, ξ̂ = ψ∗
� (ξ�), and thatψ� is tangent to the identity up to order �, i.e., j�(ψ�− I d) = 0. In

what follows, we will need to lift such a conjugation to the charts of a sequence of admissible
blowing-ups. As well, we will need to lift the (analytic) conjugation between different jet
approximations ξ� and ξ�′ . We provide a proper statement covering all those situations.

Proposition 3.16 Let M = (M, π,A,D) be a sequence of admissible blowing-ups of length
l. Take � > l + 1 and let ψ ∈ R[[x, y, z]] be a formal automorphism satisfying j�(ψ −
(x, y, z)) = 0. Then, for any CJ ∈ A, there exists a formal automorphism ψ(J ) in the
coordinates of CJ satisfying

π |CJ ◦ψ(J ) = ψ ◦ π |CJ . (30)

More precisely, if � = k + l + 1, we have:

(1) Suppose J = IM±∞ and denote (u, v, w) := (x (J ), y(J ), z(J )), then there is ψ(J ) ∈
R[u, v][[w]]3 that satisfies jwk (ψ(J ) − (u, v, w)) = 0.
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(2) Suppose J �= IM±∞ and denote (θ, z, ρ) := (θ, z(J ), ρ(J )) (notice that {ρ = 0} ⊂
E ∩ CJ ). Then, ψ(J ) = ψ(J )(θ, z, ρ) = (θ + Fθ , z + Fz, ρ + Fρ) where each Fi ∈
R[cos θ, sin θ, z][[ρ]] and ψ(J ) satisfies jρk (ψ(J ) − (θ, z, ρ)) = 0. Moreover, if {z =
0} ⊂ E ∩ CJ (CJ is a corner chart), then we have also Fi ∈ R[cos θ, sin θ, ρ][[z]].

(3) In the same conditions, assume moreover that ψ ∈ R{x, y, z}3 is convergent. Then,
ψ(J ) ∈ R[u, v]{w} in case (1) and ψ(J ) ∈ R[cos θ, sin θ, z]{ρ} in case (2).

Proof We can write π = σ0 ◦ σ1 ◦ · · · ◦ σr ′ ◦ · · · ◦ σr with σi = σγIi
and 0 ≤ r ′ ≤ r , where

γIi are characteristic singularities of the form γ
(ε∞,

mi...,ε∞)
for 0 ≤ i ≤ r ′ and ε = ±1, and

γI j are characteristic cycles for 1 + r ′ ≤ j ≤ r .
Suppose that r ′ ≥ 1. First, the automorphism ψ can be lifted to ψ(∞) at the point γ∞ (or,

correspondingly, to ψ(−∞) at the point γ−∞): using the chart (C∞, (x (∞), y(∞), z(∞))) and
the quadratic expression of σ0|C∞ given in (5), the formal automorphism defined by

ψ(∞)(x (∞), y(∞), z(∞)) =
(

x ◦ ψ

z ◦ ψ
,

y ◦ ψ

z ◦ ψ
, z ◦ ψ

)

◦ σ0|C∞(x (∞), y(∞), z(∞)) (31)

satisfies that σ0|C∞◦ψ(∞) = ψ ◦ σ0|C∞ . Moreover, using that j�(ψ) = I d and the explicit
expression of ψ(∞), we get that j�−1(ψ

(∞)) = I d . In addition, it is standard to prove from
(31) thatψ(∞) belongs toR[x (∞), y(∞)][[z(∞)]], andmore precisely toR[x (∞), y(∞)]{z(∞)}
when ψ is convergent. Thus, ψ(J ) satisfies the required properties (1) and (3) for J ∈
{−∞,∞} when r = 1. Moreover, ψ(∞) satisfies at γ∞ the same properties as ψ does at 0,
renaming � := �− 1. Repeating the same arguments for each blowing-up in the composition
π1 = σ0 ◦ · · · σr ′−1 when r ′ ≥ 1, we obtain that there is a formal automorphism ψ Ir ′ at γIr ′
such that π |CIr ′ ◦ψ Ir ′ = ψ ◦ π |CIr ′ and satisfying the same hypothesis as ψ at 0, but putting

� − r ′ instead of �. Thus, for J = IM−∞, IM∞ , we have shown items (1) and (3). Renaming
the point γIr ′ as the origin when r ′ ≥ 1, we can assume that r ′ = 0. Let us analyze the chart
(C0, (θ, z, ρ)) of the blowing-up σ0. Write ψ(x, y, z) = (x + G1, y + G2, z + G3) where
each Gi ∈ R[[x, y, z]] has order at least � + 1. We have

ψ ◦ σ0|C0(θ, z, ρ) = (ρ cos θ + G1(ρ cos θ, ρ sin θ, ρz), ρ sin θ + G2(ρ sin θ, ρ sin θ, ρz),

ρz + G3(ρ cos θ, ρ sin θ, ρz)). (32)

Hence, Gi ◦ σ0|C0∈ R[cos θ, sin θ, z][[ρ]] and ρ�+1 divides each Gi ◦ σ0|C0 . Moreover,
these series Gi ◦ σ0|C0 belong to R[cos θ, sin θ, z]{ρ} if ψ is convergent. We introduce
G̃i = 1

ρ
Gi ◦ σ0|C0 . We look for a formal automorphism of the form

ψ(0)(θ, z, ρ) = (θ + ρF1(θ, z, ρ), z + ρF2(θ, z, ρ), ρ + ρF3(θ, z, ρ))

such that σ0|C0◦ψ(0) = ψ ◦ σ0|C0 . The tuple (F1, F2, F3) must fulfill

ρ cos θ + ρG̃1 = (ρ + ρF3) cos(θ + ρF1),

ρ sin θ + ρG̃2 = (ρ + ρF3) sin(θ + ρF1),

ρz + ρG̃3 = (z + ρF2)(ρ + ρF3).

Put F̃1 := ρF1 and F̃2 = ρF2. Using classical formulas for trigonometric functions,
and dividing the above expressions by ρ, we obtain the following system of formal equa-
tions with coefficients in the ring R[cos θ, sin θ, z, ρ] and in the variables (G̃, F̃) =
(G̃1, G̃2, G̃3, F̃1, F̃2, F3).
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G̃1 = cos θ F3 − sin θ F̃1 − sin θ F3 F̃1 + O(F̃2
1 ),

G̃2 = sin θ F3 + cos θ F̃1 + cos θ F3 F̃1 + O(F̃2
1 ),

G̃3 = zF3 + F̃2 + F3 F̃2.

(33)

The differential of the system with respect to the unknown variables F̃ at F̃ = 0 is
invertible, as a matrix with entries in R[cos θ, sin θ, z, ρ]. We apply the implicit function
theorem to find a solution F̃ ∈ R[cos θ, sin θ, z, ρ][[G̃]]3, see for example [4, A.IV.37].
Notice also that G̃ ∈ R[cos θ, sin θ, z][[ρ]], and hence F̃ ∈ R[cos θ, sin θ, z][[ρ]]3. Since
jρ�−1(G̃i ) = 0 for i = 1, 2, 3, we find that ρ� divides ρF1, ρF2, F3 and j�−1(ψ

(0)) = I d .
Once more, if ψ is convergent, then we get that ψ(0) ∈ R[cos θ, sin θ, z]{ρ}3 since
Gi ∈ R[cos θ, sin θ, z]{ρ}. (Notice that the system (33) is composed by equations that
belong to R[cos θ, sin θ, z, ρ]{G̃, F̃}, in this case). We get the desired lifting ψ(0) of ψ in
the chart C0.

We proceed studying the rest of the blowing-ups σi , i ≥ 1, by recurrence. Let us simply
discuss the first step of the recurrence, the rest is done similarly. Up to a translation z �→ z+ω

in {ρ = 0}, the expression of σ1 (omitting super-indices) is either σ1(θ, z, ρ) = (θ, ρz, ρ)

(in the non-corner chart CJ0 as in Eq. (21)) or σ1(θ, z, ρ) = (θ,±z, zρ) (in a corner chart,
say CJ±∞ , as in Eqs. (20) or (22)). We obtain the desired expression of ψ(J ) proceeding as
in (31). For example, in the situation of the corner chart J = J∞, we define

ψ(J )(θ, z, ρ) :=
(

θ ◦ ψ(0), z ◦ ψ(0),
ρ ◦ ψ(0)

z ◦ ψ(0)

)

◦ σ1|CJ .

Considering the expression of σ1|CJ , the coefficients ofψ
(J ) belong toR[cos θ, sin θ, ρ][[z]]

and also toR[cos θ, sin θ, z][[ρ]] since the coefficients ofψ(0) belong toR[cos θ, sin θ, z][[ρ]].
By the fact that jρ�−1(ψ

(0) − (θ, z, ρ)) = 0 and the above expression, we deduce
ju
�−2(ψ

(J ) − (θ, z, ρ)) = 0 for u = ρ, z. This shows (2) for J = J∞. To prove (3) for
this same index, we observe that through all the operations made above (including the trans-
lation in z), the convergent nature of ψ(J∞) is inherited from that of ψ(0). ��

4 Characteristic Cycles as Limit Sets

In this section, we use the analytic approximations ξ� to the formal normal form ξ̂ with
an objective: proving that the characteristic elements of ξ� after a sequence of admissible
blowing-upsM are the only possible limit sets of the family of local cycles of ξ� for � large
enough.

Along this section, we fix a sequence of admissible blowing-ups M = (M, π,A,D)

for ξ̂ , with A = {CJ }J∈J and D = {γI }I∈I . Denote by E = π−1(0) the total divisor of
π . We define also the support of D as SuppD =

⋃

I∈I
γI . Recall the definition of �M in

Corollary 3.15.

Proposition 4.1 Let � ≥ �M + 1 and W be a neighborhood of SuppD =
⋃

I∈I
γI . There is

some neighborhood U = U (W ) of 0 ∈ R
3 such that π−1(CU (ξ�)) ⊆ W .
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To prove this result, we need to introduce new notation and a technical lemma. Consider the
set

Ė := E\
⎛

⎝

⎛

⎝

⋃

I :γI ∈D corner

{γI }
⎞

⎠ ∪ {γIM∞ } ∪ {γIM−∞}
⎞

⎠ .

The set Ė has afinite family of connected components denoted byEM = {L0, L1, . . . , LkM}.
Each Li ∈ EM is open in E and contained in a chart CJi for i = 0, 1, . . . , kM. Therefore,
we will call them simply open components (of E). In addition, in case Li is contained in
two different charts, we choose CJi such that Li ⊆ {ρ(Ji ) = 0}, which is always possible by
the hypothesis (H3) of sequences of admissible blowing-ups. Then, each open component
Li = S

1×(λ−
i , λ+

i )×{0} in the coordinates ofCJi where λ−
i ∈ R∪{−∞} and λ+

i ∈ R∪{∞}.
An element Li ∈ EM is said to be dicritical (respectively, non-dicritical) if the component
of E that contains Li is dicritical (respectively, non-dicritical).

Fix L = Li ∈ EM, with L = S
1 × (λ−, λ+) × {0}, and the corresponding chart CJ with

J = Ji . Consider the formal vector field η̂J associated to ξ̂ (J ) = (π |CJ )
∗ξ̂ as in Eq. (11).

For the purpose of this section, we write, removing super-indices in (z, ρ):

η̂J = ρn(J )
1 (A(J )

z (z, ρ)
∂

∂z
+ A(J )

ρ (z, ρ)
∂

∂ρ
). (34)

Notice that there is a small modification here with respect to Eq. (11): we include the factor

zn(J )
2 in the coefficients A(J )

j for j = z, ρ (which may be non-trivial if CJ is a corner

chart) in Eq. (34). The reduced vector field η̂′′
J := ρ−n(J )

1 η̂J considered here (not necessarily
equal to η̂′

J ) has a finite number of points in the adapted singular locus of η̂′
J relatively to

F = E ∩ {θ = 0} along {ρ = 0}, which determine the characteristic cycles contained in
L . The z−coordinates of the characteristic cycles in L are denoted by ωL

1 , . . . , ωL
mL

and the
associated characteristic cycles by γ L

1 , . . . , γ L
mL

.
Define the collection of sets V(L, ε, δ) := {V0, V1, . . . , VmL−1, VmL } depending on two

parameters ε, δ > 0 by:

V0 = S
1 × �0(ε) × (0, δ], �0(ε) = [μ−, ωL

1 − ε],
Vj = S

1 × � j (ε) × (0, δ], � j (ε) = [ωL
j + ε, ωL

j+1 − ε], j = 1, . . . , mL − 1,

VmL = S
1 × �mL (ε) × (0, δ], �mL (ε) = [ωL

mL
+ ε, μ+], (35)

where μ± = λ± ∓ ε when |λ±| < ∞, μ− = ωL
1 − 1

ε
when λ− = −∞, and μ+ = ωL

mL
+ 1

ε

when λ+ = ∞. Define the surfaces ∂min Vj and ∂max Vj as follows:

• ∂min V0 = S
1×{μ−}×(0, δ] and ∂min Vj = S

1×{ωL
j +ε}×(0, δ] for j = 1, 2, . . . , mL .

• ∂max Vj = S
1 × {ωL

j+1 − ε} × (0, δ] for j = 0, 1, . . . , mL − 1 and ∂max VmL = S
1 ×

{μ+} × (0, δ].
Notice that elements of the family V(L, ε, δ) are subsets of the corresponding elements of
V(L, ε′, δ) for any ε′ < ε.

Lemma 4.2 Assume � ≥ �M + 1 and denote by ξ
(J )
� = (π |CJ )

∗ξ�. There exists ε0 > 0 such
that for every small ε with ε0 > ε > 0, there exists δ = δ(ε) > 0 such that the collection
V(L, ε, δ) = {Vj }mL

j=0 satisfies:

(1) In case L is non-dicritical, the function z is monotonic along the trajectories of ξ
(J )
� in

each Vj for any j . Otherwise, if L is dicritical, the function ρ is monotonic along the

trajectories of ξ
(J )
� in each Vj , for any j .
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(2) If L is dicritical and ρn(J )
1 +1 does not divide ξ

(J )
� (z), then ξ

(J )
� (z) has constant sign along

the surfaces ∂min Vj and ∂max Vj , for any j .

(3) Suppose that L is dicritical and ρn(J )
1 +1 divides ξ

(J )
� (z). Denote V(L, ε

2 , δ) =
{V ′

0, V ′
1, . . . , V ′

mL
}. Then, each element V ′

j ∈ V(L, ε
2 , δ) fulfills (1) and, moreover, any

trajectory of π∗ξ� containing a point in Vj remains inside V ′
j either for any positive time

t ≥ 0 or for any negative time t ≤ 0.

Proof Taking into account Corollary 3.15 and since � ≥ �M, the vector field ξ
(J )
� is described

by a non-autonomous two dimensional system of ODEs (see Eq. (29))
{

dz
dθ

= ρn(J )
1 A�,(J )

z (θ, z, ρ),
dρ
dθ

= ρn(J )
1 A�,(J )

ρ (θ, z, ρ)
(36)

where A�,(J )
u (θ, z, 0) = A(J )

u (z, 0) for u = ρ, z. (As for the formal system of ODEs (34),

we include the factor zn(J )
2 in A�,(I )

u ).
We choose ε0 satisfying the following conditions:

• In any case, we require ε0 < 1
2 mini �= j {|ωL

i − ωL
j |}.

• When L is dicritical, if we have that A�,(I )
z (θ, z, 0) �≡ 0 and {t1, . . . , ts} is its set of zeroes,

in order to prove property (2), we require also

ε0 <
1

2
min{|ωL

j − tk | 1 ≤ j ≤ mL , 1 ≤ k ≤ s, ωL
j �= tk}.

In the non-dicritical case, the function A�,(J )
z (θ, z, 0) ≡ A(J )

z (z, 0) is not identically zero
and only depends on z. Being its zeroes ωL

1 , . . . , ωL
mL

by definition, it has constant sign
when z belongs to the interval of � j (ε) for j ∈ {0, . . . , mL } for any 0 < ε < ε0. By

continuity and periodicity in θ , A�,(J )
z (θ, z, ρ) has constant sign for (θ, z, ρ) in a set of the

form S
1 × � j (ε) × (0, δ j ] for some δ j = δ j (ε). Take δ fulfilling δ ≤ min

i=0,...,mLi

{δi } and
B(J )

�,θ = ξ
(J )
� (θ) has positive sign in S

1 × � j (ε) × (0, δ] for every j = 0, . . . , mL . This is

possible since B(J )
�,θ (θ, 0, 0) = 1. Then, we define Vj := S

1 × � j (ε) × (0, δ]. Taking into

account that ξ (J )
� (z) = ρn(J )

1 A�,(J )
z (θ, z, ρ) · B(J )

�,θ (θ, z, ρ), we obtain the property (1) for the
non-dicritical case.

In the dicritical case we proceed in the same way. Notice that A�,(J )
ρ (θ, z, 0) = A(J )

ρ (z, 0)

only depends on z and its set of zeros is by definition ωL
1 , . . . , ωL

mL
. We get that ξ (J )

� (ρ) has
constant sign in each Vj and statement (1) holds.

Let us show (2), assuming that ρn(J )
1 +1 does not divide ξ

(J )
� (z). By the choice of ε0, we

have that A�,(J )
z (θ, z, 0) = A(J )

z (z, 0) does not vanish at any of the extreme values of � j (ε).

Since ξ
(J )
� (z) = ρn(J )

1 A(J )
z (θ, z, ρ) · B(J )

�,θ (θ, z, ρ), we obtain (2), up to taking a smaller δ.

Finally, we show (3). Assume that L is dicritical and that A�,(J )
z (θ, z, 0) ≡ 0. Then, the

system (36) associated to ξ
(J )
� can be written as

{

dz
dθ

= ρn(J )
1 +1

˜A�,(J )
z (θ, z, ρ)

dρ
dθ

= ρn(J )
1 A�,(J )

ρ (θ, z, ρ)
, (37)

where A�,(J )
ρ (θ, z, 0) does not depend on θ (by Corollary 3.15), vanishes exactly for z ∈

{ωL
1 , . . . , ωL

mL
}, and ˜A�,(J )

z (θ, z, 0) ∈ R[cos θ, sin θ, z]. Proceeding as in the beginning of
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the proof, we take a constant δ > 0 such that the collection V(L, ε
2 , δ) = {V ′

0, V ′
1, . . . , V ′

mL
}

fulfills (1), so thatρ ismonotonic in everyV ′
j . BeingV j compact, there are constantsa, K > 0

such that for any V ′
j ∈ V(L, ε

2 , δ), we have

inf
p∈V ′

j

{|A�,(J )
ρ (p)|} ≥ a, sup

p∈V ′
j

{|˜A�,(J )
z (p)|} ≤ K . (38)

Fix V ′
j and suppose, for instance, that A�,(J )

ρ |V ′
j
< 0. Then, if σ : R −→ M is a trajectory of

ξ
(J )
� parameterized as a solution σ(θ) = (θ, z(θ), ρ(θ)) of system (37), as long as it remains
in V ′

j\L , the function ρ(θ) is strictly decreasing. Hence, σ can be parameterized by ρ instead
of θ and we obtain from (37) and (38) that

∣

∣

∣

∣

dz

dρ

∣

∣

∣

∣

≤ Cρ, where C = K

a
.

Now, consider the collectionV(L, ε, δ) = {V0, V1, . . . , VmL }whose elements fulfill Vj ⊂ V ′
j

for j = 0, 1, . . . , mL . If the trajectory σ starts at a point p0 = (θ0, z0, ρ0) ∈ Vj ⊂ V ′
j with

ρ0 > 0, it satisfies, for θ > θ0:

|z(θ) − z0| ≤ C

2
|ρ(θ)2 − ρ2

0 | ≤ C

2
ρ2
0 ≤ C

2
δ2

as long as Im(σ |[θ0,θ ]) ⊂ V ′
j . We obtain similar bounds for |z(θ) − z0| when A�,(J )

ρ |V ′
j
> 0.

Imposing δ <
√

ε
C , we can conclude that |z0 − z(θ)| < ε

2 and guarantee, for any j and for

any p0 ∈ Vj ∈ V(L, ε, δ), that the trajectory σ starting at p0 satisfies Im(σ |[θ0,∞)) ⊂ V ′
j (or

Im(σ |(−∞,θ0]) ⊂ V ′
j in case A�,(J )

ρ |V ′
j
> 0). ��

From the proof above, we may observe that V(L, ε, δ′) also fulfills (1–3) of the lemma
for any δ′ < δ.

Notation 4.3 Given an open component L ∈ EM as above, with the notations of Sect. 3.3
for j ∈ {0, . . . , mL }, let I j ∈ I be the index of the corresponding characteristic cycle
γI j = {z = ω j , ρ = 0}. Let I0, ImL+1 be also the indices of, either the corner characteristic
cycles or characteristic singularities in the component L̄ . We say that the box Vj ∈ V(L, ε, δ)

with j = 1, . . . , mL − 1 is adjacent to γI j and to γI j+1 and we denote ∂I j V j = ∂min Vj and
∂I j+1Vj = ∂max Vj .

Proof of Proposition 4.1. Let W be a neighborhood of SuppD. For every I ∈ I, we consider
an open neighborhood WI ⊂ W of γI such that WI ∩ WI ′ = ∅ if I �= I ′. Consider the
collection EM, and apply Lemma 4.2 to each Li ∈ EM, taking ε and δ small enough so that
each family V(Li , ε, δ) also satisfies:

• For any V ∈ V(Li , ε, δ), we impose V ∩ WI �= ∅ if and only if γI is adjacent to V .
• For any V ∈ V(Li , ε, δ), the boundaries ∂min V and ∂max V are contained in the corre-

sponding neighborhoods WI and WI ′ , where γI and γI ′ are adjacent to V .
• The set

⋃

I∈I
WI ∪

⋃

L∈EM

⋃

V ∈V(L,ε,δ)

V

is a neighborhood of the divisor E = π−1(0) in M .
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Fig. 4 Cross-section of the neighborhoods ˜WI j ⊂ WI j and of Ũ

Now, we define a closed neighborhood ˜WI ⊂ WI of γI for each I ∈ I in such a way that
(see Fig. 4):

(i) The set

˜U = int

⎛

⎝

⋃

I∈I
˜WI ∪

⋃

L∈EM

⋃

V ∈V(L,ε,δ)

V

⎞

⎠

is a neighborhood of the divisor E in M .
(ii) For any I ∈ I, L ∈ EM and V ∈ V(L, ε, δ), ˜WI ∩ V̄ is empty, in case V is not adjacent

to γI , or, otherwise, it is of the form ˜WI ∩ V = S
1 × {c} × (0, μ], where 0 < μ ≤ δ and

c = c(V , I ) satisfies ∂I V = S
1 × {c} × (0, δ].

Now, the set U := π(Ũ ) is an open neighborhood of 0 satisfying the requirements of the
proposition. More precisely, we claim that π−1(CU (ξ�)) ⊂

⋃

I∈I
˜WI .

To prove this, suppose that there is a cycle Z of ξ� contained in U and such that ˜Z :=
π−1(Z) intersects some V ∈ V(L, ε, δ) for some L . Consider a parametrizationσ : R −→ Ũ
of ˜Z as a trajectory of π∗ξ� such that σ(0) ∈ V . By the property (1) of Lemma 4.2, one of
the coordinates z or ρ is monotonic along σ inside V , so it cannot be completely contained
in V . As a consequence, σ leaves V so that for some t0 ≥ 0 we have σ(t0) ∈ Fr(V ) ∩ ˜WI ,
where I ∈ I and γI is adjacent to V . By construction (cf. item (ii) above), σ(t0) belongs to
the boundary ∂I V . We have two cases to consider (we take notations as in Lemma 4.2).

• A�,(J )
z (θ, z, 0) �= 0. By statement (2) of Lemma 4.2, the vector field π∗ξ� is transverse to

∂I V , so that, for instance, we have σ((t0 − c, t0)) ⊂ int(V ) and σ((t0, t0 + c)) ⊂ ext(V )

for some c > 0. Since σ is periodic, we must have that σ crosses Fr(V ) at a first time
t1 > t0 necessarily along one of the boundaries ∂min V , ∂max V whereπ∗ξ� points towards
int(V ). If we denote {∂I V , ∂I ′ V } = {∂min V , ∂max V }, we must have σ(t0) ∈ ∂I V ,
σ(t1) ∈ ∂I ′ V and σ((t0, t1)) ⊂ ext(V ). Now, by construction, Ũ\V = ˜U1 ∪ ˜U2, where
Ũ1, Ũ2 are non-empty open sets such that Ũ1 ∩ Ũ2 = ∅ and the closure of each Ũi

cuts V only along exactly one of the sets {∂I ′ V , ∂I V }. We get the desired contradiction:
σ((t0, t1)), being connected, is contained either in Ũ1 or in Ũ2 and the extremities σ(t0),
σ(t1) should belong to the same set among ∂I V , ∂I ′ V .
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• A�,(J )
z (θ, z, 0) ≡ 0. Using statement (3) of Lemma 4.2, we know that either σ((t0,∞)) or

σ((−∞, t0)) is contained in the corresponding element V ′ of the collection V(L, ε
2 , δ)

and ρ ◦ σ is monotonic along that interval. This is also a contradiction with σ being
periodic.

Consequently, we have proved that Z̃ ⊂
⋃

I∈I
˜WI (in fact, included in a single ˜WI by connect-

edness). Therefore, we have that:

π−1(CU (ξ�)) ⊂
⋃

I∈I
˜WI ⊆

⋃

I∈I
WI ⊆ W ,

as we wanted to prove. ��

5 Analysis of Final Adapted Simple Singularities

Along this section, we consider some ξ ∈ H3 with fixed singularity. We fix a formal normal
form ξ̂ of ξ and an adapted resolution of singularities M = (M, π,A,D) of ξ̂ according to
Proposition 3.10. Denote by E = π−1(0) the exceptional divisor of π .

5.1 Infinitely Near Points of the Rotational Axis

We see first that we can find a neighborhood of the two characteristic singular points that
does not contain cycles of a jet approximation ξ� of ξ̂ .

Proposition 5.1 Given � ≥ �M + 1, there exist neighborhoods W∞ of γIM∞ and W−∞ of
γIM−∞ in M such that neither W∞\E nor W−∞\E contains cycles of π∗ξ�.

Proof According to the construction in Sect. 3.3, the point γIM∞ is the origin of the chart

(CJ , (x (J ), y(J ), z(J ))) with J = IM∞ and E ∩ CJ = {z(J ) = 0}. Being M an adapted
resolution of singularities of ξ̂ and by means of Corollary 3.15, we have in a neighborhood of
γIM∞ that ξ

(J )
� (z(J )) = (z(J ))n(J ) · F(x (J ), y(J ), z(J )) where ξ

(J )
� = (π |CJ )

∗ξ�, n(J ) ∈ N≥1

and F(x (J ), y(J ), z(J )) ∈ R{x (J ), y(J ), z(J )} converges and satisfies F(0, 0, 0) �= 0. Take
a neighborhood W∞ of IM∞ in M where F has a constant sign, positive or negative. We
have that the trajectories of π∗ξ� in W∞\E can be parameterized by z(J ), which avoids the
existence of cycles of π∗ξ� in W∞\E . The proof for γM

I−∞ is analogous. ��

5.2 Simple Corner Characteristic Cycles

We prove that cycles of π∗ξ� cannot accumulate along corner characteristic cycles. Once
again, the argument is to find a function, around such corner characteristic cycle, which is
monotonic along the trajectories of π∗ξ�, if � is sufficiently large.

Proposition 5.2 Let � ≥ �M +1. Consider a corner characteristic cycle γI of ξ̂ in M. Then,
there exists a neighborhood WI of γI in M such that π∗(ξ�) does not contain cycles in WI \E.

Proof By construction, the corner characteristic cycle γI is given by {z(J ) = ρ(J ) = 0} for
some chart (CJ , (θ, z(J ), ρ(J ))) ∈ A for which E ∩ CJ = {ρ(J )z(J ) = 0}. For simplicity,
from now on, we remove the super-indices of the coordinates. By definition of π being an
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adapted resolution of singularities, at least one of the two components of the divisor {ρ = 0}
and {z = 0} is non-dicritical. More precisely, let η̂J be the two dimensional vector field
associated to ξ̂ (J ) = (π |CJ )

∗(ξ̂ ) and consider η̂′
J = 1

ρa zb η̂J the reduced associated vector

field, i.e., a = n(J )
1 , b = n(J )

2 . We have two cases:

(a) The origin is not a singular point of η̂′
J and one of the components, say {z = 0}, is the

solution of η̂′
J .

(b) The origin is a simple singularity of η̂′
J and both components are invariant for η̂′

J .

In the case (a) write

η̂′
J = zFz(z, ρ)

∂

∂z
+ (λ2 + Fρ(z, ρ))

∂

∂ρ

where λ2 �= 0 and Fz, Fρ ∈ R[ρ][[z]] ∩ R[z][[ρ]] with Fρ(0, 0) = 0. We have that

ξ̂ (J )(ρ) = ρazb · (λ2 + Fρ(z, ρ))ξ̂ (J )(θ). (39)

Since � ≥ �M + 1, Corollary 3.15 implies that:

ξ
(J )
� (ρ) = ρazb · (λ2 + F�

ρ (θ, z, ρ))ξ
(J )
� (θ),

where F�
ρ is analytic and F�

ρ (θ, 0, 0) = 0. Considering that the monomial ρazb > 0 for

(z, ρ) ∈ R
2
>0, and taking into account that λ2 �= 0 and ξ

(J )
� (θ) > 0 along γI , there is a

neighborhood WI of γI such that ξ
(J )
� (ρ) has constant sign in WI \E . Hence, the trajectories

of ξ
(J )
� can be parameterized by ρ in WI \E and thus ξ

(J )
� cannot have cycles in WI \E .

In the case (b) being both components of the divisor invariant, we can write:

η̂′
J = (λ1z + zFz(z, ρ))

∂

∂z
+ (λ2ρ + ρFρ(z, ρ))

∂

∂ρ
,

where λ21 + λ22 �= 0 and Fz, Fρ ∈ R[ρ][[z]] ∩ R[z][[ρ]] satisfy Fρ(0, 0) = Fz(0, 0) = 0.
Suppose without loss of generality that λ1 �= 0. Then, we write:

ξ̂ (J )(z) = ρazb+1 · (λ1 + Fz(z, ρ))ξ̂ (J )(θ).

Since � ≥ �M + 1, Corollary 3.15 implies that:

ξ
(J )
� (z) = ρazb+1 · (λ1 + F�

z (θ, z, ρ))ξ
(J )
� (θ),

where F�
z is analytic and F�

z (θ, 0, 0) = 0. As in the first case, we find that the trajectories of

ξ
(J )
� can be parameterized by z in WI \E and ξ

(J )
� cannot have cycles in WI \E . ��

5.3 Simple Non-corner Characteristic Cycles

All along this subsection, we suppose that γI is a non-corner characteristic cycle of M
contained in a chart CJ for which {ρ(J ) = 0} is the equation of E ∩ CJ and γI = {ρ(J ) =
0, z(J ) = wI } for some ωI ∈ R. Consider the transform ξ̂ (J ) = (π |CJ )

∗ξ̂ in the translated
coordinates (z := z(J ) − wI , ρ := ρ(J )). Its associated two-dimensional vector field is

η̂J := ξ̂ (J )(ρ)

ξ̂ (J )(θ)

∂

∂ρ
+ ξ̂ (J )(z)

ξ̂ (J )(θ)

∂

∂z
.
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More precisely, we write η̂J = ρa η̂′
J where a ≥ 0 and η̂′

J is a formal vector field in
coordinates (z, ρ) with a simple singularity at the origin, One of the separatrices of η̂′

J is the
divisor {ρ = 0} and the other one, denoted by 
̂I , is smooth and transverse to the divisor.

5.3.1 Invariant Formal Surface Along �I

Being 
̂I a formal non-singular curve transverse to {ρ = 0}, it can be expressed as a formal
graph z = ĥ I (ρ), where ĥ I (ρ) ∈ R[[ρ]]. Since L ∂

∂θ
ξ̂ (J ) = 0, we have that ŜI := S

1 × 
̂I

is a formal invariant non-singular surface of ξ̂ (J ) supported along the cycle γI . Its vanishing
ideal id(ŜI ) in the ring R[cos θ, sin θ ][[z, ρ]] is generated by HI (z, ρ) := z − ĥ I (ρ). Using
this surface, we can also construct a formal invariant surface for the transformed vector
field ξ

(J )
� = (π |CJ )

∗ξ� along the characteristic cycle γI , when � is sufficiently large. More
precisely,

Proposition 5.3 Suppose that � ≥ �M + 1. Then, there is a formal invariant surface Ŝ�,I

of ξ
(J )
� along γI expressed in coordinates (θ, z, ρ) as the ideal in R[cos θ, sin θ ][[z, ρ]]

generated by some series of the form H�,I (θ, z, ρ) := z − h�,I (θ, ρ), where h�,I ∈
R[cos θ, sin θ ][[ρ]] with h�,I (θ, 0) = 0.

Proof Consider the formal conjugation ψ∗
� ξ� = ξ̂ (cf. Eq. (3)). From Proposition 3.16, there

is a formal automorphism ψ
(J )
� defined by:

(θ, z, ρ) ◦ ψ
(J )
� = (ψθ

� , ψ z
� , ψ

ρ
� ) = (θ + O(ρ2), z + O(ρ2), ρ + O(ρ2)),

conjugating ξ̂ (J ) to ξ
(J )
� and such thatψ(J )

� −(θ, z, ρ) ∈ R[cos θ, sin θ, z][[ρ]]3.We consider

the formal surface Ŝ�,I whose defining ideal is id(Ŝ�,I ) = ( ˜H�,I (θ, z, ρ)) where

˜H�,I (θ, z, ρ) := (ψ
(J )
� )∗(HI ) = HI ◦ ψ

(J )
� = ψ z

� − ĥ I (ψ
ρ
� ) ∈ R[cos θ, sin θ, z][[ρ]].

Using that ∂ ˜H�,I
∂z (0, 0, 0) �= 0 and applying the implicit function theorem to ˜H�,I , we find

an expression of the form H�,I = z − h�,I (θ, ρ) for a generator of id(Ŝ�,I ), with h�,I ∈
R[cos θ, sin θ ][[ρ]]. ��

5.3.2 Poincaré First-Return Map Associated to �I

By Remark 3.14, γI is a trajectory of the vector field ξ
(J )
� = (π |CJ )

∗ξ� for � ≥ �M + 1. Let

P = P�,I : � → {θ = 0} be the Poincaré first-return map of ξ
(J )
� relatively to γI , where �

is a sufficiently small neighborhood of (z, ρ) = (0, 0) in {θ = 0} in which P is analytic.
Notice that the Poincaré map does not depend on the parametrization of the trajectories of

the vector field, and hence, we can define it using any equivalent vector field. In particular, we
are going to consider the vector field ξ̃

(J )
� equivalent to ξ

(J )
� obtained by the multiplication

by the inverse of ξ
(J )
� (θ). That is, we put

ξ̃
(J )
� = ∂

∂θ
+ χ, where χ = ξ

(J )
� (z)

ξ
(J )
� (θ)

∂

∂z
+ ξ

(J )
� (ρ)

ξ
(J )
� (θ)

∂

∂ρ
. (40)

Notice that the components ofχ are the rightmembers of the system ofODEs η�,J introduced
in Sect. 3.5. They belong to the R−algebra R[cos θ, sin θ ]{z, ρ} (by Remark 3.14). Thus, we
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consider˜ξ (J )
� as an analytic vector field on the domain (θ, z, ρ) ∈ R × (−δ, δ)2, for some

δ > 0, 2π−periodic in the variable θ . Moreover, from Corollary 3.15, we have that ρ divides
χ and hence˜ξ

(J )
� |E= ∂

∂θ
.

Denote by �t := �t
ξ̃

(J )
�

the flow map of ξ̃
(J )
� . It is defined and analytic for (t, (θ, z, ρ)) ∈

(−ε, 2π + ε) × ((−ε, 2π + ε) × V ) where V is a neighborhood of 0 ∈ R
2. Using that

˜ξ
(J )
� (θ) = 1, we obtain

�t (θ, z, ρ) = (θ + t, � t
z(θ, z, ρ),� t

ρ(θ, z, ρ)), (41)

that is, the angle θ is the natural time for ξ̃
(J )
� . By definition, the Poincaré map is given by

P(z, ρ) = (�2π
z (0, z, ρ),�2π

ρ (0, z, ρ)). (42)

We are going to express the flow via the exponential map. To be precise, given any G ∈
R[cos θ, sin θ ][[z, ρ]], we define:

Exp(t ξ̃ (J )
� )(G) :=

∞
∑

i=0

t i

i ! (ξ̃
(J )
� )(i)(G),

where, for any vector field ζ , ζ (0)(G) = G and ζ (i)(G) = ζ(ζ (i−1)(G)), if i ≥ 1. Tak-
ing into account the above properties of the components of ξ̃

(J )
� , it is immediate to check

that Exp(t ξ̃ (J )
� )(G) ∈ R[cos θ, sin θ ][[t, z, ρ]]. In the following result, we get some useful

properties of this exponential map and its relation with the flow map. Notice first that, if
G ∈ R[cos θ, sin θ ][[z, ρ]], then the composition G ◦ �t , due to the analyticity of �t , has a
formal Taylor expansion at t = 0, denoted by T0(G ◦ �t ), a formal power series in variables
(t, z, ρ), with analytic functions of θ ∈ (−ε, 2π + ε) as coefficients.

Proposition 5.4 Let G ∈ R[cos θ, sin θ ][[z, ρ]]. We have:

(1) T0(G ◦ �t ) = Exp(t ξ̃ (J )
� )(G) ∈ R[cos θ, sin θ ][[t, z, ρ]]

(2) For any t0 ∈ [0, 2π ], the expression Exp(t0ξ̃
(J )
� )(G) =

∞
∑

i=0

t i
0

i ! (ξ̃
(J )
� )(i)(G) has a sense

as a series in R[cos θ, sin θ ][[z, ρ]] and we have

G ◦ �t0 = Exp(t0ξ̃
(J )
� )(G) (43)

Proof We prove (1) with the same arguments as the case in Loray’s text for holomorphic
vector fields [23, p. 15]: expand G◦�t as a Taylor series in t at t = 0, so that we get

T0(G◦�t ) =
∞
∑

i=0

t i

i !
∂ i (G◦�t )

∂t i

∣

∣

∣

∣

t=0

,

and check that ∂ i (G◦�t )

∂t i = (ξ̃
(J )
� )(i)(G) ◦ �t for any i ≥ 1.

Let us prove item (2). First, we show that there exists α > 0 such that (2) is true for any
t0 ∈ [0, α]. For that, consider the particular case where G is either the coordinate z or ρ (with
the notations of (41), z ◦ �t0 = �

t0
z and ρ ◦ �t0 = �

t0
ρ ). By analyticity of these functions

and by item (1), we get that Exp(t ξ̃ (J )
� )(z), Exp(t ξ̃ (J )

� )(ρ) ∈ R[cos θ, sin θ ]{t, z, ρ}. More
precisely, they belong toR[cos θ, sin θ ]{t}β [[z, ρ]] for someβ > 0 (recall the notations stated
in Sect. 1, that is, all coefficients inR[cos θ, sin θ ]{t} have a common radius of convergence).
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We conclude that � t0
z = z ◦ �t0 = Exp(t0ξ̃

(J )
� )(z) and �

t0
ρ = ρ ◦ �t0 = Exp(t0ξ̃

(J )
� )(ρ) for

any t0 ∈ [0, α] with 0 < α < β.
Let G ∈ R[cos θ, sin θ ][[z, ρ]] be any formal series and write

G =
∑

u,v

Guv(θ)zuρv, with Guv(θ) ∈ R[cos θ, sin θ ].

Consider the series

Ḡ =
∑

u,v

Guv(θ + t)zuρv

which belongs toR[cos θ, sin θ ]{t}β [[z, ρ]] since eachGuv(θ) is a trigonometric polynomial.
Taking into account the expression of the flow �t , we have that G ◦ �t is the result of
substituting in the series Ḡ the variables z, ρ by� t

z, �
t
ρ , respectively. Since the series� t

z, �
t
ρ

belong to R[cos θ, sin θ ]{t}β [[z, ρ]] and have positive order with respect the variables z, ρ,
substitution has perfect sense and provides an element inR[cos θ, sin θ ]{t}β [[z, ρ]]. Since, by
item (1), T0(G ◦�t ) coincides with Exp(t˜ξ (J )

� )(G) as a series inR[cos θ, sin θ ][[t, z, p]], we
conclude item (2) and expression (43) for t0 ∈ [0, α]. Notice that we can choose α > 0 which
does not depend on G. Let us show that we can extend the property(43) to any t0 ∈ [0, 2α]
(and hence similar extensions will prove (2)). Let t0 ∈ [α, 2α] and write t0 = s0 + α, where
s0 ∈ [0, α]. We have G ◦ �t0 = (G ◦ �s0) ◦ �α . Applying (43) for the values s0 and α, and
for G and G ◦ �s0 , respectively, we get

G ◦ �t0 =
∑

i

αi

i ! (ξ̃
(J )
� )(i)(G ◦ �s0) =

∑

i

αi

i ! (ξ̃
(J )
� )(i)

⎛

⎝

∑

j

s j
0

j ! (ξ̃
(J )
� )( j)(G)

⎞

⎠

=
∑

k

⎛

⎝

∑

i+ j=k

αi

i !
s j
0

j ! (ξ̃
(J )
� )(k)(G)

⎞

⎠

=
∑

k

(α + s0)k

k! (ξ̃
(J )
� )(k)(G) = Exp(t0ξ̃

(J )
� )(G),

as it was to be proved. ��
We can now prove two important features of the Poincaré map.

Lemma 5.5 There exists �I such that, for any � ≥ �I , the Poincaré map P = P�,I satisfies:

(a) P is tangent to the identity but P �= I d as a germ of diffeomorphisms at (0, 0) ∈ �.
(b) The formal curve 
 = 
�,I := Ŝ�,I ∩ � is invariant for P.

Proof Recall that the two-dimensional formal vector field η̂J associated to the formal vector
field ξ̂ (J ) has an adapted simple singularity corresponding to the characteristic cycle γI .
As mentioned, the defining ideal of the formal curve 
̂I is generated by z − ĥ I (ρ), where
ĥ I (ρ) = ∑

i≥1 aiρ
i .

Therefore, we can write η̂J = ρn η̂′
J with

η̂′
J = (z − ĥ I (ρ))r

(

(λ1(z − a1ρ) + B1(z, ρ))
∂

∂z
+ (λ2ρ + B2(z, ρ))

∂

∂ρ

)

,

where n = n(J )
1 , r ∈ N≥0, (λ1, λ2) �= (0, 0) and Bi ∈ R[z][[ρ]] has order greater or equal

than 2 for i = 1, 2. Up to making a new admissible blowing-up with center γI , we may
assume that ρ divides B1 and that ρ2 divides B2.
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Define �I = �M + r + 1. Applying Corollary 3.15 to k = r + 1, we get, for any
� ≥ �M + k = �I :

jρr+1(η
′
�,J ) = jρr+1(η̂

′
J ). (44)

Assume first that λ1 �= 0. From (44), and taking into account that χ coincides with the two
dimensional system η�,J (cf. Eq. (40)), we obtain

jρn (ξ̃
(J )
� ) = ∂

∂θ
+ λ1ρ

nzr+1 ∂

∂z
(45)

Using this in the computation of the exponential Exp(t ξ̃ (J )
� )(z), written as a series as

Exp(t ξ̃ (J )
� )(z) = z + t Q1 + t2Q2 + · · · , with Q j ∈ R[cos θ, sin θ ][[z, ρ]],

one can show by recurrence that

Q1 = ρn(λ1zr+1 + O(ρ)),

Q j = O(ρ jn), j ≥ 2.

Using Proposition 5.4 and Eq. (42), we deduce, since λ1 �= 0 and n ≥ 1,

z ◦ P(z, ρ) = �2π
z (0, z, ρ) = Exp(2πξ̃

(J )
� )(z) = z + ρn(2πλ1zr+1 + O(ρ)) �= z.

This proves (a) if λ1 �= 0.
On the contrary, if λ1 = 0 and λ2 �= 0, we obtain

jρn+1(ξ̃
(J )
� ) = ∂

∂θ
+ ρn+1g(z)

∂

∂z
+ λ2ρ

n+1zr ∂

∂ρ
,

where g(z) ∈ R{z}. We deduce, similarly, that, if we write again

Exp(t ξ̃ (J )
� )(ρ) = ρ + t Q1 + t2Q2 + · · · , with Q j ∈ R[cos θ, sin θ ][[z, ρ]],

then Q1 = ρn+1(λ2zr + O(ρ)) and Q j = O(ρnj+1) if j ≥ 2. Hence,

ρ ◦ P(z, ρ) = �2π
ρ (0, z, ρ) = Exp(2πξ̃

(J )
� )(ρ) = ρ + ρn+1(2πλ2zr + O(ρ)) �= ρ,

and (a) equally holds.
Let us show (b). Let H = H�,I ∈ R[cos θ, sin θ ][[z, ρ]] be a generator of the ideal of

the invariant surface Ŝ�,I obtained in Proposition 5.3. The series g(z, ρ) := H(0, z, ρ) is
a generator of the formal plane curve 
 = Ŝ�,I ∩ {θ = 0}. We need to check that the
composition g ◦ P is divisible by g. Using Proposition 5.4, we have

H ◦ �2π =
∑

i≥0

(2π)i

i ! (ξ̃
(J )
� )(i)(H). (46)

Since Ŝ�,I is invariant for ξ̃
(J )
� , we have ξ̃

(J )
� (H) ∈ id(Ŝ�,I ), that is, H divides ξ̃

(J )
� (H). By

recurrence, H divides (ξ̃
(J )
� )(i)(H) for any i ≥ 0. Thus, from Eq. (46), we get

H ◦ �2π = H · K , where K ∈ R[cos θ, sin θ ][[z, ρ]].
We conclude, using that P(z, ρ) = �2π (0, z, ρ),

g ◦ P = (H ◦ �2π )|{θ=0}= H(0, z, ρ)K (0, z, ρ) = g · K̃ , K̃ ∈ R[[z, ρ]],
as we wanted to prove. ��
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5.3.3 Periodic Orbits of the Poincaré Map Around the Invariant Curve

We are interested in the periodic orbits of P near (0, 0) since, as we know, they correspond
to cycles of ξ

(J )
� near γI . As it was the case for defining cycles, periodic orbits depend on the

domain of (a representative of) P . To bemore precise, if P is defined in someneighborhoodW
of (0, 0), a periodic orbit in W is a finite set {pi }n−1

i=0 contained in W such that pi = P(pi−1)

for i = 1, . . . , n − 1 and p0 = P(pn−1).
Denote by Fix(P) the (germ of the) locus of fixed points of P . It is an analytic set with

empty interior (since P �= id), thus either reduced to the origin or an analytic curve with
finitely many branches. We can distinguish two different situations:

(a) The invariant curve 
 is not contained in Fix(P).
(b) The invariant curve 
 is contained in Fix(P).

In particular, in case (b), 
 is a real branch of Fix(P), and thus it converges. In both cases,
we investigate periodic orbits of P in some “neighborhood” of 
. To be precise, consider
a parametrization of 
 of the form z = h(ρ), with h(ρ) ∈ R[[ρ]] and h(0) = 0. A conic
neighborhood of 
 is a set of the form

�N ,δ(
) = �
(z,ρ)
N ,δ (
) := {(z, ρ) : |z − jN (h(ρ))| < ρN , 0 < ρ < δ}.

where N ∈ N≥1 and any δ > 0 sufficiently small.

Remark 5.6 By its definition, these conic neighborhoods depend on the chosen coordinates.
However, after a simple changeof variables consisting in a transformationof type z̄ = z+α(ρ)

with α(ρ) ∈ R[[ρ]], the sets �
(z,ρ)
N ,δ and �

(z̄,ρ̄)
N ,δ coincide exactly under this change.

Case (a) In this case, we prove that there are no periodic orbits in a conic neighborhood of 
.
The arguments are inspired by the papers [21, 22], devoted to treat this case for holomorphic
diffeomorphisms.

Lemma 5.7 Suppose that 
 is not contained in Fix(P). Then, there is some N ∈ N≥1 and
some δ > 0 such that (a representative of) P does not have periodic orbits in �N ,δ(
).

Proof First, since the divisor is contained in Fix(P), we have that ρ ◦ P − ρ can be divided
by ρ. On the other hand, being 
 invariant for P , there is a formal diffeomorphism �(ρ) =
ρ + O(ρ2) ∈ R[[ρ]] satisfying:

P(h(ρ), ρ) = (h(�(ρ)),�(ρ)).

The formal diffeomorphism � is called the restriction of P to 
, denoted by P|
:= � (see
[21]). The order of P|
 , defined as ordρ(�(ρ)−ρ)− 1, does not depend on the coordinates
nor the parametrization (h(ρ), ρ) of 
. In this case, it is a natural number m < ∞, because
otherwise,�(ρ) = ρ and
 would be contained in Fix(P).We deduce that there is a maximal
k ≥ 1 such that ρk divides ρ ◦ P − ρ, so that we can write

ρ ◦ P − ρ = ρk(A(ρ) + zB(z, ρ)), (47)

where A ∈ R{ρ}, B ∈ R{z, ρ} and ρk(A(ρ) + zB(z, ρ)) �= 0. Up to taking new coordinates
(z̄, ρ)with z̄ = z− jm+1(h(ρ)) (whichwe rename (z, ρ) for simplicity) andusingRemark5.6,
we may assume from the beginning that ordρ(h(ρ)) ≥ m + 2. From equation (47), the
definition of � = P|
 and its order m, we have

αρm+1 + · · · = �(ρ) − ρ = ρk(A(ρ) + h(ρ)B(h(ρ), ρ)), α �= 0,
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which implies that A(ρ) = ρs
˜A(ρ)with k+s = m+1 and ˜A(0) = α (in particular s is finite).

Put N = m+1 and let us prove the required property for a cone�N ,δ = �
(z,ρ)
N ,δ (
)with some

δ > 0. Notice first that, for the chosen coordinates (z, ρ), we have jN (h(ρ)) = 0, so �N ,δ

is given simply by equations |z| < ρN and 0 < ρ < δ. On the other hand, N = k + s > s,
since k > 0. Assume for instance that α < 0 (analogous arguments apply if α > 0). Take
a preliminary δ1 > 0 such that ˜A(ρ) < α

2 if ρ < δ1 and let K > 0 be a bound for |B| in a
neighborhood of (0, 0) that contains �N ,δ1 . We have in �N ,δ1

ρs
˜A(ρ) + zB < ρs

˜A(ρ) + ρN K < ρs(
α

2
+ ρN−s K ). (48)

Now take δ < δ1 such that δN−s <
|α|
4K , and hence we obtain from (48)

ρ ◦ P − ρ = ρk(ρs
˜A(ρ) + zB) < ρk(ρs α

4
) < 0 in �N ,δ. (49)

We conclude that, if {p0, p1 = P(p0), p2 = P(p1), . . .} is an orbit (finite or not) of P
completely contained in �N ,δ , then the sequence of ρ−coordinates decreases strictly:

ρ(p0) > ρ(p1) > · · ·
This proves the result. ��
Case (b) Suppose that 
 is convergent and contained in Fix(P). Convergence means that 

is an analytic curve given by a graph 
 = {(h(ρ), ρ) : ρ ∈ [0, ε)}, where h(ρ) ∈ R{ρ}. Up
to taking new analytic coordinates (z − h(ρ), ρ), we will assume that h(ρ) ≡ 0. Thus, the
conic neighborhoods �N ,δ = �

(z,ρ)
N ,δ (
) will be simply defined by the equations |z| < ρN

and 0 < ρ < δ. With these assumptions, we prove the following result.

Lemma 5.8 Suppose that 
 = {z = 0} ⊂ Fix(P). Then, there is N ∈ N≥1 and δ > 0 such
that the fixed points of the set 
 ∩ �N ,δ are the only periodic orbits of P in �N ,δ .

Proof The two coordinate axis {ρ = 0} and {z = 0} are contained in Fix(P). Thus, both
components (z ◦ P − z, ρ ◦ P − ρ) of the map P − I d are divisible by a positive power of
z and by a positive power of ρ. In particular, we can write z ◦ P = z(1 + ψ(z, ρ)) where ρ

divides ψ . From this, we prove the following observation.

Claim There is a neighborhood V of (0, 0) such that if {p0, p1, . . .} is an orbit of P contained
in V , then the sign of the z coordinate of its elements is constant.

Proof of the claim: Since ψ(0, 0) = 0, we can consider a neighborhood V where we have
(1 + ψ(z, ρ)) > 1

2 . Hence, Sign(z ◦ P) = Sign(z(1 + ψ(z, ρ))) = Sign(z) and the claim
follows.

On the other hand, since P �= I d (cf. Lemma 5.5), the two components z◦ P −z, ρ◦ P −ρ

cannot be identically zero simultaneously. Suppose that ρ ◦ P − ρ �= 0. Then we can write

ρ ◦ P − ρ = ρk1 zk2(A(ρ) + zB(z, ρ)), (50)

where k1, k2 ∈ N≥1 and A(ρ) is a convergent non-zero series.Wewrite A(ρ) = ρs(α+· · · ),
where s ≥ 0 and α �= 0. Analogously as in the proof of Lemma 5.7, if N is any given natural
number with N > s, then there exists δ > 0 such that the function A(ρ) + zB(z, ρ) has
constant non-zero sign on�N ,δ . Taking into account the claim above, if δ is sufficiently small
so that �N ,δ ⊂ V , we conclude form Eq. (50) that if {p0, p1, . . .} is an orbit of P contained
in �N ,δ\
 = (

�N ,δ ∩ {z > 0}) ∪ (

�N ,δ ∩ {z < 0}), then the sequence {ρ(p0), ρ(p1), . . .}
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is strictly increasing or strictly decreasing. This proves the lemma in case ρ ◦ P −ρ �= 0. On
the contrary, if ρ ◦ P −ρ = 0 but z ◦ P − z �= 0, we obtain analogously that the z−coordinate
of elements of an orbit in �N ,δ\
 is strictly increasing or strictly decreasing, which proves
the lemma equally. ��

6 Proof of theMain Theorem

In this section we provide a proof of Theorem 1.1. It is enough to prove the result for some
jet approximation ξ� of a formal normal form ξ̂ of ξ , since all those vector fields are locally
analytically conjugated to ξ at 0 ∈ R

3.
Fix an adapted reduction of singularities M = (M, π,A,D) of ξ̂ given by Proposi-

tion 3.10 and denote by Dnc the subset of D consisting on non-corner characteristic cycles.
For any γI ∈ Dnc, we consider a chartCJ and coordinates (θ, z(I ) := z(J )−ωI , ρ

(I ) = ρ(J ))

as in Sect. 5.3, such that γI ⊂ CJ and given by γI = {z(I ) = 0, ρ(I ) = 0}. Let 
̂I be the
formal plane curve at the origin (z(I ), ρ(I )) = (0, 0) of {θ = 0}, invariant for the associ-
ated vector field η̂J and transversal to the divisor {ρ(I ) = 0}. Consider the parametrization
of 
̂I given in these coordinates as z = ĥ I (ρ

(I )), ĥ I ∈ R[[ρ(I )]], ĥ I (0) = 0. Consider
also the formal surface ŜI = S

1 × 
̂I invariant for ξ̂ (J ) and given by the same equation
z = ĥ I (ρ

(I )), but considering it in R[cos θ, sin θ, z][[ρ]]. Let � be the first natural number
such that � ≥ �I for any γI ∈ Dnc, where �I is given in Lemma 5.5 (notice that � ≥ �M+1).
Denote by Ŝ�,I the formal invariant surface of ξ (J )

� given in Proposition 5.3with defining ideal

id(Ŝ�,I ) = (H�,I ), where H�,I = z(I ) − h�,I (θ, ρ(I )) with h�,I ∈ R[cos θ, sin θ ][[ρ(I )]].
Denote by P�,I the Poincaré map of ξ

(J )
� along γI defined in some neighborhood of the

origin of {θ = 0} and 
�,I = Ŝ�,I ∩ {θ = 0} its corresponding formal invariant curve
(by Lemma 5.5). Denote furthermore Dnc = Dnc,n f i x ∪ Dnc, f i x as a disjoint union, where
γI ∈ Dnc, f i x if and only if 
�,I ⊂ Fix(P�,I ).

Apply Lemmas 5.7 or 5.8 according to whether γI ∈ Dnc,n f i x or γI ∈ Dnc, f i x , and get
conic neighborhoods �N�,I ,δ = �N�,I ,δ(
�,I ) (in coordinates (z(I ), ρ(I )) and where we have
unified δ > 0) where P�,I has no periodic orbits except for the fixed points 
�,I ∩ �N�,I ,δ

when γI ∈ Dnc, f i x .
This information is of course relevant in order to describe the union of cycles of the

transform ξ
(J )
� near γI , but it is not enough a priori, since �N�,I ,δ is not a full neighborhood

of the origin at {θ = 0}. By further blowing-ups along the characteristic cycles γI , one can
eventually open these conic neighborhoods to full neighborhoods of γI but, if the order of
tangency N�,I is too large, the sequence of blowing-ups to be done may not follow the formal
curve 
̂I , and thus we could skip the context of sequences of admissible blowing-ups. We
can take a bigger �′ so that the formal curve 
�′,I approximates 
̂I better than the curve 
�,I

does. But the order N�′,I may increase with �′ a priori.
In the strategy that follows we overcome these difficulties. We have to consider first

the same kind of conic three-dimensional neighborhoods of the surfaces Ŝ�,I . With more
generality, consider coordinates (θ, z, ρ) in S

1 × R × R≥0, put γ = S
1 × {(0, 0)} and let S

be a formal non-singular surface along γ given by an equation of the form

z − h(θ, ρ) = 0, where h(θ, ρ) ∈ R[cos θ, sin θ ][[ρ]].
For N ∈ N≥0 and constants C, δ > 0, we define

˜�N ,δ,C (S) = ˜�
(θ,z,ρ)
N ,δ,C (S) = {(θ, z, ρ) |z − jρN (h(θ, ρ))|< CρN , 0 < ρ < δ}.
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Fig. 5 ˜�N ,C1,δ1 (S1) and ϕ−1(˜�N ,C2,δ2 (S2))

In particular, notice that �N ,δ(
�,I ) = ˜�N ,δ,1(Ŝ�,I )∩{θ = 0}. We need two results, the first
one is just a remark that follows from the construction of sequences of admissible blowing-ups
in Sect. 3 and the definition of adapted simple singularities.

Remark 6.1 If γI ∈ Dnc and ˜M = ( ˜M, π̃ , ˜A, ˜D) is the sequence of admissible blowing-
ups obtained from M by blowing-up along γI (that is, π̃ = π ◦ σγI ), then ˜M is again
an adapted reduction of singularities of ξ̂ with ˜D = (D\{γI }) ∪ {γI ,−∞, γI ,∞, γI ,1} and
˜Dnc = (Dnc\{γI }) ∪ {γI ,1}. We will say that γI ,1 emerges from γI . Moreover, the new non-
corner characteristic cycle γI ,1 is given by equations {z(I ,0) = ρ(I ,0) = 0} in coordinates for
which σγI is written as

z(I ) = ρ(I ,0)(z(I ,0) + aI ,1), ρ(I ) = ρ(I ,0),

where ĥ′
I (0) = aI ,1. We deduce that if N ∈ N and jρ

(I )

N (ĥ I ) = jρ
(I )

N (h�,I ), then the strict

transform σ ∗
γI

Ŝ�,I by σγI is a formal surface along γI ,1 and

σ−1
γI

(˜�
(θ,z(I ),ρ(I ))
N ,δ,1 (Ŝ�,I )) = ˜�

(θ,z(I ,0),ρ(I ,0))
N−1,δ,1 (σ ∗

γI
Ŝ�,I ).

Lemma 6.2 Let ϕ(θ, z, ρ) = (θ + ϕθ , z + ϕz, ρ + ϕρ) be a diffeomorphism along γ =
{z = 0, ρ = 0}, where ϕθ , ϕz, ϕρ ∈ R[cos θ, sin θ ]{z, ρ} are of order at least two in (z, ρ)

and divisible by ρ. Let Si , i = 1, 2, be formal surfaces with defining ideals generated by
Fi = z − fi (θ, ρ) where fi (θ, ρ) ∈ R[cos θ, sin θ ][[ρ]] and such that S1 = ϕ∗(S2), i.e. in
terms of ideals (F1) = (F2 ◦ϕ). Then, for every cone ˜�N ,C1,δ1(S1) with δ1 sufficiently small,
there exist some constants C2, δ2 > 0 such that:

ϕ−1(˜�N ,C2,δ2(S2)) ⊆ ˜�N ,C1,δ1(S1).

See Fig. 5 for an illustration of this lemma.

Proof Consider the functions gi,ε(θ, z, ρ) = z − jρN ( fi (θ, ρ)) − εCiρ
N for i = 1, 2 and

ε ∈ {−1,+1}. Theboundaryof the cone˜�N ,Ci ,δi (Si ) is givenby three surfaceswith equations
gi,+ = 0, gi,− = 0 and ρ = δi . It is enough to prove that there exists C2, δ2 > 0 such that
the following holds.

(i) The function ρ ◦ ϕ − δ2 is positive in the points K := {ρ = δ1} ∩ ˜�N ,C1,δ1(S1).
(ii) The function g2,+ ◦ ϕ is positive in the set {g1,+ = 0, 0 < ρ ◦ ϕ < δ2}.
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(iii) The function g2,− ◦ ϕ is negative in the set {g1,− = 0, 0 < ρ ◦ ϕ < δ2}.
To get (i), we can take any δ2 < inf((ρ ◦ ϕ)|K ), taking into account that K is compact and
that ρ ◦ ϕ = ρ + ϕρ only vanishes along the divisor ρ = 0 in a neighborhood of S

1 × {0}.
Notice that we have z − jρN ( fi ) = Fi + O(ρN+1), i = 1, 2, and F2 ◦ ϕ = F1 · U where

U = 1 + T and T ∈ R[cos θ, sin θ ][[z, ρ]] such that ρ divides T . Then, we deduce

g2,+ ◦ ϕ = (F2 − C2ρ
N + O(ρN+1)) ◦ ϕ = F1 · U + (−C2ρ

N + O(ρN+1)) ◦ ϕ.

Using that ρ ◦ ϕ = ρ + ϕρ = ρ(1 + ϕ̃ρ) with ϕ̃ρ ∈ R[cos θ, sin θ ]{z, ρ} of positive order,
we have:

g2,+ ◦ ϕ = F1 · U − C2ρ
N + O(ρN+1).

Now, we evaluate g2,+ ◦ϕ on the sets {g1,+ = 0}, in other words, when z = jρN ( f1)+C1ρ
N .

Considering that F1(θ, jρN ( f1) + C1ρ
N , ρ) = f1 + O(ρN+1) + C1ρ

N − f1 = C1ρ
N +

O(ρN+1), we get:

g2,+ ◦ ϕ(θ, jρN ( f1) + C1ρ
N , ρ)

= (C1ρ
N + O(ρN+1)) · (1 + T (θ, jρN ( f1) + C1ρ

N , ρ)) − C2ρ
N + O(ρN+1).

Since ρ divides T , we obtain finally

g2,+ ◦ ϕ(θ, jρN ( f1) + C1ρ
N , ρ) = (C1 − C2)ρ

N + O(ρN+1).

Thus, taking C2 < C1, we have that g2,+ ◦ϕ(θ, jρN ( f1)+C1ρ
N , ρ) > 0 for ρ small enough.

We get (ii), up to taking a smaller δ2. The arguments to get (iii) are similar. ��
Denote Dnc, f i x = {γ1, . . . , γr } and Dnc,n f i x = {γr+1, . . . , γs} and, for any j , let I j ∈ I

be defined by γ j = γI j . Let J j ∈ J be the index of the chart (CJj , (θ, z(J j ), ρ(J j ))) as
presented in the beginning of Sect. 5.3, where the cycle γI j is given by z(J j ) = ρ(J j ) = 0.
Denote also N j = N�,I j .

Consider the sequence of admissible blowing-ups M′ = (M ′, π ′,A′,D′) over M con-
structed as follows. For each j = 1, . . . , s, let τ j be the composition

τ j = σ j,1 ◦ · · · ◦ σ j,N j ,

where σ j,1 is the admissible blowing-up whose center is the characteristic cycle γ j = γI j ,
σ j,2 is the admissible blowing-up whose center is the non-corner characteristic cycle γI j ,1

emerging form γI j (cf. Remark 6.1), and so on. Then, M′ is the resulting sequence of
admissible blowing-ups by setting π ′ = π ◦ τ1 ◦ · · · ◦ τs .

Notice that M′ is an adapted reduction of singularities of ξ̂ with the same number of
non-corner characteristic cycles asM. We put D′nc = {γ ′

1, · · · , γ ′
s } where γ ′

j emerges from
γ j by the composition of τ j . Now, we take �′ ∈ N satisfying �′ ≥ max{�, �M′ + 1}.
Proposition 6.3 The vector field ξ�′ satisfies Theorem 1.1.

Proof Choose 0 < δ′ ≤ δ sufficiently small and an open set Vj with ˜�N j ,δ
′,1(Ŝ�,I j ) ⊂ Vj ⊂

˜�N j ,δ,1(Ŝ�,I j ) for any j = 1, . . . , s so that they satisfy

(a) The Poincaré map P�,I j is defined in ˜�N j ,δ,1(Ŝ�,I j ) ∩ {θ = 0} = �N j ,δ(
�,I j ) and
satisfies there the conclusions of Lemmas 5.7 or 5.8, correspondingly.

(b) If Z is a cycle of the transform ξ
(J j )

� contained in Vj , it intersects {θ = 0}.
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(c) If j ∈ {1, . . . , r} then 
�,I j ⊂ Fix(P�,I j ) admits a representative in ˜�N j ,δ,1(Ŝ�,I j )

denoted again 
�,I j whose intersection with Vj ∩{θ = 0} is a connected analytic regular
curve.

(d) For any a ∈ 
�,I j ∩ Vj when j ∈ {1, . . . , r}, the cycle of ξ
(J j )

� through a is contained in
Vj .

The existence of these objects with such properties is guaranteed by standard arguments

using the continuity of the flow of ξ
(J j )

� and the fact that each γ j is a cycle of ξ
(J j )

� . Notice

that if j ∈ {r +1, . . . , s}we can take δ′ = δ and Vj to be equal to the solid cone˜�N j ,δ,1(Ŝ�,I j )

Define, for j = 1, . . . , r , the set ˜S j given by the saturation of 
�,I j ∩Vj by the flow of

ξ
(J j )

� . By the above properties, ˜S j is an analytic submanifold of Vj ⊂ M , intersecting the

divisor π−1(0) along γ j and completely filled up with cycles of ξ
(J j )

� . We have, furthermore
from (a):

C⋃s
j=1 Vj

(π∗ξ�) = ˜S1 ∪ · · · ∪ ˜Sr . (51)

With the notations of Eq. (3), the diffeomorphism ψ�,�′ := ψ�′ ◦ ψ−1
� is analytic and con-

jugates ξ� and ξ�′ , namely ξ� = ψ∗
�,�′ξ�′ . Moreover, since �′ ≥ � ≥ �M + 1, we have that

j�(ψ�,�′) = I d and we can apply Proposition 3.16 to ψ�,�′ . We obtain an analytic conjuga-

tion ψ
(J j )

�,�′ between ξ
(J j )

� and ξ
(J j )

�′ in a neighborhood of γ j . Up to shrinking δ and δ′, we
may assume that ψ

(J j )

�,�′ is well defined and one-to-one in Vj for any j . Moreover, ψ
(J j )

�,�′ is

in the conditions of Lemma 6.2 with respect to the coordinates (θ, z(J j ), ρ(J j )) and satisfies

Ŝ�,I j = (ψ
(J j )

�,�′ )∗(Ŝ�′,I j ). Let W j := ψ
(J j )

�,�′ (Vj ) for j = 1, . . . , r . Using the conclusion of

Lemma 6.2 and the fact that ˜�N j ,δ
′,1(Ŝ�,I j ) ⊂ Vj for any j , we have that each W j has a solid

cone around Ŝ�′,I j of the form ˜�N j ,δ
′,1(Ŝ�′,I j ) (same order N j ).

We deduce from (51) and by conjugation the following:

C⋃s
j=1 W j

(π∗ξ�′) = ˜S′
1 ∪ · · · ∪ ˜S′

r , (52)

where ˜S′
j := (ψ

(J j )

�,�′ )(˜S j ) ⊂ W j , for j = 1, . . . , r . By Remark 6.1 and taking into account

that � ≥ l + N j + 1 for any j , we have that W ′
j := τ−1

j (W j ), together with the intersection

of its closure with the divisor τ−1
j (γ j ), is a neighborhood of γ ′

j in M ′. We may assume that

W ′
j ∩ W ′

k = ∅ if j �= k. Complete the union
s

⋃

j=1

W ′
j to a neighborhood W ′ of Supp(D′)

in M ′ adding two by two disjoint neighborhoods of the elements γ ∈ D′\D′nc where,
correspondingly, Propositions 5.1 or 5.2 holds. We apply finally Proposition 4.1 to W ′ (recall
�′ ≥ �M′ + 1): there is a neighborhood U of 0 ∈ R

3 such that (π ′)−1(CU (ξ�′)) ⊂ W ′. By
Propositions 5.1 or 5.2 we get moreover that

(π ′)−1(CU (ξ�′)) ⊂
s

⋃

j=1

W ′
j .

This equation, together with (52) shows that, if we put S j := π(˜S′
j ) ∩ U for j = 1, . . . , r ,

then

CU (ξ�′) ⊂ S1 ∪ · · · ∪ Sr . (53)
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Notice that each S j is an analytic smooth surface in U\{0} and that 0 ∈ S̄ j . Up to taking a
smaller U , we may assume that S̄ j ∩ U = S j ∪ {0}. Moreover, S j is a subanalytic set, since
π is proper and ˜S′

j is semi-analytic. Finally, by construction, we have that S j ⊂ π(˜S′
j ) for

j = 1, . . . , r , the two sets have the same germ at 0 ∈ R
3 and the later is entirely composed

of cycles for every j = 1, . . . , r . This implies, together with (53) that, if V ⊂ U is any open
neighborhood of 0 ∈ R

3 such that Fr(V ) ∩ S j coincides with one of such cycles for every
j = 1, . . . , r , then we have

CV (ξ�′) = (S1 ∪ · · · ∪ Sr ) ∩ V .

This ends the proof. ��
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