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Abstract
We consider a smooth semiflow strongly focusing monotone with respect to a cone of rank k
on a Banach space. We obtain its generic dynamics, that is, semiorbits with initial data from
an open and dense subset of any open bounded set either are pseudo-ordered or convergent
to an equilibrium. For the case k = 1, it is the celebrated Hirsch’s Generic Convergence
Theorem. For the case k = 2, we obtain the generic Poincaré-Bendixson Theorem.
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1 Introduction

We investigate the generic dynamics of semiflows strongly focusing monotone with respect
to a cone C of rank k on an infinite dimensional Banach space X . Roughly speaking, a cone
of rank k (abbr. k-cone) is a closed subset of X containing a subspace of dimension k but no
subspace of higher dimension, which is introduced by Krasnosel’skij, Lifshits and Sobolev
[16] to obtain a Krein–Rutman theory on a Banach space, and also in the poineering works
of Fusco and Oliva [5, 6] on the finite dimensional space. A convex cone K gives rise to a
1-cone, K ∪ (−K ). Therefore, the class of semiflows strongly monotone with respect to k-
cones includes the classical monotone semiflows originating from the groundbreaking works
of Hirsch (see [8–14]). Due to the lack of convexity in k(k � 2)-cones, it is a very challenging
task to study the behaviors of this general class of systems strongly monotone with respect
to k-cones. Despite some progress being made (see [1–4]), their dynamics is far from being
understood. Here, we introduce a slightly stronger property than strong monotonicity with
respect to k-cones, that is, strongly focusing monotonicity with respect to k-cones, and study
typical behaviors of most semiorbits in the topological sense in this paper.

A strongly focusing operator with respect to a k-cone C originated from Krasnosel’skij
et.al [16] to prove a Krein–Rutman type theoremwith respect to k-cones for a single operator,
and also from Lian and Wang [19] to investigate the relationship between Multiplicative
Ergodic Theorem and Krein–Rutman type Theorem for random linear dynamical systems.
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Roughly speaking, the image of C for a strongly focusing operator is a subset of C such that
unite vectors contained in it are uniformly separated from the boundary of C (see Definition
2.1(ii)). We should point out that any strongly positive operator R with respect to C (see
Definition 2.1(i)) on a finite dimensional space is strongly focusing. Therefore, the smooth
semiflows strongly focusingmonotonewith respect to the k-coneC on an infinite dimensional
space is a kind of natural extension of the smooth flows with respect to k-cones on a finite
dimensional space (refer to the flows in [2]). More precisely, this class of semiflows strongly
monotone with respect to the k-cone C satisfies that for each compact invariant set �, one
can find constants δ, T , κ > 0 such that there is a strongly focusing operator T(x,y) with
separation index greater than κ such that T(x,y)(x − y) = �T (x) − �T (y) for any z ∈ �

and x, y ∈ Bδ(z), where Bδ(z) is the ball centred at z with radius δ (see also Definition
2.2(ii)). This class of semiflows would have significant potential applications to the study of
dynamics of nonlinear evolution equations.

There are exactly two types of nontrivial positive semiorbits for the semiflow�t monotone
with respect to the k-coneC (or a convex cone K ): pseudo-ordered semiorbits and unordered
semiorbits. A nontrivial positive semiorbit O+(x) = {�t (x) : t ≥ 0} is pseudo-ordered if it
contains a pair of different ordered points �τ (x) and �s(x), i.e. �τ (x) − �s(x) ∈ C \ {0}
(or �τ (x) − �s(x) ∈ K \ {0}); otherwise, it is called unordered.

For the classical (in the sense ofHirsch’s)monotone systems, the order reducedby a convex
cone is a partial order relationship. Base on this fact, Monotone Convergence Criterion,
the first key building block in Hirsch’s theory, can be established. It is to say that every
precompact pseudo-ordered semiorbit converges to an equilibrium. The partial order also
plays an important role in the further developments from Monotone Convergence Criterion,
that includes Nonordering of Limit Sets and Limit Set Dichotomy. These results consist of
the key building blocks (see [24, Theorem 2.1, p.491]) for establishing Hirsch’s Generic
Convergence Theorem.

Compared with classical monotone systems, the order reduced by k-cones is a symmetric
relationship, that causes the structure of the omega-limit setω(x) of a pseudo-ordered semior-
bit O+(x) is more complicated and new techniques are needed to analyze dynamics of the
semiflowsmonotonewith respect to high-rank cones. Sanchez [22] firstly treated the problem
on the structure of the omega-limit setω(x) of a pseudo-ordered orbit for flows onR

n strongly
monotone with respect to a k(k ≥ 2)-coneC . He used theC1-closed lemma to prove that any
orbit in ω(x) of a pseudo-ordered orbit is ordered, that is, the difference of any two points in
any given orbit in ω(x) is in C ; and further obtain a Poincaré-Bendixson theorem, that is, the
omega-limit set ω(x) of a pseudo-ordered orbit containing no equilibrium is a closed orbit.
For the total-ordering property of the entire set ω(x), he [22, p.1984] posed it as an open
problem. In our previous work [1], we creatively utilized topological properties of continuous
semiflows to study the total-ordering property for continuous semiflows strongly monotone
with respect to a k-cone in a general Banach space and obtained the Order-Trichotomy (see
[1, Theorem B]) for the omega-limit set ω(x) of a pseudo-ordered semiorbit. More precisely,
we proved that either (a) ω(x) is ordered; or (b) ω(x) is an unordered set consisting of equi-
libria; or otherwise, (c)ω(x) possesses a certain ordered homoclinic property. In our previous
work [1, Theorem A and C], we extended Sanchez’s results to semiflows only continuous on
an infinite dimensional space.

For semiflows strongly monotone with respect to high-rank cones, the symmetry of the
order and the complexity of an omega-limit set � cause that it is difficult to reappear the
key building blocks in Hirsch’s theory. To treat the generic dynamics of flows �t strongly
monotone with respect to a k-cone on R

n , we turned to analyze the local dynamics for
each type of omega-limit set � in our previous works [2], where the types are classified by
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our approach of smooth ergodic arguments. More precisely, the linear skew-product flow
(�t , D�t ) admits k-exponential separation along � associated with the k-cone C provided
by the strong positivity of Dx�t for any x ∈ � and t > 0. Roughly speaking, this property
describes that there exist k-dimensional invariant subbundle � × (Ex ) and k-codimensional
invariant subbundle � × (Fx ) with respect to (�t , D�t ) such that � × R

n = � × (Ex ) ⊕
�× (Fx ); and more, the action of (�t , D�t ) on�× (Ex ) dominates the one on�× (Fx ) as
t → ∞ (seeDefinition 2.3 or its versions for randomdynamics in [18, 19]). The related crucial
tool is the k-Lyapunov exponent λkx of x ∈ � (defined as λkx = lim sup

t→+∞
logm(Dx�t |Ex )

t , see

also Definition 2.4 and (2.1)), which describes the action’s growth rate of (�t , D�t ) on the
k-dimensional subbundle � × (Ex ). The theory on Lyapunov exponents and Multiplicative
Ergodic Theorem ensures [7, 17–21, 26] that λkx is actually the limit for “most" points x ∈ �;
such points for which λkx is the limit are said to be regular and other points are said to be
irregular. According to the sign of the k-Lyapunov exponents of the regular/irregular points
on any given omega-limit set �, three are three types of �: (i) λkx > 0 for any point x in
�; (ii) λkx > 0 for any regular point x ∈ � and λkz ≤ 0 for some irregular point z ∈ �;
(iii) λkx ≤ 0 for some regular point x ∈ �. By discussing the local behaviors of each type
of omega-limit sets, we obtain the finite dimensional version of Generic dynamics theorem
(see [2, Theorem A]); and further combinate it with the Poincaré-Bendixson theorem (see
Lemma 2.6 and also [1, Theorem C]) of the omega-limit set of a pseudo-ordered semiorbit
to get the generic Poincaré-Bendixson theorem (see [2, Theorem B]) on R

n .
Our purpose in this paper is to investigate the infinite dimensional version of generic

dynamics of semiflow �t strongly focusing monotone with respect to a k-cone C on a
Banach space. We prove that

• For generic (open and dense) positive semiorbits either are pseudo-ordered or converge
to an equilibrium.

• Whenever k = 2, for generic points, the omega-limit set containing no equilibrium is a
periodic orbit.

By the strong positivity of Dx�t in Definition 2.2(i), for each compact invariant set � on
which �t admits a flow extension, the linear skew-product semiflow (�t , D�t ) admits k-
exponential separation � × X = � × (Ex ) ⊕ � × (Fx ) along � associated with C . Here,
�t is said to admit a flow extension on �, if there is a flow �̃t such that �̃t (x) = �t (x)
for any x ∈ � and t ≥ 0. Since the unite ball in an infinite dimensional Banach space is
lack of compactness, unite vectors in the k-codimensional invariant subbundle � × (Fx )
with respect to (�t , D�t ) are not uniformly far away from the boundary ∂C of the k-cone
C . The method in [2] is not effective to estimate the proportion of the projection onto the
fibres Ex and Fx with x ∈ � for a nonzero vector v ∈ C in an infinite dimensional space.
We turn to estimate the proportion of the projection onto the fibres Ex and Fx with x ∈ �

for the difference �t (x̃) − �t (ỹ) of a pair of ordered distinct points �t (x̃) and �t (ỹ) by
utilizing the strongly focusing monotonicity in Definition 2.2(ii). By this novel approach,
we analyze the local dynamical features for each type of omega-limit sets and furthermore
deduce the infinite dimensional version of generic dynamics. For case k = 2, the generic
Poincaré-Bendixson theorem are also obtained.

The paper is organized as follows. In Sect. 2, we give some notations and summarize
the preliminary results. In Sect. 3, we present the main results on the infinite dimensional
version ofGeneric dynamics and generic Poincaré-Bendixson theorem for semiflows strongly
focusing monotone with respect to the k-cone C . In Sect. 4, we discuss the local behaviors
for each type of omega-limit sets. In Sect. 5, we prove our main results.
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2 Notations and Preliminary Results

In this section, we give some preliminary knowledge to be used in the next sections. We start
with basic nations and definitions on semiflows strongly focusing monotone with respect to
high-rank cones. We then introduce the k-exponential separation and k-Lyapunov exponents
with some crucial properties of them.

2.1 Semiflows Strongly Monotone with Respect to High-Rank Cones

Let (X , ‖·‖) be a Banach space equipped with a norm ‖·‖. A semiflow on X is a continuous
map� : R

+×X → X with�0 = Id and�t ◦�s = �t+s for t, s ≥ 0. Here,R+ = [0,+∞),
�t (·) = �(t, ·) for t ≥ 0, and Id is the identity map on X . A semiflow �t on X is called
C1,α-smooth if �|R+×X is a C1,α-map (a C1-map with a locally α-Hölder derivative) with
α ∈ (0, 1]. The derivative of �t with respect to x , at (t, x), is denoted by Dx�t .

Let x ∈ X , the positive semiorbit of x is denoted by O+(x) = {�t (x) : t ≥ 0}. A negative
semiorbit (resp. full-orbit) of x is a continuous functionψ : R

− = {t ∈ R|t ≤ 0} → X (resp.
ψ : R → X ) such that ψ(0) = x and, for any s ≤ 0 (resp. s ∈ R), �t (ψ(s)) = ψ(t + s)
holds for 0 ≤ t ≤ −s (resp. 0 ≤ t). Clearly, if ψ is a negative semiorbit of x , then ψ can be
extended to a full-orbit ψ̃(t) such that ψ̃(t) = ψ(t) for t ≤ 0 and ψ̃(t) = �t (x) for t ≥ 0.
On the other hand, any full orbit of x when restricted on R

− is a negative semiorbit of x .
Since �t is just a semiflow, a negative semiorbit of x may not exist, and it is not necessary
to be unique even if one exists.

An equilibrium (also called a trivial orbit) is a point x for which O+(x) = {x}. Let E
be the set of all equilibria w.r.t. �t . A nontrivial positive semiorbit O+(x) is said to be a
periodic orbit if �T (x) = x for a T > 0. The nontrivial semiorbit O+(x) is said to be a
T -periodic orbit if there is a T > 0 such that �T (x) = x and �t (x) �= x for any t ∈ (0, T ),
where T is called the minimal period of O+(x).

A subset � ⊂ X is called positively invariant with respect to �t (for short, positively
invariant) if �t (�) ⊂ � for any t ∈ R

+, and is called invariant if �t (�) = � for any
t ∈ R

+. Clearly, for any x ∈ �, there exists a negative semiorbit of x , provided that � is
invariant. Let � ⊂ X be an invariant set. �t is said to admit a flow extension on �, if there
is a flow �̃t such that �̃t (x) = �t (x) for any x ∈ � and t ≥ 0.

The omega-limit (abbr. ω-limit) set ω(x) of x ∈ X is defined by ω(x) = ∩s≥0∪t≥s�t (x).
If O+(x) is precompact, then ω(x) is nonempty, compact, connected and invariant. Given
a subset D ⊂ X , the positive semiorbit O+(D) of D is defined as O+(D) = ⋃

x∈D
O+(x).

A subset D is called ω-compact if O+(x) is precompact for each x ∈ D and
⋃

x∈D
ω(x) is

precompact. Clearly, D is ω-compact provided by the compactness of O+(D).
A closed set C ⊂ X is called a cone of rank-k (abbr. k-cone) if

(i) For any v ∈ C and l ∈ R, lv ∈ C ;
(ii) max{dimW : C ⊃ W linear subspace} = k.

Moreover, the integer k(≥ 1) is called the rank of C . A k-cone C ⊂ X is said to be solid if its
interior IntC �= ∅; and C is called k-solid if there is a k-dimensional linear subspaceW such
that W \ {0} ⊂ IntC . Given a k-cone C ⊂ X , we say that C is complemented if there exists
a k-codimensional subspace Hc ⊂ X such that Hc ∩ C = {0}. For two points x, y ∈ X , we
call that x and y are ordered, denoted by x ∼ y, if x − y ∈ C . Otherwise, x, y are called to
be unordered, denoted by x⇁y. The pair x, y ∈ X are said to be strongly ordered, denoted
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by x ≈ y, if x − y ∈ IntC . A nonempty set W ⊂ X is called ordered if x ∼ y for any
x, y ∈ W and it is called (resp. strongly ordered) unordered if it is not a singleton and (resp.
x ≈ y) x⇁y for any two distinct points x, y ∈ W .

Let d(x, y) = ‖x−y‖ for any x, y ∈ X and d(x, B) = inf
y∈B d(x, y) for any x ∈ X , B ⊂ X .

Throughout this paper, we assumeC is a complemented k-solid cone and�t with compact
x-derivative Dx�t for any x ∈ X and t > 0 admits a flow extension on each nonempty
omega-limit set ω(x).

Definition 2.1 (i) A linear operator R ∈ L(X) is called strongly positive with respect to C if
R

(
C \ {0}) ⊂ IntC .
(ii) A linear operator R ∈ L(X) is called strongly focusing with respect to C if 0 /∈

R(C \ {0}) and there is a κ > 0 such that

dist(RC, X \ C) = κ,

where dist(L1, L2) is the separation index between set L1 and L2 defined by

dist(L1, L2) = inf
v∈L1,‖v‖=1

{ inf
u∈L2

‖v − u‖}.

Here, κ is also called the separation index of R.

Remark 2.1 (i) A strongly focusing operator is automatically a strongly positive operator.
(ii) Let R be a strongly positive operator w.r.t. C on R

n . Then, R is also strongly focusing
w.r.t. C .

A semiflow �t on X is called monotone with respect to C if

�t (x) ∼ �t (y) whenever x ∼ y and t ≥ 0;
and �t is called strongly monotone with respect to C if �t is monotone with respect to C
and

�t (x) ≈ �t (y) whenever x �= y, x ∼ y and t > 0.

Anontrivial positive semiorbit O+(x) is called pseudo-ordered (also called of Type-I), if there
exist two distinct points �t1(x),�t2(x) in O+(x) such that �t1(x) ∼ �t2(x). Otherwise,
O+(x) is called unordered (also called of Type-II). Hereafter, we let

Q = {x ∈ X : O+(x) is pseudo-ordered}.
Definition 2.2 A semiflow �t is called strongly focusing monotone with respect to C , if it
satisfies:

(i) It is C1-smooth and strongly monotone with respect to C such that the x-derivative
Dx�t of �t (t > 0) is strongly positive with respect to C for any x ∈ X ;

(ii) For each compact invariant set� with respect to�t , one can find constants δ, T , κ > 0
such that there exists a strongly focusing operator T(x,y) with separation index greater than
κ such that T(x,y)(x − y) = �T (x) − �T (y) for any z ∈ � and x, y ∈ Bδ(z), where Bδ(z)
is the closed ball centred at z with radius δ.
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Remark 2.2 Let �t be a C1-smooth flow strongly monotone w.r.t. C on R
n , whose x-

derivative Dx�t is strongly positive w.r.t. C for any x ∈ R
n and t > 0. Then, �t is strongly

focusing monotone w.r.t. C .

Remark 2.3 The condition “for each compact invariant set�" in the strongly focusing mono-
tonicity in Definition 2.2(ii) can be relaxed and becomes “for each omega-limit set ω(x)" in
the proof of the results in this paper.

Remark 2.4 Let �̃ = Co{Bδ(�)} × Co{Bδ(�)}. Here, Bδ(�) = {v ∈ X : d(v,�) ≤ δ} and
Co{Bδ(�)} is the convex hull of Bδ(�). Let T(x,y) = ∫ 1

0 Dy+s(x−y)�T ds for any (x, y) ∈ �̃.
Then, one has T(x,y)(x− y) = �T (x)−�T (y). Let κ > 0. Compared with Definition 2.2(ii),
the following condition has more restriction.

{T(x,y)}(x,y)∈�̃ consists of strongly focusing operators with separation index greater than κ.

(*)

Now, we give several useful results on semiflows strongly monotone with respect to C .

Lemma 2.5 Assume that �t is strongly monotone with respect to C. If x ∼ y and there is
a sequence tn → ∞ such that �tn (x) → z and �tn (y) → z, then O(z) is nontrivial and
ordered, or z is an equilibrium.

Proof See [1, Lemma 4.3]. ��
Lemma 2.6 Assume that �t is strongly monotone with respect to the k-cone C with k = 2
and O+(x) be a precompact pseudo-ordered semiorbit. If ω(x) ∩ E = ∅, ω(x) is a periodic
orbit.

Proof See [1, Theorem C]. ��

2.2 k-Exponential Separation and k-Lyapunov Exponents

Let G(k, X) be the Grassmanian of k-dimensional linear subspaces of X , which consists of
all k-dimensional linear subspaces in X .G(k, X) is a completedmetric space by endowing the
gap metric (see, for example, [15, 17]). More precisely, for any nontrivial closed subspaces
L1, L2 ⊂ X , define that

d(L1, L2) = max

{

sup
v∈L1∩S

inf
u∈L2∩S

‖v − u‖, sup
v∈L2∩S

inf
u∈L1∩S

‖v − u‖
}

,

where S = {v ∈ X : ‖v‖ = 1} is the unit sphere. For a solid k-cone C ⊂ X , we denote by
�k(C) the set of k-dimensional subspaces inside C , that is,

�k(C) = {L ∈ G(k, X) : L ⊂ C}.
Let � ⊂ X be a compact invariant subset w.r.t. �t on which �t admits a flow extension.
We consider the linear skew-product semiflow (�t , D�t ) on � × X , which is defined as
(�t , D�t )(x, v) = (�t (x), Dx�tv) for any (x, v) ∈ � × X and t ∈ R

+. Here, Dx�t is
the Fréchet derivative of �t at x ∈ �. Let {Ex }x∈� be a family of k-dimensional subspaces
of X . We call � × (Ex ) a k-dimensional continuous vector bundle on � if the map � �→
G(k, X) : x �→ Ex is continuous. Let {Fx }x∈� be a family of k-codimensional closed vector
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subspaces of X . We call � × (Fx ) a k-codimensional continuous vector bundle on � if
there is a k-dimensional continuous vector bundle � × (Lx ) ⊂ � × X∗ such that the kernel
Ker(Lx ) = Fx for each x ∈ �. Here, X∗ is the dual space of X .

Let � × (Ex ) be a k-dimensional continuous vector bundle on � and � × (Fx ) be a
k-codimensional continuous vector bundle on � such that X = Ex ⊕ Fx for all x ∈ �.
We define the family of projections associated with the decomposition X = Ex ⊕ Fx as
{�Ex }x∈� where �Ex is the linear projection of X onto Ex along Fx for each x ∈ �. Write
�Fx = I − �Ex for each x ∈ �. Clearly, �Fx is the linear projection of X onto Fx along
Ex . Moreover, both �Ex and �Fx are continuous with respect to x ∈ �. We say that the
decomposition X = Ex ⊕ Fx is invariant with respect to (�t , D�t ) if Dx�t Ex = E�t (x),
Dx�t Fx ⊂ F�t (x) for each x ∈ � and t ≥ 0.

Definition 2.3 Let � ⊂ X be a compact invariant subset w.r.t. �t on which �t admits a flow
extension. The linear skew-product semiflow (�t , D�t ) admits a k-exponential separation
along � (for short, k-exponential separation), if there are k-dimensional continuous vector
bundle � × (Ex ) and k-codimensional continuous vector bundle � × (Fx ) such that

(i) X = Ex ⊕ Fx for any x ∈ �;
(ii) Dx�t Ex = E�t (x), Dx�t Fx ⊂ F�t (x) for any x ∈ � and t > 0;
(iii) there are constants M > 0 and 0 < γ < 1 such that

‖Dx�tw‖ ≤ Mγ t‖Dx�tv‖
for all x ∈ �, w ∈ Fx ∩ S, v ∈ Ex ∩ S and t ≥ 0, where S = {v ∈ X : ‖v‖ = 1}. Let
C ⊂ X be a complemented k-solid cone. If, in addition,

(iv) Ex ⊂ IntC ∪ {0} and Fx ∩ C = {0} for any x ∈ �,

then (�t , D�t ) is said to admit a k-exponential separation along � associated with C .

Since Ex is k dimensional for any x ∈ �, one can define the infimum norm m(Dx�t |Ex )
of Dx�t restricted on Ex for each x ∈ � and t ≥ 0 as follows:

m(Dx�t |Ex ) = inf
v∈Ex∩S

‖Dx�tv‖, (2.1)

where S = {v ∈ X : ‖v‖ = 1}.
Definition 2.4 For each x ∈ �, the k-Lyapunov exponent is defined as

λkx = lim sup
t→+∞

logm(Dx�t |Ex )
t

. (2.2)

A point x ∈ � is called a regular point if λkx = lim
t→+∞

logm(Dx�t |Ex )
t

.

Lemma 2.7 Assume that � ⊂ X be a compact invariant subset with respect to �t on which
�t admits a flow extension. Assume that �t is C1-smooth such that Dx�t (C \ {0}) ⊂ Int C
for any x ∈ � and t > 0. Then, (�t , D�t ) admits a k-exponential separation along �

associated with C.

Proof See Tereščák [25, Corollary 2.2]. One may also refer to Tereščák [25, Theorem 4.1].
��

Now, we give some crucial lemmas for (�t , D�t ) admitting a k-exponential separation
X = Ex ⊕ Fx along a compact invariant set � associated with C , which satisfies (i)-(iv) in
Definition 2.3.
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Lemma 2.8 There exists a constant δ′ > 0 such that

{v ∈ X : d(v, Ex ∩ S) ≤ δ′} ⊂ Int C for any x ∈ �.

Proof See [2, Lemma 3.3]. We here point out that all arguments in [2, Lemma 3.3] still
remain valid for C1-smooth semiflow �t on a Banach space. ��
Lemma 2.9 (i) The projections �Ex and �Fx are bounded uniformly for x ∈ �.
(ii) There exists a constantC1 > 0 such that, ifv ∈ X\{0} satisfies‖�Ex (v)‖ ≥ C1‖�Fx (v)‖

for some x ∈ �, then v ∈ Int C.

Proof See [2, Lemma 3.5(i) and (ii)]. The arguments in [2, Lemma 3.5(i) and (ii)] are also
effective for the semiflow �t on a Banach space. ��
Lemma 2.10 Let x ∈ �. Then

(i) If w ∈ Fx \ {0}, then λ(x, w) ≤ λkx + log(γ ), where λ(x, w) = lim sup
t→∞

log‖Dx�tw‖
t .

(ii) Let x be a regular point. If λkx ≤ 0, then there exists a number β ∈ (γ, 1) such that for
any ε > 0, there is a constant Cε > 0 such that

‖D�t1 (x)�t2w‖ ≤ Cεe
εt1β t2‖w‖

for any w ∈ F�t1 (x) \ {0} and t1, t2 > 0.

Proof The results are directly implied by repeating all arguments in [2, Lemma 3.6] ��
Remark 2.11 Lemma 2.8–2.10 are the infinite demensional version of [2, Lemma 3.3, 3.5(i)–
(ii), 3.6]. Lemma 2.5 and 2.8–2.10 are crucial tools for the arguments of Theorem 4.4 and
Lemma 4.5.

3 Main Results

Let CE = {x ∈ X : ω(x) is a singleton}.
Theorem A (Generic dynamics thoerem) Assume that�t is a C1,α-smooth semiflow strongly
focusing monotone with respect the k-cone C. Let D ⊂ X be an open bounded set such that
O+(D) is precompact. Then Int(Q ∪ CE ) (interior in X) is dense in D.

Remark 3.1 Theorem A states that, for smooth semiflow �t strongly focusing monotone
with respect to the k-cone C , generic (open and dense) positive semiorbits either are pseudo-
ordered or convergent to equilibria. If the rank k = 1, Theorem A automatically implies
Hirsch’s Generic Convergence Theorem due to the Monotone Convergence Criterion.

Theorem B (Generic Poincaré-Bendixson theorem) Assume that �t is a C1,α-smooth semi-
flow strongly focusing monotone with respect to the k-cone C. Let k = 2 and D ⊂ X be an
open bounded set such that O+(D) is precomact. Then, for generic (open and dense) points
x ∈ D, the omega-limit set ω(x) containing no equilibria is a periodic orbit.
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4 Local Behaviors of Omega-Limit Sets

Due to Lemma 2.7, we hereafter always assume that for any compact invariant set � on
which �t admits a flow extension, the linear skew-product semiflow (�t , D�t ) admits a
k-exponential separation along � such that X = Ex ⊕ Fx for any x ∈ �. � × (Ex ) and
� × (Fx ) are the corresponding k-dimensional and k-codimensional continuous invariant
vector subbundles. In this paper, we attempt to extend the works on generic dynamics from
classical monotone systems w.r.t. convex cones (see [23]) and flows strongly monotone w.r.t.
k-cones (see [2]) to the semiflows strongly focusing monotone w.r.t. the k-cone C on an
infinite dimensional Banach space.

We define the set of regular points on nonempty compact ω(x) as:

ω0(x) = {z ∈ ω(x) : z is a regular point}. (4.1)

Due to the Multiplicative Ergodic Theorem (cf. [20, Theorem A]) and the similiar arguments
for [26, Proposition 4.11],ω0(x) is non-empty.Moreover, it is easy to see that any equilibrium
in ω(x) is regular and hence, is contained in ω0(x). By utilizing the k-Lyapunov exponents
on ω(x), we classify the omega-limit sets into three types and obtain their local behaviors.

Firstly, we prove that if λkz > 0 for any z ∈ ω(x), then x is highly unstable (see Lemma
4.2), and meanwhile, it belongs to the closure Q (see Theorem 4.3). We secondly show that
if λkz̃ > 0 for any regular point z̃ ∈ ω0(x) and there is an irregular point z with λkz ≤ 0,
then x ∈ Q (see Theorem 4.4). We finally show that if ω(x) contains a regular point z such
that λkz ≤ 0, then either x ∈ Q or ω(x) is a singleton (see Theorem 4.6).

We start with discussion on the case that λkz > 0 for any point z ∈ ω(x). Before going
further, we give two technical lemmas.

Lemma 4.1 If λkz > 0 for any z ∈ ω(x), then for any constant κ > 0, there is a local
constant (hence bounded) function νκ(z) on ω(x) (depending on κ) such that

‖Dz�νκ(z)wF‖
‖Dz�νκ(z)wE‖ <

κ

2(1 + κ)
,

‖Dz�νκ(z)wE‖ >
4

κ

(4.2)

for any z ∈ ω(x) and wE ∈ Ez ∩ S and wF ∈ Fz ∩ S, where S = {v ∈ X : ‖v‖ = 1}.
Proof By the definition of λkz , for each z ∈ ω(x), there is a sequence tn → +∞ such that

‖Dz�tnwE‖ > e
λkz
2 tn

for any wE ∈ Ez ∩ S. Furthermore, the definition of k-exponential separation along �

indicates that there exist M > 0 and γ ∈ (0, 1) such that

‖Dz�twF‖
‖Dz�twE‖ < Mγ t

for any t > 0 and wE ∈ Ez ∩ S, wF ∈ Fz ∩ S. Since λkz > 0, one can find a Nκ (z) > 0
such that

‖Dz�tnwF‖
‖Dz�tnwE‖ <

κ

2(1 + κ)
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and

‖Dz�tnwE‖ >
4

κ

for any tn > Nκ (z) and wE ∈ Ez ∩ S.
Therefore, for each z ∈ ω(x), one can associate with a number νκ(z) ≥ Nκ (z) such that

(4.2) holds for any wE ∈ Ez ∩ S and wF ∈ Fz ∩ S. Moreover, together with the compactness
of ω(x) and the smoothness of �t , one can further take such νκ(z) as a local constant (hence
bounded) function. We have completed the proof. ��
Lemma 4.2 Assume that λkz > 0 for any z ∈ ω(x). There exists a constant δ′′ > 0 such that

lim sup
t→+∞

‖�t (y) − �t (x)‖ ≥ δ′′,

whenever y satisfies y �= x and y ∼ x.

Proof Since �t is strongly focusing monotone w.r.t. C , one can find constants δ, T , κ > 0
such that there exists a strongly focusing operator T(x,y) with separation index greater than κ

such that T(x,y)(x − y) = �T (x) − �T (y) for any z ∈ ω(x) and x, y ∈ Bδ(z), where Bδ(z)
is the closed ball centred at z with radius δ.

For any given y ∈ X such that y �= x and y ∼ x , let ỹt = �t (y) and x̃t = �t (x) for
t > 0. By the strongly focusing monotonicity of �t , one has ỹt �= x̃t for any t ∈ R

+. Since
ω(x) attracts x , one can take a curve {zt }t>0 ⊂ ω(x) such that

lim
t→∞‖x̃t − zt‖ = 0. (4.3)

Hence, there exists a T̃y > T such that ‖x̃t−T − zt−T ‖ < δ
2 for any t > T̃y . Moreover, if

ỹt−T ∈ Bδ(zt−T ) for some t > T̃y , then there is a strongly focusing operator Tỹt−T ,x̃t−T with
separation index greater than κ such that

ỹt − x̃t = Tỹt−T ,x̃t−T (ỹt−T − x̃t−T ).

By Lemma 2.7, (�t , D�t ) admits a k-exponential separation along ω(x) associated with
C . Denoted by ω(x) × (Ez) and ω(x) × (Fz) the corresponding k-dimensional invariant
subbundle k-codimensional invariant subbundle respectively.Recall that�Ez is the projection
onto Ez along Fz and �Fz = I − �Ez . Clearly, for t > T̃y and ỹt−T ∈ Bδ(zt−T ), one has

d(
ỹt−x̃t

‖ỹt−x̃t‖ , X \ C) ≥ κ and hence,

‖�Ezt (ỹt − x̃t )‖
‖ỹt − x̃t‖ ≥ κ,

‖�Fzt (ỹt − x̃t )‖
‖�Ezt (ỹt − x̃t )‖ ≤ 1 + κ

κ
.

(4.4)

Let νκ be the local constant function mentioned in Lemma 4.1 and mκ = max
z∈ω(x)

{νκ(z)}. By
the smoothness of �t and the compactness of ω(x), there is a δ

′′ ∈ (0, δ
2 ) such that

‖Dy1�t − Dy2�t‖ <
1

2
(4.5)
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for any t ∈ [0,mκ ] and y1, y2 ∈ B2δ′′ (ω(x)) satisfying‖y1−y2‖ < 2δ
′′
,whereB2δ′′ (ω(x)) =

{v ∈ X : d(v, ω(x)) ≤ 2δ
′′ }.

Now, we will prove that δ
′′
is the desired constant. Prove by contrary. Suppose that

lim sup
t→+∞

‖ỹt − x̃t‖ < δ
′′

for some y ∈ X satisfying y �= x and y ∼ x . Then, one can find a N1 > T̃y such that

‖ỹt−T − x̃t−T ‖ < δ
′′
and ‖x̃t−T − zt−T ‖ < δ

′′

for any t ≥ N1. Hence, ỹt−T , x̃t−T ∈ Bδ(zt−T ) and (4.4) hold for any t > N1. Take τ1 ≥ N1

and τn+1 = τn + νκ(zτn ) for n = 1, 2, · · · . Denoted by yτn = �τn (y), xτn = �τn (x) and
�Eτn = �Ezτn , �Fτn = �Fzτn . Then, one has

‖Dzτn �νκ (zτn )(yτn − xτn )‖ ≥ ‖Dzτn �νκ (zτn )�
Eτn (yτn − xτn )‖ · [

1 − ‖Dzτn �νκ (zτn )�
Fτn (yτn − xτn )‖

‖Dzτn �νκ (zτn )�
Eτn (yτn − xτn )‖

]

(4.2)≥ ‖Dzτn �νκ (zτn )�
Eτn (yτn − xτn )‖ · [1 − κ

2(1 + κ)
· ‖�Fτn (yτn − xτn )‖
‖�Eτn (yτn − xτn )‖ ]

(4.4)≥ ‖Dzτn �νκ (zτn )�
Eτn (yτn − xτn )‖ · [1 − κ

2(1 + κ)
· 1 + κ

κ
]

= 1

2
‖Dzτn �νκ (zτn )�

Eτn (yτn − xτn )‖
(4.2)≥ 2

κ
‖�Eτn (yτn − xτn )‖

(4.4)≥ 2‖yτn − xτn ‖
for any n > 0. Notice that

yτn+1 − xτn+1 = Dzτn �νκ(zτn )(yτn − xτn ) +
∫ 1

0
[Dxτn+s(yτn−xτn )�νκ (zτn ) − Dzτn �νκ(zτn )]ds

·(yτn − xτn )

for any n > 0. Together with (4.5), one has

‖yτn+1 − xτn+1‖ ≥ 3

2
· ‖yτn − xτn‖

for any n > 0. Hence, lim
n→∞‖yτn − xτn )‖ = ∞, a contradiction.

Therefore, we have completed the proof. ��

Theorem 4.3 Let D be an open ω-compact set and x ∈ D. If λkz > 0 for any z ∈ ω(x), then
one has x ∈ Q.

Proof See [2, Theorem 4.5]. We here point out that all arguments in [2, Theorem 4.5] still
remain valid for semiflow �t strongly focusing monotone w.r.t. C on an infinite dimensional
Banach space. ��
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We now consider the case that λkz̃ > 0 for any z̃ ∈ ω0(x) and λkz ≤ 0 for some
z ∈ ω(x) \ ω0(x).

Theorem 4.4 Let D be an open ω-compact set and x ∈ D. Assume that λkz̃ > 0 for any
z̃ ∈ ω0(x). If there exists some z ∈ ω(x) \ ω0(x) such that λkz ≤ 0, then x ∈ Q.

Proof Since �t admits a flow extension on ω(x), one can define a vector vy = d
dt |t=0

�t (y) ∈ X for any y ∈ ω(x). The smoothness of �t implies that the map y :�→ vy is
continuous. Hence, all arguments in [2, Theorem 4.6] are still effective for semiflow �t

strongly focusing monotone with respect to C on an infinite dimensional Banach space. ��
Before discussing the case that λkz ≤ 0 for a regular point z ∈ ω0(x), we present the

following lemma, which describes the nonlinear dynamics nearby a regular point.

Lemma 4.5 Let x ∈ � be a regular point. If λkx ≤ 0, then there exists an open neighborhood
V of x such that for any y ∈ V , one of two following properties holds:

(a) ‖�t (x) − �t (y)‖ → 0 as t → +∞;
(b) There exists a T > 0 such that�T (x)−�T (y) ∈ C \{0}; and hence,�t (x)−�t (y) ∈

Int C for any t > T .

Proof By repeating all arguments in [2, Lemma 4.1], the conclusion in this lemma can be
obtained for �t strongly focusing monotone w.r.t. C . ��
Theorem 4.6 Assume that there exists a regular point z ∈ ω(x) satisfying λkz ≤ 0. Then
either x ∈ Q, or ω(x) = {z} consists of a singleton.

Proof The result is implied by repeating all arguments in [2, Theorem 4.2]. ��

5 Proofs of Theorem A and B

Due to the local behaviors in the last section, we can describe the generic dynamics of the
semiflow �t strongly focusing monotone w.r.t. C (see Theorem A) on a general Banach
space, which concludes that generic (open and dense) positive semiorbits either are pseudo-
ordered or convergent to an equilibrium. When k = 2, together with the results in Lemma
2.6, we will further show the Poincaré-Bendixson Theorem (see Theorem B), that is to say,
for generic (open and dense) points, itsω-limit set containing no equilibria is a periodic orbit.

Proof of TheoremA. We note that D is ω-compact because O+(D) is precompact. Then, for
any x ∈ D, one of the following three alternatives holds:

(a) λkz > 0 for any z ∈ ω(x);
(b) λkz̃ > 0 for any regular point z̃ ∈ ω0(x) and λkz ≤ 0 for some irregular point z ∈

ω(x) \ ω0(x);
(c) λkz ≤ 0 for some regular point z ∈ ω(x).

By virtue of Theorem 4.3, 4.4 and 4.6, one has x ∈ Q ∪ CE for any x ∈ D. Thus, Q ∪ CE

is dense in D.
To prove that Int(Q ∪ CE ) is dense in D by contrary, we suppose that there is an open

subset U of D such that U ∩ Int(Q ∪ CE ) = ∅. By strong monotonicity of �t , Q is open.
Together with Theorem 4.3 and 4.4, case (a) and (b) will not occur for any point inU . Then,
only case (c) can occur for any point inU . Moreover, by virtue of Theorem 4.6, one has that
U ⊂ CE . Recall that U is open. Thus, U ⊂ Int(Q ∪ CE ), a contradiction.

Therefore, we have completed the proof.
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Proof of Theorem B. By Theorem A, Int(Q ∪ CE ) is open and dense in D. Now, given any
x ∈ Int(Q ∪CE ) ∩D, if ω(x) ∩ E = ∅, then x ∈ Q. It then follows from Lemma 2.6, ω(x)
is a periodic orbit. Therefore, we have completed the proof.

Remark 5.1 In this paper, we introduce the concept of strongly focusing monotonicity and
extend our previousworks on the generic dynamics of flows stronglymonotonewith respect to
high-rank cones onR

n (see [2]) to the class of general semiflows strongly focusingmonotone
with respect to the k-coneC on an infinite dimensional Banach space. In the sequel, we intend
to investigate the “typical” behaviors of this class of semiflows in themeasure theoretic sense,
and establish the total-ordering property and Poincaré-Bendixson property of omega-limit
sets. In future work, we will extend the strongly focusing monotonicity from semiflows to
discrete systems, cocycles and skew-product semiflows.
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