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Abstract
We consider a class of Hamiltonian Klein–Gordon equations with a quasilinear, quadratic
nonlinearity under periodic boundary conditions. For a large set of masses, we provide a
precise description of the dynamics for an open set of small initial data of size ε showing

that the corresponding solutions remain close to oscillatory motions over a time scale ε− 9
4+δ

for any δ > 0. The key ingredients of the proof are normal form methods, para-differential
calculus and a modified energy approach.
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1 Introduction

In this paper we study the long-time dynamics of the quasi-linear Klein–Gordon equation on
the compact interval [0, 2π ], under periodic boundary conditions

utt − uxx + mu + N (u) = 0 u(t, x) ∈ R , t ∈ R , x ∈ T := R/(2πZ) , (1.1)

where
m ∈ [1, 2], N (u) := f2(u, ux , uxx ) (1.2)

and f2 ∈ C∞(R3;R) is a homogeneous polynomial of degree 2.
We consider Klein–Gordon equations possessing a Hamiltonian structure, namely we require
that the nonlinearity N in (1.2) has the form

N (u) = ∂uG(u, ux )− d

dx

(
∂ux G(u, ux )

)
, (1.3)

where G ∈ C∞(R2;R) is a homogeneous polynomial of degree 3.
The origin u = 0 is an elliptic equilibrium for the equation (1.1). The long-time stability

of this fixed point has been proved in the seminal works [23–25] by Delort for a positive
measure set of massesm. For long-time stability here we mean the following property: given
N ≥ 1 there exists ε0 = ε0(N ) such that for all solutions u(t) with initial datum u0 such
that ‖u0‖Hs < ε there exist constants c = c(N ),C = C(N ) > 0, independent of ε, such
that ‖u(t)‖Hs ≤ Cε for all t ∈ [0, c ε−N ]. This is a result of orbital stability for the elliptic
equilibrium u = 0 and it does not provide information about the dynamics of small data
solutions. While the theory of long-time stability is quite well-established for semilinear
PDEs on some compact manifolds (without trying to be exhaustive [2, 3, 21, 22, 30], and
the more recent results [5, 15] ), there are few results concerning quasi-linear PDEs using
normal form techniques. We mention for instance [9, 10, 34], and the partial results (namely,
where the stability time scale is ε−m for some fixed m ∈ Q, m ≥ 1) [6, 14, 26, 33, 37, 42,
44]. We point out that results of long / global in time existence for Klein–Gordon equations
as (1.1) have been proved also in the Euclidean setting, and we cite for instance [43, 46, 52].
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The aimof the present paper is to provide an accurate descriptionof the long-timedynamics
for solutions arising from an open set of small initial data. With long-time behavior (or
dynamics) we mean the evolution of the system (1.1) beyond the local time scale. Since
the equation (1.1) is quadratic, the local time scale for solutions with initial data of size ε
here corresponds to ε−1. If the equation does not present 3-wave resonant interactions, as
for instance in the pure gravity water waves system and KdV equation, then one can expect
to obtain a quadratic lifespan ε−2, over which the solutions remains of size ε. Our aim is to
provide dynamical information beyond this time scale, where we have to deal with the effect
of higher order resonances.

We prove that the long-time evolution of initial data, within the above mentioned open set,
is almost recurrent, in the sense that these solutions are very close to nonlinear oscillations,
over the range of time [0, c ε−9/4+δ] for any δ > 0 and some c > 0 independent of ε.

The oscillatory motions that we consider are supported on finite dimensional tori and
they can be minimal or not, in the sense that they may fill densely the underlying torus or
not. It is possible that certain motions (of the former kind) may be continued to periodic
or quasi-periodic solutions by using KAM techniques. However, these would provide the
description of the dynamics of a zero measure set of data in phase space. In any case, at
the best of our knowledge, such KAM results are not still available in literature for the
quasi-linear Klein–Gordon equation on the circle. Concerning the existence of periodic and
quasi-periodic solutions for semilinear Klein–Gordon equations on the circle we refer to [7,
12, 16, 19, 20, 39, 41, 49, 55] and to [8, 11, 13, 17, 54] (and reference therein) for the higher
dimensional case.

An interesting research direction in the study of Hamiltonian PDEs concerns the orbital
stability of invariant objects rather than fixed points, such as plane waves and quasi-periodic
tori. About that, we mention [31, 45, 47, 56]. We also quote the stability result [18] for
traveling waves of the Burger-Hilbert equation.

We point out that our result is not an orbital stability result, in the sense that we do not
only prove the existence of solutions that stay close to certain embedded tori, but also that the
solutions of equation (1.1) follow (in the sense of Sobolev norms) periodic or quasi-periodic
orbits that can be explicitly computed.

To explain the main difficulties in proving our result, we can think to set action-angle
variables on the finite dimensional embedded torus complemented by cartesian coordinates
in the normal infinite dimensional directions. In the following we refer to tangential and
normal directions with respect to the torus.

To prove that solutions u(t) of the Klein–Gordon equation starting close to the tours
follow closely some of the orbits ϕ(t) supported on it we shall study the evolution of the
error function R := u − ϕ.

One of the main issue is that the tangential and normal dynamics of R are coupled. We
will use normal form techniques to almost decouple them at linear level.

Since the finite dimensional torus is embedded in an infinite dimensional phase space, we
certainly need to control the deviation between u(t) and ϕ(t) along infinitely many normal
directions. In this analysis the quasi-linear nature of the equation provides the main issue.
We deal with this by combining para-differential calculus techniques and using a modified
energy method.

A further issue comes from the analysis of tangential directions. Indeed, we need to control
the deviation of the trajectories both in the actions and angles directions.

As it is well known, even for integrable Hamiltonian systems, the linear dynamics along
the angle directions is unstable. To overcome this problem we need to impose certain non-
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resonance conditions on the linear frequencies of oscillations. This accounts to exclude just
a zero measure set of masses.

We will continue this discussion, giving more details, in Sect. 1.2.

1.1 Main Result

To state our main result is useful to look at equation (1.1) as a first order system, which, in
appropriate complex coordinates Z := (z+, z−) (see (2.10)), reads as

⎧
⎨

⎩

ż+ = i�z+ + i√
2
�−1/2N

(
�−1/2

( z++z−√
2

))
, � := √−∂xx + m

ż− = i�z− − i√
2
�−1/2N

(
�−1/2

( z++z−√
2

))
.

(1.4)

We look for solutions in the Sobolev real subspaces

Hs := (Hs(T;C)× Hs(T;C)) ∩ U , U := {(z+, z−) ∈ L2(T;C2) : z+ = z−} ,
(1.5)

with s ≥ 0.With abuse of notationwe denote by ‖·‖Hs (see (2.3)) both the norm on Hs(T;C)
and on the product space Hs .

Fix ε > 0 small, N ∈ N, a symmetric subset S := { j1, . . . , jN } ⊂ Z (meaning that j ∈ S
implies − j ∈ S ) and let (ξ, θ) ∈ ON × T

N for some compact subset O ⊂ R+ := (0,∞]
containing the origin. We consider small amplitude, oscillating functions of the form

εϕ(t) = εϕξ,θ (t) :=
∑

j∈S
ε
√
ξ j e

i(θ j+ j x+ω j t) , ξ ji := ξi , θ ji := θi , i = 1, . . . , N ,

(1.6)
where the frequencies ω j , j ∈ S satisfy

sup
j∈S
|ω j −�( j)| � ε2, �( j) :=

√
j2 + m.

These oscillating functionswill be obtained as nonlinear corrections of small amplitude linear
solutions1 through normal form methods.

Our goal is to prove that there is plenty of solutions of (1.4)which are “well-approximated”
by functions as in (1.6) for a very long time scale provided that the ω j are chosen as suitable
corrections of the linear frequencies of oscillation. More precisely, the main result is the
following.

Theorem 1.1 Let n ∈ N and set N = 2n + 1. Consider the equation (1.4)–(1.3) and the
subset S = {−n,−(n− 1), . . . ,n− 1,n} ⊂ Z. There exist a symmetric matrix C ∈ R

N×N
such that for almost all m ∈ [1, 2] there is s0 > 1/2 such that for any s ≥ s0 the following
holds. There is ε0 = ε0(s, S) such that for all 0 < ε < ε0 and for any ξ ∈ R

N+ , θ ∈ T
N there

exists an open set UN
ξ,θ ⊆ Hs(T;C) such that for any z0 ∈ UN

ξ,θ the solution z(t) of (1.4)

with z(0) = z0 belongs to C([0, T ]; Hs), with T = ε−( 94 )− and satisfies

sup
t∈[0,T ]

‖z(t)− εϕ(t)‖Hs �s ε
2 , (1.7)

where εϕ is defined as in (1.6) with frequencies

ω j = ω j (ξ) :=
√
j2 + m + ε2

∑

k∈S
C jkξk, j ∈ S.

1 Indeed, for ω j = �( j) functions of the form (1.6) are solutions of the linearized problem of (1.4) at zero.
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Remark 1.2 We remark that we mostly exploit the symmetry of the set S in order to avoid
certain resonant interactions. We need the additional property

j /∈ S ⇔ | j | > max
k∈S {|k|}

only for the construction of a modified energy in Sect. 5.2.2.

The matrix C, which provides the corrections to the linear frequencies of oscillation�( j),
is completely determined by the choice of the set S and by the coefficients of the nonlinearity
N .

When the matrix C is invertible one can modulate the frequencies (ω j ) j∈S through the
choice of the amplitudes (ξ j ) j∈S .When thePDEpresents no external/physical parameters this
is the approach implemented to find small amplitude quasi-periodic solutions, which bifur-
cate from quasi-periodic functions of the form (1.6) for which diophantine non-resonance
conditions are imposed (we mention for instance [1, 32, 38, 40].

To prove our result these conditions are not required. In principle we could consider
resonant oscillating motions as

εϕ(t, x) = ε
(√

ξ j e
i j x +√ξ− j e

−i j x) ei(θ j+ω j t),

where we assumed that θ j = θ− j and ω j = ω− j . The existence of such functions depend on
the choice of the nonlinearity. Therefore, our result allow to control the dynamics of more
initial data with respect to the ones considered by KAM theory, but only for finite (even if
long) time. On the other hand, Birkhoff normal form methods allow to control the evolution
of any small (enough) initial data over any polynomial time scale, but they do not provide a
description of the orbits as the one provided by Theorem 1.1.
Description of the Long-time Dynamics and Time Scales Theorem 1.1 provides an accurate
description of the long-time dynamics for general Hamiltonian Klein–Gordon equations
with quadratic nonlinearities. The strength of this result relies on the fact that we are able to
approximate solutions of the Klein–Gordon equation over long time with explicit oscillating
functions ϕ(t)which are solutions of integrable finite dimensional systems. Such systems are
obtained as the restriction of the truncated Hamiltonian, after some steps of normalization, to
some finite dimensional subspace. Since these ones are integrable in the sense of Liouville,
all the trajectories lie on (finite dimensional) tori and they are conjugated to a linear flow
θ �→ ωt + θ . Hence, once the nonlinearity has been fixed, the evolution of the functions ϕ(t)
is completely determined, even for infinite time. We remark again that the orbits ϕ(t) may
lie also on resonant tori.

In the framework of Hamiltonian PDEs, a similar result has been provided in the work
by Bernier–Grébert [4] for the generalized KdV and Benjamin–Ono equations on the circle.
A description of the dynamics is provided for any polynomial time scale ε−r and for many
small initial data by using the rational normal form method [5]. However, apart from the
fact that the above mentioned PDEs are not quasi linear equations, the information provided
about the long time behavior of small data solutions differ substantially from the ones given
by Theorem 1.1, indeed:

1. The solutions of the generalized KdV and Benjamin–Ono equations are approximated by
oscillating functions whose expression is not explicit. For instance, it is not clear whether
these are periodic, quasi-periodic or none of the previous.

2. The vicinity among the solutions of the PDEs and their approximating oscillating func-
tions is not ensured in the phase space (where the initial data belong). Indeed, the
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approximation (as (1.7)) is provided in a Sobolev space which is less regular than the
space of initial data (with a loss of one derivative).

With respect to [4] here we pay these extra information on the dynamics by considering
"less" initial data (even if they still form open sets in the phase space) and shorter time scales.
Concerning the latter, the fact that we are not able to provide a result as Theorem 1.1 for any
polynomial time scale is not merely a technical issue.

We observe that just to obtain an orbital stability result, one would require the integrability
of the normalizedHamiltonian at any order, and this requirement is not satisfied by the Klein–
Gordon system (and it is not expected in general from non integrable equations, even on one
dimensional spatial domains). The normalized Hamiltonian of Klein–Gordon at degree six
is not integrable, it has only half of the required constants of motion, usually called super-
actions. This is due to the dispersion relation of Klein–Gordon, and more precisely on the
multiplicity of the linear eigenvalues i�( j).

Therefore the study of the dynamics of the normal form at higher orders can be very
complicated to study and we cannot expect to give an accurate description of it, especially
when the number of degrees of freedom (that is N in Theorem 1.1) is large.

For this reason, in this situation, we have an expected optimal time scale for which the
approximation (1.7) holds.Certainly the approximation (1.7) providedbyTheorem1.1 cannot
hold true beyond the time scale ε−3− . One can see it from the proof of Lemma 6.5, which
provides energy estimates for the linearized part of the equation (1.12) for low frequencies.

We now explain this issue and how we obtain the time scale ε− 9
4
−
in the main theorem. It is

useful to denote by ε−2−σ the time scale of the approximation and highlight the restriction
on the parameter σ > 0.

We start by noticing that a sub problem of our analysis consists in controlling the deviation
among the trajectories of a finite dimensional integrable Hamiltonian which is quadratic in
the action variables I (up to linear terms in actions which play no role in this analysis); we
refer to Hamiltonian (6.10) where I j = |w j |2.

The key problem is to control the linearization of the Hamiltonian vector field at one of the
trajectories considered. This linearized problem approximately describes the time evolution
of the first variation of the action-angle variables.

The main issue is that the variation in the angles direction grows linearly in time. The
first bound in (6.19), which can be satisfied by taking σ < 1, shows how this fact reflects on
the estimate of the energy for low frequencies. We remark that this is a finite dimensional
issue (independent of the PDE’s context that we are considering) and it cannot be overcome
neither by the presence (if any) of integrable Hamiltonian terms of higher order. Indeed, in a
small amplitude regime, the quadratic term in actions provides the main contribution. Hence,
this gives the upper bound ε−3− on the time of validity of the approximation (1.7).

A further restriction on the parameter σ comes from the fact that the normalized Hamil-
tonian of the Klein–Gordon is integrable only up to degree six. Since we are interested in
approximating solutions of the Klein–Gordon equation with trajectories of an integrable sys-
tem (hence, which are completely known), we need to consider εϕ in (1.7) as a solution of
the Klein–Gordon equation up to remainders O(ε5), see (4.7). This means that the residual
term ResH(εϕ) in the equation (1.12) cannot be made too small. This affects the last bound
in (6.19), where we remark that the parameter β has to be chosen > 2 + 2σ in order to
control the nonlinear terms of the equation (1.12). If we relax the constraints on β we need to
enforce the limitations on σ , and viceversa. Then, in order to satisfy all the constraints on β

and σ , it turns out that σ has to be taken strictly less than 1/4. This gives the time scale ε− 9
4
−
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provided in Theorem 1.1. Clearly this loss, with respect to the time scale ε−3− , depends on
our method and we reserve to improve it as matter of future investigations.
The Set of Initial Data The open set UN

ξ,θ is the neighborhood of an embedded N -dimensional
torus in the phase space. Then the set of initial data for which we can describe the long-time
dynamics forms an open covering of a continuous family of embedded N -dimensional tori.

The following proposition provides a characterization of this set.

Proposition 1.3 Under the assumptions of Theorem 1.1 there exists a diffeomorphism
F : Bε(Hs) → Hs, where Bε(Hs) is the ball of radius ε > 0 centered at the origin, such
that the following holds. Defining

BN
S :=
⎧
⎨

⎩
εϕξ,θ (0) :=

∑

j∈S
ε
√
ξ j e

i(θ j+ j x) : (ξ, θ) ∈ ON × T
N

⎫
⎬

⎭
, (1.8)

one has that the union of the open sets UN
ξ,θ is a covering of an ε7/2-neighbourhood of the

embedded manifold F(BN
S ) ⊆ Hs, namely

AN
ε7/2
:=
{
u := u1 + u2 ∈ Hs : u1 ∈ F(BN

S ) , ‖u2‖Hs ≤ ε7/2

2

}
⊆

⋃

(ξ,θ)∈ON×T
N

UN
ξ,θ .

(1.9)

Remark 1.4 We note that the union of the sets BN
S , as N and S vary respectively in N and in

the symmetric subsets of Z, contains the set of trigonometric polynomials.

The result above implies that solutions evolving from a large family of initial data can
be approximated, in the Sobolev topology, by oscillatory motions thanks to Theorem 1.1.
We remark that, since trigonometric polynomials are dense in Sobolev spaces, in principle
taking N larger one can consider more and more functions u1 ∈ F(SN ) in (1.9), being the
map F a diffeomorphism. The price to pay in order to apply Theorem 1.1 is to shrink to zero
the ball of radius ε in which the approximation holds.
Relation with Modulation Theory The functions εϕ shall be chosen as good approximate
solutions of the quasi-linear Klein–Gordon equation (1.1). An efficient way to construct
approximate solutions for a Hamiltonian PDE is to perform a normalization of the Hamilto-
nian and consider orbits of its resonant part.

A different method to study the long time evolution and stability of oscillatory solutions
to partial differential equations is provided by the modulation theory. In this framework we
mention the work by Düll [27], where the NLS approximation is provided for a quadratic
quasi-linear Klein–Gordon equation on R (we also mention [28, 29, 50, 51], and reference
therein, for similar results on other PDEs). The description of the dynamics in these papers
is given over the cubic time scale ε−2, where the only resonant effects are given by 3-wave
resonances. The crucial differencewith respect to our analysis is that here we deal with higher
order resonances taking advantage of considering the PDE on the torus and of its Hamiltonian
structure.

1.2 Strategy of the Proof

First of all we remark that equation (1.4), in view of the assumption (1.3), can be written as

∂t Z = XH (Z) , Z = [ zz
]
, (1.10)
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where XH is the Hamiltonian vector field of the KG equation in complex coordinates and H
admits the expansion (see (2.12))

H(Z) = H (2)(Z)+ H (3)(Z), H (2)(Z) =
∫

T

z�z dx,

where H (3) is homogeneous of degree 3 in the variables Z , Zx . Precise details on the Hamil-
tonian structure will be given in Sect. 2.1. We now discuss the strategy of the proof of our
main result.
(1) Approximate solution.
The first step is to find a suitable approximate solution of the KG equation, of the form
(1.6), supported on some symmetric set of Fourier modes S ⊂ Z. It turns out that, for our
aims, the choice ω j ≡ �( j) (namely to consider linear solutions of KG) provides a rough
approximation. In order to determine a better approximation through oscillatory motion
we perform some steps of “weak” Birkhoff normal form. In other words we construct an
invertible, bounded, symplectic map B with the following properties:
• The transformed Hamiltonian has the form

H := H ◦−1B = H (2) +H(4,0)
res +H(>) +R(≥6) , (1.11)

where

H(4,0)
res (W ) = 1

2CI · I I := (|w j |2) j∈S, B(Z) := W = [ww
]
,

with C some symmetric N × N matrix, R(≥6) has a zero of order 6 at the origin and H(>)

is an Hamiltonian function which vanishes on the finite dimensional subspace US = {wn =
0 n /∈ S}. We remark that the matrix C is completely determined in terms of the coefficients
of the original Hamiltonian H and the set of modes S. This is the content of Proposition 3.9
• Functions εϕ of the form (1.6) are approximate solutions for the transformed equation

∂tW = XH(W ), B(Z) = W ,

in the sense that

ResH(εϕ) := −ε∂tϕ + XH(εϕ) ∼ ε5.

The precise estimates are given in Lemma 4.1.
(2) The error function. Once we constructed the approximate oscillatory solution we intro-
duce the “error” function

εβV = W − εϕ, β > 2.

Our aim is to control the norms of the function V , over a long time interval, to measure the
deviation between the true solution W of the KG equation in the Birkhoff coordinates and
the approximate solution εϕ. Thanks to estimates on the map B we are able to show that
(see Proposition 4.2) Z − εϕ remains small over the time scale T ∼ ε−(9/4)− , i.e. satisfies
(1.7), provided that

sup
t∈[0,T ]

εβ‖V ‖Hs ≤ 2εβ, T ∼ ε−(9/4)− .

The core of the paper is then to show that the above estimate holds true. We have that V
solves the problem (see Sect. 4.2)

V̇ = dXH(εϕ)[V ] + εβQ(εϕ)[V , V ] + ε−βResH(εϕ) , (1.12)
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where

Q(εϕ)[V , V ] :=
∫ 1

0
(1− t) d2XH(εϕ + tεβV )[V , V ] dt .

In order to study the evolution of the Sobolev norms of solutions of (1.12) we provide a
priori energy estimates for such equation, recalling that the term ResH(εϕ) is perturbative
thanks to the choice of εϕ. Due to the quasi-linear nature of the nonlinearity we first need
to study the pseudo-differential structure of the linear operator dXH(εϕ)[·] and provide a
para-differential formulation of the nonlinear termQ(εϕ)[V , V ]. This is the content of Sect.
4.3.
(3) High/low frequencies analysis and normal forms. We first note that given V , defined
for all t ∈ [0, T ], ∂t‖εβV ‖2s = ∂t (D2sV , V )L2 where D is the Fourier multiplier D =√−∂xx + 1 and (·, ·)L2 the L2-scalar product. Using equation (1.12) we have that ∂t‖εβV ‖2s
is controlled from above by the sum of three terms

∂t‖εβV ‖2s � AdXH + AQ + ARes,

with the following properties:
• ARes is the contribution coming from the residual term. In particular we show that

ARes � εβ sup
[0,T ]
‖V ‖Hs sup

[0,T ]
‖ResH(εϕ)‖Hs � εβ+5,

The smallness of the residual ResH(εϕ) is obtained by construction of εϕ.
• The term AQ is the contribution coming from the quadratic part in V . The energy

estimates for the quadratic terms Q(εϕ) are obtained thanks to the use of para-differential
techniques. So we get

AQ � ε3β sup
[0,T ]
‖V ‖3Hs .

Its smallness is guaranteed by taking β large enough.
•The term AdXH is themost delicate one and comes from the contribution of the linearized

operator dXH(εϕ) at εϕ. The main issue is to control the effect of this linear part. We remark
that a direct estimate of this term provides a bound like

AdXH � ε2β+1 sup
[0,T ]
‖V ‖2Hs .

An estimate like this allows a control of the norm of V only over the trivial time scale of
size ε−1. This is due to the fact that our equation has a quadratic nonlinearity. Of course this
estimate is not sufficient to our aims.

In Sects. 5–6 we improve such estimate to show the stability of V over a longer time scale.
The analysis of the linearized operator is done by performing normal formmethods. Since

we want to reach stability beyond the nonlinear time scale we shall deal with resonances of
order (three and) four, i.e. solutions of

σ1�( j1)+ σ2�( j2)+ σ3�( j3)+ σ4�( j4) = 0, σi = ±, ji ∈ Z.

By picking the mass m ∈ [1, 2] in a positive Lebesgue measure subset, we can prove that
(see Lemma 3.8) these resonances are of the form (up to permutations)

j1 = j2, j3 = j4, σ1 + σ2 = 0, σ3 + σ4 = 0.

Then the Hamiltonian terms Fourier supported on these resonances (resonant terms) cannot
be eliminated and we have to guarantee that they do not let growth much the Sobolev norms
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of R. In principle it is not clear how to deal with the resonant terms Fourier supported on

j1, j3 ∈ supp(V̂ ) and j2, j4 ∈ supp(ϕ̂).

Indeed such resonant monomials are not dependent just by the actions |ϕ̂( j)|2, |V̂ ( j)|2. For
instance they may have the form

ϕ̂( j1) V̂ ( j1) ϕ̂( j3) V̂ ( j3) , (1.13)

which are clearly angle-dependent and they could generate hyperbolicity and unstable phe-
nomena.

To overcome this problem we exploit the fact that the Fourier support S of εϕ is compact.
The idea is to split the study of the time evolution of low and high modes of the error function
V . Thanks to the weak normal form of step (1) the projection on the low frequencies of the
linearized vector field at εϕ of the Hamiltonian termsH(>) andR(≥6) vanish. Then the linear
part of the equation for the low frequency arise from the linearization of an integrable finite
dimensional Hamiltonian H (2) +H(4,0)

res .
Despite the integrability, the linearized problemat an approximate solution of an integrable

system presents instability in some directions (the angles directions). Thanks to the fact that
we pushed the non-normalized part of the Hamiltonian at higher orders and to the choice of
the initial data (6.2), we are able to control the evolution of the low modes for long time.

In normal form coordinates the linear dynamics of low and high frequencies are decoupled,
and terms like (1.13) do not appear in the linear problem for high frequencies. In Sect. 5, we
provide energy estimates for the projection of V onto high frequencies where we deal with
the quasi-linear nature of the equation by using normal form techniques and energy methods.

2 Functional Setting

2.1 Hamiltonian Formalism

We denote by Hs(T) := Hs(T;C) the usual Sobolev space of functionsT � x �→ u(x) ∈ C.
We consider the following Fourier expansion of a function u(x), x ∈ T,

u(x) = 1√
2π

∑

n∈Z

û(n)einx , û(n) := 1√
2π

∫

T

u(x)e−inx dx . (2.1)

We shall also use the notation

u+1n := un := û(n) and u−1n := un := û(n) . (2.2)

For ξ ∈ R we define 〈ξ 〉 := √1+ |ξ |2 and we denote by 〈D〉 the Fourier multiplier with
symbol 〈ξ 〉, i.e.

〈D〉einx = 〈n〉einx , n ∈ Z.

We endow Hs(T;C) with the norm

‖u(·)‖2Hs :=
∑

j∈Z

〈 j〉2s |u j |2 . (2.3)

Moreover, for r ∈ R
+, we denote by Br (X) the ball of the Banach space X with radius r

centred at the origin.
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Notation.We shall use the notation A � B to denote A ≤ CB whereC is a positive constant
depending on parameters fixed once for all, for instance d and s. We use the notation �q to
highlight the dependence of the constantC on some parameter q . We use the notation A ∼ B
to denote that C1A ≤ B ≤ C2A for some constants C1,C2 > 0.

The Klein–Gordon equation in (1.1) reads

∂t t u +�2u + N (u) = 0 (2.4)

where � is the Fourier multiplier defined by linearity as

� ein·x = �(n)ein·x , �(n) :=
√
|n|2 + m , ∀ n ∈ Z . (2.5)

Introducing the variable v = u̇ = ∂t u we can rewrite equation (2.4) as

u̇ = −v , v̇ = �2u + N (u) . (2.6)

By (1.3) we note that (2.6) can be written in the Hamiltonian form

∂t
[
u
v

] = XHR
(u, v) = J

(
∂u HR(u, v)
∂vHR(u, v)

)
, J = [ 0 1−1 0

]

where ∂ denotes the L2-gradient of the Hamiltonian function

HR(u, v) =
∫

T

(
1

2
v2 + 1

2
(�2u)u + G(u, ux )

)
dx , (2.7)

on the phase space H1(T;R)× L2(T;R). Indeed we have
dHR(u, v)

[
û
v̂

] = −ωR

(
XHR

(u, v),
[
û
v̂

])
(2.8)

for any (u, v), (̂u, v̂) in H1(T;R)× L2(T;R), where ωR is the non-degenerate symplectic
form

ωR(W1,W2) :=
∫

T

(u1v2 − v1u2)dx, W1 :=
[ u1
v1

]
,W2 :=

[ u2
v2

]
.

The Poisson bracket between two Hamiltonians HR,GR : H1(T;R) × L2(T;R) → R is
defined as

{HR,GR} = ωR(XHR
, XGR

) . (2.9)

We introduce the complex symplectic variables
(
z
z

)
= C
(
u
v

)
:= 1√

2

(
�

1
2 u + i�− 1

2 v

�
1
2 u − i�− 1

2 v

)

,

(
u
v

)
= C−1

(
z
z

)
= 1√

2

(
�− 1

2 (z + z)

−i� 1
2 (z − z)

)

,

(2.10)
where � is the Fourier multiplier defined in (2.5). Then the system (2.6) reads as in (1.4).
Notice that (1.4) can be written in the Hamiltonian form

∂t Z = XH (Z) = iJ

(
∂u H(Z)
∂z H(Z)

)
=
(

i∂z H(Z)
−i∂z H(Z)

)
, J = [ 0 1−1 0

]
Z = [ zz

]
, (2.11)

with Hamiltonian function (see (2.7))

H(Z) = HR(C−1Z) = H (2)(Z)+ H (3)(Z) ,

H (2)(Z) =
∫

T

z�z dx , H (3)(Z) :=
∫

T

G
(�−1/2(z + z)√

2
,
�−1/2(zx + zx )√

2

)
dx ,

(2.12)
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and where ∂z = (∂Re (z) + i∂Im (z))/2, ∂z = (∂Re (z) − i∂Im (z))/2. Notice that

XH = C ◦ XHR
◦ C−1 (2.13)

and that (using (2.10))

dH(z, z)
[ h
h

] = (dHR)(u, v)[C−1
[ h
h

]] (2.8),(2.13)= −ω
(
XH (Z),

[ h
h

])
(2.14)

for any h ∈ H2(T;C) and where the two form ω is given by the pullback of ωR through C−1.
In complex variables the Poisson bracket in (2.9) reads as

{H ,G} := ω(XH , XG) = i

(∫

T

∂zG∂z H − ∂zG∂z H

)
dx , (2.15)

where we set H = HR ◦ C−1, G = GR ◦ C−1.

2.2 Preliminaries

In this section we introduce some classes of operators that we shall consider along the paper.

2.2.1 Basic Para-Differential Calculus

We follow the notation of [36]. We denote by N m
s , s ≥ 0,m ∈ R, the spaces of functions

T× R � (x, ξ)→ a(x, ξ) of symbols defined by the norms

|a|N m
s
:= sup

0≤α+β≤s
sup
ξ∈R

〈ξ 〉−m+β‖∂βξ ∂αx a(x, ξ)‖L2 . (2.16)

The constant m ∈ R indicates the order of the symbols, while s denotes its regularity. The
following result is a consequence of item (i) of Lemma 2.3 in [36].

Lemma 2.1 Let m1,m2 ∈ R, s > 1/2 and a ∈ N m1
s , b ∈ N m2

s . One has

|ab|N m1+m2
s

+ |{a, b}|N m1+m2−1
s−1

+ |σ(a, b)|N m1+m2−2
s−2

� |a|N m1
s
|b|N m2

s
(2.17)

where

{a, b} := (∂ξa)(∂xb)− (∂xa)(∂ξb), (2.18)

σ(a, b) := (∂ξξa)(∂xxb)− 2(∂xξa)(∂ξ xb)+ (∂xxa)(∂ξξb). (2.19)

The Weyl quantization. For a symbol a(x, ξ) in N m
s we define its (Weyl) quantization as

OpW(a(x, ξ))h := 1√
2π

∑

j∈Z

ei j x
∑

k∈Z

â
(
j − k,

j + k

2

)̂
h(k) (2.20)

where â(η, ξ) denotes the Fourier transform of a(x, ξ) in the variable x ∈ T.
Smoothed symbols. Let 0 < ε < 1/2 and consider a smooth function g : R→ [0, 1]

g(ξ) =
{
1 if |ξ | ≤ 5/4

0 if |ξ | ≥ 8/5
and define χ(x) = χ(ε; ξ) := g(|ξ |/ε) . (2.21)

Given a(x, ξ) ∈ N m
s we define

aχ (x, ξ) = F−1(â(η, ξ)χ(|η|/〈ξ 〉)) (2.22)
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where F denotes the Fourier transform in x .
We denote by

OpBW(a(x, ξ)) := OpW(aχ (x, ξ)) . (2.23)

Lemma 2.2 Let s0 > 1. Then the following holds.

(i) Let m ∈ R, a ∈ N m
s0 , then for any s ∈ R

‖OpBW(a)[h]‖Hs−m �s |a|N m
s0
‖h‖Hs , ∀h ∈ Hs(T;C) . (2.24)

(ii) Let m1,m2 ∈ R, a ∈ N m1
s0+4, b ∈ N m2

s0+4, then

OpBW(a) ◦ OpBW(b) = OpBW(ab + 1
2i {a, b} − 1

8σ(a, b))+ R(a, b) , (2.25)

where R(a, b) is a remainder satisfying, for any s ∈ R,

‖R(a, b)h‖Hs−m1−m2+3 � ‖h‖Hs |a|N m1
s0+4
|b|N m2

s0+4
. (2.26)

In particular [
OpBW(a), OpW(b)

] = OpBW( 1i {a, b})+ R(a, b) , (2.27)

with R(a, b) as in (2.26).
(iii) Let ρ ≥ 0 and a = a(x), b = b(x) ∈ Hρ+s0(T;C) (independent of ξ ∈ R) then, for any

s ∈ R,

‖(OpBW(a) ◦ OpBW(b)− OpBW(ab))h‖Hs+ρ � ‖h‖Hs‖a‖Hρ+s0 ‖b‖Hρ+s0 . (2.28)

Proof By the definition of the semi-norm (2.16) we have

|̂a( j, ξ)| �s 〈ξ 〉 m〈 j〉−s0 |a|N m
s0
, ∀ j, ξ ∈ Z . (2.29)

We have (recall (2.23), (2.20))

‖OpBW(a)[h]‖2Hs−m ≤
∑

j∈Z

⎛

⎝
∑

| j−k|≤2−1| j+k|

∣∣∣∣a
(
j − k,

j + k

2

)∣∣∣∣ |̂h(k)|〈 j〉s−m
⎞

⎠

2

.

We note that | j − k| ≤ 2−1| j + k| implies that 〈 j〉 ∼ 〈k〉. Then by using (2.29) and Young’s
inequality we have

‖OpBW(a)[h]‖2Hs−m �s |a|2N m
s0

∑

j∈Z

⎛

⎝
∑

| j−k|≤2−1| j+k|

| j + k|m
| j − k|s0〈 j〉m |̂h(k)|〈k〉

s

⎞

⎠

2

�s |a|2N m
s0

∑

j∈Z

⎛

⎝
∑

| j−k|≤2−1| j+k|
| j − k|−s0 |̂h(k)|〈k〉s

⎞

⎠

2

�s |a|2N m
s0
‖h‖2Hs .

The items (i i)–(i i i) follows by Proposition 2.5 in [36].
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2.2.2 Multilinear Operators

We are interested in studying properties of multilinear operators of the form

Rp[z p+1] = Rp(z1, . . . , z p)[z p+1] : (C∞(T;C))p+1 → C∞(T;C) , p = 1, 2 ,

Rp[z p+1] = 1√
2π

∑

jp+1, j∈Z

(Rp)
jp+1
j ẑ( jp+1)ei j x , (2.30)

with

(R1)
j2
j =

1√
2π

∑

j1, j2∈Z,σ1∈{±}
σ1 j1+ j2= j

rσ11 ( j, j1, j2 )̂z
σ1
1 ( j1) , (2.31)

(R2)
j3
j =

1

2π

∑

j1, j2, j3∈Z,σ1,σ2∈{±}
σ1 j1+σ2 j2+ j3= j

rσ1,σ22 ( j, j1, j2, j3)̂z
σ1
1 ( j1)̂z

σ2
2 ( j2) , (2.32)

where the coefficients r
σ1...σp
p ( j, j1, . . . , jp+1) ∈ C for any j, j1, . . . , jp+1 ∈ Z, p = 1, 2.

We introduce the following notation: given j1, . . . , jq ≥ 0, q ≥ 2 we define

maxi { j1, . . . , jq} = i−th largest among j1, . . . , jq . (2.33)

We need the following definition.

Definition 2.3 Let ρ ∈ R, p = 1, 2, q ∈ N and 0 < r ≤ 1.
(i) (Multilinear operators).We say that a (p+1)-linear map Rp as in (2.30)–(2.32) belongs
to the classM−ρp if there is μ ≥ 0 such that for any j1, . . . , jp+1 ∈ Z, σ1, . . . , σp ∈ {±} one
has

|rσ1...σp
p (ζ, j1, . . . , jp+1)| � max2{〈 j1〉, . . . , 〈 jp+1〉}μ+|ρ|

max1{〈 j1〉, . . . , 〈 jp+1〉}ρ , (2.34)

for ζ := σ1 j1 + · · · + σp jp + jp+1.
(i i) (Non-homogenenous operators). We denote NH−ρq the class of maps (ϕ, V , u) �→
R(ϕ, V )[u] defined on Br (Hμ(T))2 × Hμ(T) for some μ > 1/2, linear in u, such that the
following holds. For any s ≥ μ, and (ϕ, V ) ∈ Br (Hμ(T))2 ∩ Hs(T), u ∈ Hs(T) one has

‖R(ϕ, V )u‖Hs+ρ �s,ρ (‖ϕ‖qHs + ‖V ‖Hs )‖u‖Hs ,

‖dϕ
(R(ϕ, V )

)
(u)h‖Hs+ρ �s,ρ (‖ϕ‖q−1Hs + ‖V ‖Hs )‖u‖Hs‖h‖Hs ,

‖dV
(R(ϕ, V )

)
(u)h‖Hs+ρ �s,ρ ‖u‖Hs‖h‖Hs .

(2.35)

(i i i)We denote by �−ρ1 [r , 3] the space of operators R(ϕ)[·] of the form
R(ϕ) = R1(ϕ)+ R2(ϕ)+ R≥3(ϕ, V ),

where R j ∈M−ρj , j = 1, 2, and R≥3 ∈ NH−ρ3 .

We now prove that the operators defined above extend as continuous maps on the Sobolev
spaces.

Lemma 2.4 Let ρ ∈ R. Consider a multilinear operator R ∈M−ρp and μ introduced in Def.
2.3-(i). Then, there is s0 = s0(μ) > 1/2 such that, for s ≥ s0+ |ρ|, the map R in (2.30) with
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coefficients satisfying (2.34) extends as a continuous map from (Hs(T;C))p × Hs(T;C) to
Hs+ρ(T;C). Moreover one has

‖R(u1, . . . , u p)[u p+1]‖Hs+ρ � ‖u p+1‖Hs

p∏

i=1
‖ui‖Hs . (2.36)

Proof We follow Lemma 2.5 in [33]. We give the proof only in the case p = 2. The case
p = 1 will follow similarly. By (2.3) we have

‖R(u1, u2)[u3]‖2Hs+ρ

≤
∑

ξ∈Z

〈ξ 〉2(s+ρ)
⎛

⎜
⎜
⎝
∑

j1, j2, j3∈Z

j1+ j2+ j3=ξ

|r(ξ, j1, j2, j3)||̂u1( j1)||̂u2( j2)||̂u3( j3)|

⎞

⎟
⎟
⎠

2

(2.34)
�
∑

ξ∈Z

⎛

⎜
⎜
⎝
∑

j1, j2, j3∈Z

j1+ j2+ j3=ξ

〈ξ 〉s max
2
{〈 j1〉, 〈 j2〉, 〈 j3〉}μ+|ρ||̂u1( j1)||̂u2( j2)||̂u3( j3)|

⎞

⎟
⎟
⎠

2

:= I + I I + I I I ,
(2.37)

where I , I I , I I I are the terms in (2.37) which are supported respectively on indexes such
that

max
1
{〈 j1〉, 〈 j2〉, 〈 j3〉} = 〈 j1〉, or max

1
{〈 j1〉, 〈 j2〉, 〈 j3〉} = 〈 j2〉, or

max
1
{〈 j1〉, 〈 j2〉, 〈 j3〉} = 〈 j3〉.

Consider for instance the term I I I . By using the Young inequality for sequences we deduce

I I I � ‖(〈 j1〉μ+|ρ|û1( j1)) ∗ (〈 j2〉μû2( j2)) ∗ (〈 j3〉s û3( j3))‖�2
� ‖u1‖H1/2+ε+μ+|ρ| ‖u2‖H1/2+ε+μ‖u3‖Hs ,

for ε > 0, which is the is the (2.36) taking s0 > μ+1/2. The bounds of I and I I are similar.

Now we introduce class of linear operators obtained by linearizing multilinear and non-
homogenous maps at a C∞-function ϕ. Such operators are pseudo-differential according to
the definition given in subsection 2.2.1.

Definition 2.5 Let m ∈ R, s > 1/2, q ∈ N and 0 < r ≤ 1.
(i) (Linear symbols). We denote by SM m

1 the class of maps ϕ ∈ C∞(T;C)→ a1(ϕ; ·) ∈
Nm

s such that it has the form

a1(ϕ; x, ξ) =
∑

j∈Z,σ∈{±}
aσ1 ( j, ξ)ϕ

σ
j e

σ i j x , (2.38)

and
|∂βξ (a1)σ ( j, ξ)| � 〈 j〉μ〈ξ 〉m−β , (2.39)

for some μ ≥ 0.
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(i i) (Quadratic symbols). We denote by SM m
2 the class of maps ϕ ∈ C∞(T;C) →

a2(ϕ; ·) ∈ Nm
s such that it has the form

a2(ϕ; x, ξ) =
∑

j1, j2∈Z,σ∈{±}
aσσ2 ( j1, j2, ξ)ϕ

σ
j1ϕ

σ
j2e

iσ( j1+ j2)x

+
∑

j1, j2∈Z

a+−2 ( j1, j2, ξ)ϕ j1ϕ j2e
i( j1− j2)x ,

(2.40)

and
|∂βξ (a2)σ1σ2( j1, j2, ξ)| � max{〈 j1〉, 〈 j2〉}μ〈ξ 〉m−β (2.41)

for some μ ≥ 0.
(i i i) (Non-homogeneous symbols). Let r ∈ (0, 1). We denote by SNH m

q the class of maps

(ϕ, V ) ∈ Br (H
μ(T))2 → a≥q(ϕ, V ; ·) ∈ Nm

s for some μ > 1/2,

such that, for any s ≥ s0 + μ, if (ϕ, V ) ∈ (Br (Hμ(T)) ∩ Hs(T))2 one has

|a≥q(ϕ, V ; ·)|N m
s

�s ‖ϕ‖qHs+μ + ‖V ‖Hs+μ ,

|dϕa≥q(ϕ, V , ·)[h]|N m
s

�s (‖ϕ‖q−1Hs+μ + ‖V ‖Hs+μ)‖h‖Hs+μ , ∀ h ∈ Hs+μ(T) ,
|dV a≥q(ϕ, V , ·)[h]|N m

s
�s ‖h‖Hs+μ .

(2.42)

(iv) (Symbols).We denote by S� m
1 [r , 3] the space of symbols a(ϕ, V ; x, ξ) of the form

a(ϕ, V ; x, ξ) = a1(ϕ; x, ξ)+ a2(ϕ; x, ξ)+ a≥3(ϕ, V ; x, ξ),
where a j ∈ SM m

j , j = 1, 2, and a≥3 ∈ SNH m
3 .

Lemma 2.6 Let a j = a j (ϕ; ·) ∈ SM m
j , j = 1, 2. Then, there existμ ≥ 0, s0 = s0(μ) > 1/2

such that, for s ≥ s0, the maps ϕ → a j (ϕ; ·) extend as continuous maps Hs+μ(T)→ N m
s .

Moreover

|a1(ϕ)|N m
s

�s ‖ϕ‖Hs+μ, |a2(ϕ)|N m
s

�s ‖ϕ‖2Hs+μ .

Proof The proof is straightforward using (2.16) and the bounds on the coefficients of a j in
Def. 2.5.

Lemma 2.7 Let m ∈ R, s0 > 1. The following holds.
(i) Let a = a(ϕ, ·) ∈ SMm

j , j = 1, 2. Then OpBW(a) ∈Mm
j and there is μ ≥ 0 such that

‖OpBW(a)h‖Hs−m �s ‖ϕ‖ jHs0+μ‖h‖Hs .

(i i) Let a = a(ϕ, ·) ∈ SNHm
3 . Then, for all h ∈ Hs(T),

‖OpBW(a)[h]‖Hs−m �s (‖ϕ‖3Hs0+μ + ‖V ‖Hs0+μ)‖h‖Hs . (2.43)

(i i i) Let a = a(ϕ, ·) ∈ S�m
1 . Then OpBW(a) ∈ �m

1 [r , 3].
Proof (i) It follows by Lemmata 2.2 and 2.6. (i i) The bound (2.43) is consequence of
Lemma 2.2 and bounds (2.42). (i i i) If the symbol a(ϕ, ·) is multilinear (see Def. 2.5), then
the (2.34) follows by (2.23), (2.20), (2.38), (2.39), (2.40) and (2.41) with β = 0 and by
explicit computations. Assume that the symbol a(ϕ, ·) is non-homogeneous. We first notice
that

dϕ,V OpW(a) = OpW(dϕ,V a).

Then (2.42) and Lemma 2.2 imply the (2.35). This concludes the proof.

123



Journal of Dynamics and Differential Equations

Lemma 2.8 Let m, ρ1, ρ2 ∈ R. We have the following:
(i) SM m

j ⊂ SNH m
j for j = 1, 2;

(i i)M m
j ⊂ NH m

j for j = 1, 2;

(i i i) If Ri ∈ M−ρ1i , Q j ∈ M−ρ2j for some i, j ∈ N, then Ri ◦ Q j ∈ M−min{ρ1,ρ2}
i+ j . If

R ∈ �
−ρ1
1 [r , 3], Q ∈ �

−ρ2
1 [r , 3] then R ◦ Q ∈ �

−min{ρ1,ρ2}
1 [r , 3].

Proof (i)Using formulæ (2.38), (2.40) one can write explicitly the differential of the symbol
in the variable ϕ. Then the bounds (2.42) follows by using (2.39), (2.41) and Lemma 2.6.
(i i) One can reason as done for item (i) using (2.30)–(2.32), (2.34) and reasoning as in the
proof of Lemma 2.4. (i i i) Since Definitions 2.3, 2.5 are equivalent to the classes of symbols
and operators introduced in [9, 14] we refer to these papers for a detailed proof of the third
bullet.

Lemma 2.9 Let m ∈ R, i, k ∈ N, a ∈ SMm
i , B = B(ϕ) ∈ Mn

k and c(ϕ; x, ξ) :=
a(B(ϕ)ϕ; x, ξ). Then the following holds.
(i) If i = k = 1 then c ∈ SMm

2 .
(i i) If i or k are strictly greater than 1 then c ∈ SNHm

i+k .
Proof (i) By (2.38), (2.30), (2.31) we have

c(ϕ; x, ξ) =
∑

j∈Z

aσ ( j, ξ)(B(ϕ)ϕ)σj e
iσ j x = 1√

2π

∑

j∈Z

aσ ( j, ξ)

⎛

⎝
∑

j2∈Z

(B(ϕ))σ2 j2σ j ϕ
σ2
j2

⎞

⎠ eiσ j x

= 1

2π

∑

j, j1, j2∈Z,
σ1 j1+σ2 j2=σ j

aσ ( j, ξ)bσ1( j, j1, j2)ϕ
σ1
j1
ϕ
σ2
j2
ei(σ1 j1+σ2 j2)x .

Then setting, for σ j = σ1 j1 + σ2 j2,

cσ1,σ2( j1, j2, ξ) := 1

2π
aσ ( j, ξ)bσ1( j, j1, j2),

and using the fact that ϕ ∈ C∞(T;C) we have (recall bounds (2.39), (2.34))
|∂βξ cσ1,σ2( j1, j2, ξ)| � |∂βξ aσ ( j, ξ)|max

2
{〈 j1〉, 〈 j2〉}μ+|n|max

1
{〈 j1〉, 〈 j2〉}n

� max{〈 j1〉, 〈 j2〉}μ̃〈ξ 〉m−β ,
for some μ̃ ≥ 0. This concludes the proof of (i). To prove (i i) we first notice that, reasoning
as before, one can prove that c is homogenous of degree i + k ≥ 3. More precisely

c(ϕ; x, ξ) =
∑

jp∈Z,p=1,...,i+k,
σ1 j1+···+σi+k ji+k=σ j

aσ ( j, ξ)bσ1,...,σi+k ( j, j1, . . . , ji+k) ϕσ1j1 . . . ϕ
σi+k
ji+k eiσ j x .

Without loss of generality we can set 〈 j1〉 = maxp=1,...,i+k{〈 jp〉}. Therefore, for s ≥ β ≥ 0
we have

‖∂βξ c(ϕ; x, ξ)‖2Hs �
∑

j∈Z

|∂βξ aσ ( j, ξ)|2
⎛

⎝
∑

σ1 j1+···+σi+k ji+k=σ j

|ϕσ1j1 . . . ϕ
σi+k
ji+k |〈 j1〉s+|n|+μ

⎞

⎠

2

�
∑

j∈Z

|(∂βξ aσ ( j, ξ)
)
(〈 j1〉s+|n|+μ|ϕ j1 | ∗ · · · ∗ |ϕ ji+k |) j |2

� |a|Nm
s
‖ϕ‖2(i+k)

Hs+μ̃ ,
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for some μ̃ ≥ 0. Since c is a multilinear symbol its differential can be computed explicitly
and we obtain the bounds (2.42).

Lemma 2.10 Let a ∈ SMm
i , Q ∈ M−ρj and A := OpBW(a) ◦ Q, Q ◦ OpBW(a). Then the

following holds.
(i) If i = j = 1 then A ∈Mm−ρ

2 .

(i i) If i or j are greater than 1 then A ∈ NHMm−ρ
i+ j .

Proof Let us study the case A = OpBW(a) ◦ Q. The other is similar.
(i) By using (2.20), (2.22)–(2.23), (2.38) and (2.30) (with p = 1), (2.31) one deduces that
the operator A can be expanded as in (2.30) with p = 2 with coefficients as in (2.32) where

rσ1,σ22 ( j, j1, j2, j3) := aσ1(σ1 j1,
j − σ1 j1

2
)χ
( 2| j1|
〈 j − σ1 j1〉

)
Qσ2( j − σ1 j1, j3, j2)

σ1 j1 + σ2 j2 + j3 = j,

where ασ1(p, j), Qσ2( j, p1, p2), j, p, p1, p2 ∈ Z are respectively the coefficients of the
symbol a(x, ξ) and of the operator Q, and satisfy the bounds (2.39) and (2.34). Recalling
(2.21), one can note that

χ
( 2| j1|
〈 j − σ1 j1〉

) �= 0 ⇒ | j1| � | j | ∼ | j − σ1 j1| ≤ | j2| + | j3| � max
2
{〈 j1〉, 〈 j2〉, 〈 j3〉}.

Therefore, by (2.39) and (2.34), we get

|rσ1,σ22 ( j, j1, j2, j3)| � | j1|μ〈 j − σ1 j1〉 m max2{〈 j2〉, 〈 j3〉}μ+ρ
max1{〈 j2〉, 〈 j3〉}ρ

� max2{〈 j1〉, 〈 j2〉, 〈 j3〉}μ̃+ρ
max1{〈 j1〉, 〈 j2〉, 〈 j3〉}ρ−m ,

for some μ̃ ≥ μ. This implies A ∈Mm−ρ
2 .

(i i) It follows by Lemmata 2.2, 2.6, 2.7 and 2.4, 2.8.

Remark 2.11 Given a ∈ S� m1
1 [r , 3] and b ∈ S� m2

1 [r , 3] and reasoning as in [9, 14], one

can note that the remainder R(a, b) ∈ �
m1+m2−3
1 [r , 3].

2.2.3 Matrices of Operators

We define some special classes of linear operators on spaces of functions.

Definition 2.12 Let ρ ∈ R, p = 1, 2, q ≥ 3. We denote by M−ρp ⊗M2(C) the space of
2 × 2 matrices whose entries are operators in M−ρp . We denote by SM m

p ⊗M2(C) the
space of 2 × 2 matrices whose entries are symbols in SM m

p . Given a matrix of operators

Q ∈M−ρp ⊗M2(C) (resp. NH
−ρ
q [r ] ⊗M2(C), �

−ρ
1 [r , 3] ⊗M2(C)) we shall write

Q := (Qσ ′
σ )σ,σ ′∈{±} :=

(
Q++ Q−+
Q+− Q−−

)
(2.44)

where Qσ ′
σ ∈M−ρp denote the entries of the matrix Q.

Similar definitions and notations are used when we consider NH−ρq [r ], �−ρ1 [r , 3] instead of
M−ρp .
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Along the paper we shall consider special subspaces ofmatrix valued operators introduced
above.

Definition 2.13 Let ρ ∈ R, p ∈ N ∪ {0}, 0 < r ≤ 1 and let Q ∈M−ρp .
(i) We define the operator Q as

Q[h] := Q[h], h ∈ Hs(T). (2.45)

(ii) We say that a matrix of linear operators Q ∈ M−ρp ⊗M2(C) is real-to-real (or reality
preserving) if it has the form (see (2.44))

Q :=
(
Q++ Q−+
Q−+ Q++

)

, i.e. Q−σ
′

−σ = Qσ ′
σ , ∀ σ, σ ′ ∈ {±} , (2.46)

for some Q++, Q−+ ∈M−ρp .
(iii) We say that a matrix of linear operators Q ∈M−ρp ⊗M2(C) is real if it has the form

Q :=
(
Q+ Q−
Q− Q+

)
, where Q+ := Q++ , Q− := Q−+ , Qσ = Qσ (2.47)

for some Q++, Q−+ ∈M−ρp .
Similar definitions and notations are used when we consider NH−ρq [r ], �−ρ1 [r , 3] instead of
M−ρp .

Recall the spaces Hs(T) defined in (1.5). One can easily check that a real-to-real linear
operator Q preserves the spaces Hs(T). We also observe that a real matrix is real-to-real.
On the space H0(T) we define the scalar product

(U , V )L2 :=
∫

T

U · Vdx, U = [ uu
]
, V = [ vv

]
. (2.48)

Given an operator Q of the form (2.47) we denote by Q∗ its adjoint with respect to the
scalar product (2.48), i.e.

(QU , V )L2 = (U ,Q∗V )L2 , ∀ U , V ∈ H0(T) . (2.49)

One can check that

Q∗ :=
(
(Q+)∗ (Q−)∗

(Q−)∗ (Q+)∗

)
(2.47)=
(
(Q+)∗ (Q−)∗
(Q−)∗ (Q+)∗

)
, (2.50)

where (Q+)∗ and (Q−)∗ are respectively the adjoints of the operators Q+ and Q− with
respect to the standard complex scalar product on L2(T;C).
Definition 2.14 LetQ ∈M−ρp ⊗M2(C) be a real linear operator of the form (2.47). We say
that Q is:

• self-adjoint if
(Q+)∗ = Q+ , Q− = (Q−)∗ . (2.51)

• Hamiltonian if
Q = iEA , E = [ 1 0

0 −1
]
, (2.52)

where A ∈M−ρp ⊗M2(C) is a self-adjoint operator matrix.
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Similar definitions are used when we consider operators inNH−ρq [r ]⊗M2(C),�
−ρ
1 [r , 3]⊗

M2(C).

Consider now a symbol a(x, ξ) ∈ S� m
1 [r , 3] and set A := OpW(a(x, ξ)). Using (2.20)

one can check that (recall (2.45))

A = OpW(a(x,−ξ)) , A∗ = OpW
(
a(x, ξ)

)
. (2.53)

By (2.53) we deduce that the operator A is self-adjoint with respect to the standard scalar
product on L2(T;C) if and only if the symbol a(x, ξ) is real valued.

We need the following definition. Consider two symbols a, b ∈ N m
s and the matrix

A := A(x, ξ) :=
(

a(x, ξ) b(x, ξ)

b(x,−ξ) a(x,−ξ)
)
.

Define the operator

M := OpW(A(x, ξ)) :=
(

OpW(a(x, ξ)) OpW(b(x, ξ))

OpW(b(x,−ξ)) OpW(a(x,−ξ))

)

. (2.54)

For the matrix of pseudo-differential operators defined above the following facts hold:

• Real-to-real: by (2.53) we have that the operator M in (2.54) has the form (2.46), hence
it is real-to-real;

• Self-adjointeness: using (2.53) the operator M in (2.54) is self-adjoint with respect to the
scalar product (2.48) if and only if (recall (2.51))

a(x, ξ) = a(x, ξ) , b(x,−ξ) = b(x, ξ) . (2.55)

• Reality: if both the symbols a(x, ξ), b(x, ξ) are real valued we have that the operator M
in (2.54) has the form (2.47), hence it is real and self-adjoint.

Definition 2.15 (Symplectic map) Let Q ∈ M−ρp ⊗M2(C) (resp. NH
−ρ
p [r ] ⊗M2(C) or

�
−ρ
1 [r , 3]⊗M2(C)) be a real-to-real (or real) linear operator of the form (2.46) (or (2.47)).

We say that Q is symplectic if
Q∗(iE)Q = iE . (2.56)

3 Birkhoff Normal Form

In this section we construct a suitable normal form for the Klein–Gordon Hamiltonian H
in (2.12). This is the content of Proposition 3.9. This normal form procedure presents small
divisors problems. Estimates on such small divisors are provided by Lemma 3.8. In Sect. 3.1
we recall some properties of homogeneous Hamiltonian functions. In Sect. 3.3 we construct
the oscillating function which approximate the dynamics of the Klein–Gordon.

3.1 Homogenous Hamiltonians

Let F be a homogenous Hamiltonian of the form

F(Z) =
∑

π(�σ , �j)=0
F�σ , �j z

σn
j1
. . . zσnjn , Z = [ zz

]
, (3.1)
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where �σ := (σ1, . . . , σn) is a n-dimensional vector of signs {±}, �j := ( j1, . . . , jn) ∈ Z
n ,

z+j := z j , z
−
j := z j , F�σ , �j ∈ C and

π(�σ , �j) :=
n∑

i=1
σi ji . (3.2)

The equalityπ(�σ, �j) = 0 encodes the fact that F commuteswith themomentumHamiltonian

M := − i

2
(Zx , Z )H0(T) =

∑

j∈Z

j |z j |2.

If we want to highlight the degree of homogeneity of the Hamiltonian F we shall write
F = F (n).
Fixed a subset S of Z, we define for 0 ≤ k ≤ n

An,k :=
{
(�σ , �j) ∈ {±}n × Z

n : there are exactly indexes ji that belong to S, π(�σ, �j) = 0
}
.

We define also

An,≤k :=
⋃

i≤k
An,i , An,≥k :=

⋃

i≥k
An,i ,

and

F (n,k) =
∑

An,k

F�σ, �j z
σn
j1
. . . zσnjn .

Analogously one can define F (n,≤k) and F (n,≥k) replacing An,k with An,≤k and An,≥k
respectively. We define the projections

�(n,k)F = F (n,k) , �(n,≤k)F = F (n,≤k) , �(n,≥k)F = F (n,≥k) . (3.3)

Remark 3.1 By the conservation of momentum, if S is a finite set thenAn,≤1 is finite, for all
n ∈ N.

Definition 3.2 (Resonances) Let n ≥ 0. We say that (�σ , �j) ∈ {±}n ×Z
n is a resonance, or a

n-resonance, if

�(m; �σ , �j) := �(�σ , �j) :=
n∑

i=1
σi�( ji ) = 0 , π(�σ, �j) = 0 . (3.4)

We say that a n-resonance (�σ, �j) is trivial if if n is even and, up to permutations, one has

�j = ( j, j, k, k, . . . ), �σ = (+,−,+,−, . . . ).
Definition 3.3 (Resonant monomials)
•We say that zσ1j1 . . . z

σn
jn
is a resonant monomial if (�σ, �j) is a resonance.

• A resonant monomial zσ1j1 . . . z
σn
jn
is said action-preserving if it depends only on the square

modulus (or actions) |z ji |2.
•Given a homogenousHamiltonian F of degree n as in (3.1)we denote by Fres the projection
of F on the space of resonant monomials.
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Remark 3.4 Using the conservation of momentum, one can prove that actually all 4-
resonances are trivial. This means that the only resonant monomials of degree 4 are
action-preserving. We prove this in Lemma 3.8-(iv).

Definition 3.5 We denote by adH (2) (·) := {·, H (2)} the adjoint action of the Hamiltonian
H (2). We denote by �Ker and �Rg the projections on the kernel and the range of the
adjoint action respectively. We observe that�Ker is the projection on the space of resonant
monomials.

Definition 3.6 Let E be a subset of Z. Let us define the subspace

VE :=
{
Z = 1√

2π

∑

j∈Z

Z j e
i j x : Z j = 0 j /∈ E

}
. (3.5)

We denote with �VE the projection on the subspace VE .
If E is a finite subset and a vector field X has image contained in VE then we say that X

has finite rank or it is a finite rank vector field.

In the following lemma we provide estimates for the vector fields associated to the gen-
erators of the Birkhoff maps. With an abuse of notation we denote L∞(T) × L∞(T) by
L∞(T).

Lemma 3.7 Let n ≥ 3 and S ⊂ Z be a finite set. Let F be a homogenous Hamiltonian of
degree n as in (3.1) such that

F = F (n,≤1) and [[F]] := sup
(�σ, �j)
|F�σ, �j | <∞ . (3.6)

Then the following holds:

(i) We have the estimates

‖XF (Z)‖Hs �s [[F]]‖Z‖n−2L∞ ‖Z‖H0 , ‖XF (Z)‖L∞ � [[F]]‖Z‖n−1L∞ ,

∀Z ∈ H0(T) ∩ L∞(T),
‖(dXF )(Z)[Z̃ ]‖Hs �s [[F]]‖Z‖n−2L∞ ‖Z̃‖H0 , ∀Z̃ ∈ H0(T),

‖(dXF )(Z)[Z̃ ]‖L∞ � [[F]]‖Z‖n−2L∞ ‖Z̃‖L∞ , ∀Z̃ ∈ L∞(T).

(ii) If G is another homogenous Hamiltonian of degree m then {F,G} is a homogenous
Hamiltonian of degree n + m − 2 such that its vector field has finite rank and the
following estimate holds

‖X{F,G}‖Hs �s [[F]][[G]]‖Z‖n+m−4L∞ ‖Z‖H0 ∀Z ∈ H0(T) ∩ L∞(T).

Proof By Remark 3.1 the assumption (3.6) guarantees that the vector field XF has finite
rank. In particular its image is contained in VEn (recall (3.5)) where En := (n − 1) S. Then
‖XF (Z)‖Hs ≤ C‖XF (Z)‖H0 where C > 0 is a constant depending on the index s and on
the set S. For some constant C∗ > 0 we have

‖XF (Z)‖H0 ≤ C∗[[F]]‖Ẑ ∗ · · · ∗ Ẑ‖�2 = C∗ [[F]]‖Zn−1‖H0 ≤ C∗[[F]]‖Z‖n−2L∞ ‖Z‖H0 ,

where we denoted by Ẑ the sequence of the Fourier coefficients of Z . This concludes the
proof of the first bound in item (i). The third follows similarly using the fact that XF is a
multilinear operator (see (3.1)).
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Regarding the second bound, we have that ‖Z‖L∞ ≤ ‖Z‖�1 , where

‖Z‖�1 :=
1√
2π

∑

j∈Z

|Z j |.

Therefore by Young inequality

‖XF (Z)‖L∞ ≤ ‖XF (Z)‖�1 � [[F]]√
2π

∑

j∈E
|
∑

∑n−1
i=1 σi ji= j

zσ1j1 . . . z
σn−1
jn−1 | � [[F]]

( 1√
2π

∑

j∈En

|Z j |
)n−1

,

for some E ⊆ En . By noticing that |Z j | ≤
√
2π‖Z‖L∞ we get the second bound in (i). The

fourth bound is obtained in the same way using that dXF is a homogenous polynomial of
degree n − 1.
Item (i i) follows using formula (2.15) and reasoning as in the proof of item (i). We observe
that the support of the Hamiltonian {F,G} is contained in the support of F , which is finite,
hence X{F,G} has finite rank.

The following lemma provides lower bounds on the function �(�σ, �j) in (3.4).

Lemma 3.8 (Small divisors) Let S be a finite subset of Z. There exists a full measure set
M ⊂ [1, 2] such that for all m ∈M the following holds:

(i) if n = 3, 5 then �(�σ , �j) �= 0 for all (�σ, �j) ∈ An,≤1;
(ii) if n = 4 and (�σ , �j) ∈ An,≤1 is such that �(�σ, �j) = 0 then (�σ , �j) ∈ An,0. Moreover the

4-resonances are trivial, namely they have the following form (up to permutations)

�j = ( j, j, k, k) , �σ = (+,−,+,−) . (3.7)

(iii) If n = 3 and π(�σ, �j) = 0 then

|�(�σ, �j)| ≥ m

2
√
j2 + m

, (3.8)

where | j | = mini=1,2,3 | ji |.
(iv) If n = 4, π(�σ, �j) = 0 and (�σ, �j) is not a trivial resonance (recall Def. 3.2) then

|�(�σ, �j)| ≥ c∗
m

(
√
j2 + m)3

, (3.9)

where | j | = mini=1,2,3,4 | ji | and for some absolute constant c∗ > 0.
(v) For any m ∈M and for n = 5 one has

|�(m; �σ , �j)| > γ , (3.10)

for some γ > 0 depending only on S, for any (�σ, �j) ∈ A5,≤1.

Proof First of all, given (�σ , �j) ∈ {±}n × Z
n , n ≥ 3, without loss of generality we can

consider | j1| ≥ · · · ≥ | jn | ≥ 0. We have to give lower bounds for the resonant combinations
of the ji ’s with any possible choice of the signs σi . To simplify the notation we shall write
(recall (3.2), (3.4))

�σ1,...,σn (m) := �(m; �σ , �j), πσ1,...,σn := π(�σ , �j).
Proof of item (i i i). First we observe that�++−(m),�+−+(m) ≥ �−++(m). Hence we can
find a bound from below just for �−++(m). We have First we note that

�−++(0) = −| j1| + | j2| + | j3| ≥ 0,
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since π−++ = − j1 + j2 + j3 = 0. Secondly we also note that

�′−++(m) = 1

2

(
− 1

�( j1)
+ 1

�( j2)
+ 1

�( j3)

)
≥ 1

2�( j3)
,

where �( j) is in (2.5). Then we have

�−++(m) = �−++(0)+
∫ m

0
�′−++(m̃) dm̃ ≥ m

2
√
j23 + m

,

which is the bound (3.8).
Proof of item (iv). The interesting cases are when there are 3 and 2 plus signs. For the first
case we reason as before. We have �+−++(m), �++−+(m), �+++−(m) ≥ �−+++(m).
Hence we study the latter case. Recalling again that

π−+++ = − j1 + j2 + j3 + j4 = 0,

we observe that

�−+++(0) = −| j1| + | j2| + | j3| + | j4| ≥ 0, �′−+++(m) ≥ 1

2�( j4)
.

Then we obtain

�−+++(m) ≥ m

2
√
j24 + m

.

For the case of 2 plus signs we have �+−+−(m),�++−−(m) ≥ �+−−+(m). All the other
cases are obtained by a global change of sign. Let us now write

�+−−+(m) := �(m) =
√
j21 + m −

√
j22 + m −

√
j23 + m +

√
j24 + m.

We notice that �+−−+(m) vanishes identically on 4-resonances (�σ, �j) of the form
�j = ( j,± j, k,±k), �σ = (+,−,−,+),

up to permutations. Actually we claim that the above resonances are trivial. Indeed, up to
permutations, we have the following cases.

The first case is when �j = ( j, j, k, k) or �j = ( j, j,−k,−k), �σ = (+,−,−,+) which
are obviously trivial. The second case is when �j = ( j,− j, k,−k), �σ = (+,−,−,+). Then
(recall (3.2)), by the conservation of momentum, we have π(�σ, �j) = 2 j − 2k = 0, which
implies that j = k. Then (�σ, �j) has the form (3.7). The other case is �j = ( j,− j, k, k),
�σ = (+,−,−,+). Then π(�σ, �j) = 2 j = 0. Again (�σ , �j) has the form (3.7). This proves
the claim.

Hence, recalling the momentum conservation j1 − j2 − j3 + j4 = 0, and assuming that
(�σ , �j) is not a trivial resonance (see Def. 3.2), we can follow Lemma 7.2 in [7] to obtain the
lower bound

�(m) ≥ c∗
m

(

√
j24 + m)3

for some absolute constant c∗ > 0. This implies (3.9) and concludes the proof of item (iv).
Proof of item (i i). By item (iv) proved above we know that �(�σ , �j) = 0 only if (�σ , �j) is a
trivial resonance, i.e. if it has the form (3.7). This implies item (i i)
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Proof of items (i) and (v). By section 5 in [22] we have that for almost every mass m, there
are c > 0 and N ∈ N such that (see (3.4))

|�(m; �σ , �j)| ≥ c(1+ | j1|2 + · · · + | jn |2)−N
for any (�σ, �j) ∈ {±}n×Z

n and n odd. We are only interested in the case n = 3, 5. Moreover,
taking (�σ, �j) ∈ An,≤1, n = 3, 5, we have, by Remark 3.1, that only a finite number of choices
of (�σ, �j) are possible. Hence, the bound above implies that actually |�(m; �σ , �j)| ≥ γ for
some constant γ depending only on the set of indexes S. Therefore bound (3.10) and item
(i) follow. This concludes the proof.

3.2 Partial Birkhoff Normal Form

In this subsection we prove the following result.

Proposition 3.9 Let S be a finite subset of Z and M the set defined in Lemma 3.8. Then for
all m ∈M and for all s ≥ 0 there exists C(s) > 0 such that for all r > 0 satisfying

C(s) r ≤ 1 , (3.11)

the followingholds. There exists a finite set E ⊂ Z such that S ⊂ E andananalytic, invertible,
symplectic change of variablesB : B1(Hs(T))∩Br (L∞(T))→ B2(Hs(T))∩B2r (L∞(T))
of the form

B = I +�VE�VE , B(Z) =: W , (3.12)

with

‖B(Z)− Z‖Hs �s r‖Z‖H0 , (3.13)

‖(dB(Z))Z̃ − Z̃‖Hs �s r‖Z̃‖H0 , ∀ Z̃ ∈ H0(T) , (3.14)

such that the Hamiltonian H in (2.12) is transformed in

H := H ◦−1B = H (2) + H (3,≥2) +H(4,0)
res +H(4,≥2) +H(5,≥2) +R(≥6) , (3.15)

whereH(4,≥2),H(5,≥2) and R(≥6) generate a finite rank vector field. Moreover

(i) H(4,0)
res is a action-preserving Hamiltonian of the form

H(4,0)
res (W ) = 1

2

∑

j,k∈S
C jk |w j |2|wk |2 , C jk ∈ R , C jk = Ck j . (3.16)

(ii) The remainder XR(≥6) is a smooth function with a zero at the origin of order 6 and

‖XR(≥6) (W )‖Hs �s ‖W‖4L∞‖W‖Hs , ∀W ∈ Hs(T) . (3.17)

Moreover the vector fields XH(4,≥2) , XH(5,≥2) are homogenous of degree 4 and 5 respec-
tively and satisfy

‖XH(4,≥2) (W )‖Hs �s ‖W‖2L∞‖W‖Hs ,

‖XH(5,≥2) (W )‖Hs �s ‖W‖3L∞‖W‖Hs .
(3.18)

(iii) Let ϕ ∈ Br (Hs(T)). Then the linearized operator (dXR(≥6) )(ϕ)[·] belongs to the class

NH−ρ4 [r ] (see Def. 2.3) for any ρ ≥ 0. In particular one has

‖(dXR(≥6) )(ϕ)[W ]‖Hs �s ‖ϕ‖4Hs‖W‖Hs ,

‖(d2XR(≥6) )(ϕ)[W1,W2]‖Hs �s ‖ϕ‖3Hs‖W1‖Hs‖W2‖Hs ,
(3.19)
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for any W ,W1,W2 ∈ Hs(T).

The inverse map −1B fulfils bounds like (3.13)–(3.14).

Proof The map B is constructed in three steps.
First step: Let us consider the homogenous Hamiltonian (recall (3.4))

F (3) =
∑

A3,≤1
F (3)
�σ , �j z

σ1
j1
zσ2j2 z

σ3
j3
, F (3)

�σ, �j :=

⎧
⎪⎨

⎪⎩

H (3,≤1)
�σ , �j

i�(�σ , �j) if �(�σ , �j) �= 0,

0 if �(�σ, �j) = 0.

By definition the Hamiltonian F (3) solves the homological equation

{F (3), H (2)} + H (3,≤1) = �KerH
(3,≤1) . (3.20)

By item (i) of Lemma 3.8 we have that �KerH
(3,≤1) = 0. We observe that by Remark 3.1

the equation Ż = XF (3) (Z) is an analytic finite dimensional ODE. In particular the image of
XF (3) is contained in a subspace of the form (3.5). Then it is flowt

3 is well defined, at least
for small times, and analytic. Since F (3) is a homogenous Hamiltonian of degree 3, then the
vector field XF (3) is a homogenous function of degree 2. Moreover by the lower bound (3.8)
on the 3-resonances and the fact that [[H (3)]] � 1 we have

[[F (3)]] � 1 . (3.21)

Since F (3) is homogenous, in a sufficiently small neighbourhood of the origin the flow t
3

is defined for times t ∈ [0, 1]. We call 3 := 1
F (3) . We claim that

‖t
3(Z)‖Hs ≤ 2‖Z‖Hs , ‖t

3(Z)‖L∞ ≤ 2‖Z‖L∞ , ∀t ∈ [0, 1] , (3.22)

for Z ∈ B1(Hs(T)) ∩ Br (L∞(T)) for r > 0 small enough.
We start by proving the bound for the L∞-norm.We use a bootstrap argument. Let us call

T∗ := sup{T ≥ 0 : ‖t
3(Z)‖L∞ ≤ 2‖Z‖L∞}.

We observe that T∗ > 0. Assume that T∗ ≥ 1. We shall prove that at time t = 1 a better
estimate on ‖t

3(Z)‖L∞ holds and then T∗ has to be greater than 1. We have that

t
3(Z) = Z +

∫ t

0
XF (3) (

τ
3(Z)) dτ, (3.23)

then, by Lemma 3.7-(i) and using that Z ∈ B1(Hs(T))∩Br (L∞(T)), we have for t ∈ [0, T∗)

‖t
3(Z)‖L∞ ≤ ‖Z‖L∞ + 2C [[F]]r

∫ t

0
‖τ

F (3) (Z)‖L∞ dτ,

for some universal constant C > 0. By Gronwall Lemma

‖t
3(Z)‖L∞ ≤ ‖Z‖L∞ exp(2C[[F]]r t).

Then taking r � (2C[[F (3)]])−1 we have that ‖1
F (3) (Z)‖L∞ ≤ (3/2)‖Z‖L∞ . Hence we

proved the claim on the bound of the L∞-norm. Now we prove the one on the Hs norm. By
Cauchy–Schwarz and Lemma 3.7-(i) we have, for Z ∈ B1(Hs(T)) ∩ Br (L∞(T)),

d

dt
‖t

3(Z)‖2H0 � ‖XF (3) (
t
3(Z))‖H0‖t

3(Z)‖H0

� ‖t
3(Z)‖L∞‖t

3(Z)‖2H0 � 2r‖t
3(Z)‖2H0 .
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Again by Gronwall Lemma we have ‖t
3(Z)‖2H0 ≤ ‖Z‖2H0 exp(2rCt) for all t ∈ [0, T∗).

Taking r � (2rC)−1 we get ‖t
3(Z)‖H0 ≤ 2‖Z‖H0 for all t ∈ [0, 1]. By (3.23) and Lemma

3.7-(i)

‖t
3(Z)‖Hs ≤ ‖Z‖Hs + C(s)[[F (3)]]

∫ t

0
‖τ

3(Z)‖L∞ ‖τ
3(Z)‖H0 dτ

≤ ‖Z‖Hs + 2C(s)[[F (3)]]r
∫ t

0
‖τ

3(Z)‖Hs dτ ,

for some constant C(s) > 0 depending on s. Reasoning as for the bound of the L∞-norm
we get the estimate ‖t

3(Z)‖Hs ≤ 2‖Z‖Hs for all t ∈ [0, 1].
Now we claim that

‖dt
3(Z)[Z̃ ]‖Hs ≤ 2‖Z̃‖Hs , ‖dt

3(Z)[Z̃ ]‖L∞ ≤ 2‖Z̃‖L∞ ∀t ∈ [0, 1] , (3.24)

for Z ∈ B1(Hs(T)) ∩ Br (L∞(T)) for r > 0 small enough. We have

dt
3(Z)[Z̃ ] = Z̃ +

∫ t

0
dXF (3) (

τ
F (3) (Z)) [dτ

F (3) (Z)[Z̃ ]] dτ . (3.25)

By Lemma 3.7-(i) and (3.22) we have

‖dt
3(Z)[Z̃ ]‖L∞ ≤ ‖Z̃‖L∞ + 2C[[F (3)]]r

∫ t

0
‖dτ

F (3) (Z)[Z̃ ]‖L∞ dτ

for some universal constant C > 0. Taking r small enough and using Gronwall Lemma we
obtain the bound for the L∞-norm in (3.24). In the same way one can prove the bound for
the Hs-norm.

By Lemma 3.7, bounds (3.21), (3.22) and the expression (3.23) we have for all Z ∈
B1(Hs(T)) ∩ Br (L∞(T))

‖3(Z)− Z‖Hs ≤ sup
t∈[0,1]

‖XF (3) (
t
3(Z))‖Hs

�s sup
t∈[0,1]

‖t
3(Z)‖L∞‖t

3(Z)‖H0 �s r‖Z‖H0 ,
(3.26)

which is a bound like (3.13). By using the estimates (3.24) we obtain a similar bound for the
differential dt

3. For the inverse of 3 a similar estimate holds.
We obtain the new Hamiltonian by Taylor expanding H ◦t

3 at t = 0. Hence

H1 := H ◦−13 = H + {F (3), H} +
3∑

p=2

1

p! {F
(3), {F (3), . . .
︸ ︷︷ ︸

p−times

, H} · · · } +R
(≥6)
1

(3.20)= H (2) + H (3,≥2) + H (4)
1 + H (5)

1 +R
(≥6)
1

with

H (4)
1 := 1

2
{F (3), H (3,≤1)} + {F (3), H (3,≥2)} ,

R
(≥6)
1 := 1

3!
∫ 1

0
(1− t)4{F (3), {F (3), {F (3), {F (3), H}}}} ◦−t3 dt ,

and where H (5)
1 collect all the terms of degree of homogeneity 5. By (3.21) and the fact that

XF (3) is finite rank we have

[[H (5)
1 ]] � 1, [[{F (3), {F (3), {F (3), {F (3), H}}}}]] � 1.

123



Journal of Dynamics and Differential Equations

We observe that H1 − H (2) − H (3,≥2) generates a finite rank vector field. Moreover, using
that

X
R

(≥6)
1
= 1

3!
∫ 1

0
(1− t)4dt

3[XF (3) , [XF (3) , [XF (3) , [XF (3) , XH ]]]] ◦−t3 dt,

Lemma 3.7-(i) and the estimates (3.22), (3.24) on the map 3 and its differential one can
check that X

R
(≥6)
1

has a zero at the origin of order at least 5 and it satisfies (3.17) and (3.19).

Second step: Now we look for a transformation that normalizes the term H (4,≤1)
1 . Let us

consider the homogenous Hamiltonian

F (4) =
∑

A4,≤1
F (4)
�σ , �j z

σ1
j1
zσ2j2 z

σ3
j3
zσ4j4 , F (4)

�σ , �j :=

⎧
⎪⎪⎨

⎪⎪⎩

H (4,≤1)
�σ , �j

i�(�σ, �j) if �(�σ, �j) �= 0

0 if �(�σ, �j) = 0.

By definition the Hamiltonian F (4) solves the homological equation

{F (4), H (2)} + H (4,≤1)
1 = �KerH

(4,≤1)
1 . (3.27)

By item (i i) of Lemma 3.8 we have that �KerH
(4,≤1)
1 = �KerH

(4,0)
1 . By Remark 3.4

�KerH
(4,0)
1 is a homogenous Hamiltonian action-preserving of degree 4, then it has the

form (3.16). By Lemma 3.8-(iv) and by considering that A4,≤1 is finite we have

[[F (4)]] � 1.

Reasoning as in the first step and using item (i) of Lemma 3.7 we have that the flow

t
F (4) : B1(H

s(T)) ∩ Br (L
∞(T))→ B2(H

s(T)) ∩ B2r (L
∞(T))

for times t ∈ [0, 1] and r > 0 small enough (satisfying a condition like (3.11)), has estimates
as in (3.22) (and similar for its differential as in (3.24)). We call 4 := 1

F (4) and we have,
reasoning as in (3.26),

‖4(Z)− Z‖Hs �s r
2‖Z‖H0 , ∀Z ∈ B1(H

s(T)) ∩ Br (L
∞(T)) . (3.28)

Using the smallness condition (3.11), we have that (3.28) implies a bound like (3.13). The
bound (3.14) follows by reasoning as in the previous step. We obtain the new Hamiltonian
by Taylor expanding H ◦−t

F (4) at t = 0

H2 := H ◦−14 = H1 + {F (4), H1} +
∫ 1

0
(1− t){F (4), {F (4), H1}} ◦−tF (4) dt

(3.27)= H (2) + H (3,≥2) +�KerH
(4,0)
1 + H (4,≥2)

1 + H (5)
2 +R

(≥6)
2

with

H (5)
2 = {F (4), H (3,≥2)} + H (5)

1 ,

R
(≥6)
2 := R

(≥6)
1 + {F (4), H (4)

1 +R
(≥6)
1 } +

∫ 1

0
(1− t){F (4), {F (4), H1}} ◦t

F (4) dt .

We have

[[H (5)
2 ]] � L2, [[{F (4), {F (4), H1}}]] � 1.
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We observe that H (4,≥2)
1 , H (5)

2 ,R
(≥6)
2 generate finite rank vector fields. Moreover, reasoning

as in the previous step, one can check that X
R

(≥6)
2

has a zero at the origin of order at least 5

and satisfies (3.17), (3.19).
Third step:Wewant to normalize H (5,≤1)

2 . Let us consider the homogenous Hamiltonian

F (5) =
∑

A5,≤1
F (5)
�σ , �j z

σ1
j1
zσ2j2 z

σ3
j3
zσ4j4 z

σ5
j5
, F (5)

�σ, �j :=

⎧
⎪⎪⎨

⎪⎪⎩

H (5,≤1)
�σ, �j

i�(�σ , �j) if �(�σ , �j) �= 0

0 if �(�σ, �j) = 0.

By definition the Hamiltonian F (5) solves the homological equation

{F (5), H (2)} + H (5,≤1)
2 = �KerH

(5,≤1)
2 .

By item (i i) of Lemma 3.8 we have that�KerH
(5,≤1)
2 = 0. By item (i i i) of Lemma 3.8 and

by considering that A5,≤1 is finite we have

[[F (5)]] � 1.

Reasoning as in the first step and using item (i) of Lemma 3.7 we have that the flow

t
F (5) : B1(H

s(T)) ∩ Br (L
∞(T))→ B2(H

s(T)) ∩ B2r (L
∞(T))

for times t ∈ [0, 1] and r > 0 satisfying a condition like (3.11), has estimates as in (3.22)
(and similar for its differential as in (3.24)). We call 5 := 1

F (5) and we have, reasoning as
in (3.26),

‖5(Z)− Z‖Hs �s r
3‖Z‖H0 , ∀Z ∈ Br (L

∞(T)) . (3.29)

Using the smallness condition (3.11) (takinga > 0 large enough), we have that (3.29) implies
a bound like (3.13). The bound (3.14) follows by reasoning as in the previous step using the
fact that5 is the time one flow map generated by the vector field XF (5) . We obtain the new
Hamiltonian by Taylor expanding H ◦−t

F (5) at t = 0

H3 := H ◦−15 = H2 + {F (5), H2} +
∫ 1

0
(1− t){F (5), {F (5), H2}} ◦−tF (5) dt

(3.27)= H (2) + H (3,≥2) +�KerH
(4,0)
1 + H (4,≥2)

1 + H (5,≥2)
2 +R

(≥6)
3

with

R
(≥6)
3 := R

(≥6)
2 + {F (5), H (4)

1 + H (5)
2 +R

(≥6)
2 } +

∫ 1

0
(1− t){F (5), {F (5), H2}} ◦−tF (5) dt .

We observe that H (4,≥2)
1 , H (5,≥2)

2 ,R
(≥6)
3 generate finite rank vector fields. Moreover, rea-

soning as in the previous step, one can check that X
R

(≥6)
3

has a zero at the origin of order at

least 5 and satisfies (3.17), (3.19).
Now we define

B := 5 ◦4 ◦3, R(≥6) := R
(≥6)
3 .

Then formula (3.15) holds. Since each Birkhoff map has the form (3.12) then B has the
same form. By the estimates (3.26), (3.28), (3.29) and using the smallness condition (3.11)
we obtain (3.13). The bound (3.14) follows by composition since the maps i , i = 3, 4, 5
satisfies the same properties.
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3.3 The Dynamics of the Normalized Hamiltonian

Let S ⊂ Z be any finite set. In this section we study the dynamics of the first order of the
Hamiltonian which has been normalized following the procedure described in Proposition
3.9. We call

N = H (2) + H (3,≥2) +H(4,0)
res +H(4,≥2) +H(5,≥2) (3.30)

the Hamiltonian in the Birkhoff coordinates B provided by Proposition 3.9, up to the
remainder R(≥6). We observe that the vector field of H (3,≥2) +H(4,≥2) +H(5,≥2) vanishes
on the finite dimensional subspace

US = {wn = 0 n /∈ S}.
The restricted Hamiltonian N|US coincides then with

Hres = H (2) +H(4,0)
res . (3.31)

Thus, the equations of motion read as

ẇn = i

(

�(n)+
∑

k∈S
Cnk |wk |2

)

wn, n ∈ S. (3.32)

For all subsets S̃ ⊆ S the subspace

VS̃ = {wn = 0 n /∈ S̃}
is invariant by the flow of (3.32). The actions |w j |2, j ∈ S are all conserved quantities.
Then the complementary of

⋃
S̃⊂S VS̃ is foliated by maximal (n-dimensional) invariant tori

{|w j |2 = ξ j , j ∈ S} with ξ j > 0, j ∈ S. They support quasi-periodic motions given by

ϕ(ξ, θ; t, x) =
∑

j∈S

√
ξ j e

i(θ j+ω j (ξ)t+ j x) , ξ = (ξ j ) j∈S, θ = (θ j ) j∈S θ j ∈ T ,

(3.33)
where the frequency vector has components

ω j (ξ) = �( j)+
∑

k∈S
C jk ξk j ∈ S . (3.34)

We observe that these frequencies can be very close to resonant, depending on the choice of
the ξ j ’s. The subspaces VS̃ are foliated by lower dimensional invariant tori supporting the
quasi-periodic motions

ϕ(ξ, θ; t, x) =
∑

j∈S̃

√
ξ j e

i(θ j+ω j (ξ)t+ j x), θ j ∈ T.

4 Setting of the Problem in the Birkhoff Coordinates

Let us fix some N ∈ N and consider a finite symmetric subset such that

S = { j1, . . . , jN } ⊂ Z , j ∈ S ⇒ − j ∈ S,

j /∈ S ⇔ | j | > max
k∈S {|k|} .

(4.1)
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We need the above properties of the set S only for then construction of the modified energy
on high frequencies in Sect. 5.2.2, see Lemma 5.16. Consider the new variables

W := [ww
] := B(Z)

where B is the Birkhoff map constructed in Proposition 3.9 applied with S as in (4.1). By
the symplectic nature of the Birkhoff map we have that, the equation ∂t Z = XH (Z) with H
in (2.12), becomes

∂tW = XH(W ) , (4.2)

where XH is the vector field of the new HamiltonianH = H ◦−1B in (3.15).

4.1 The Approximate Solution

We consider a solution ϕ(t, x) of the normalized Hamiltonian systemNwith initial condition
on the subspace VS . We could consider also solutions with initial data in VS̃ with S̃ ⊂ S
symmetric without relevant changes in the proof.

The function ϕ(t, x) = ϕ(ξ, θ; t, x) has the form (3.33), where ξ = (ξ j ) j∈S can be
any vector with positive components and θ = (θ j ) j∈S is any vector of angles. Since the
normalized change of coordinates B provided in Proposition 3.9 is well defined only on a
small neighbourhood of the origin of L∞, it is convenient to rescale the actions ξ j �→ ε2ξ j ,
with ε > 0 small enough such that if ε = r condition (3.11) is satisfied. Then the rescaled
solution has the form

εϕ(t, x) = ε
∑

j∈S

√
ξ j e

i(θ j+ω j (ξ)t+ j x) . (4.3)

We observe that
sup
t∈R

‖εϕ‖Hs � ε ∀s ≥ 0. (4.4)

In the following we shall assume further smallness conditions on the parameter ε. Such
conditions can all be written in the following form

Csε < 1 , (4.5)

for some constant Cs > 0 depending on s > 1/2 and the set S.
The next lemma shows that the functions εϕ constructed in (4.3) are approximate solutions

of the Hamiltonian equation given byH.

Lemma 4.1 Let s > 1/2. There Cs > 1 such that if (4.5) holds, then the residual

ResH(εϕ) := −ε∂tϕ + XH(εϕ) (4.6)

satisfies
sup

t∈[0,T ]
‖ResH(εϕ)‖Hs �s ε

5 . (4.7)

Proof We have that XH = XN + XR(≥6) . Since εϕ is a solution of the Hamiltonian system
given by N we have

ResH(εϕ) = XR(≥6) (εϕ).

Then the thesis follows by estimates (3.17) and (4.4) taking ε small enough.
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4.2 The Error Function in Birkhoff Coordinates

We set
εβV := W − εϕ , for β > 2, (4.8)

where εϕ is the approximate solution of the form (4.3), supported on a set S as in (4.1),
and with frequencies of oscillation given in (3.34). We also recall that estimate (4.4) holds
true. Then the error function V in the Birkhoff coordinates solves the equation (recall the
definition of ResH in (4.6))

V̇ = dXH(εϕ)[V ] + εβQ(εϕ)[V , V ] + ε−βResH(εϕ) , (4.9)

where

Q(εϕ)[V , V ] :=
∫ 1

0
(1− t) d2XH(εϕ + tεβV )[V , V ] dt . (4.10)

In the next proposition we show that the control on the function V implies the main result
Theorem 1.1.

Proposition 4.2 There is Cs > 1 such that if

sup
t∈[0,T ]

εβ‖V ‖Hs ≤ 2εβ , β > 2 ,

sup
t∈[0,T ]

‖Z‖Hs �s ε , T = c0ε
−2−σ , σ > 0 ,

(4.11)

for some c0 > 0 and with ε satisfying (4.5), then the error εβ R := Z−εϕ satisfies the bound

sup
t∈[0,T ]

εβ‖R‖Hs �s ε
2 . (4.12)

Proof Recall that Z = −1B (W ). Then, by estimate (3.13) in Prop. 3.9, which holds also for
−1B , and the assumptions (4.11), (4.5) with Cs > 1 large enough, we deduce that

‖W‖Hs �s ε, and ‖Z −W‖Hs = ‖−1B (W )−W‖Hs �s ε‖W‖Hs �s ε
2,

uniformly in t ∈ [0, T ]. Then, recalling β > 2, one has

‖Z − εϕ‖Hs
(4.8)≤ ‖Z −W‖Hs + ‖εβV ‖Hs

(4.2)
�s ε2 + εβ �s ε

2,

uniformly in t ∈ [0, T ]. This implies (4.12).

The result above guarantees that in order to obtain our main result we must show that the
solution V of (4.9) satisfies the (4.11). To do this we will provide some à priori estimates on
V .
Recalling (4.9) the main issues are the following:

• Show that the term dXH(εϕ)[V ] + εβQ(εϕ)[V , V ] has a pseudo-differential structure.
This is the content of Sect. 4.3.

• In Sects. 5–6 we provide the energy estimates for the flow.
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4.3 Pseudo-Differential Structure of the Equation for the Remainder

As explained before, in the next sections we shall provide a priori bounds (see (4.11)) on
the solution V of the problem (4.9). In Sect. 3.3 we provided suitable upper bounds on the
non-homogenenous term ε−βResH(εϕ) appearing in the right hand side of (4.9) (see Lemma
4.1). Hence, we shall prove that the vector field

Y(εϕ, V ) := dXH(εϕ)[V ] +Q(εϕ)[V , V ] , (4.13)

which is nonlinear in V , generates a well-defined flow on the spaces Hs . In this subsection
we show that actually Y(εϕ, V ) has a pseudo-differential structure. We deal with the two
summands in (4.13) separately.
Define the following real symbols (recall (1.2)–(1.3))

a(U ; x) := − 1
2 (∂φxx f2)(φ, φx , φxx ) , φ = �

− 1
2√
2
(u + u) , U = [ uu

]
,

b(U ; x) := (∂φx f2)(φ, φx , φxx ) ,

c(U ; x) := (∂φ f2)(φ, φx , φxx )

d(U ; x) := −ma(U ; x)− 3

8
axx (U ; x)− 1

2
bx (U ; x)+ c(U ; x) .

(4.14)

Consider the functions in (4.8) and the symbols in (4.14) with U � εϕ, V . Let us define

f(εϕ, V ; x) := a(εϕ; x)+ 1
2a(V ; x) ,

g(εϕ, V ; x) := d(εϕ; x)+ 1
2d(V ; x) .

(4.15)

As a consequence of Propositions 4.4, 4.8 we deduce the following result.

Proposition 4.3 The vector field Y(εϕ, V ) in (4.13) has the form

Y(εϕ, V ) = iEOpBW
(([

1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, V ; x))�(ξ)

)
V

+ iEOpBW
([

1 1
1 1

]
g(εϕ, V ; x)�−1(ξ)

)
V + iEQ(εϕ)V + R(V ) ,

(4.16)

where the remainder (recall Def. 2.3)

Q(εϕ) = Q1(εϕ)+Q2(εϕ)+Q≥3(εϕ) ∈ �−21 [r , 3] ⊗M2(C),

is real according to Def. 2.13. Moreover the non-homogeneous component Q≥3(εϕ) ∈
NH−23 [r ] ⊗M2(C) satisfy bounds like (2.35). Moreover for s large enough the remain-
der R(V ) has the form

(R+(V ), R+(V ))T

and it satisfies
‖R(V )‖Hs+2 �s ‖V ‖2Hs ∀V ∈ Bε(H

s). (4.17)

Eventually, for s large enough and ε satisfying (4.5), one has

‖Y(εϕ, V )‖Hs−1 �s ‖V ‖Hs , ∀ V ∈ B
ε
√
L(H

s) . (4.18)
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4.3.1 Para-Differential Structure of the Linearized Operator

Consider the function εϕ in (4.8) and recall the bound (4.4). The aim of this section is to
prove the following result.

Proposition 4.4 There exists s0 > 0 large enough such that for all s ≥ s0 there is Cs > 0
such that the following holds. If ε satisfies (4.5) and εϕ defined in (4.8) satisfies (4.4) then
we have that a(εϕ; x), d(εϕ; x) ∈ SM0

1 (see Def. 2.5) are independent of ξ ∈ R and real
valued, and

(dXH)(εϕ)[V ] = iEOpBW
(([

1 0
0 1

]+ [ 1 1
1 1

]
a(εϕ; x))�(ξ)

)
V

+ iEOpBW
([

1 1
1 1

]
d(εϕ; x)�−1(ξ))+ iEQ(εϕ)V ,

(4.19)

whereH in (3.15), �(ξ) is in (2.5) and where the remainder

Q(εϕ) = Q1(εϕ)+Q2(εϕ)+Q≥3(εϕ) ∈ �−21 [r , 3] ⊗M2(C),

is real according to Def. 2.13. Moreover the non-homogeneous component Q≥3(εϕ) ∈
NH−23 [r ] ⊗M2(C) satisfy bounds like (2.35). Finally the following estimate holds: for
s ≥ s0

‖dXH(εϕ)[Z ]‖Hs−1 �s ‖Z‖Hs (1+ Cs‖εϕ‖Hs ) , (4.20)

for any Z ∈ Hs.

Remark 4.5 We remark that the operator (dXH)(εϕ)[·] is Hamiltonian according to Defini-
tion 2.14.

We have the following.

Lemma 4.6 Recall (3.15) and let X := XH(4,0)
res
+ XH(4,≥2) + XH(5,≥2) . Then we have

(dX)(εϕ)[·] :=
3∑

j=2
S j (εϕ)[·],

for some real S j (ϕ) ∈ M−ρj ⊗M2(C), for any ρ ≥ 0. Moreover the coefficients of S2(εϕ)

and S3(εϕ) satisfy (2.34).

Proof It follows recalling that X is sum of finite rank vector fields (recall Def. 3.6).

In view of Lemma 4.6, we have that the linearized operator of the vector field XH has the
form

(dXH)(εϕ)[V ] = iE�V + (dXH (3,≥2) )(εϕ)[V ] + S(εϕ)[V ] , (4.21)

for someS(εϕ) ∈ �
−ρ
1 [r , 3]⊗M2(C) (seeDef. 2.3) for any ρ ≥ 0. To study the contribution

coming from the Hamiltonian H (3,≥2) we first analyse the linearized operator of XH (3) where
H (3) is the Hamiltonian in (2.12). We have the following Lemma.

Lemma 4.7 Consider the symbols a(εϕ; x), d(εϕ; x) in (4.14). Thenwehave that a(εϕ; x), d(εϕ; x)
belong to SM0

1 (see Def. 2.5), are independent of ξ ∈ R and real valued, and

(dXH (3) )(εϕ)[V ] = iEOpBW
([

1 1
1 1

]
a(εϕ; x)�(ξ)+ [ 1 1

1 1

]
d(εϕ; x)�−1(ξ)

)
V + S̃(εϕ)V

(4.22)
for some real S̃(εϕ) ∈M−21 ⊗M2(C), where �(ξ) is in (2.5).
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Proof Recall that

XH (3) =
(
X+
H (3)

X+
H (3)

)

, X+
H (3) (v)

(1.4)= i√
2
�−1/2N

(
�−1/2

(
v + v√

2

))

where N is the nonlinearity in (1.2), (1.3). Therefore, by linearizing at (recall C in (2.10))
εϕ = C[ uũ

]
, we get

(dX+
H (3) )(εϕ)[V ] =

i�−1/2√
2

(
(∂u f2)(u, ux , uxx )h

)

+ i�−1/2√
2

(
(∂ux f2)(u, ux , uxx )hx + (∂uxx f2)(u, ux , uxx )hxx

)
(4.23)

where h := �−1/2(v + v)/
√
2 and V = [ vv

]
. We now expand in decreasing symbols the

above operators. Since the function G in (1.3) is C∞ and cubic it is easy to check that the
functions ∂u f2, ∂ux f2, ∂uxx f2 are symbols independent of ξ ∈ R and in the class SM0

1 (see
Def. 2.5). As a consequence all the symbols defined in (4.14) belongs to SM0

1 as well.
We write

a(εϕ; x) = aχ (εϕ; x, ξ)+ B(εϕ; x, ξ) , B(εϕ; x, ξ) := F−1
(
â(η)
(
1− χ(|η|/〈ξ 〉))

)
.

(4.24)
The operator OpW(B) has the form (2.30), (2.31) with

rσ ( j, j1, j2) = a

(
j1,

j1 + 2 j2
2

)(
1− χ

(
2 j1

j1 + 2 j2

))
, j = j1 + j2.

Let us consider OpW(B̃) = OpW(B̃(εϕ; x, ξ)) as the multinlinear operator with the form
(2.30), (2.31) with coefficients

r̃σ ( j, j1, j2) =
{
rσ ( j, j1, j2) if j1 ∈ S,

0 if j1 /∈ S.

Since rσ ( j, j1, j2) �= 0 implies that 〈 j1〉 ≥ 〈 j+ j2〉 and S ⊂ Z is finite, we have OpW(B̃) ∈
M−21 .

Since εϕ is compactly Fourier supported (its Fourier support is contained in S) then
OpW(B) = OpW(B̃). By abuse of notation we say that OpW(B) ∈M−21 .

One can reason in the same way to deal with the term depending on the symbol d(εϕ; x).
By the symbolic calculus in Lemma 2.2 we get that

�−1/2OpBW
(
∂uxx f2

)
∂xx�

−1/2

= OpBW
(
− ξ2∂uxx f2�

−1(ξ)− 1

2i
{�−1/2(ξ), ξ2�−1/2(ξ)∂uxx f2}

)

− OpBW
(�−1/2(ξ)

2i
{∂uxx f2, ξ2�−1/2(ξ)} +

�− 1
2 (ξ)

8
σ(∂uxx f2, ξ

2�−
1
2 (ξ))
)

+ OpBW
(1
8
σ
(
�−

1
2 (ξ), ∂uxx f2ξ

2�−
1
2 (ξ)
)+ 1

4

{
�−

1
2 (ξ), {∂uxx f2, ξ2�−

1
2 (ξ)}}

)

= OpBW(−ξ2∂uxx f2�−1(ξ)− (∂uxx f2)x iξ�
−1(ξ)+ a(−1)(x, ξ))
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up to smoothing remainders in the class M−21 and where

a(−1)(x, ξ) := −�− 1
2 (ξ)

8
σ(∂uxx f2, ξ

2�−
1
2 (ξ)+ 1

8
σ
(
�−

1
2 (ξ), ∂uxx f2ξ

2�−
1
2 (ξ)
)

+ 1

4

{
�−

1
2 (ξ), {∂uxx f2, ξ2�−

1
2 (ξ)}} .

(4.25)
Similarly we have

�−1/2OpBW (∂u f2)�
−1/2 +�−1/2OpBW

(
∂ux f2
)
∂x�

−1/2

= OpBW
(
iξ�−1(ξ)(∂ux f2)+ b(−1)(x, ξ)

)

up to smoothing remainders in the class M−21 and where

b(−1)(x, ξ) := �− 1
2 (ξ)

2i

{
∂ux f2, iξ�

− 1
2 (ξ)
}+ 1

2i

{
�− 1

2 (ξ), ∂ux f2iξ�
− 1

2 (ξ)
}+ ∂u f2�

−1(ξ) .
(4.26)

Therefore

(dX+
H (3) )(εϕ)[V ] =

i

2
OpBW

(
− ξ2∂uxx f2�

−1(ξ)+ iξ�−1(ξ)
(
∂ux f2 − (∂uxx f2)x

))[v + v]

+ i

2
OpBW

(
a(−1)(x, ξ)+ b(−1)(x, ξ)

)
[v + v]

(4.27)
with a(−1),b(−1) in (4.25), (4.26), up to some remainder inM−21 . Now we show that, thanks
to the Hamiltonian structure of the nonlinearity, there is a cancelation of the terms of order
zero. Indeed, by (1.2)–(1.3), one has

f2 = (∂uG)(u, ux )− ∂uux G(u, ux )ux − ∂uxux G(u, ux )uxx ,

∂ux f2 = (∂uux G)(u, ux )− (∂ux uG)(u, ux )

− (∂uux ux G)(u, ux )ux − (∂ux ux ux G)(u, ux )uxx ,

∂uxx f2 = −(∂ux ux G)(u, ux ),

(∂uxx f2)x = ∂ux f2.

Moreover, using formulæ (2.18)–(2.19), one gets that (recall (4.25), (4.26))

a(−1)(x, ξ)+ b(−1)(x, ξ) = (∂uxx f2)xx�
−1(ξ)
(1
4
− ξ2�−2(ξ)

8
+ ξ4�−4(ξ)

4

)

− 1

2
(∂ux f2)x�

−1(ξ)+ (∂u f2)�
−1(ξ) .

(4.28)

Notice also that (recall (2.5))

−ξ2�−1(ξ) = −ξ2
√|ξ |2 + m

= −
√
|ξ |2 + m + m

√|ξ |2 + m
= −�(ξ)+ m�−1(ξ),

ξ2�−2(ξ) = 1− m�−2(ξ).
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By the discussion above we have that (4.27) can be written as

(dX+
H (3) )(εϕ)[V ] =

i

2
OpBW

(
− ∂uxx f2�(ξ)

)
[v + v]

+ i

2
OpBW

((
m(∂uxx f2)+

3

8
(∂uxx f2)xx −

1

2
(∂ux f2)x + (∂u f2)

)
�−1(ξ)

)
[v + v] ,
(4.29)

up to some remainder in M−21 . In the latter equation we have used that pseudo-differential
operators of order−2 are 2-smoothingmultilinear operators by Lemma 2.8. Recalling (4.14),
we have that the (4.29) implies (4.22).

Proof of Proposition 4.4 Notice that H (3) = H (3,≤1) + H (3,≥2). Hence

(dXH (3,≥2) )(εϕ)[·] = (dXH (3) )(εϕ)[·] − (dXH (3,≤1) )(εϕ)[·].
Since XH (3,≤1) is finite rank and quadratic we have (dXH (3,≤1) )(εϕ) ∈M−21 ⊗M2(C). Then
the structure of the linearized operator (dXH (3,≥2) )(ϕ)[·] is essentially determined by Lemma
4.7. Then (4.19) follows by (4.21).

The bound (4.20) follows from Lemmata 4.6, 2.4 to estimate the smoothing remainders,
and fromLemma 4.7 and Lemma 2.7 (recall also Def. 2.5) to estimate the unbounded pseudo-
differential terms.

4.3.2 Para-Linearization of the Nonlinear Term

We consider the nonlinear term Q(εϕ)[V , V ] appearing in (4.9). Recalling (4.10) we write

Q(εϕ)[V , V ] := Q̃(εϕ)[V , V ] +Q�(εϕ)[V , V ] , where

Q̃(εϕ)[V , V ] := 1

2
XH (3,≥2) (V , V ) ,

Q�(εϕ)[V , V ] :=
∫ 1

0
(1− t) d2XH−H (3,≥2) (εϕ + tV )[V , V ] dt .

(4.30)

We note that Q� has finite rank and the following estimate holds

‖Q�(εϕ)[V , V ]‖Hs �s ‖εϕ‖L∞‖V ‖2H0 ∀ V ∈ Bε(H
s). (4.31)

The (4.31) follows recalling (3.15), (3.18), (3.19) estimate (4.4) and the smallness (4.5). The
aim of this section is to show that term Q̃ in (4.30) has a para-differential structure.

We have the following.

Proposition 4.8 Let s > 2+1/2, V ∈ Hs and letQ(εϕ)[V , V ] be the nonlinearity in (4.30)
with εϕ satisfying (4.4). We have that

Q(εϕ)[V , V ] = i
2 EOpBW

([
1 1
1 1

]
a(V ; x)�(ξ)+ [ 1 1

1 1

]
d(V ; x)�−1(ξ))V + R(V ) , (4.32)

where a(V ; x), d(V ; x) are in (4.14). The function R(V ) has the form (R+(V ), R+(V ))T
and it satisfies a bound like (4.17). Moreover we have that a ∈ SM0

1 (see Def. 2.5) and

|a(V )|N0
p

� ‖V ‖H p+s0+2 , ∀ p + s0 + 2 ≤ s , p ∈ N ,

|d(V )|N0
p

� ‖V ‖H p+s0+4 , ∀ p + s0 + 4 ≤ s , p ∈ N ,
(4.33)

where s0 > 1/2.
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Proof By (4.30) we write

Q(εϕ)[V , V ] = 1

2
XH (3) (V , V )− 1

2
XH (3,≤1) (V , V )+Q�(εϕ)[V , V ] , (4.34)

where H (3) is the Hamiltonian function in (2.12). The vector field XH (3,≤1) is finite rank
(recall Remark 3.1). Then the last two summands in the r.h.s. of (4.34) satisfy a bound like
(4.17) using also the estimate (4.31). By applying the Bony-paralinearization formula (see
[48, 53]) to the vector field XH (3) , using symbolic calculus (see Lemma 2.7) and reasoning
as in Lemma 4.7, one gets

XH (3) (V , V ) = iEOpBW
([

1 1
1 1

]
a(V ; x)�(ξ)+ [ 1 1

1 1

]
d(V ; x)�−1(ξ))

up to some smoothing remainder satisfying (4.17). For more details we refer the reader to
Proposition 3.6 in [33]. Therefore formula (4.32) follows. The bound (4.33) follows using
the explicit definition of the symbols a(V ; x), d(V ; x) in (4.14) and by Lemma 2.6.

Proof of Proposition 4.3 It follows by by Propositions 4.4 and 4.8.

Remark 4.9 (Hamiltonian structure 1). Recalling (4.15), Remark 4.5 and Proposition 4.4,
we notice that the operator

iEOpBW
(([

1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, V ; x))�(ξ)+ [ 1 1

1 1

]
g(εϕ, V ; x)�−1(ξ)

)

|V≡0[·] + iEQ(εϕ)[·]

is Hamiltonian according to Definition 2.14.

5 The Estimates on the Error Function: High Frequencies

Consider the remainder V in (4.8) which solves (4.9). We shall provide a priori bounds on
the norm of V as long as (4.11) holds. This section concerns the study of the high frequencies
of V . In particular we consider the equation

εβ∂t�
⊥
S V̇ = �⊥S dXH(εϕ)[εβV ] +�⊥S Q(εϕ)[εβV , εβV ] +�⊥S ResH(εϕ) , (5.1)

where S is in (4.1). The main result of this section is the following.

Theorem 5.1 (Estimates of high modes) There is s0  1 such that for any s ≥ s0 there is a
constant Cs > 0 such that if ε satisfies (4.5) the following holds. Consider εϕ in (4.8) and
let V be a solution of (4.9) defined for t ∈ [0, T ] for some T > 0. Then, if (4.11) and (4.4)
hold true, one has

ε2β‖�⊥S V ‖2Hs ≤ (1+ εCs)ε
2β‖�⊥S V (0)‖2Hs

+ CsT sup
t∈[0,T ]

‖εϕ‖3Hs sup
t∈[0,T ]

‖εβV ‖2Hs

+ CsT sup
t∈[0,T ]

‖εβV ‖3Hs + CsT ε
5 sup
t∈[0,T ]

‖εβV ‖Hs ,

(5.2)

uniformly in t ∈ [0, T ].
The proof of the above result involves several arguments. We start by rewriting equation

(5.1) in a more suitable way. Let us define

U⊥ := εβ�⊥S V , U⊥ =
(
u⊥
u⊥

)
, u⊥ := εβ�⊥S v . (5.3)
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In the following lemma we provide some properties of the vector field in the r.h.s. of (5.1).

Lemma 5.2 (i) The function U⊥ in (5.3) satisfies the problem

∂tU
⊥ = �⊥S iEOpBW

(([
1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, εβV ; x))�(ξ)

)
U⊥

+�⊥S iEOpBW
([

1 1
1 1

]
g(εϕ, εβV ; x)�−1(ξ)

)
U⊥

+�⊥S iEQ(εϕ)U⊥ +�⊥S R̃(εϕ, εβV )+�⊥S ResH(εϕ) ,

(5.4)

where the symbols f,g and the remainder Q are given by Proposition 4.3. Moreover the
remainder

R̃(εϕ; εβV ) = (R̃+(εϕ; εβV ), R̃+(εϕ; εβV ))T ,
and there is s0 > 1 such that, for s ≥ s0, it satisfies the bound

‖R̃(εϕ, εβV )‖Hs �s ε
2β‖V ‖2Hs . (5.5)

(i i) The vector field

�⊥S iEOpBW
(([

1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, εβV ; x))�(ξ)

)

|V≡0�
⊥
S +�⊥S iEQ(εϕ)�⊥S

+�⊥S iEOpBW
([

1 1
1 1

]
g(εϕ, εβV ; x, ξ)�−1(ξ)

)

|V≡0
= �⊥S (dXH)(εϕ)�⊥S

is Hamiltonian according to Def. 2.14.

Proof By Proposition 4.3 and (5.3) (see also (4.9), (4.13) and (4.16)) we have that equation
(5.1) can be written as

∂tU
⊥ = �⊥S iEOpBW

(([
1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, εβV ; x))�(ξ)

)
[εβV ]

+�⊥S iEOpBW
([

1 1
1 1

]
g(εϕ, εβV ; x)�−1(ξ)

)
[εβV ]

+�⊥S iEQ(εϕ)[εβV ] +�⊥S R(εβV )+�⊥S ResH(εϕ) .

(5.6)

Then (5.4) comes from the fact that εβV = �Sε
βV +U⊥ and that the operators in the right

hand side of (5.6) composed with �S are bounded and satisfy (5.5). Recalling Propositions
4.4, 4.3 we notice that

�⊥S (dXH)(εϕ)[εβV ] = �⊥S dXH(εϕ)[�⊥S εβV ] , (5.7)

where we used that, since εϕ is Fourier supported only on the tangential set S in (4.1) then

�⊥S dXH(4,0)
res

(εϕ) = �⊥S dXH(n,≥2) (εϕ)[�SV ] = 0.

This proves item (i i).

5.1 Block-Diagonalization and Basic Energy Estimates

In this section we construct a (linear) change of coordinates which block-diagonalize the
system (5.4) up to smoothing remainders. We first introduce a map, given in terms of a
suitable para-product, in such a way one can diagonalize the matrix of symbols

E
([

1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, εβV ; x)) , (5.8)
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where f is the symbol in (4.15). This is the content of Sect. 5.1.1. In Sect. 5.1.2 we provide a
correctionwhich give us amapwhich is symplectic on the restriction of the space Hs(T;C)×
Hs(T;C) to functions supported only on Sc. Finally in Sect. 5.1.3 we diagonalize at the
highest order the system (5.4).

5.1.1 Construction of an Approximate Diagonalizating Matrix

Let us define the matrices2

G := G(εϕ, εβV ) :=
(
g+ g−
g− g+

)
, G−1 := G−1(εϕ, εβV ) :=

(
g+ −g−
−g− g+

)
,

(5.9)
where the symbols g+,g− are defined as

g+ := g+(εϕ, εβV ) := 1+ f+ λ
√
2λ
(
1+ f+ λ

) ,

g− := g−(εϕ, εβV ) := −f
√
2λ
(
1+ f+ λ

) ,
(5.10)

and
λ := λ(εϕ, εβV ) :=

√
(1+ f)2 − (f)2 = √1+ 2f . (5.11)

The first result of this section is the following.

Lemma 5.3 Recall the symbol f in (4.15) (see also (4.14)), and the functions εϕ, V in (4.8).
Assume the (4.4) and (4.11). Then the following holds.
(i) the symbol λ−1 in (5.11) is independent of ξ ∈ R and belongs to (see Def. 2.5) S� m

1 [r , 3]
with estimates uniform in t ∈ [0, T ].
(i i) the symbols g+ − 1,g− in (5.10) are independent of ξ ∈ R and belong to (see Def. 2.5)
S� m

1 [r , 3] with estimates uniform in t ∈ [0, T ].
(i i i) One has that

∂tg
σ = g̃σ1 (εϕ)+ g̃σ2 (εϕ, εϕ)+ g̃σ≥3(εϕ, εβV ) , σ ∈ {±} , (5.12)

where g̃σj ∈ SM0
j , j = 1, 2, and g̃σ≥3, σ ∈ {±}, are in N0

p with

|̃gσ≥3|N0
p

�s ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ + ε5 , (5.13)

σ ∈ {±}, for any p+μ ≤ s, p ∈ N, for some μ > 1/2, with estimates uniform in t ∈ [0, T ].
(iv) Recall (5.8), (5.9). One has that

G−1(εϕ, εβV )E
([

1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, εβV ; x))G(εϕ, εβV ) = E

[
1 0
0 1

]
λ(εϕ, εβV ) . (5.14)

Proof Item (i). By Taylor expanding the function λ in (5.11) we get

λ = 1+ f− f2

2
+ 3f3

2

∫ 1

0
(1+ 2tf)−

5
2 (1− t)2dt , (5.15)

2 To simplify the notation, from now on we will omit the dependence on (x, ξ) of the symbols.
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from which we deduce, using also (4.15),

λ = 1+ a(εϕ)− 1
2 [a(εϕ)]2 + 1

2a(ε
βV )− 1

2a(εϕ)a(ε
βV )− 1

8 [a(εβV )]2

+ 3f3

2

∫ 1

0
(1+ 2tf)−

5
2 (1− t)2dt .

(5.16)
Using (4.33), (4.4), the fact that the symbol a(εϕ) in (4.14) is in SM0

1, and Lemma 2.8 we
deduce that λ− 1 belongs to the class S� m

1 [r , 3] of Definition 2.5.
Item (i i). It follows using the explicit formulæ (5.10) and reasoning as done for Item (i).
Item (i i i). RecallingH in (3.15) and (4.6), we notice that the function εϕ in (4.8) solves

the equation

∂tεϕ = XH(εϕ)− ResH(εϕ).

By the properties ofH given by Proposition 3.9 we can write

∂tεϕ = iEOpW(
[
1 0
0 1

]
�(ξ))εϕ + iEM(εϕ)εϕ − ResH(εϕ)

M(εϕ) = M1(εϕ)+ M2(εϕ)+ M≥3(εϕ)
(5.17)

for some real and self-adjoint matrix of operators M(ϕ)where Mi ∈M1
i ⊗M2(C), i = 1, 2

andM≥3 ∈ NH1
3[r ]⊗M2(C). Recall also thatV solves the equation (4.9) that, by Proposition

4.3, can be written as
εβ∂t V = Y(εϕ, εβV )+ ResH(εϕ) (5.18)

whereY(εϕ, V ) is in (4.16). We now compute the time derivative of the symbol g+ in (5.10).
The case of g− is similar. By item (i i) (recall Def. 2.5) we have that g+ admits the expansion

g+ = 1+ g+1 (εϕ)+ g+2 (εϕ, εϕ)+ g+≥3(εϕ, ε
βV ) , g+j ∈ SM0

j , j = 1, 2 , (5.19)

and g+≥3, σ ∈ {±}, are in N0
p with

|g+≥3|N0
p

�s ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ , (5.20)

for any p+μ ≤ s, p ∈ N and someμ > 1/2, with estimates uniform in t ∈ [0, T ]. Moreover
one also has (recall estimates (2.42))

|dεϕg+≥3(εϕ, εβV )[h]|N0
p

�s ‖εϕ‖2H p+μ‖h‖H p+μ + ‖εβV ‖H p+μ‖h‖H p+μ ,

|dεβVg+≥3(εϕ, εβV )[h]|N0
p

�s ‖h‖H p+μ ,
(5.21)

for any p + μ ≤ s, p ∈ N, for any h ∈ Hs .
Consider the symbol g+1 in (5.19) which is linear in εϕ. Therefore we have

∂tg
+
1 (εϕ)

(5.17)= g+1 (iEOpW(
[
1 0
0 1

]
�(ξ))εϕ)+ g+1 (iEM1(εϕ)εϕ)+ g+1 (iEM2(εϕ)εϕ)

+ g+1 (iEM≥3(εϕ)εϕ)+ g+1 (−ResH(εϕ)).
Using the properties of thematrices of operatorsMi (εϕ), i = 1, 2,M≥3(εϕ), the composition
properties in Lemma 2.9 we deduce

∂tg
+
1 (εϕ) = a1(εϕ)+ a2(εϕ)+ a≥3(εϕ)+ g+1 (−ResH(εϕ)),

for some symbols a j ∈ SM0
j , j = 1, 2, and a≥3 ∈ SNH m

3 [r ]. The term g+1 (−ResH(εϕ))
can be estimated (as a symbol of order 0) using Lemmas 2.6 and 4.1 to estimate the residual.
One concludes that g+1 (−ResH(εϕ)) can be absorbed in the term g̃+≥3 in (5.12) satisfying
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(5.13). Concerning the term g+2 in (5.19) (which is quadratic in εϕ), one can reason as done
for g+1 . Consider now g+≥3(εϕ, εβV ) in (5.19). One has

∂tg
+
≥3(εϕ, ε

βV ) = (dεϕg
+
≥3(εϕ, ε

βV ))[ε∂tϕ] + (dεβVg
+
≥3(εϕ, ε

βV ))[εβ∂t V ].
The estimate (5.13) follows using (5.21), (5.17), (5.18), and (4.7), Proposition 3.9 to estimate
the norms of ε∂tϕ, the (4.18) and Lemma 4.1 to estimate εβ∂t V .

Item (iv). The (5.14) follows by and explicit computation using (5.9), (5.10) and (5.8).

The idea now is that a possible map which block-diagonalizes the system (5.1) at highest
order would be Op(G−1χ )with G−1 as in (5.9). This is a consequence of Item (iv) in Lemma
5.3. However the linear map Z �→ Op(G−1χ (εϕ, εβV ))Z is not symplectic. In the following
we will show how to construct a symplectic correction of such map.

Lemma 5.4 Under the hypotheses of Lemma 5.3 there exists a real valued symbol m :=
m(εϕ, εβV ) such that the following holds:
(i) one has

g+(εϕ, εβV ) = cosh(|m(εϕ, εβV )|) ,

g−(εϕ, εβV ) = m(εϕ, εβV )

|m(εϕ, εβV )| sinh(|m(εϕ, ε
βV )|) ,

(5.22)

where gσ , σ ∈ {±}, are given in (5.10).
(i i) the symbol m is in (see Def. 2.5) S� m

1 [r , 3].
(i i i) One has that

∂tm(εϕ, ε
βV ) = m̃1(εϕ)+ m̃2(εϕ, εϕ)+ m̃≥3(εϕ, εβV ) , (5.23)

where m̃ j ∈ SM0
j , j = 1, 2, and m̃≥3 is in N0

p with

|̃m≥3|N0
p

�s ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ + ε5 , (5.24)

for any p + μ ≤ s, p ∈ N, μ > 1/2, with estimates uniform in t ∈ [0, T ].
Proof We look for a solution of the equations (5.22). First of all notice that, using the estimates
on the symbol f (see (4.15) and (4.33)), the estimate on λ ∈ S� m

1 [r , 3] (see item (i) of
Lemma 5.3), estimates (4.4) and (4.11) on the functions εϕ, V and the smallness assumption
on ε, we get that

(g+(εϕ, εβV ))2 − 1
(5.10),(5.11)= f2

2λ
(
1+ f+ λ

) ≥ 0.

Therefore we set

|m(εϕ, εβV )| := arccosh(g+(εϕ, εβV ))

= ln
(
g+(εϕ, εβV )+

√
(g+(εϕ, εβV ))2 − 1

)
.

(5.25)

Consider now the second equation (5.22). We first observe that

sinh(|m(εϕ, εβV )|)
|m(εϕ, εβV )| = 1+

∑

k≥0

(m(εϕ, εβV ))2k

(2k + 1)! ≥ 1.

Hence we set

m(εϕ, εβV ) := g−(εϕ, εβV ) |m(εϕ, εβV )|
sinh(|m(εϕ, εβV )|) . (5.26)
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Using the properties of the symbols g+,g− (given by Lemma 5.3), and by Taylor expanding
formulæ (5.25), (5.26), reasoning as in item (i) of Lemma 5.3 and using the (5.19)–(5.20),
one obtains that (see Def. 2.5) S� m

1 [r , 3]. This proves item (i i).
Item (i i i) follows by an explicit computation using (5.26), estimates (5.21) and reasoning

as done in the proof if item (i i i) of Lemma 5.3.

Weneed the following technical Lemma,which is essentially a consequence of Proposition
3.6 in [35].

Lemma 5.5 Under the hypotheses of Lemma 5.3 the following holds. For any k ≥ 1 one has
that the operator

Q(k)(εϕ, εβV ) :=
(
OpBW(m(εϕ, εβV ))

)k − OpBW
(
(m(εϕ, εβV ))k

)

belongs to the class �−31 [r , 3] ⊗M2(C) (see Def. 2.3). More precisely there is C = C(s)
independent of k ≥ 1, such that

‖Q(k)(εϕ, εβV )Z‖Hs+ρ ≤ Ck(‖εϕ‖kHs + ‖εβV ‖kHs )‖Z‖Hs ,

‖dεϕ
(
Q(k)(εϕ, εβV )

)
(Z)h‖Hs+ρ ≤ Ck(‖ϕ‖k−1Hs + ‖V ‖kHs )‖Z‖Hs‖h‖Hs ,

‖dεβV
(
Q(k)(εϕ, εβV )

)
(Z)h‖Hs+ρ ≤ Ck‖V ‖k−1Hs ‖Z‖Hs‖h‖Hs .

(5.27)

any Z = [ zz
] ∈ Hs.

Proof The case k = 1 is trivial. Let us consider k = 2. This case is essentially a consequence
of (2.28) in Remark 2.2. Indeed, notice that

Q(2)(εϕ, εβV )h =
(
OpBW(m(εϕ, εβV )) ◦ OpBW(m(εϕ, εβV ))− OpBW

(
(m(εϕ, εβV ))2

))
h

=
∑

ξ∈Z

eiξ x ̂(Q(2)h)(ξ) ,

̂(Q(2)h)(ξ) = (2π)−
3
2
∑

η,θ∈Z

(r1 − r2)(ξ, θ, η)̂m(ξ − θ )̂m(θ − η)̂h(η)

(5.28)
where

r1(ξ, θ, η) := χ

( |ξ − θ |
〈ξ + θ〉

)
χ

( |θ − η|
〈θ + η〉

)
, r2(ξ, η) := χ

( |ξ − η|
〈ξ + η〉

)
(5.29)

and m̂(ξ) denotes the Fourier transform in x of the function (m(εϕ, εβV ))(x) evaluated at
ξ ∈ Z. We remark that the remainder Q(2) is bilinear in the symbol m(εϕ, εβV ). Recall that,
by item (i i) of Lemma 5.4, the symbol m belongs to S� m

1 [r , 3]. Therefore, using (5.28),
we can expand Q(2) as the sum of two remainders, the first depending only on εϕ and the
second depending at least linearly in the variable εβV . The estimates (5.27) can be deduced
by following almost word by word the proof of Proposition 2.5 in [36], and using formulæ
(5.28) and (5.29). In order to get the result for any k ≥ 3, one reasons by induction following
the proof of Proposition 3.6 in [35]. The Taylor expansions in εϕ and εβV follow again
recalling that the remainders Q(k) are multilinear in the symbol m(εϕ, εβV ) ∈ S� m

1 [r , 3].
Consider the matrix of symbols

M :=M(εϕ, εβV ) =
(

0 m(εϕ, εβV )
m(εϕ, εβV ) 0

)
, (5.30)
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where m(εϕ, εβV ) is given by Lemma 5.4. We shall study, for τ ∈ [0, 1], the properties of
the flow map of the following problem:

{
∂τ

τ
m(εϕ, ε

βV )[·] = OpBW(M(εϕ, εβV ))τ
m(εϕ, ε

βV )[·],
0

m(εϕ, ε
βV )[·] = 1[·] , (5.31)

whereMχ is the matrix whose entries are given in terms of the symbol mχ (εϕ, εβV ) defined
as in (4.15). More precisely we prove the following.

Lemma 5.6 Under the hypotheses of Lemma 5.3 the following holds. The flow map of (5.31)
is well-posed for τ ∈ [0, 1] and have the form

τ
m(εϕ, ε

βV )[·] − 1 = Q(τ ; εϕ, εβV ) τ ∈ [0, 1] , (5.32)

for some real operator Q ∈ �0
1 [r , 3] ⊗M2(C) (see Def. 2.3), with estimates uniform in

τ ∈ [0, 1]. The same holds for the inverse map (τ
m(εϕ, ε

βV ))−1[·]. Moreover for the time
one flow map we have the following expansion

τ
m(εϕ, ε

βV )[·]|τ=1 := OpBW
(
G−1(εϕ, εβV )

)[·] + R(εϕ, εβV )[·], (5.33)

(τ
m(εϕ, ε

βV ))−1[·]|τ=1 := OpBW
(
G(εϕ, εβV )

)[·] + R′(εϕ, εβV )[·], (5.34)

where G,G−1 are in (5.9), the operators R,R′ are real and belong to �−31 [r , 3] ⊗M2(C)

(see Def. 2.3). Finally

(∂t
τ
m(εϕ, ε

βV )[·])|τ=1 := OpBW
(
G̃(εϕ, εβV )

)[·] + R̃≤2(εϕ)[·] + R̃≥3(εϕ, εβV )[·] ,
(5.35)

where G̃(εϕ, εβV ) is a 2 × 2 matrix of real valued symbols, independent of ξ ∈ R, of the
form

G̃(εϕ, εβV ) := G̃1(εϕ)+ G̃2(τ ; εϕ, εϕ)+ G̃≥3(εϕ, εβV ) , (5.36)

where G̃ j ∈ SM0
j ⊗M2(C), j = 1, 2, and where G̃≥3(τ ; εϕ, εβV ) is in N0

p with

|G̃≥3|N0
p

�s ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ + ε5 , (5.37)

for any p+μ ≤ s, p ∈ N, for someμ > 1/2, with estimates uniform in τ ∈ [0, 1]. Moreover
the operator R̃≤2 has the form

R̃≤2(τ ; εϕ) := R̃1(τ ; εϕ)+ R̃2(τ ; εϕ), R̃ j ,∈M−3j ⊗M2(C), j = 1, 2,

and R̃≥3 satisfies

‖R̃≥3(εϕ, εβV )Z‖Hs+3 �s ‖Z‖Hs
(‖εϕ‖3Hs + ‖εβV ‖Hs + ε5

)
. (5.38)

Proof By Lemma 2.2 (see (2.24)) and the bounds for the semi-norm of the symbol
m(εϕ, εβV ) ∈ S�0

1[r , 3], we have that OpBW(M(εϕ, εβV )) is a bounded operator on Hs .
Then by standard theory of Banach space ODE we have that the flow τ

m is well-defined. In
particular we have

τ
m(εϕ, ε

βV )[·] = exp
(
τOpBW(M(εϕ, εβV ))

)
=
∑

k≥0

τ k

k! (OpBW(M(εϕ, εβV )))k .

Hence by Lemma 5.5 one has

τ
m(εϕ, ε

βV )[·] = OpBW
(
exp(τM(εϕ, εβV ))

)
+
∑

k≥0

τ k

k! Q
(k)(εϕ, εβV ) .
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Reasoning as in Corollary 3.1 in [35], one deduces that

τ
m(εϕ, ε

βV )[·] = OpBW
(
exp(τM(εϕ, εβV ))

)
+ Rτ (εϕ, εβV ) (5.39)

where Rτ ∈ �−31 [r , 3] ⊗M2(C), with estimates uniform in τ ∈ [0, 1]. The latter assertion
follows by estimates (5.27) and using the smallness assumption on ε to have the convergence
of the series. Furthermore, by (5.30), we have

exp(τM(εϕ, εβV )) =
∞∑

n=0

τ 2n

(2n)!
( |m|2n 0

0 |m|2n
)
+
∞∑

n=0

τ 2n+1

(2n + 1)!
(

0 |m|2nm
|m|2nm 0

)

=
(

cosh(τ |m|) m
|m| sinh(τ |m|)

m
|m| sinh(τ |m|) cosh(τ |m|)

)

.

(5.40)
We claim that there exists two real valued symbols Kσ (τ ; εϕ, εβV ), σ ∈ {±}, independent
of ξ ∈ R, such that

exp(τM(εϕ, εβV )) =
(
K+(τ ; εϕ, εβV ) K−(τ ; εϕ, εβV )
K−(τ ; εϕ, εβV ) K+(τ ; εϕ, εβV )

)
∈ S�0

1[r , 3] ⊗M2(C) ,

(5.41)
with estimates uniform in τ ∈ [0, 1]. Indeed cosh(τ |m|) and (m/|m|) sinh(τ |m|) are analytic
functions of the symbol m(εϕ, εβV ) ∈ S�0

1[r , 3] (see Lemma 5.4 and Def. 2.5). Therefore
the multilinear expansions in εϕ and estimates (2.42) follow by explicit computations. This
implies the claim (5.41). By the discussion above we have that the (5.39) reads

τ
m(εϕ, ε

βV )[·] = OpBW
(K+(τ ; εϕ, εβV ) K−(τ ; εϕ, εβV )
K−(τ ; εϕ, εβV ) K+(τ ; εϕ, εβV )

)
+ Rτ (εϕ, εβV ) . (5.42)

This implies (5.32) recalling Lemma 2.7-(iii) and the fact that Rτ ∈ �−31 [r , 3] ⊗M2(C).
Using Lemma 5.4 (see (5.22)) and recalling also (5.9)–(5.10) we deduce that formulæ

(5.39), (5.40) and (5.42) imply the expansion (5.33). The expansion (5.34) follows similarly.
Let us check (5.35). By differentiating in t equation (5.31) we get

∂τ (∂t
τ
m(εϕ, ε

βV ))[·] = OpBW(M(εϕ, εβV ))(∂t
τ
m(εϕ, ε

βV ))[·]
+ OpBW(∂tM(εϕ, εβV ))τ

m(εϕ, ε
βV )[·],

with (∂tτ
m(εϕ, ε

βV ))[·]|τ=0 = 0. By Duhamel formulation we deduce that

(∂t
τ
m(εϕ, V ))[·] = τ

m(εϕ, V )
∫ τ

0
(σ

m(εϕ, V ))
−1OpBW(∂tM(εϕ, εβV ))σ

m(εϕ, V )[·]dσ.

The termOpW(∂tMχ (εϕ, ε
βV )) in the integral, is completely under control for any t ∈ [0, T ]

thanks to item (i i i) of Lemma 5.4 and recalling (5.30). Therefore, the expansion (5.35),
together with (5.36)–(5.37) and estimate (5.38) follow using the expansions (5.42) for the
flow τ

m(εϕ, ε
βV ), Lemma 2.2, Lemma 2.10, Lemma 2.8 and using the expansions (5.23)

and of m, (5.42) and (5.24).

Remark 5.7 (Hamiltonian structure2).Notice that the operatorOpBW(M(εϕ, εβV ))|V≡0[·]
is Hamiltonian according to Definition 2.14. Therefore the flow mapτ

m(εϕ, ε
βV )|V≡0[·] is

symplectic according to Definition 2.15.
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Lemma 5.8 (Equivalence of the norms) Consider the function εϕ in (4.8) and let V be a
solution of (4.9). For any s ≥ s0 for some s0 > 1 there is a constant Cs > 1 such that if
(4.11) and (4.4) hold true with ε > 0 satisfying (4.5) the following holds. One has that

sup
τ∈[0,1]

‖(τ
m(εϕ, ε

βV ))±1Z‖Hs ≤ ‖Z‖Hs (1+ Cs‖εϕ‖Hs + Cs‖εβV ‖Hs ) , (5.43)

for any Z ∈ HS, where τ
m(εϕ, ε

βV ) is the the flow map given in Lemma 5.6. Moreover,
defining the function

W := [ww
] := (τ

m(εϕ, ε
βV )
)
|τ=1[εβV ] , (5.44)

one has the equivalence

(1+ εCs)
−1‖εβV ‖Hs ≤ ‖W‖Hs ≤ (1+ εCs)‖εβV ‖Hs . (5.45)

Proof Consider themap in (5.33) and recallG−1 in (5.9)–(5.10). Then, using (5.20) and (2.43)
to estimate the action of the pseudo-differential operator OpBW

(
G−1(εϕ, εβV )

)
, using that

R ∈ �−31 [r , 3] ⊗M2(C) (see Lemma 5.6) and the smallness assumptions on εϕ, V , one
gets the bound (5.43) for the map τ

m(εϕ, ε
βV ). The bound (5.43) on the inverse follows

similarly using the (5.34). The equivalence (5.45) follows by (5.43) using also (4.4), (4.11)
and the smallness (4.5).

5.1.2 The Symplectic Correction

The map τ
m(εϕ, ε

βV )[·] introduced in Lemma 5.6 is a linear symplectic map w.r.t. the
symplectic form ω in (2.14). However we need to study the equation (5.4) which is posed on
the subspace

Hs⊥ := {U ∈ Hs : �⊥S U = U } . (5.46)

Hence we need to find a correction of the map τ
m(εϕ, ε

βV )[·] which is symplectic with
respect to the restricted symplectic form ω

(
�⊥S (·),�⊥S (·)

)
. This fact plays an important role

in order to prove item (i i i) Prop. 5.11 (see also Remark 5.12). The Hamiltonian structure of
these operators in the conjugated vector field will be used in Sect. 5.2 to ensure some terms
in the energy forms vanish on resonances.

This is the content of the next lemma.

Lemma 5.9 Recall (5.30), (5.31). Under the hypotheses of Lemma 5.3 the following holds.
Consider the flow �τ

m = �τ
m(εϕ, ε

βV ), τ ∈ [0, 1], defined by the system
{
∂τ�

τ
m(εϕ, ε

βV )[·] = �⊥S OpBW(M(εϕ, εβV ))�⊥S �τ
m(εϕ, ε

βV )[·],
�0

m(εϕ, ε
βV )[·] = 1⊥[·] ,

(5.47)

where1⊥ is the identity on Hs⊥ in (5.46). There exists a real-to-real matrix of linear operators
�τ (εϕ, εβV ) belonging to �

−ρ
1 [r , 3] ⊗M2(C) for any ρ ≥ 0 with estimates uniform in

τ ∈ [0, 1], such that

�τ
m(εϕ, ε

βV ) = �⊥S τ
m(εϕ, ε

βV ) ◦ (1+�τ (εϕ, εβV ))�⊥S . (5.48)

In particular one has the expansion

�τ
m(εϕ, ε

βV )[·] = �⊥S OpBW
(K+(τ ; εϕ, εβV ) K−(τ ; εϕ, εβV )
K−(τ ; εϕ, εβV ) K+(τ ; εϕ, εβV )

)
�⊥S + Rτ (εϕ, εβV ) ,

(5.49)
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where symbols Kσ , σ ∈ {±}, are in (5.42) and Rτ ∈ �−31 [r , 3] ⊗M2(C). The inverse map
�−τm (εϕ, εβV )[·] admits a similar expansion as (5.49). Moreover

(∂t�
τ
m(εϕ, ε

βV )[·])|τ=1 := OpBW
(
G̃⊥(εϕ, εβV )

)[·] + R̃⊥≤2(εϕ)[·] + R̃⊥≥3(εϕ, εβV )[·] ,
(5.50)

where G̃⊥(εϕ, εβV ) is a 2× 2 matrix of real valued symbols, independent of ξ ∈ R, of the
form

G̃⊥(εϕ, εβV ) := G̃⊥1 (εϕ)+ G̃⊥2 (τ ; εϕ, εϕ)+ G̃⊥≥3(εϕ, εβV ) , (5.51)

where G̃⊥j ∈ SM0
j ⊗M2(C), j = 1, 2 and where G̃⊥≥3(τ ; εϕ, εβV ) is in N0

p with

|G̃⊥≥3|N0
p

�s ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ + ε5 , (5.52)

for any p + s0 + 3 ≤ s, p ∈ N, and some μ > 1/2, with estimates uniform in τ ∈ [0, 1].
The operator R⊥≤2 has the form

R̃⊥≤2(τ ; εϕ) := R̃⊥1 (τ ; εϕ)+ R̃⊥2 (τ ; εϕ), R̃⊥j ∈M−3j ⊗M2(C), j = 1, 2,

and R⊥≥3 satisfies

‖R⊥≥3(εϕ, εβV )Z‖Hs+3 �s ‖Z‖Hs
(‖εϕ‖3Hs + ‖εβV ‖Hs + ε5

)
. (5.53)

Finally one has that U⊥ �→ �τ
m(εϕ, ε

βV )[U⊥] is symplectic with respect to the restricted
symplectic form ω

(
�⊥S (·),�⊥S (·)

)
(recall ω in (2.14)).

Proof To simplify the notation during this proof we denote by X the operator OpBW(M(εϕ,

εβV )). Recalling (5.30) and Lemma 5.4 we shall write

X = X≤2 + X≥3, (5.54)

X≤2 = X≤2(εϕ) := OpBW
(

0 m≤2(εϕ)
m≤2(εϕ) 0

)
,

X≥3 = X≥3(εϕ, εβV ) := OpBW
(

0 m≥3(εϕ, εβV )
m≥3(εϕ, εβV ) 0

)
,

where m≤ = m1 + m2, m j ∈ SM0
j , j = 1, 2 and m≥3(εϕ, εβV ) ∈ SNH0

3. To lighten the

notation in the following we omit the dependence of the maps on (εϕ, εβV ). We look for a
one-parameter group of bounded linear transformations ϒτ : Hs → Hs such that

�τ = �⊥S τ
m ◦ ϒτ �⊥S . (5.55)

We differentiate both sides with respect to the parameter τ using (5.31), (5.47). One obtains

�⊥S X�⊥S �τ = �⊥S Xτ
mϒ

τ�⊥S +�⊥Sτ
m(∂τϒ

τ )�⊥S ,

which is equivalent to

−�⊥S X�S
τ
mϒ

τ�⊥S = �⊥S τ
m(∂τϒ

τ )�⊥S ,

by noticing that

�⊥S Xτ
mϒ

τ�⊥S = �⊥S Xτ
m�
⊥
S ϒ

τ�⊥S +�⊥S X�S
τ
mϒ

τ�⊥S .

Then (5.55) is satisfied by the solution of the following Cauchy problem
{
∂τϒ

τ = Y (τ )(ϒτ ) , Y (τ ) = Y := −−τm X�S
τ
m ,

ϒ0 = 1 .
(5.56)

123



Journal of Dynamics and Differential Equations

We observe that X�S is a finite rank operator. In particular

X≤2�S(Z) =
∑

j∈S
Z jς j , X≥3�S(Z) =

∑

j∈S
Z j! j ,

with

ς j := X≤2(e j ), ! j := X≥3(e j ), e j :=
(
ei j x

e−i j x
)
.

Recall that the operator Q in (5.32) is in �0
1 [r , 3] ⊗M2(C) and so can be expanded as

Q(τ ; εϕ, εβV ) := Q≤2(τ ; εϕ)+ Q≥3(τ ; εϕ, εβV ),
Q≤2(τ ; εϕ) := Q1(τ ; εϕ)+ Q2(τ ; εϕ) Q j ∈M0

j ⊗M2(C), j = 1, 2,

and some operator Q≥3(τ ; εϕ, εβV ) satisfying, for s ≥ s0  1,

‖Q≥3(τ ; εϕ, εβV )Z‖Hs �s ‖Z‖Hs
(‖εϕ‖3Hs + ‖εβV ‖Hs

)
, (5.57)

uniformly in τ ∈ [0, 1]. In turn the vector field Y is finite rank, since τ
m is a linear operator

and Y = −X�S + Y≤2 + Y≥3 with, by using (5.32) and recalling (2.48),

Y≤2(τ )[Z ] := −
∑

j∈S
(Z ,e j )L2Q≤2(−τ ; εϕ)[ς j ] −

∑

j∈S
(Q≤2(τ ; εϕ)[Z ],e j )L2ς j

−
∑

j∈S
(Q≤2(τ ; εϕ)[Z ],e j )L2Q≤2(−τ ; εϕ)[ς j ] −

∑

j∈S
(Z ,e j )L2Q≤2(−τ ; εϕ)[! j ]

−
∑

j∈S
(Q≤2(τ ; εϕ)[Z ],e j )L2! j −

∑

j∈S
(Q≤2(τ ; εϕ)[Z ],e j )L2Q≤2(−τ ; εϕ)[! j ] ,

and Y≥3 can be written explicitly as done for Y≤2, but it depend on V or it is at least cubic in
εϕ. We recall that by Lemma 5.6 we have that Q1(τ ) ∈ �0

1 [r , 3]⊗M2(C) (recall Definition
2.3-(i i i)). Then it is evident that, by the structure of Y≤2, it has an expansion in linear and
quadratic terms with respect to εϕ. Moreover every term in Y≤2 is an infinitely regularizing
operator. Then Y≤2(τ ) ∈ �

−ρ
1 [r , 3] ⊗M2(C) for all ρ > 0.

By (5.57), the fact that Q1(τ ) ∈ �0
1 [r , 3] ⊗M2(C) and that Y≥3 is finite rank, we have

‖Y≥3(τ )[Z ]‖Hs+ρ �s ‖Z‖Hs
(‖εϕ‖3Hs + ‖εβV ‖Hs

)
.

By classical theory of Banach space ODEs the Cauchy problem (5.56) is well-posed on
Hs(T). In particular ϒτ is invertible and bounded on any Hs(T) for τ ∈ [0, 1], namely

‖(ϒτ )±1(Z)‖Hs � ‖Z‖Hs , τ ∈ [0, 1] . (5.58)

By Taylor expanding ϒτ at τ = 0 we have

ϒτ [·] − 1[·] = −τ Y (0)[·] +
∫ τ

0
(1− l) ∂2τ ϒ

l [·] dl =: �τ .

We claim that �τ is in �−ρ1 [r , 3] ⊗M2(C). We observe that

∂2τ ϒ
l = Z(l) ◦ϒ l , Z(l) := ∂τY (l)+ Y 2(l),
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and

∂τY =−
∑

j∈S
(X(τ

m(Z)), e
i j x )L2 −τm (ς j )+

∑

j∈S
(τ

m(Z), e
i j x )L2 X(−τm (ς j ))

−
∑

j∈S
(X(τ

m(Z)), e
i j x )L2 −τm (! j )+

∑

j∈S
(τ

m(Z), e
i j x )L2 X(−τm (! j )) ,

Y 2 =Y 2≤2 + Y 2≥3 + Y≤2Y≥3 + Y≥3Y≤2 .

Recalling (5.54), (5.32), we consider the splitting X ◦τ
m = X≤2(τ )+ X≥3(τ ) where

X≤2(τ ) := X≤2 + X≤2Q≤2(τ ), X≥3(τ ) := X≥3 + X≤2Q≥3(τ )+ X≥3Q≤2(τ )+ X≥3Q≥3(τ ).

We write Z(τ ) = Z≤2(τ )+ Z≥3(τ ), where Z≤2 = Z≤2(τ ) is obtained by the sum of

• terms of ∂τY where X ◦τ
m is replaced by X≤2(τ ) and τ

m by 1+ Q≤2(τ );
• the term Y 2≤2,

while Z≥3 = Z≥3(τ ) is defined by difference. We notice that Z≥3 is sum of terms depending
on V (plus terms with high homogeneity in εϕ), while Z≤2 is independent of V . Moreover,
reasoning as for Y≤2 and Y≥3, we have that, for all ρ ≥ 0, Z≤2 ∈ �

−ρ
1 [r , 3] ⊗M2(C) and

Z≥3 satisfies

‖Z≥3(τ )[Z ]‖Hs+ρ �s ‖Z‖Hs
(‖εϕ‖3Hs + ‖εβV ‖Hs

)
.

We set

�̃τ
1 := −τ X≤2�S + τ Y≤2(0)+

∫ τ

0
Z≤2(l) ◦ ϒ l dl,

�̃τ
2 := −τ X≥3�S + τ Y≥3(0)+

∫ τ

0
Z≥3(l) ◦ ϒ l dl.

By the discussion onϒτ , the bound (5.58) and Lemma 5.4-(i i)we can conclude that �̃τ
1+�̃τ

2
belongs to the class�−ρ1 [r , 3]⊗M2(C). Therefore formula (5.48) is proved. By (5.48), the
expansions on the map �τ , (5.42), Lemmata 2.8, 2.10 we deduce the expansion (5.49).

To prove (5.50) we proceed exactly as in the proof of (5.35) in Lemma 5.6. We have

∂τ (∂t�
τ
m(εϕ, ε

βV ))[·] = �⊥S OpBW(M(εϕ, εβV ))�⊥S (∂t�τ
m(εϕ, ε

βV ))[·]
+�⊥S OpBW(∂tM(εϕ, εβV ))�⊥S �τ

m(εϕ, ε
βV )[·]

with (∂t�τ
m(εϕ, ε

βV ))[·]|τ=0 = 0. By Duhamel formulation we deduce that

(∂t�
τ
m(εϕ, ε

βV ))[·]
= �τ

m(εϕ, ε
βV )
∫ τ

0
(�σ

m (εϕ, ε
βV ))−1�⊥S OpBW(∂tM(εϕ, εβV ))�⊥S �σ

m (εϕ, ε
βV )[·]dσ.

The term �⊥S OpBW(∂tM(εϕ, εβV ))�⊥S in the integral can be controlled for any t ∈ [0, T ]
thanks to item (i i i) of Lemma 5.4 and recalling (5.30). Therefore, the expansion (5.50)
and estimate (5.53) follow using the expansion (5.49) for the flow �τ

m(εϕ, ε
βV ), (5.23), the

properties of m in Lemma 5.4 and Lemmata 2.2, 2.8, 2.10.

Corollary 5.10 Consider the flowmap�τ
m(εϕ, ε

βV ) given in Lemma 5.9. Then, for any s ≥ s0
with s0  1 one has that

sup
τ∈[0,1]

‖(�τ
m(εϕ, ε

βV ))±1Z‖Hs ≤ ‖Z‖Hs (1+ Cs‖εϕ‖Hs + Cs‖εβV ‖Hs ) (5.59)
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for some Cs > 0 depending on s, for any Z ∈ Hs such that�⊥S Z = Z. Define the function

W⊥ := [w⊥
w⊥
] := �m(εϕ, ε

βV )[U⊥] , (5.60)

where U⊥ is in (5.3) and �m(εϕ, ε
βV ) := (�τ

m(εϕ, ε
βV )
)
|τ=1 . One has the equivalence

(1+ εCs)
−1‖εβV ‖Hs ≤ ‖W⊥‖Hs ≤ (1+ εCs)‖εβV ‖Hs . (5.61)

Proof Let us check the bound (5.59) on �τ
m(εϕ, ε

βV ). First of all, using (2.35) and Lemma
2.4 to estimate�τ (εϕ, εβV ) (which belongs to�−ρ1 [r , 3]⊗M2(C) for any ρ ≥ 0) one can
prove that (recall also the assumptions (4.4), (4.11) and (4.5))

‖�τ (εϕ, εβV )Z‖Hs+3 �s ‖Z‖Hs (‖εϕ‖Hs + ‖εβV ‖Hs ) , (5.62)

for any Z ∈ Hs . The bound (5.59) follows by formula (5.48), estimates (5.43) and (5.62).
Using Neumann series, estimate (5.62) and the smallness (4.5) one can prove that (1 +
�τ )−1 − 1 satisfies an estimate like (5.62). Then the estimate (5.59) on the inverse map
follows using (5.43). The equivalence (5.61) follows by (5.59) using also (4.4), (4.11) and
the smallness (4.5).

5.1.3 Conjugation and First Energy Estimate

We are now in position to state our conjugation result.

Proposition 5.11 Under the assumptions of Theorem 5.1 the following holds. Let U⊥ in (5.3)
be a solution of (5.4), then the function W⊥ in (5.60) satisfies

∂tW
⊥ = iE�⊥S OpBW

([
1 0
0 1

]
λ(εϕ, εβV ; x)�(ξ)+ [ 1 1

1 1

]
a(0)(εϕ, εβV ; x, ξ)

)
W⊥

+ iE�⊥S R≤2(εϕ)W⊥ +�⊥S R≥3(εϕ, εβV )+�⊥S�m(εϕ, ε
βV )ResH(εϕ) ,

(5.63)
where the symbol λ(εϕ, εβV ) is in (5.11), the symbol a(0) is real and belongs to S�0

1[r , 3]
with estimates uniform in t ∈ [0, T ]. Moreover the following holds.
(i) The remainder R≤2(εϕ) is real (see Def. 2.13) and has the form

R≤2(εϕ) = R1(εϕ)+R2(εϕ, εϕ) , R j ∈M−2j ⊗M2(C) , j = 1, 2 . (5.64)

(i i) The remainder R≥3(εϕ, εβV ) has the form

R≥3(εϕ, εβV ) =
(
R+≥3(εϕ, ε

βV ),R+≥3(εϕ, εβV )
)T (5.65)

and it satisfies the bound

‖R≥3(εϕ, εβV )‖Hs �s ‖εϕ‖3Hs (TL )
‖εβV ‖Hs + ‖εβV ‖2Hs + ε5‖εβV ‖Hs . (5.66)

(i i i) The vector field

�⊥S iEOpBW
([

1 0
0 1

]
λ(εϕ, εβV ; x)�(ξ)+ [ 1 1

1 1

]
a(0)(εϕ, εβV ; x, ξ)

)

|V≡0�
⊥
S

+ iE�⊥S R≤2(εϕ)�⊥S
is Hamiltonian according to Def. 2.14.
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Proof By (5.4) and (5.60) we have

∂tW
⊥ = (∂t�m(εϕ, ε

βV )
)[U⊥] +�m(εϕ, ε

βV )[∂tU⊥]
(5.50)= OpBW

(
G̃⊥(εϕ, εβV )

)[U⊥]+R̃⊥≤2(εϕ)[U⊥]+R̃⊥≥3(εϕ, εβV )U⊥+�m(εϕ, ε
βV )[∂tU⊥]

(5.51),(5.4)= OpBW
(
(G̃⊥≤2)(εϕ)

)[(�m(εϕ, ε
βV ))−1W⊥] (5.67)

+ R̃⊥≤2(εϕ)[(�m(εϕ, ε
βV ))−1W⊥] (5.68)

+ OpBW
(
(G̃⊥≥3)(εϕ, εβV )

)[U⊥] + R̃⊥≥3(εϕ, εβV )U⊥ +�m(εϕ, ε
βV )�⊥S R̃(εϕ; εβV )

(5.69)

+�m(εϕ, ε
βV )�⊥S ResH(εϕ) (5.70)

+�m(εϕ, ε
βV )�⊥S [iEOpBW

(([
1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, εβV ; x))�(ξ)

)
](�m(εϕ, ε

βV ))−1W⊥

(5.71)

+�m(εϕ, ε
βV )�⊥S [iEOpBW

([
1 1
1 1

]
g(εϕ, εβV ; x)�−1(ξ)

)
](�m(εϕ, ε

βV ))−1W⊥ (5.72)

+�m(εϕ, ε
βV )�⊥S iEQ(εϕ)(�m(εϕ, ε

βV ))−1W⊥ . (5.73)

By Lemma 5.2 and Proposition 4.3 we have Q(εϕ) ∈ �−21 [r , 3] ⊗M2(C). Recall the
expansion (5.49). By Lemmata 2.8, 2.10we deduce that the remainder (5.73) can be absorbed
in a remainder R≤2(εϕ) satisfying the conditions in item (i), up to a term satisfying (5.66).
Similarly, usingLemmata 5.9, 5.2, one can check that the remainders in (5.69) can be absorbed
in the remainderR≥3(εϕ, V ) satisfying the conditions in item (i i). Consider now the terms
in (5.71)–(5.72). Using formula (5.48), the estimates on the remainder �τ ∈ �

−ρ
1 [r , 3] ⊗

M2(C), for any ρ ≥ 0, and the composition properties in Lemmata 2.8, 2.10 one deduces
that

(5.71)+ (5.72)

= �⊥S m(εϕ, V )[iEOpBW
(([

1 0
0 1

]+ [ 1 1
1 1

]
f(εϕ, V ; x))�(ξ)

)
](m(εϕ, V ))

−1W⊥

+�⊥S m(εϕ, V )[iEOpBW
([

1 1
1 1

]
g(εϕ, V ; x)�−1(ξ)

)
](m(εϕ, V ))

−1W⊥

up to remainders which satisfy the properties of R≤2,R≥3 in items (i), (i i). Using the
expansions (5.33)–(5.34), by Lemma 2.2, Remark 2.11 and the (5.14) in Lemma 5.3 one
gets

(5.71)+ (5.72) = �⊥S iEOpBW
(
(
[
1 0
0 1

]
(λ(εϕ, V )))�(ξ)+ [ 1 1

1 1

]
ã(0)(εϕ, εβV ; x, ξ)

)
W⊥

for some ã(0) ∈ S�0
1[r , 3], up to remainders that can be absorbed in terms R≤2,R≥3 satis-

fying items (i), (i i) and where λ(εϕ, V ) is in Lemma 5.3.
Consider the term (5.68). ByLemma 5.9we have thatR⊥≤2 ∈ �−31 [r , 3]⊗M2(C). ByLemma
5.9 the term in (5.68) can be absorbed in terms R≤2,R≥3 satisfying items (i), (i i). Finally,
consider the term in (5.67). Recalling (5.51), the expansion (5.49) and Lemmata 2.2, 2.10 we
deduce that (5.67) is the sum of a pseudo-differential operator of order zero (with symbols in
S�0

1[r , 3]) plus remainders of the formR≤2,R≥3 as in items (i)–(i i). The item (i i i) follows
recalling item (i i) of Lemma 5.2 and the fact that the map U⊥ �→ �τ

m(εϕ, ε
βV )[U⊥] is

symplectic (see Lemma 5.9 ). This concludes the proof.
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Recalling Proposition 5.11 we have the expansions of the symbols in the r.h.s. of (5.63)

λ(εϕ, εβV ) = 1+ λ≤2(εϕ)+ λ≥3(εϕ, εβV ) , (5.74)

a(0)(εϕ, εβV ) = a(0)≤2(εϕ)+ a(0)≥3(εϕ, ε
βV ) , (5.75)

where

λ≤2(εϕ) = λ1(εϕ)+ λ2(εϕ, εϕ), λ j ∈ SM0
j , j = 1, 2, (5.76)

a(0)≤2(εϕ) = a(0)1 (εϕ)+ a(0)2 (εϕ, εϕ), a(0)j ∈ SM0
j , j = 1, 2, (5.77)

and λ≥3, a(0)≥3 are in N0
p with

|λ≥3|N0
p

�s ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ, (5.78)

|a(0)≥3 |N0
p

�p ‖εϕ‖3H p+μ + ‖εβV ‖H p+μ, (5.79)

for any p + μ ≤ s, p ∈ N, and some μ > 1/2.
We now expand the right hand side of (5.63) in degrees of homogeneity in εϕ. We define

M :=
(M+ 0

0 M+
)
, M+ :=M+

0 +M+
1 +M+

2 ,

Z :=
(Z+ Z−
Z− Z+

)
, Z+ := Z+1 + Z+2 , Z− := Z−1 + Z−2

(5.80)

where

M(+)
0 := �⊥S OpW(�(ξ)) , M(+)

j := �⊥S OpBW
(
λ j (εϕ; x)�(ξ)

)
, j = 1, 2 ,

Z(±)
j := �⊥S OpBW

(
a(0)j (εϕ; x, ξ)

)
+�⊥S R

±
j (εϕ) .

and

M> :=
(M+

> 0
0 M+

>

)
, Z> :=

(Z+> Z−>
Z−> Z+>

)
,

M+
> := OpBW

(
λ≥3(εϕ, εβV ; x, ξ)�(ξ)

)

Z+> := �⊥S OpBW
(
a(0)≥3(εϕ, ε

βV ; x, ξ)) , Z−> := �⊥S OpBW
(
a(0)≥3(εϕ, ε

βV ; x, ξ)) ,
(5.81)

We finally define the function Z̃ := Z̃(εϕ, εβV ) as
Z̃ := �⊥S R≥3(εϕ, εβV )+�⊥S �m(εϕ, ε

βV )ResH(εϕ) , (5.82)

where R≥3 is in (5.65). Using the notation above we rewrite the equation (5.63) as

∂tW
⊥ = iE(M+ Z)W⊥ + iE(M> + Z>)W

⊥ + Z̃ . (5.83)

Remark 5.12 By item (i i i) of Proposition 5.11 one deduces that the operators M,Z and
M>,Z> are self-adjoint according to Def. 2.14. This will be used to obtain the commutator
structure in (5.86).

Consider the Fourier multiplier 〈D〉 := OpW(〈ξ 〉), set D := [ 〈D〉 0
0 〈D〉
]
and

Ns(W
⊥) := ‖W⊥‖2Hs = 1

2
(D2sW⊥,W⊥)L2 (5.84)

(see (2.48) and (2.3) ). We have the following.
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Lemma 5.13 (First energy estimates) Under the assumptions of Proposition 5.11 the follow-
ing holds. One has that, for t ∈ [0, T ]

∂tNs(W
⊥) = 1

2 (iED2sA(εϕ)W⊥,W⊥)L2 + B(εϕ, εβV ),
where
• the remainder B(εϕ, εβV ) satisfies

sup
t∈[0,T ]

‖B(εϕ, εβV )‖Hs �s sup
t∈[0,T ]

‖εϕ‖3Hs sup
t∈[0,T ]

‖εβV ‖2Hs

+ sup
t∈[0,T ]

‖εβV ‖3Hs + ε5 sup
t∈[0,T ]

‖εβV ‖Hs ; (5.85)

• the operator A(εϕ) has the form

A(εϕ) := [ A+ A−
A− A+
] := D−2s[iE(M+ Z)(εϕ), iED2s] , (5.86)

and it is real, where Z is in (5.80). In particular

Aσ (εϕ) = Aσ
1 (εϕ)+ Aσ

2 (εϕ, εϕ) , σ ∈ {±} , (5.87)

where (recall (5.80))

A+k (εϕ) := 〈D〉−2s
[
i(M+

k (εϕ)+ Z+k (εϕ)), i〈D〉2s
]
, k = 1, 2 ,

A−k (εϕ) := 〈D〉−2s
(
iZ−k (εϕ)i〈D〉2s + i〈D〉2s iZ−k (εϕ)

)
, k = 1, 2 .

(5.88)

Moreover the following holds.
• The operator A+1 has the form

A+1 (εϕ) := OpBW(a1(εϕ; x, ξ))+ A1(εϕ) , a1 ∈ SM0
1 , A1 ∈M−21 , (5.89)

and (A+1 )σ ( j, 0, j) = 0 for any σ ∈ {±}, j ∈ Z.
• The operator A+2 has the form

A+2 (εϕ, εϕ) := OpBW(a2(εϕ; x, ξ))+ A2(εϕ) , a2 ∈ SM0
2 , A2 ∈M−22 , (5.90)

and (A+2 )σ,−σ ( j, p1, p2, j) = 0, for any σ ∈ {±}, j, p1, p2 ∈ Z.
• The operators A−k belongs to M0

k , k = 1, 2.

Proof By (5.83), Remark 5.12, and an explicit computation one gets

∂tNs(W
⊥) = 1

2 (D2s∂tW
⊥,W⊥)L2 + 1

2 (D2sW⊥, ∂tW⊥)L2

= 1
2 (iED2sA(εϕ)W⊥,W⊥)L2 (5.91)

+ 1
2 (iED2s

(
〈D〉−2s[iM+

>, i〈D〉2s
])
W⊥,W⊥)L2 (5.92)

+ 1
2 (iE
[
iEZ>, iED2s]W⊥,W⊥)L2 (5.93)

+ 1
2 (D2sZ̃,W⊥)L2 + (D2sW⊥, Z̃)L2 , (5.94)

where A(εϕ) is in (5.86) and where we used the fact that

([iEM+
0 , iED2s]W⊥,W⊥)L2 = 0.

The terms in (5.94) satisfies the bound (5.85), by (5.82), Cauchy–Schwarz inequality,
estimates (5.66) and (5.59), the equivalence (5.61), bounds (4.4), (4.11), the smallness (4.5)
and Lemma 4.1 to estimate the residual.
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By (5.81)Z±> are bounded para-differential operators with symbols in SNH0
3[r ]. Then, by

Lemma 2.2, we have that the operator D−2s[iEZ>, iED2s] is bounded. Therefore one can
check that the term in (5.93) satisfies the bound (5.85).

Consider the term (5.92). By Lemmata 2.2, 2.1, and recalling the definition of M+
> in

(5.81), we deduce that the operator

〈D〉−2s[〈D〉2s, OpBW(λ≥3(εϕ, εβV ; x, ξ)�(ξ))
]

is bounded and

‖〈D〉−2s[〈D〉2s,OpW((λ≥3)χ (εϕ, εβV ; x, ξ)�(ξ))
]
h‖Hs

�s ‖h‖Hs
(

sup
t∈[0,T ]

‖εϕ‖3Hs + sup
t∈[0,T ]

‖εβV ‖Hs

)
,

where we used (5.78). This implies that the term (5.92) satisfies (5.85). Consider the term
(5.91) which has components in (5.86)–(5.88). Since M + Z in (5.80) is a bounded para-
differential operator plus a smoothing remainder, the operatorM is diagonal, one can note,
using Lemmata 2.2, 2.1 and the commutator structure in A+k , that A

−
k is inM0

k and A+k admits
the expansions (5.89)–(5.90). Since A+k involves a commutator with the diagonal operator
〈D〉2s it is easy to see that (A+1 )σ ( j, p, k) and (A+2 )σ,−σ ( j, p1, p2, k) are zero when j = k.

5.2 Modified Energies

We introduce the following energy forms (recall (2.48), (5.84)):

E := 1
2 (i ED2sQ(εϕ)W⊥,W⊥)L2 ,

Q(ϕ) := [ Q+ Q−
Q− Q+

] ∈ �0
1 [r , 3] ⊗M2(C) , (5.95)

Es := Ns + E . (5.96)

In particular we look for an operatorQ(ϕ) which is self-adjoint, real-to-real and that admits
an expansion of the form (recall Def. 2.3)

Qσ (ϕ) = Qσ
1 (ϕ)+ Qσ

2 (ϕ, ϕ) , Qσ
k ∈M0

k , k = 1, 2 , σ ∈ {±} . (5.97)

We shall construct the modified energies Qσ
1 , Q

σ
2 , σ ∈ {±}, in a suitable way.More precisely

we prove the following.

Proposition 5.14 Under the assumptions of Theorem 5.1 the following holds. There exists a
real, self-adjoint operator Q(ϕ) as in (5.95) with Qσ

i , i = 1, 2, σ ∈ {±}, of the form (5.97)
such that the energy Es in (5.96)–(5.95) satisfies, for any t ∈ [0, T ] and for s ≥ s0 with
s0  1,

|∂tEs(W⊥)| �s sup
t∈[0,T ]

‖ϕ‖3Hs sup
t∈[0,T ]

‖εβV ‖2Hs + sup
t∈[0,T ]

‖εβV ‖3Hs + ε5 sup
t∈[0,T ]

‖εβV ‖Hs .

(5.98)
Moreover the following holds:
• (Off-diagonal). The operators Q−k belong to M−1k , k = 1, 2 .
• (Diagonal I). The operator Q+1 has the form

Q+1 (εϕ) := OpBW(q1(εϕ; x, ξ))+ Q1(εϕ) , q1 ∈ SM0
1 , Q1 ∈M−21 . (5.99)

• (Diagonal II). The operator Q+2 has the form

Q+2 (εϕ) := OpBW(q2(εϕ; x, ξ))+ Q2(εϕ) , q2 ∈ SM0
2 , Q2 ∈M−12 . (5.100)
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Finally (recall 2.32, (2.34) and (2.40)) one has

|qσ1σ22 ( j1, j2, ξ)| � γ−1 max{〈 j1〉, 〈 j2〉}μ , (5.101)

|(Q2)
σ1σ2(ξ, j1, j2, j3)| + |(Q−2 )σ1σ2(ξ, j1, j2, j3)| � γ−1 max2{〈 j1〉, 〈 j2〉, 〈 j3〉}μ+1

max{〈 j1〉, 〈 j2〉, 〈 j3〉} ,

(5.102)

for some μ > 0.

In Sect. 5.2.1 we construct the operators Qσ
1 , σ ∈ {±}, while in Sect. 5.2.2 we construct

the operators Qσ
2 , σ ∈ {±}, Then in Sect. 5.2.3 we prove Proposition 5.14 and then we

conclude the proof of Theorem 5.1.

5.2.1 First Order Homological Equation

In this section we prove the following result.

Lemma 5.15 (Homological equation 1) There exist operators Q+1 satisfying (5.99) such that

A+1 + Q+1 (iE�εϕ)+ 〈D〉−2s[〈D〉2s Q+1 , i�] = 0 (5.103)

and Q−1 ∈M−11 such that

A−1 + Q−1 (iE�ϕ)− i〈D〉−2s(〈D〉2s Q−1 �+� 〈D〉2s Q−1 ) = 0 , (5.104)

where A+1 , A
−
1 are the operators introduced in (5.88) and� is the Fourier multiplier in (2.5).

Moreover Qσ
1 = Qσ

1 , σ ∈ {±}.
Proof We start by writing the equation (5.103) for the Fourier coefficients. We have, fixing
j, k ∈ Sc, p ∈ S and σ ∈ {±} such that σ p = j − k
(
(Q+1 )

σ ( j, p, k) σ i�(p) + i(�(k)−�( j))(Q+1 )
σ ( j, p, k) + (A+1 )

σ ( j, p, k)
)
ϕ̂σ (p) = 0 .

Then we set

(Q+1 )
σ ( j, p, k) = 1

i
(
�( j)−�(k)− σ�(p)

) (A+1 )
σ ( j, p, k) . (5.105)

The coefficients (Q+1 )σ ( j, p, k) vanish as j = k because by Lemma 5.13 we have
(A+1 )σ ( j, 0, j) = 0. Recalling (5.89), Definitions 2.3, 2.5, (2.20), we have

(A+1 )
σ ( j, p, k) := (a1)

σ (σ p, ( j + k)/2)χ
( 2|p|
〈 j + k〉

)+ Aσ1 ( j, p, k),

where
|Aσ1 ( j, p, k)| � 〈p〉μ (max{〈p〉, 〈k〉})−2 (5.106)

for some μ > 0. We observe that, by definition of S in (4.1), the modulus of a site in Sc is
always greater than the modulus of a site in S, then we must have jk > 0 because otherwise
themomentum condition implies |p| = | j |+|k|, which is not possible since p ∈ S, j, k ∈ Sc.
Now we claim that we can expand the denominator in (5.105)

1

�( j)−�(k)− σ�(p)
=

⎧
⎪⎪⎨

⎪⎪⎩

1

σ p − σ�(p)
+ r−2(p; j, k) if j, k > 0

− 1

σ p + σ�(p)
+ r̃−2(p; j, k) if j, k < 0
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where
|r−2(p; j, k)|, |r̃−2(p; j, k)| � 〈p〉μ (min{〈 j〉, 〈k〉})−2 , (5.107)

for some μ > 0. Let us prove the claim in the case j, k > 0. The other case is similar. We
use that

�( j) = | j | + m

2| j | +O(| j |−3).

We have that

1

�( j)−�(k)− σ�(p)
− 1

σ p − σ�(p)
= �(k)−�( j)+ σ p

σ p − σ�(p)
1

�( j)−�(k)− σ�(p)
=: r−2(p; j, k) .

By momentum condition j − k = σ p we have that

σ p +�(k)−�( j) = m

2
(k−1 − j−1)+O((min{〈 j〉, 〈k〉})−3)

= m

2

σ p

j k
+O((min{〈 j〉, 〈k〉})−3) = O((min{〈 j〉, 〈k〉})−2) .

Therefore, using bound (3.8), we notice that r−2 satisfies (5.107). This concludes the proof
of the claim.
Therefore (recall that j, k ∈ Sc then j, k �= 0) we write

(Q+1 )
σ ( j, p, k) = q̃σ1 ( j, p, k)χ

( 2|p|
〈 j + k〉

)+ Q̃σ1 ( j, p, k) (5.108)

where

q̃σ1 ( j, p, k) :=
1

i
(
χ̃ ( j + k) σ p − σ�(p)

) (a1)σ (σ p, ( j + k)/2) (5.109)

and (recall j + k �= 0 because j k > 0)

χ̃ (x) =
{
1 if x > 0,

−1 if x < 0

and Q̃σ1 ( j, p, k) is defined by difference. Using the bound (5.107) and Lemma 3.8 (see bound
(3.8)) we deduce the estimate

|̃Qσ1 ( j, p, k)| � 〈p〉μ (max{〈p〉, 〈k〉})−2 ,
for some μ > 0 (possibly larger than the one appearing in (5.106)). Then the operator Q̃1 of
the form (2.30)–(2.31) (with p = 1) with coefficients Q̃σ1 ( j, p, k) is a remainder in the class
M−21 . We shall consider a slight modification of q̃σ1 . Let us now introduce the C∞ cut-off
function η : R→ R defined as

η(y) :=
{
1 y ≥ 1/2,

0 y ≤ −1/2. (5.110)

Let us define the symbol

qσ1 (εϕ; x, ξ) := η(ξ )̃qσ1 (L+εϕ; x, ξ)+ (1− η(ξ))̃qσ1 (L−εϕ; x, ξ)
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where L± are the operator defined by linearity as

L±eiσ px = 1

±σ p − σ�(p)
eiσ px , p ∈ S,

and 0 otherwise. It is easy to check that qσ1 (εϕ; x, ξ) ∈ SM0
1 and qσ1 − q̃σ1 is infinitely

smoothing. By the discussion above we have that the operator Q+1 of the form (2.30) with
coefficients as in (5.108) can be written as

Q+1 (εϕ) := OpBW(q1(εϕ; x, ξ))+ Q1(εϕ), q1 ∈ SM0
1, Q1 ∈M−21 ,

where Q1 := OpBW(q1− q̃1)+ Q̃1. We now study the equation (5.104). In Fourier we have,
fixing j, k ∈ Sc, p ∈ S and σ ∈ {±} such that σ p = j − k

(Q−1 )
σ ( j, p, k) σ i�(p) ϕ̂σ (p)− i(�( j)+�(k))(Q−1 )

σ ( j, p, k) ϕ̂σ (p)

+ (A−1 )
σ ( j, p, k) ϕ̂σ (p) = 0 .

We set

(Q−1 )
σ ( j, p, k) = 1

i
(
�( j)+�(k)− σ�(p)

) (A−1 )
σ ( j, p, k) . (5.111)

First we note that, by Lemma 5.13, A−1 ∈M0
1 and then

|(A−1 )σ ( j, p, k)| � 〈p〉μ

for some μ > 0. Moreover |�( j) + �(k) − σ�(p)| ≥ �( j), since min{〈 j〉, 〈k〉} ≥ |p|.
Therefore the operator Q−1 with coefficients in (5.111) belongs to M−11 . This concludes the
proof. "#

5.2.2 Second order Homological Equation

In this section we prove the following result.

Lemma 5.16 (Homological equation 2) Recall (5.17) and Lemma 5.13. Consider the opera-
tors Qσ

1 , σ ∈ {±}, given by Lemma 5.15. There exist operators Q+2 ∈M0
2 such that

Q+2 (iE�εϕ, εϕ)+ Q+2 (εϕ, iE�εϕ)+ 〈D〉−2s[〈D〉2s Q+2 , i�] =
= −A+2 − Q+1 (M1(εϕ)εϕ)

− 〈D〉−2s
(
[〈D〉2s Q+1 , i(M+

1 + Z+1 )] − i(〈D〉2s Q−1 Z−1 + Z−1 〈D〉2s Q−1 )
)
.

(5.112)

and Q−2 ∈M−12 such that

Q−2 (iE�εϕ, εϕ)+Q−2 (εϕ, iE�εϕ)+ i�Q−2 + iQ−2 � =
= −A−2 − Q−1 (M1(εϕ)εϕ)− i[Q+1 ,Z−1 ] − 〈D〉−2s[〈D〉2s Q+1 , iZ−1 ]
+ 〈D〉−2s

(
i(〈D〉2s Q−1 (M+

1 + Z+1 )+ (M+
1 + Z+1 )〈D〉2s Q−1 )

)
.

(5.113)
Moreover the operator Q+2 has the form (5.100) and satisfies (5.102). Finally Qσ

2 = Qσ
2 ,

σ ∈ {±}.
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Proof We start by considering the equation (5.112). We claim that the right hand side of
(5.112)

can be rewritten as

F(εϕ) = OpBW(f(εϕ; x, ξ))+ F(εϕ)

where f(εϕ; x, ξ) ∈ SM0
2 and F(εϕ) ∈ M−12 . By Lemma 5.13–(5.90) A+2 is the sum of a

pseudo differential operator of order 0 and a 2-smoothing operator. By Lemma 5.15 the same
holds for Q+1 . Themost critical term is the one involvingM+

1 +Z+1 , because it is unbounded.
Indeed, we recall that M+

1 + Z+1 in (5.80) is the sum of a pseudo differential operator of
order 1 and an operator M−21 , that for notation convenience we call respectively P,B. Then
the commutator [〈D〉2 s Q+1 , i(M+

1 + Z+1 )] looses just 2 s derivatives, indeed
[〈D〉2s Q+1 , i(M+

1 + Z+1 )] = [〈D〉2s OpBW(q1), iP] + [〈D〉2sQ1, iP] + [〈D〉2s Q+1 , iB].
The first term is the commutator between two pseudo differential operators, then it is a pseudo
differential operator and it gains one derivative, hence it has a symbol in SM2s

2 ; the second
term is, by composition, a linear operator inM2s−1

2 because Q1 ∈M−21 ; the third term is, by
composition, inM2s−2

2 . Therefore

〈D〉−2s[〈D〉2s Q+1 , i(M+
1 + Z+1 )]

is the sum of a pseudo differential operator with symbol in SM0
2 and an operator inM

−1
2 . By

recalling that Z−1 is bounded and Q−1 ∈ M−11 , the remaining terms in the right hand side of
(5.112) are M−12 . This proves the claim.
RecallingDefinitions 2.3 2.5 andLemma2.6we have the following bounds on the coefficients
of f(εϕ; x, ξ) and F(εϕ):

|fσ1σ2(p1, p2, j)| �s max
1
{〈p1〉, 〈p2〉}μ ,

|Fσ1σ2( j, p1, p2, k)| �s
max1{〈p1〉, 〈p2〉}μmax2{〈p1〉, 〈p2〉, 〈k〉}μ+1

max1{〈p1〉, 〈p2〉, 〈k〉} ,
(5.114)

for any j, k ∈ Sc, p1, p2 ∈ S, σ1, σ2 ∈ {±1} and for some μ > 0 .
Then we define

(
Q+2
)σ1σ2( j, p1, p2, k) =

fσ1σ2(p1, p2, ( j + k)/2)χ
( 2|p|
〈 j+k〉
)+ Fσ1σ2( j, p1, p2, k)

i
(
�( j)−�(k)− σ1�(p1)− σ2�(p2)

) ,

if �( j)−�(k)− σ1�(p1)− σ2�(p2) �= 0 and σ1 p1 + σ2 p2 = j − k ,
(5.115)

and
(
Q+2
)σ1σ2( j, p1, p2, k) = 0

if �( j)−�(k)− σ1�(p1)− σ2�(p2) = 0 and σ1 p1 + σ2 p2 = j − k .
(5.116)

We have to show that the operator defined by (5.115)–(5.116) solves the equation (5.112).
We know that the only possible resonances at order four are ( j, k, p1, p2) such that (up to
permutations)

| j | = |k|, |p1| = |p2| or | j | = |p1|, |k| = |p2|.
Since S is symmetric and j, k /∈ S, p1, p2 ∈ S then the only possible case is | j | = |k|,
|p1| = |p2| with σ1 �= σ2. By the Lemma 3.8 we have that

�( j)−�(k)− σ1�(p1)− σ2�(p2) = 0, σ1 p1 + σ2 p2 = j − k,
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only if
j = k , p1 = p2 , σ1 = −σ2 . (5.117)

Therefore the operator Q+2 defined by (5.115)–(5.116) is a solution of the equation (5.112)
if and only if the coefficients of the operator in the right hand side of (5.112) are zero when
(5.117) holds true. In order to prove this we study each summand in the r.h.s. of (5.112).
By theprevious step inLemma5.15, in particular (5.105) and the fact that (A+1 )σ ( j, 0, j) = 0,
the coefficients of the operator Q+1 (iEM1(εϕ)εϕ) are zero as j = k. By Lemma 5.13 the
same holds for the coefficients of A+2 .

Consider the linear operator [〈D〉2 s Q+1 , i(M+
1 + Z+1 )]. Recalling the expansion (2.32),

and the (5.105), (5.88), for indexes satisfying

σ1 p1 + σ2 p2 = j − k,

we have that

[〈D〉2s Q+1 , i(M+
1 + Z+1 )]σ1,σ2( j, p1, p2, k)

= (M+
1 + Z+1 )σ1( j, p1, k′)(M+

1 + Z+1 )σ2(k′, p2, k)×

×
( 〈 j〉2s − 〈k′〉2s
i(�( j)−�(k′)− σ1�(p2))

− 〈k′〉2s − 〈k〉2s
i(�(k′)−�(k)− σ2�(p2))

)

where

k′ = j − σ1 p1 = k + σ2 p2.

If (5.117) holds one can check that [〈D〉2 s Q+1 , i(M+
1 + Z+1 )]σ1,−σ1( j, p1,−p1, j) = 0.

Concerning the term

〈D〉2s Q−1 Z−1 + Z−1 〈D〉2s Q−1
one can reason as above using equation (5.111). This proves the claim.
It remains to prove the (5.100) for the operator Q+2 . It is easy to check (using (5.114) and
(3.9) in Lemma 3.8) that the coefficients

Fσ1σ2( j, p1, p2, k)

�( j)−�(k)− σ1�(p1)− σ2�(p2)

appearing in (5.115) contribute to a smoothing remainder satisfying (5.102). To estimate the
contribution of the first summand in the r.h.s. of (5.115) we reason as done for the operator
Q+1 in Lemma 5.15. Notice that, by the momentum condition σ1 p1 + σ2 p2 = j − k we
deduce that, if jk < 0, then

max{| j |, |k|} � max{|p1|, |p2|}.
Therefore the coefficients

fσ1σ2(p1, p2, ( j + k)/2)

�( j)−�(k)− σ1�(p1)− σ2�(p2)
, jk < 0

satisfy the (5.102), which means that they contribute to a smoothing remainder in M−12 .
Hence we only study the case jk > 0. We Taylor expand the denominator

1

�( j)−�(k)− σ1�(p1)− σ2�(p2)
=

⎧
⎪⎪⎨

⎪⎪⎩

1

σ1 p1 + σ2 p2 + σ1�(p1)+ σ2�(p2)
+ r1, j, k > 0

1

−σ1 p1 − σ2 p2 + σ1�(p1)+ σ2�(p2)
+ r̃1, j, k < 0,
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where r1 := r1( j, p1, p2, k), r̃1 := r̃1( j, p1, p2, k) satisfy

|r1( j, p1, p2, k)|, |r̃1( j, p1, p2, k)| ≤ max{〈p1〉, 〈p2〉}μmin{〈 j〉, 〈k〉}−1,
and p1, p2 ∈ S. Recalling (5.110) we set

q2(εϕ; x, ξ) :=
∑

p1,p2∈Z,σ∈{±}
qσσ2 (p1, p2, ξ)ϕ

σ
p1ϕ

σ
p2e

iσ(p1+p2)x

+
∑

p1,p2∈Z

q+−2 (p1, p2, ξ)ϕp1ϕp2e
i(p1−p2)x

with

qσ1σ22 (p1, p2, ξ) := iη(ξ)fσ1σ2 (p1, p2, ξ)

σ1 p1 + σ2 p2 − σ1�(p1)− σ2�(p2)
+ i(1− η(ξ))fσ1σ2 (p1, p2, ξ)

−σ1 p1 − σ2 p2 − σ1�(p1)− σ2�(p2)
.

By (5.114) and (3.9) one can check that q2(ϕ; x, ξ) is a symbol in the class SM0
2 with

coefficients satisfying (5.101). Therefore, the discussion above implies that the operator Q+2
with coefficients in (5.115) can be written as

Q+2 := OpBW(q2(εϕ; x, ξ))+ Q2(εϕ)

for some Q2(εϕ) ∈M−12 . Then formula (5.100) follows.
Consider now the equation (5.113). By Lemma 5.13 and Lemma 5.15, using Lemmata 2.2,
2.10 2.8 and 2.11, we note that the right hand side of (5.113) is a linear operator R(ϕ) in the
class M0

2 with coefficients satisfying

|Rσ1σ2( j, p1, p2, k)| � max
2
{〈p1〉, 〈p2〉, 〈k〉}μ , (5.118)

for any j, k, p1, p2 ∈ Z, σ1, σ2 ∈ {±}, for some μ > 0. Then we define

(
Q−2
)σ1σ2( j, p1, p2, k) = iRσ1σ2( j, p1, p2, k)

�( j)+�(k)− σ1�(p1)− σ2�(p2)
, (5.119)

for any j, k, p1, p2 ∈ Z, σ1, σ2 ∈ {±} with σ1 p1 + σ2 p2 = j + k. If jk > 0 then

max{| j |, |k|} � max{|p1|, |p2|}.
Hence, without loss of generalitywe can assume that j > 0, k < 0, otherwise Q−2 is infinitely
smoothing because j, k are equivalent to the inner frequencies p1, p2. The momentum con-
dition reads as | j |−|k| = σ1 p1+σ2 p2. If p1 = p2 = 0 the bound on the coefficients (5.119)
is trivial. Hence we assume that |p1| + |p2| ≥ 1 ( they cannot be both zero). Assume that k
is such that

|k| > 4(|p1| + |p2|). (5.120)

Then we have that �(k) > �(p1)+�(p2), indeed

�(k)2 > 16(|p1| + |p2|)2 + m > (|p1| + |p2|)2 + 2m2 + m(|p1| + |p2|)
+ m > (�(p1)+�(p2))

2,

where we used that m ≤ 2 and |p1| + |p2| ≥ 1. Hence

�( j)+�(k)− σ1�(p1)− σ2�(p2) ≥ �( j).

Therefore the operator with coefficients in (5.119) with k such that (5.120) holds belongs
to M−11 . If k is such that |k| ≤ 4(|p1| + |p2|), then by the momentum condition | j | ≤
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5(|p1| + |p2|). Therefore we can argue as before, because j, k are equivalent to the inner
frequencies p1, p2.

By estimates (5.118) and the above discussion we deduce that the coefficients in (5.119)
satisfy (5.102). Hence the thesis follows.

5.2.3 Proof of Proposition 5.14

Recalling (5.96) we have

∂tEs(W⊥) = ∂tNs(W
⊥)+ 1

2
(i ED2s∂t (Q(εϕ))W⊥,W⊥)L2

+ (i ED2sQ(εϕ)Ẇ⊥,W⊥)L2 + (i ED2sQ(εϕ)W⊥, Ẇ⊥)L2 .

Therefore, using Lemma 5.13 and the equation (5.83) (recall also Remark 5.12), one gets

∂tEs(W⊥) = 1
2 (iED2sL(εϕ)W⊥,W⊥)L2 + B(εϕ, V )

+ 1

2
(iE
[D2sQ(εϕ), iE

(M> + Z>

)]
W⊥,W⊥)L2

+ 1
2 (iED2sQ(εϕ)Z̃,W⊥)L2 + 1

2 (iED2sQ(εϕ)W⊥, Z̃)L2

(5.121)

where M>,Z> are in (5.81), Z̃ is in (5.82) and where

L(εϕ) := A(εϕ)+ ∂t (Q(εϕ))+D−2s[D2sQ(εϕ), iE
(M+ Z)] ,

with M,Z in (5.80). By (5.95), (5.97), (5.80) we can write

L(εϕ) =
(
L(diag) L(off)

L(off) L(diag)

)

,

L(diag) := A+ + ∂t
(
Q+(εϕ)

)

+ 〈D〉−2s
(
[〈D〉2s Q+, i(M+ + Z+)] − i(〈D〉2s Q−Z− + Z−〈D〉2s Q−)

)
,

(5.122)

L(off) := A− + ∂t
(
Q−(εϕ)

)

+ 〈D〉−2s
(
[D2s Q+, iZ−] − i(〈D〉2s Q−(M+ + Z+)+ (M+ + Z+)〈D〉2s Q−)

)
.

(5.123)

Notice that by (5.17) we have, for σ ∈ {±},
∂t (Q

σ (εϕ)) = Qσ
1 (εϕt )+ Qσ

2 (εϕt , εϕ)+ Qσ
2 (εϕ, εϕt )

= Qσ
1 (iE�ϕ)+ Qσ

1 (M1(εϕ)εϕ)+ Qσ
2 (iE�εϕ, εϕ)

+ Qσ
2 (εϕ, iE�εϕ)+ Rσ≥3

(5.124)

where

Rσ≥3 := Qσ
1 (M2(εϕ)εϕ + M≥3(εϕ)εϕ)

+ Qσ
2

(
εϕ,M1(εϕ)εϕ + M2(εϕ)εϕ + M≥3(εϕ)εϕ

)

+ Qσ
2 (M1(εϕ)εϕ + M2(εϕ)εϕ + M≥3(εϕ)εϕ, εϕ)

+ Qσ
1 (−ResH(εϕ))+ Qσ

2 (εϕ,−ResH(εϕ))+ Qσ
2 (−ResH(εϕ), εϕ) .

(5.125)
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Then, using (5.87), (5.97), (5.80), (5.124), we Taylor expand L(diag) and L(off) in (5.122)–
(5.123) as

L(diag) = L(diag)
1 + L(diag)

2 + L(diag)
≥3 , L(off) = L(off)

1 + L(off)
2 + L(off)

≥3
where

L(diag)
1 = A+1 + Q+1 (iE�εϕ)+ 〈D〉−2s[〈D〉2s Q+1 , i�],

L(diag)
2 = A+2 + Q+1 (M1(εϕ)εϕ)+ Q+2 (iE�εϕ, εϕ)+ Q+2 (εϕ, iE�εϕ) ,

+ 〈D〉−2s
(
[〈D〉2s Q+2 , i�] + [〈D〉2s Q+1 , i(M+

1 + Z+1 )] − i(〈D〉2s Q−1 Z−1
+ Z−1 〈D〉2s Q−1 )

)
,

L(diag)
≥3 = R+≥3 + 〈D〉−2s

(
[〈D〉2s Q+2 , i(M+

1 + Z+1 )]
)

+ 〈D〉−2s
(
[〈D〉2s Q+1 , i(M+

2 + Z+2 )] + [〈D〉2s Q+2 , i(M+
2 + Z+2 )]

)
,

− i〈D〉−2s
(
〈D〉2s Q−1 Z−2 + Z−2 〈D〉2s Q−1 + 〈D〉2s Q−2 Z−1 + Z−1 〈D〉2s Q−2

)

− i〈D〉−2s
(
〈D〉2s Q−2 Z−2 + Z−2 〈D〉2s Q−2

)
,

(5.126)
and

L(off)
1 = A−1 + Q−1 (iE�ϕ)− i〈D〉−2s(〈D〉2s Q−1 �+� 〈D〉2s Q−1 ) ,

L(off)
2 = A−2 + Q−1 (M1(εϕ)εϕ)+ Q−2 (iE�ϕ, εϕ)+ Q−2 (εϕ, iE�εϕ)

+ 〈D〉−2s
(
[〈D〉2s Q+1 , iZ−1 ]

)

− 〈D〉−2s
(
i(〈D〉2s Q−1 (M+

1 + Z+1 )+ (M+
1 + Z+1 )〈D〉2s Q−1 )

)

− i〈D〉
(
〈D〉2s Q−2 �+�〈D〉2s Q−2

)
,

L(off)
≥3 = R−≥3 + 〈D〉−2s

(
[〈D〉2s Q+2 , iZ−1 ] + [〈D〉2s Q+1 , iZ−2 ] + [〈D〉2s Q+2 , iZ−2 ]

)

− i〈D〉−2s
(
〈D〉2s Q−2 (M+

1 + Z+1 )+ (M+
1 + Z+1 )〈D〉2s Q−2

)

− i〈D〉−2s
〈
D〉2s Q−1 Z+2 + Z+2 〈D〉2s Q−1

)

− i〈D〉−2s
(
〈D〉2s Q−2 Z+2 + Z+2 〈D〉2s Q−2

)
.

(5.127)
By Lemmata 5.15, 5.16 we have constructed Q(1), Q(2) such that

L(diag)
1 = L(diag)

2 = L(off)
1 = L(off)

2 ≡ 0.

Then, by (5.121), we deduce

∂tEs(W⊥) = 1
2 (iED2sL≥3(εϕ)W⊥,W⊥)L2 + B(εϕ, V )
+ 1

2
(iE
[D2sQ(εϕ), iE(M> + Z>)

]
W⊥,W⊥)L2

+ 1
2 (iED2sQ(εϕ)Z̃,W⊥)L2 + 1

2 (iED2sQ(εϕ)W⊥, Z̃)L2
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where

L≥3(εϕ) :=
⎛

⎝
L(diag)
≥3 L(off)

≥3
L(off)
≥3 L(diag)

≥3

⎞

⎠ .

We claim that the operators L(diag)
≥3 , L(off)

≥3 belong to NH0
3[r ] and satisfy for s ≥ s0 (s0 large

enough)
‖L(diag)
≥3 h‖Hs + ‖L(off)

≥3 h‖Hs �s L2‖ϕ‖3Hs (T)‖h‖Hs , (5.128)

for all h ∈ Hs .
We start considering the term L(diag)

≥3 in (5.126). First of all we recall that, by (5.97), (5.99),
(5.100), we have

Q+(ϕ) = OpW(q1 + q2)+ Q1(ϕ)+ Q2(ϕ), q1 ∈ SM0
1, q2 ∈ SM0

2,

Q1 ∈M−21 , Q2 ∈M−12 .

We also recall that

Q−(ϕ) = Q−1 (ϕ)+ Q−2 (ϕ) , Q−1 ∈M−11 , Q−2 ∈M−12 . (5.129)

We now analyse the cubic contributions coming from each summand in (5.126) and we show
that they are all bounded operators. We point out thatM+ is an unbounded operator of order
one, while Z+ is bounded. By the properties of Qσ

j , σ = ±, j = 1, 2 discussed above we

have that R( j)
≥3 in (5.125) are bounded.

In the second line of (5.126) the terms are bounded because Q+j = OpW(q j )+ Q j and

(i) the commutator between the pseudo differential operators

OpW(q j ), M+
k + Z+k , ( j, k) ∈ {(1, 2), (2, 1), (2, 2)},

gains one derivative;
(i i) the composition between Q j and M+

k + Z+k , ( j, k) ∈ {(1, 2), (2, 1), (2, 2)} is bounded
by Lemma 2.10 and because Q j are 1-smoothing.
The third and fourth lines in (5.126) are bounded because they are compositions of bounded
operators.
Nowwemake a similar analysis forL(off)

≥3 in (5.127). As before the only critical terms are the
ones involvingM+, namely the terms of the third and fourth lines in (5.127). By (5.129) and
Lemma 2.10 the composition of Q−j with M+

k , ( j, k) ∈ {(1, 2), (2, 1), (2, 2)}, is bounded.
The estimate (5.128) is consequence of (5.102) and (5.76), (5.77), (5.64) for the estimates
on M+

k ,Z±k , k = 1, 2.
Recall Z̃ in (5.82). By (5.66), (5.59) and (4.7) we have

‖Z̃‖Hs �s ‖εϕ‖3Hs‖εβV ‖Hs + ‖εβV ‖2Hs + ε5 . (5.130)

We observe that
[D2 sQ(εϕ), iE(M> + Z>

]
looses only 2 s derivatives thanks to the com-

mutator structure since M> is a diagonal matrix of para-differential operator of order one,
while Q,Z> are (uo to smoothing remainders) para-differential of order zero.
By Cauchy–Schwarz inequality, (5.85), (5.128), (5.78), (5.79) and (5.130) we obtain (5.98).
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5.3 Proof of Theorem 5.1

We are now in position to conclude the proof of Theorem 5.1. Consider the function εβV
which is a solution of (4.9). Our aim is to prove an a priori estimate on εβ�⊥S V which solves
the equation (5.1). Recall that, by Lemma 5.2, the (5.1) can bewritten as (5.4). By Proposition
5.11 (see also Lemma 5.9) we have that the functionW⊥ in (5.60) solves the equation (5.63).
Now consider the modified energy Es(W⊥) in (5.95)–(5.96) (recall also (5.84)) where the
operator Q(εϕ) is given by Proposition 5.14. We claim that there is Cs > 0 such that, for
ε > 0 small enough,

1

1+ εCs
‖W⊥‖2Hs ≤ |Es(W⊥)| ≤ (1+ εCs)‖W⊥‖2Hs . (5.131)

Indeed, using (5.99)–(5.102), recalling Definitions 2.3, 2.5, Lemma 2.2 and the Cauchy–
Schwarz inequality, one gets

|Es(W⊥)|
(5.96)≤ ‖W⊥‖2Hs + | 12 (i ED2sQ(εϕ)W⊥,W⊥)H0 |
≤ ‖W⊥‖2Hs + cs‖Q(εϕ)W⊥‖Hs‖W⊥‖Hs

≤ ‖W⊥‖2Hs (1+ cs‖εϕ‖Hs )

which implies the second in (5.131). The first inequality follows similarly. Using (5.131),
estimate (5.98) and integrating in t one obtains

‖W⊥(t)‖2Hs ≤ ‖W⊥(0)‖2Hs + CsT sup
t∈[0,T ]

‖ϕ‖3Hs sup
t∈[0,T ]

‖V ‖2Hs

+ CsT sup
t∈[0,T ]

‖V ‖3Hs + CsT ε
5 sup
t∈[0,T ]

‖V ‖Hs ,

for t ∈ [0, T ]. Therefore, using the equivalence (5.61), one gets the bound (5.2). This
concludes the proof.

6 The Estimates on the Remainder and Proof of theMain Result

Consider the function V in (4.8) which solves the problem (4.9) and set

0 < σ < 1/4 , β ∈ (2+ 2σ, 3− 2σ) . (6.1)

The main result of this section is the following.

Proposition 6.1 (Main bootstrap) Let σ, β as in (6.1). There exists s0  1 such that for all
s ≥ s0 there exist constants c0 = c0(s) > 0, Cs > 0 such that the following holds. Let
ε > 0 satisfying (4.5) and let εϕ be the approximate solution in (4.3) and satisfying (4.4). Let
V (t, x) be a solution of (4.9) with initial condition V0 ∈ Hs(T) defined for times t ∈ [0, T0]
for some T0 > 0. If

εβ‖V0‖Hs ≤ εβ , εβ‖�SV0‖H1 ≤ εβ+1 , (6.2)

then V (t, x) extends over an interval [0, T̃ ] with
T̃ := c0ε

−2−σ , (6.3)

and we have the following bound

sup
t∈[0,T̃ ]

εβ‖V (t)‖Hs ≤ 2εβ . (6.4)
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The proof of Proposition 6.1 is based on a bootstrap argument. We define

T∗ := sup
{
T ≥ 0 : sup

t∈[0,T ]
‖εβV ‖Hs ≤ 2εβ

}
. (6.5)

By assumption of Proposition 6.1 we have that T∗ > 0. We shall prove, by contradiction,
that the supremum T∗ cannot be smaller than T̃ in (6.3).

Remark 6.2 The bootstrap assumption implies (4.11).

We split the equation (4.9) in the following way
{
εβ∂t�SV = εβ�SdXH(εϕ)[V ] + ε2β�SQ(εϕ)[V , V ] +�SResH(εϕ) ,

εβ∂t�
⊥
S V = εβ�⊥S dXH(εϕ)[V ] + ε2β�⊥S Q(εϕ)[V , V ] +�⊥S ResH(εϕ) .

(6.6)

The rest of the section is organized as follows: in Sect. 6.1 we show the improved bound

εβ sup
t∈[0,T ]

‖�SV ‖Hs (T) ≤ 3

2
εβ (6.7)

as long as T ≤ T̃ in (6.3). Similarly in Sect. 6.2 we prove

εβ sup
t∈[0,T ]

‖�⊥S V ‖Hs (T) ≤ 3

2
εβ (6.8)

as long as T ≤ T̃ . By continuity the bounds (6.7)–(6.8) imply that the supremum T∗ in (6.5)
should be larger than T̃ in (6.3). Then we will conclude the proof of Proposition 6.1.
From now on we consider (by contradiction) T ≤ T∗ ≤ T̃ in (6.5)–(6.3).

6.1 The Equation for Low Frequencies

We study the time evolution of the Sobolev norms

d

dt
‖εβ�SV ‖2Hs = ε2β(D2s∂t�SV ,�SV )L2 + ε2β(D2s�SV , ∂t�SV )L2 .

We use the first equation in (6.6) and we provide estimates for each term. The most delicate
term is the one involving dXH(εϕ). Recall the definition ofHres in (3.31).

Lemma 6.3 We have

�SdXH(εϕ)[V ] = dXHres (εϕ)[�SV ] +�SdXR(≥6) (εϕ)[V ].
Proof Notice that, since εϕ is Fourier supported on S, we have

�SdXH(n,≥2) (εϕ)[V ] = 0, n = 3, 4, 5.

Hence the thesis follows.

Lemma 6.4 Recall T∗ in (6.5). We have for 0 < T ≤ T∗

ε2β
∣∣∣∣

∫ T

0
(D2s�SdXR(≥6) (εϕ)[V ],�SV )L2 dt

∣∣∣∣ �s ε
4+2βT .

Proof The estimate holds by item (iii) of Proposition 3.9, in particular the first bound in
(3.19), (4.4) and using the Cauchy–Schwarz inequality.
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In the following Lemma we give energy estimate for the term �SdXHres (εϕ)[V ].
Lemma 6.5 Recall T∗ in (6.5) and let V be the solution of (6.6). We have, for 0 < T ≤ T∗,

ε2β
∣
∣
∣
∣

∫ T

0

(
(D2s�SdXHres (εϕ)+ [dXHres (εϕ)]∗�SD2s)[�SV ],�SV

)
L2 dt

∣
∣
∣
∣ ≤

1

4
ε2β .

(6.9)

Proof By (3.16) we have

Hres(W ) = H (2)(W )+H(4,0)
res (W ) =

∑

j∈Z

�( j)|w j |2 +
∑

j,k∈S
C jk |w j |2|wk |2 , (6.10)

with C jk = Ckj ∈ R, and hence XHres (W ) = (X+Hres
(W ), X+Hres

(W ))T with

(
X+Hres

(W )
)

j
= −i∂w jHres(W ) = −i�( j)w j − i

(
∑

k∈S
C jk |wk |2

)

w j , j ∈ S.

We define B := �SdXHres (εϕ). Then, for j ∈ S, we have

(B[�SV ]) j =
∑

k∈S

⎛

⎝
Bk,+
j,+vk + Bk,−

j,+vk

Bk,+
j,−vk + Bk,−

j,−vk

⎞

⎠

=
(−i�( j)v j − i

(∑
k∈S C jk |εϕk |2

)
v j − 2iε

(∑
k∈S C jkRe (vkϕk)

)
εϕ j

i�( j)v j + i
(∑

k∈S C jk |εϕk |2
)
v j + 2iε

(∑
k∈S C jkRe (vkϕk)

)
εϕ j

)

.

(6.11)
Therefore we have

Bk,+
j,+ :=

{
−i(�( j)+ 2ε2C j j |ϕ j |2) j = k ,

−2iε2C jkϕkϕ j j �= k ,

Bk,−
j,− :=

{
i(�( j)+ 2ε2C j j |ϕ j |2) j = k ,

2iε2C jkϕkϕ j j �= k ,

Bk,−
j,+ :=

{
−2iε2C j jϕ

2
j j = k ,

−2iε2C jkϕkϕ j j �= k ,

Bk,+
j,− :=

{
2iε2C j jϕ j

2 j = k ,

2iε2C jkϕkϕ j j �= k .

We define

A := D2sB+ B∗D2s = D2s�SdXHres (εϕ)+ [dXHres (εϕ)]∗�SD2s .

By using the following formulas

(B∗)k,σj,σ = Bk,−σ
j,−σ = Bk,σ

j,σ , (B∗)k,σ
′

j,σ = Bk,σ
j,σ ′ = Bk,−σ

j,−σ ′ ,

we have

(
A[�SV ]

)
j =
∑

k∈S

⎛

⎝

(〈 j〉2sBk,+
j,+ + Bk,−

j,−〈k〉2s
)
vk +
(〈 j〉2sBk,−

j,+ + Bk,+
j,−〈k〉2s

)
vk

(〈 j〉2sBk,+
j,− + Bk,−

j,+〈k〉2s
)
vk +
(〈 j〉2sBk,−

j,− + Bk,+
j,+〈k〉2s

)
vk

⎞

⎠ .

By using that

Bk,−
j,− = Bk,+

j,+, Bk,+
j,− = Bk,−

j,+,
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we get

(A[�SV ],�SV )L2 =
∑

j,k∈S
(〈 j〉2s + 〈k〉2s)

(
Bk,+j,+vkv j + Bk,−j,+vkv j + Bk,+j,−vkv j + Bk,−j,−vkv j

)
.

By using that C jk = Ckj ∈ R and that the set S is symmetric we have

Bk,σ ′
j,σ = Bk,−σ ′

j,−σ , Bσ,kσ, j = −B−σ, j−σ,k , ∀ j, k ∈ S.

Therefore

(A[�SV ],�SV )L2 =
∑

j,k∈S
(〈 j〉2s + 〈k〉2s)

(
Bk,−
j,+vkv j + Bk,−

j,+vkv j

)

= 2iε2
∑

j,k∈S
(〈 j〉2s + 〈k〉2s)(−C jkϕkϕ jvkv j + C jkϕkϕ jvkv j )

= −8ε2
∑

j,k∈S
(〈 j〉2s + 〈k〉2s)C jkRe (ϕkvk) Im (ϕ j v j ) .

We have

(A[�SV ],�SV )L2 = 16
∑

j∈S

(
∑

k∈S
C jk〈k〉2sRe (vkεϕk)

)

Im (εϕ jv j ) . (6.12)

We now study the derivative of Re (vpεϕp) with p ∈ S. One has

d

dt
Re (vpϕ p) = v̇pεϕp + vpεϕ̇p + v̇pεϕp + vpεϕ̇p . (6.13)

Recall that in Sect. 3.3 we constructed εϕ in such a way (see (3.30), (3.31))

ε∂tϕ = XN(εϕ) ≡ XHres (εϕ) , (6.14)

which in Fourier reads as

ϕ̇p = iωp(ξ) ϕp, p ∈ S.

The first equation in (6.6) reads in Fourier, for p ∈ S, as3

v̇p = (�SdXH(εϕ)[V ])+p + εβ(�SQ(εϕ)[V , V ])+p + ε−β(�SResH(εϕ))+p
= (�SdXHres (εϕ)[V ])+p
+ (�SdXR(≥6) (εϕ)[V ])+p︸ ︷︷ ︸

I

+εβ (�SQ(εϕ)[V , V ])+p︸ ︷︷ ︸
I I

+ ε−β(�SResH(εϕ))+p︸ ︷︷ ︸
I I I

.
(6.15)

Notice that, by estimate (3.19) on dXR(≥6) , (4.4) on εϕ, and the bootstrap assumption on
εβV , one gets |I | �s ε4. Recalling (4.30)–(4.31) and that we are projecting on a finite
dimensional subspace of Hs , we get |I I | �s ε

β . Finally, by Lemma 4.1 on the residual, one
gets |I I I | �s ε

5−β . All the latter estimates are uniform in t ∈ [0, T ]. By substituting (6.14),

3 Here by X± we are denoting the first component of a vector field X = (X+, X−)T (see (2.11)), and recall
that X− = X+.
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(6.15) into (6.13) we obtain

d

dt
Re (vpϕ p) = v̇pεϕp + vpεϕ̇p + v̇pεϕp + vpεϕ̇p

= 2Re
(
εϕp(�SdXHres (εϕ)[V ])+p + vpεiωp(ξ)ϕp

)
(6.16)

+ 2Re
(
εϕp
(
I + I I + I I I

))
. (6.17)

Using the explicit form of �SdXHres (εϕ)[V ] in (6.11) and recalling (3.34), one can check
that (6.16)≡ 0. On the other hand, we also have |(6.17)| �s ε(ε

4+εβ+ε5−β). Let us define

Pp := Re (vpεϕp)(0), Lp(t) := Re (vpεϕp)(t)− Re (vpεϕp)(0).

By the discussion above we deduce

sup
τ∈[0,t]

|L p(τ )| � ε
(
ε4 + εβ + ε5−β

)
t, ∀t ∈ [0, T ].

Let us now write (6.12) as

(A[�SV (t)],�SV (t))L2 = 16
∑

j∈S

(
∑

k∈S
C jk〈k〉2s(Pk + Lk(t))

)

Im (εϕ j (t)v j (t)).

By the bootstrap assumption (6.5) and the bound (4.4) we get

sup
t∈[0,T ]

|Im (εϕ jv j )| � ε.

Setting δ := maxk∈S Pk , one can note that

δ ≤ 2‖�SV0‖H1(T)ε
(6.2)≤ 2ε2.

Thus
∣∣∣∣

∫ T

0
(A[�SV (t)],�SV (t))L2 dt

∣∣∣∣ �s δεT + ε2
(
ε4 + εβ + ε5−β

)
T 2 �s c0 , (6.18)

provided that

δεT � ε3T � 1, ε6T 2 � 1, εβ+2T 2 � 1, ε7−βT 2 � 1.

Since we set T � ε−2−σ (see (6.3)), we need that

ε6−4−2σ = ε2−2σ � 1 , εβ+2−4−2σ = εβ−2−2σ � 1 , ε7−β−4−2σ = ε3−β−2σ � 1,
(6.19)

which follows by taking σ and β as in (6.1). This implies the thesis.

Lemma 6.6 Recall T∗ in (6.5). We have, for 0 < T ≤ T∗,

ε3β
∣∣∣∣

∫ T

0
(D2s�SQ(εϕ)[V ],�SV )L2 dt

∣∣∣∣ �s ε
3βT .

Proof It follows by Cauchy–Schwarz, recalling (4.30)–(4.31) and that we are projecting on
a finite dimensional subspace of Hs .

Lemma 6.7 Recall T∗ in (6.5). We have, for 0 < T ≤ T∗,

εβ
∣∣∣∣

∫ T

0
(D2s�SResH(εϕ), V )L2 dt

∣∣∣∣ �s ε
β+5T .
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Proof It follows by Lemma 4.1.

By collecting Lemmata 6.4, 6.5, 6.6, 6.7, we get

ε2β sup
t∈[0,T ]

‖�SV (t)‖2Hs ≤ ε2β‖�SV0‖2Hs

+ C(s)ε2β
(
ε4T + 1+ εβT + ε5−βT

)
.

The bound (6.7) holds for T � ε−2−σ by (6.2) and (6.1).

6.2 The Equation for High Frequencies

Consider the second equation in (6.6), which is the (5.1), and take an initial condition V0
satisfying the assumption of Proposition 6.1, and take the solution V (t, x) evolving form
V0 and defined on a time interval [0, T ] with T ≤ T∗ (see (6.5)). By Remark 6.2 and the
assumptions of Proposition 6.1we can apply Theorem 5.1. Then, by the bootstrap assumption
on V and the bound (4.4) on εϕ, we have that estimate (5.2) implies

ε2β sup
t∈[0,T ]

‖�⊥S V (t)‖2Hs ≤ (1+ Csε)ε
2β‖�⊥S V (0)‖2Hs

+ Csε
2β
(
ε3T + εβT + T ε5−β

)
,

for some Cs > 0. If we take T = c0ε−2−σ , 0 < σ < 1/4, then taking ε small enough and
(6.1) we obtain the (6.8), provided that c0 is small enough.

Proof of Proposition 6.1 By the discussion of Sects. 6.1, 6.2 we have that, if the bound (6.5)
holds true, then one obtains the improved estimates (6.7) and (6.8). Then the time T∗ ≤
c0ε−2−σ is not the maximal time for which the bound (6.4) holds. This is in contradiction
with the definition (6.5). Then the thesis follows.

6.3 Proof of theMain Results

Proof of Theorem 1.1 Fix N ∈ N and consider a symmetric subset S ⊂ Z of cardinality N as
in (4.1). Fix the mass m in the full measure set M given by Lemma 3.8, so that the normal
form Proposition 3.9 applies. By the arguments in Sect. 4.1, for (ξ, θ) ∈ [1, 2]N × T

N ,4 we
construct an oscillating function εϕ(t, x) of the form (4.3) supported on S, with frequency of
oscillation ω j (ξ), j ∈ S, in (3.34), where C jk are the coefficients computed in (3.16). This
also defines the linear operator C : RN → R

N .
Now take any V0 ∈ Hs such that (6.2) holds with β := 5/2 and set

Z0 = Z(0) = −1B
(
εϕ(0)+ εβV0

)
. (6.20)

We observe that εϕ(0) is determined by the choice of (ξ, θ). Consider the solution Z(t) of
the Klein–Gordon equation (1.4) with initial condition Z(0) = Z0 (which exists by local
theory), and notice that, by the continuity of the map −1B , Z0 can be chosen in an open set
of Hs .

4 Here for simplicity we fix O = [1, 2].
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We shall prove that the bound (1.7) holds over a time interval [0, T ] with T = ε− 9
4+δ for

any δ > 0. We write

T = 1

ε9/4−δ
= ε−2−σ εδ/2, σ := 1

4
− δ

2
.

By this choice of σ , we have

2+ 2σ = 5

2
− δ, 3− 2σ = 5

2
+ δ.

Then the choice β = 5/2 is so that the condition (6.1) is fulfilled and Proposition 6.1 applies.
It guarantees that if V is a solution of (4.9) with initial condition V (0) = V0 satisfying (6.2)
then the bound (6.4) holds over a time interval [0, T̃ ]with T̃ = c0ε−2−σ for some c0 = c0(s)
small. Notice that, taking ε small enough w.r.t. s, we also have that

T̃ = c0ε
−2−σ ≥ T = εδ/2ε−2−σ = 1

ε9/4−δ
.

The bound (6.4) on εβV , and estimate (4.4) imply that

sup
[0,T ]
‖W‖Hs = sup

[0,T ]
‖εϕ + εβV ‖Hs �s ε,

which, together with the estimates on the map B , guarantees that 4.2 holds true, so Propo-
sition 4.2 applies. Estimate (4.12) implies (1.7). This concludes the proof.

Proof of Proposition 1.3 We define the map F := −1B where B is the Birkhoff map con-
structed in the proof of Theorem 1.1 (see Prop. 3.9).

By definition (recall (1.8), (1.9)) a function u ∈ AN
ε7/2

can be written as

u = u1 + u2 , u1 = F(εϕξ,θ ) , ‖u2‖Hs ≤ εβ+1

2
, β := 5/2 , (6.21)

for some (ξ, θ) ∈ ON × T
N . By the proof of Theorem 1.1 we know that u ∈ UN

ξ,θ if it is

the image, under the map F (see (6.20)), of a function εϕξ,θ + εβV0 for some V0 satisfying
(6.2). So to prove the inclusion (1.9) it is sufficient to show that there is some V0 (satisfying
(6.2)) such that

F−1(u1 + u2) = F−1(u) = εϕξ,θ + εβV0 ⇔ u1 + u2 = u = F(εϕξ,θ + εβV0
)
.

By (6.21) we have

F−1(u) = F−1(F(εϕξ,θ )+ u2
)

= εϕξ,θ + u2 + F−1(F(εϕξ,θ + u2)+ R
)− F−1

(
F(εϕξ,θ + u2)

) (6.22)

where

R := F(εϕξ,θ )+ u2 − F(εϕξ,θ + u2) = u2 − dF(εϕξ,θ + σu2)[u2],
for some σ ∈ [0, 1]. By estimates (3.13), (3.14) we get

‖R‖Hs ≤ Csε ‖u2‖Hs , (6.23)

taking ε > 0 small enough. Similarly, by (6.22), we can write

F−1(u) = εϕξ,θ + f , f := u2 + dF−1(F(εϕξ,θ + u2)+ τ R
)[R],
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for some τ ∈ [0, 1]. Hence, again by (3.13), (3.14), we deduce that

‖ f ‖Hs ≤ ‖u2‖Hs + C2ε‖R‖Hs
(6.21),(6.23)

< εβ+1 , (6.24)

taking ε > 0 small enough. Notice that the function f depends only on the known functions
εϕξ,θ , u2. Setting εβV0 := f we have that condition (6.2) is fulfilled thanks to estimate
(6.24). This implies the thesis.
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