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Abstract
We study the existence of non-collision orbits for a class of singular Hamiltonian systems

q̈ + V ′(q) = 0

where q : R −→ R
2 and V ∈ C2(R2\{e}, R) is a potential with a singularity at a point

e �= 0. We consider V which behaves like −1/|q − e|α as q → e with α ∈]0, 2[. Under
the assumption that 0 is a strict global maximum for V , we establish the existence of a
homoclinic orbit emanating from 0. Moreover, in case V (q) −→ 0 as |q| → +∞, we prove
the existence of a heteroclinic orbit “at infinity" i.e. a solution q such that

lim
t→−∞ q(t) = 0, lim

t→+∞ |q(t)| = +∞ and lim
t→±∞ q̇(t) = 0.

Keywords Hamiltonian systems · Homoclinic and heteroclinic orbits · Minimization
methods

Mathematics Subject Classification 34C37 · 37C29

1 Introduction

In this paper we consider the second order Hamiltonian system

q̈ + V ′(q) = 0 (HS)

where q : R −→ R
2 and V ∈ C2(R2\{e}, R) has a singularity at a point e �= 0 such that

V (q) ∼ − 1

|q − e|α as q → e with α ∈]0, 2[. (1)

B Morched Boughariou
Morched.Boughariou@gmail.com

Mohamed Antabli
antablimohamed1@gmail.com

1 EDP Laboratory (LR03ES04), Department of Mathematics, Faculty of Sciences of Tunis, University of
Tunis El Manar, 2092 El Manar, Tunis, Tunisia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-024-10363-w&domain=pdf


Journal of Dynamics and Differential Equations

We will assume that V has a strict global maximum at q = 0. So 0 is a equilibrium point for
(HS).
Our goal in the first part is studying the existence of nontrivial homoclinic solutions to 0 of
(HS), i.e. solutions q of (HS) such that

q �= 0 and lim
t→±∞ q(t) ≡ q(±∞) = 0 = q̇(±∞).

We note that the order α in (1) plays an important role and we consider the existence of
homoclinic solutions of (HS) under weak force case (α ∈]0, 2[). This case has been studied
in several works which deal via variational methods with the periodic problem. See, e.g., [1],
[2], [5], [9], [15], [17]. Let us now define the strong force condition:

(SF) There exists a neighbourhood � of e in R
2 and U ∈ C1(� \ {e},R) such that

|U (q)| → ∞ as q → e,

−V (q) ≥ |U ′(q)|2 for all q ∈ � \ {e}.

Condition (SF)was introduced byGordon [10]. For a potential V (q) ∼ − 1

|q − e|α as q → e,

(SF) is satisfied if and only if α ≥ 2. In fact, for α ≥ 2 we can takeU (q) = −2−1 ln |q − e|.
The major role of (SF) is the following property.

Lemma 1.1 Assume (SF) and V (q) → −∞ as q → e. Let a < b ∈ R and (qm) ⊂
H1([a, b],� \ {e}) which converges weakly in H1([a, b],R2) to q such that q(t0) = e for
some t0 ∈ [a, b]. Then

−
∫ b

a
V (qm)dt −→ +∞

(and therefore
∫ b

a

[1
2
|q̇m |2 − V (qm)

]
dt −→ +∞).

The proof of this lemma can be found in ([11], Lemma 2.1) or in [13]. As a consequence, if
(SF) holds then functions with bounded energy are uniformly away from the singularity e.
Therefore, in such case, a standard variational arguments in [13] provided the existence of a
a pair of homoclinic orbits that wind respectively around the singularity e in a positive and
negative sense. These solutions were obtained by minimizing the energy functional

I (q) =
∫
R

[1
2
|q̇|2 − V (q)

]
dt

on classes of sets with a fixed winding number around e (see also [6, 7] for multiplicity
results). If this condition is dropped (weak force case), Rabinowitz [13] proved the existence
of a “generalized” homoclinic solution of (HS) which may pass through the singularity.

In R
N with N ≥ 3, the existence of homoclinic solutions of (HS) was proved in [16] for

strong force potentials (see also [8] in the case of time periodic potentials) and [3, 14] for
weak force potentials like (1.1). In [3, 14], the authors introduced a strong force perturbed
potentialVε for ε ∈]0, 1] such thatVε(q) = V (q)−ε/|q − e|2 near q = e and proved through
a min-max method from Bahri-Rabinowitz [4] the existence of non-collision solutions for
approximated differential problems. Then they passed to the limit as ε → 0 with the aid of
appropriate estimates to obtain a generalized homoclinic solution. In [3]we studied theMorse
index of approximated functionals at critical points to estimate the number of collisions. In
particular we established the existence of non-collision homoclinic solution for α ∈]1, 2[ i.e.
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q(t) �= e for all t ∈ R, while in [14] this result is obtained by assuming that V (q) is radially
symmetric near q = e.

The main purpose of Sect. 2 is to prove the existence of non-collision homoclinic orbits
of (HS) in R

2 for weak force potentials. By exploiting the topology of the plane and using
a minimization method, we first show the existence of a generalized homoclinic solution of
(HS) as a limit of solutions of perturbed problems with boundary conditions. Then and for the
regularity of this solution, wewill use a Tanaka’s rescaling argument to prove some additional
properties of approximated solutions near collisions, and we will prove how the generalized
homoclinic solution obtained is actually a non-collision orbit in the case α ∈]1, 2[.

In Sect. 3, we assume that V has another global maximum at infinity i.e. lim|x |→+∞ V (x) =
V (0) and we study the existence of a heteroclinic orbit “at infinity" i.e. a solution q of (HS)
satisfying

q(−∞) = 0, |q(+∞)| = +∞ and q̇(±∞) = 0.

The problem in R
N was treated by Serra in [14] for regular potentials where V (q) ∼

−a/|q|b as |q| → +∞ with a, b > 0. He also treated the case of singular potentials
which behaves like (1) when N ≥ 3 and established the existence of non-collision orbits
using some results from [15] on the analysis of collisions solutions ofminimization problems.
In the present paper we deal with the case N = 2 and we will perturb V near e with a strong
force term to get the existence of sequence (qn) of heteroclinic orbits at infinity for perturbed
problems.We obtain uniform estimates to show that (qn) converges to a generalized solution.
Some local properties of qn near collisions and the fact that qn is obtained via a minimization
procedure permit us to obtain a non-collision heteroclinic solution at infinity.

2 Existence of Homoclinic Orbits

In this section, we consider the existence of a homoclinic solution of (HS) where the potential
V satisfies the following assumptions:

(V1) V ∈ C2(R2 \ {e},R) for some e �= 0;
(V2) V (q) < V (0) = 0 for all q ∈ R

2 \ {0, e};
(V3) V is of the form

V (q) = − 1

|q − e|α + W (q),

with α ∈]0, 2[ and W is such that

|q − e|α−νW (q), |q − e|α−ν+1W ′(q) and |q − e|α−ν+2W ′′(q) −→ 0 as q → e

for some ν ∈]0, α[;
(V4) There are R > 2|e| and a function W∞ ∈ C1(R2,R) such that

|W∞(q)| −→ +∞ as |q| → +∞ and −V (q) ≥ |W ′∞(q)| for |q| ≥ R.

Remark 2.1 i) The condition (V3) remains valid when ν = 0. In particular it involves
that V ∼ −1/|q − e|α near q = e with α ∈]0, 2[.

ii) The condition (V4) concerns the behavior of the potential at infinity. It will be satisfied
if for example V (q) ∼ −a|q|β as |q| → +∞ where a > 0 and β ≥ −2.

Our main result of this section is
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Theorem 2.2 Assume (V1)-(V4).

1) If α ∈]1, 2[, then (HS) possesses at least one non-collision homoclinic solution.
2) If α ∈]0, 1], then (HS) possesses a non trivial generalized homoclinic solution q having

at most one collision. Moreover, if q(t0) = e then q(t) is a collision brake orbit, i.e.
q(t + t0) = q(t0 − t) for all t ∈ R.

Here, similarly as in [4], [17] for the periodic problem, we define a generalized homoclinic
solution as a continuous function q : R −→ R

2 such that

(i) q̇ ∈ L2(R, R2) and I (q) < ∞;
(ii) D = {t ∈ R, q(t) = e} is a set of measure 0;
(iii) q ∈ C2(R \ D, R2) and satisfies (HS) onR \ D;

(iv)
1

2
|q̇(t)|2 + V (q(t)) = 0 for t ∈ R\D;

(v) q(t) −→ 0 and q̇(t) −→ 0 as t → ±∞.

If D = ∅, q is a classical (non-collision) homoclinic solution.

Remark 2.3 Since V is independent of t , q(−t) is a homoclinic solution of (HS) whenever
q(t) is a homoclinic solution.

The proof of Theorem2.2. is divided in various steps.We shall construct a homoclinic solu-
tion of (HS) as a limit of solutions of approximate value problems. We started by modifying
the potential V near e. For ε ∈]0, 1], we define Vε ∈ C2(R2\{e}, R) such that V1 ≤ Vε ≤ V
and

Vε(q) =
{
V (q) − ε

|q − e|2 if 0 < |q − e| ≤ |e|/4,
0 if |q − e| ≥ |e|/2.

Remark that Vε(q) ∼ − ε

|q − e|2 as q → e. So Vε satisfies the strong force condition.

Let (εn)n∈N∗ ⊂]0, 1] be a non-increasing sequence converging to 0. We consider for each
n ∈ N

∗ the Dirichlet boundary value problem{
q̈ + V ′

εn
(q) = 0 in ]0, n[,

q(0) = q(n) = 0.
(Dn)

The corresponding functional is

I0,n(q) =
∫ n

0

[1
2
|q̇|2 − Vεn (q)

]
dt ∈ C1(�n,R)

where

�n = {q ∈ H1
0 ([0, n], R2); q(t) �= e, ∀ t ∈ [0, n]}.

Let indz0(γ ) denote the winding number of a closed curve in C around a point z0. That is

indz0(γ ) = 1

2iπ

∫
γ

dz

z − z0

which is a integer representing the number of counterclockwise turns that γ makes around
z0.

A critical point of I0,n will be found as a minimizer of I0,n over the set


±1
n = {q ∈ �n, inde(q) = ±1}.
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Clearly 
±1
n �= ∅, so we can define

c±1
n = inf

q∈
±1
n

I0,n(q). (2)

We remark that, since I0,n(q) = I0,n(q(n − .)) for all q ∈ �n , then c1n = c−1
n .

Proposition 2.4 1) There exist M1, M2 > 0 such that

0 < M1 ≤ c1n ≤ M2, ∀n ∈ N
∗. (3)

2) For every n ∈ N
∗, there is qn ∈ 
1

n such that I0,n(qn) = c1n. Moreover qn is a non trivial
classical solution of (Dn).

Proof 1) Let q ∈ 
1
n . The fact that inde(q) = 1 implies that ||q||L∞([0,n],R2) ≥ |e|. Since

q(0) = q(n) = 0, there exist sq < tq such that

|q(sq)| = |e|
3

, |q(tq)| = 2|e|
3

and
|e|
3

≤ |q(t)| ≤ 2|e|
3

for all t ∈ [sq , tq ].
Using the Cauchy-Schwartz inequality, we have the general formula

∫ t2

t1

[1
2
|u̇|2 − V (u)

]
dt ≥ |u(t2) − u(t1)|2

2(t2 − t1)
+ (t2 − t1) min

t∈[t1,t2]
−V (u(t))

≥ |u(t2) − u(t1)|
√
2 min
t∈[t1,t2]

−V (u(t)) (4)

where u ∈ H1([t1, t2],R2).
We denote c = min

|e|
3 ≤|x |≤ 2|e|

3

−V (x) > 0. Then from (4), we get

I0,n(q) ≥
∫ tq

sq

[1
2
|q̇|2 − V (q)

]
dt

≥ |e|
3

√
2c = M1.

Thus by the arbitrariness of q , we obtain c1n ≥ M1 > 0 for any n ∈ N
∗.

In order to prove that c1n is bounded from above, let q ∈ 
1
1 and define

vn(t) =
{
q(t) if t ∈ [0, 1],
0 if t ∈]1, n].

Clearly vn ∈ 
1
n and then

c1n ≤ I0,n(vn) =
∫ 1

0

[1
2
|q̇|2 − Vεn (q)

]
dt

≤ I0,1(q).

Therefore

c1n ≤ inf
q∈
1

1

I0,1(q) = M2.

2) Let (um) be a minimizing sequence for c1n . We have from (3), (um) is bounded in
H1
0 ([0, n], R2). It follows that along a subsequence (um) convergeweakly in H1

0 ([0, n], R
2)

and uniformly in [0, n] to a function qn . Since
∫ n
0 −Vεn (um)dt is bounded independently of
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m and Vεn is a strong force, Lemma 1.1 shows that qn ∈ �n . Moreover we know that the
winding number is continuous with respect to uniform convergence of curves. Therefore
inde(qn) = limm→+∞ inde(um) = 1 and so qn ∈ 
1

n . Using the lower semi continuity of
I0,n , we get I0,n(qn) ≤ lim infm→+∞ I0,n(um) = c1n . That is I0,n(qn) = c1n . Now in a stan-
dard way, we can see that qn is a critical point of I0,n and then a nontrivial classical solution
of (Dn). ��

As a consequence of Proposition 2.4, we get the following estimates:

Lemma 2.5 (i) There is a constant C > 0 which is independent of n such that for any
n ∈ N

∗,

||q̇n ||L2([0,n],R2) ≤ C;
∫ n

0
−V (qn)dt ≤ C; ||qn ||L∞([0,n],R2) ≤ C .

(ii) For every n ∈ N
∗, there is a constant hn > 0 such that

1

2
|q̇n(t)|2 + Vεn (qn(t)) = hn, ∀ t ∈ [0, n].

Moreover, hn = 1

2
|q̇n(0)|2 = 1

2
|q̇n(n)|2 −→ 0.

Since qn ∈ 
1
n , we have max

t∈[0,n] |qn(t)| > |e|/4. Otherwise we would have inde(qn) = 0.

Then we can find numbers τ 1n , τ 2n ∈]0, n[ such that
|qn(τ 1n )| = |qn(τ 2n )| = |e|/4 and |qn(t)| < |e|/4 if t ∈ [0, τ 1n [∪]τ 2n , n].

Note that in [3], it was also proved the existence of approximated solution qn of (Dn) in RN

(N ≥ 3) such that

* max
t∈[0,n] |qn(t)| > ρ where ρ > 0 is a constant;

* |q̇n(0)| → 0 and |q̇n(n)| → 0.

Using the continuity theorem of solutions with respect to initials conditions, we can see in a
similar way to Lemma 2.7 in [3],

τ 1n → ∞ and n − τ 2n → ∞.

Next we define

q̃n(t) =
{
qn(t + τ 1n ) if t ∈ [−τ 1n , n − τ 1n ],
0 if t ∈ R \ [−τ 1n , n − τ 1n ]. (5)

Clearly |q̃n(0)| = |e|/4 and q̃n verifies

¨̃qn + V ′
εn

(q̃n) = 0 in ] − τ 1n , n − τ 1n [,
1

2
| ˙̃qn |2 + Vεn (q̃n) = hn in ] − τ 1n , n − τ 1n [.

By (i) of Lemma 2.5, we can extract a subsequence -still denoted by q̃n- which converges
in Cloc(R, R2) to some function q̃ ∈ C(R, R2) ∩ L∞(R, R2) with ˙̃q ∈ L2(R, R2). Since
−τ 1n → −∞ and n − τ 1n → +∞, we can see q̃ is a non trivial generalized homoclinic
solution of (HS). The complete proofs to Lemma 2.5 and the last statements are ommited as
they are similar to its analogues in [3].
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In what follows, we focus our attention to study the regularity of q̃. First we state some
further properties of q̃n and q̃ near the singularity.
Let t ∈ R such that |q̃n(t) − e| < |e|/4. From the definition of Vεn , q̃n(t) verifies

¨̃qn + α
q̃n − e

|q̃n − e|α+2 + W ′(q̃n) + 2εn
q̃n − e

|q̃n − e|4 = 0, (6)

1

2
| ˙̃qn |2 − 1

|q̃n − e|α + W (q̃n) − εn

|q̃n − e|2 = hn . (7)

Then

1

2

d2

dt2
|q̃n(t) − e|2 =< ¨̃qn, q̃n − e > +| ˙̃qn |2

= 2 − α

|q̃n − e|α − W ′(q̃n)(q̃n − e) − 2W (q̃n) + 2hn

= 1

|q̃n − e|α [2 − α − |q̃n − e|αW ′(q̃n)(q̃n − e) − 2|q̃n − e|αW (q̃n)

+ 2hn |q̃n − e|α].
By (V3) (see Remark 2.1 i)) and the fact that hn → 0, we can find 0 < δ < |e|/4 such that
for sufficiently large n,

1

2

d2

dt2
|q̃n(t) − e|2 > 0 if |q̃n(t) − e| < δ. (8)

Similarly, if q̃(t) �= e then q̃(t) satisfies (HS) and of energy 0. From this, we obtain

1

2

d2

dt2
|q̃(t) − e|2 = 1

|q̃ − e|α [2 − α − |q̃ − e|αW ′(q̃)(q̃ − e) − 2|q̃ − e|αW (q̃)].

Thus the property (8) holds also for q̃ , i.e.

1

2

d2

dt2
|q̃(t) − e|2 > 0 if 0 < |q̃(t) − e| < δ. (9)

Taking into account the property (ii) of a generalized solution, (9) implies that the collisions
times of q̃ (if they exist) are isolated.

Now we suppose that q̃ has a collision at t = t̃ i.e. q̃(t̃) = e for some t̃ ∈ R. We will
study the angle which describes q̃n(t) around e when t is near t̃ . In particular we will show
that q̃n have one self intersection if α ∈]1, 2[.

Since q̃(t) −→ 0 as t → ±∞, there exist τ1 < t̃ < τ2 such that

|q̃(τ1) − e| = |q̃(τ2) − e| = δ

2
and 0 < |q̃(t) − e| <

δ

2
∀ t ∈]τ1, τ2[\{t̃}.

Thus for sufficiently large n, we have

|q̃n(τi ) − e| ≥ δ

4
for i = 1, 2 (10)

and
|q̃n(t) − e| < δ ∀ t ∈ [τ1, τ2]. (11)

Let tn ∈ [τ1, τ2] and δn > 0 such that δn = |q̃n(tn) − e| = min
t∈[τ1,τ2]

|q̃n(t) − e|.
Clearly δn ≤ |q̃n(t̃) − e| −→ |q̃(t̃) − e| = 0. So δn −→ 0. Moreover, up a subsequence, we
have tn −→ t̃ .
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By (8), we have

d

dt
|q̃n(t) − e| < 0 ∀ t ∈ [τ1, tn[, (12)

d

dt
|q̃n(t) − e| > 0 ∀ t ∈]tn, τ2]. (13)

In the sequel we use a rescaling argument as in [17] and we introduce the function

xn(s) = δ−1
n

[
q̃n

(
δ

α+2
2

n s + tn

)
− e

]
, s ∈ R.

Remark that
|xn(0)| = 1 and (xn(0), ẋn(0)) = 0. (14)

Let l > 0. For sufficiently large n, since δ
α+2
2

n s + tn ∈ [τ1, τ2] for s ∈ [−l, l], we have from
(11) and (6)-(7),

ẍn(s) + α
xn

|xn |α+2 + δα+1
n W ′(δnxn + e) + 2εn

δ2−α
n

xn
|xn |4 = 0 in [−l, l], (15)

1

2
|ẋn |2 − 1

|xn |α + δα
n W (δnxn + e) − εn

δ2−α
n

1

|xn |2 = δα
n hn in [−l, l]. (16)

We extract a subsequence still indexed by n such that

d = lim
n→+∞

εn

δ2−α
n

∈ [0,+∞] (17)

exists. For d we need to show that

Lemma 2.6 The quantity d defined in (17) is a finite one.

Proof On the contrary, we assume that d = +∞. We will prove that q̃n has a self intersection
around e to find a contradiction. Let consider another rescaling of q̃n :

yn(s) = δ−1
n

[
q̃n

(
ε
− 1

2
n δ2ns + tn

)
− e

]
, s ∈ R. (18)

Since ε
− 1

2
n δ2n =

(
ε−1
n δ2−α

n

) 1
2
δ
1+ α

2
n −→ 0, then for sufficiently largen,wehave ε

− 1
2

n δ2n s+tn ∈
[τ1, τ2], ∀ s ∈ [−l, l]. From (12)-(13), we get

d

ds
|yn(s)| < 0 ∀ s ∈ [−l, 0[,

d

ds
|yn(s)| > 0 ∀ s ∈]0, l].

As in [3], we can see that -up a subsequence-

yn −→ cos(
√
2s)e1 + sin(

√
2s)e2 in C2

loc(R, R2)

where (e1, e2) is an orthonormal basis ofR2. Using polar coordinates, there exists a function
αn ∈ C2(R, R) such that

yn(s) = |yn(s)|
(
cos(αn(s))e1 + sin(αn(s))e2

)
.
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We take l >
√
2π . Since α̇n −→ √

2 uniformly on [−l, l], then for sufficiently large n, there
exist s1 < 0 < s2 such that

αn(0) − αn(s1) = αn(s2) − αn(0) = 2π. (19)

We may assume that 1 < |yn(s1)| ≤ |yn(s2)|. By continuity, there exists s3 ∈]0, s2] such
that |yn(s1)| = |yn(s3)|. Since α̇n > 0, it follows from (19) that

αn(s3) − αn(s1) = αn(s3) − αn(0) + αn(0) − αn(s1)

> 2π.

This implies the existence of s′
1, s

′
2 ∈ [s1, s3] such that yn(s′

1) = yn(s′
2) and

ind0yn |[s′1,s′2] = 1. From (5) and (18), it follows the existence of t ′, t ′′ ∈]0, n[ such that
qn(t ′) = qn(t ′′) and indeqn |[t ′,t ′′] = 1. But this contradicts the fact that qn is a minimum of
I0,n over 
1

n . Indeed, let consider the function

qn(t) =
{
qn(t) if t ∈ [0, n] \ [t ′, t ′′],
qn(t ′ + t ′′ − t) if t ∈ [t ′, t ′′].

Then qn ∈ 
−1
n and I0,n(qn) = I0,n(qn) = c1n = c−1

n . Therefore qn is a classical solution
of (Dn). By the uniqueness of the solution of ordinary differential equation, we deduce that
qn = qn : clearly this is a contradiction since inde(qn) = −1 and inde(qn) = 1. ��

Since d < +∞, by the continuity dependence of solutions on initial data and equation,
we can see from (14)-(16) and (V3) the existence of an orthonormal basis (e1, e2) ofR2 such
that

xn(s) −→ xα,d(s) in C2
loc(R, R2)

where xα,d(s) is the solution of the initial value problem

{
ẍ + αx

|x |α+2 + 2d
x

|x |4 = 0,

x(0) = e1, ẋ(0) = √
2(1 + d)e2.

We use polar coordinates and write

q̃n(t) − e = |q̃n(t) − e|
(
cos(θ̃n(t))e1 + sin(θ̃n(t))e2

)
,

xα,d(s) = |xα,d(s)|
(
cos(θα,d(s))e1 + sin(θα,d(s))e2

)
,

where θ̃n(s), θα,d(s) ∈ Rwith θα,d(0) = 0. In [18] we observed the following properties for
θα,d

θ̇α,d(s) > 0 ∀ s ∈ R, (20)

�θα,d = lim
s→+∞(θα,d(s) − θα,d(−s)) = 2π

√
1 + d

2 − α
. (21)

We remark that �θα,d > π ∀ α ∈]0, 1] and if α ∈]1, 2[ then �θα,d > 2π .
Let Br (e) denote the open ball of radius r about e. We will give a estimate of θ̃n(t) when
q̃n(t) ∈ Bμ(e) \ BLδn (e) for sufficiently small μ > 0 and large L > 1 and n.
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We have for t < t ′,

|θ̃n(t ′) − θ̃n(t)| ≤
∫ t ′

t
| ˙̃θn(τ )|dτ

=
∫ t ′

t

∣∣∣ d
dt

q̃n(τ ) − e

|q̃n(τ ) − e|
∣∣∣dτ (22)

On the other hand, Tanaka [18] studied under the condition (V3) with e = 0 the behavior of
generalized periodic solutions of singular Hamiltonian systems in RN . In a neighborhood of
the singularity, the generalized solution is a limit of classical solutions of perturbed problems
with potentials Vε as in our case, so we can apply some locally property of approximated
solutions near a collision.More precisely, modifying the argument in Proposition 1.5 slightly,
we can see that for any η > 0 there exist constants μ, S > 0 and n0 ∈ N

∗ such that for
n ≥ n0, ∫ t ′

t

∣∣∣ d
dt

q̃n(τ ) − e

|q̃n(τ ) − e|
∣∣∣dτ ≤ η

2
if q̃n(t), q̃n(t

′) ∈ Bμ(e) and

τ1 < t < t ′ < tn − Sδ
α+2
2

n or tn + Sδ
α+2
2

n < t < t ′ < τ2. (23)

Combining (22) and (23), we get

Lemma 2.7 For any η > 0, there are constants μ ∈]0, δ/4[, S > 0 such that for sufficiently
large n, if q̃n(t), q̃n(t ′) ∈ Bμ(e) and

τ1 < t < t ′ < tn − Sδ
α+2
2

n or tn + Sδ
α+2
2

n < t < t ′ < τ2,

then

|θ̃n(t ′) − θ̃n(t)| ≤ η

2
.

End of the proof of Theorem 2.2. 1) If α ∈]1, 2[, there exists from (21) η > 0 such that
�θα,d > 2π + η. For this η, we choose μ ∈]0, δ/4[, S > 0 and n sufficiently large as in
Lemma 2.7.
From (21) again we can take S1 > S such that

θα,d(S1) − θα,d(−S1) > 2π + η.

Then we obtain for sufficiently large n,

θ̃n

(
tn + δ

α+2
2

n S1

)
− θ̃n

(
tn − δ

α+2
2

n S1

)
> 2π + η. (24)

On the other hand, since |q̃n(tn ± S1δ
α+2
2

n ) − e| −→ |q̃(t̃) − e| = 0, we can assume that

|q̃n
(
tn ± S1δ

α+2
2

n

)
− e| < μ.

We set t ′1,n = tn − S1δ
α+2
2

n . Then we have from (10)

|q̃n(t ′1,n) − e| < μ <
δ

4
≤ |q̃n(τ1) − e|.

Therefore there exists t1,n ∈]τ1, t ′1,n[ such that
|q̃n(t1,n) − e| = μ.
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Similarly we set t2,n = tn + S1δ
α+2
2

n . Since |q̃n(t2,n) − e| < μ <
δ

4
≤ |q̃n(τ2) − e|, there

exists t ′2,n ∈]t2,n, τ2[ such that

|q̃n(t ′2,n) − e| = μ.

Applying lemma 2.7 for t = ti,n and t ′ = t ′i,n (i = 1, 2), we obtain

|θ̃n(t ′i,n) − θ̃n(ti,n)| ≤ η

2
for i = 1, 2. (25)

It follows from (24)-(25),

θ̃n(t
′
2,n) − θ̃n(t1,n) = θ̃n(t ′2,n) − θ̃n(t2,n) + θ̃n(t2,n) − θ̃n(t ′1,n) + θ̃n(t ′1,n) − θ̃n(t1,n)

> −η

2
+ 2π + η − η

2
= 2π.

That is q̃n describes an angle greater than 2π in going from ∂Bμ(e) back to ∂Bμ(e) which
implies the existence of t ′′1,n, t ′′2,n with τ1 < t ′′1,n < t ′′2,n < τ2 such that

q̃n(t
′′
1,n) = q̃n(t

′′
2,n) and indeq̃n |[t ′′1,n ,t ′′2,n ] = 1.

Thus we deduce that qn has a self intersection around e for sufficiently large n. As in the
proof of Lemma 2.6, we get a contradiction and then we conclude that q̃ is a non collision
homoclinic solution of (HS).

2) In the case α ∈]0, 1], the angle which describes q̃n near e is greater than π and q̃n
cannot have a self intersection. The fact that the collisions times of q̃ are isolated and since
q̃(t) −→ 0 as t → ±∞, we get that the number of collisions of q̃ is finite. Assume q̃(t)
enters the singularity e and let

t0 = min{t ∈ R, q̃(t) = e}.
Since (HS) is time reversible, the function

q(t) =
{
q̃(t) if t ≤ t0,
q̃(2t0 − t) if t ≥ t0,

is a generalized homoclinic solution of (HS) and satisfies q(t + t0) = q(t0 − t) for all t .
Moreover q has one collision in R. The proof of Theorem 2.2 is finally complete.

Remark 2.8 The assumption (V3) is far too restrictive in the case α ∈]0, 1] and the existence
of a generalized homoclinic solution with finite number of collisions and then a solution as
in Theorem 2.2 2) still holds if we replace (V3) by

(V’3) (i) V (q) → −∞ as q → e;
(ii) There exists a constant δ ∈]0, |e|/4[ such that

V (q) + 1

2
V ′(q)(q − e) < 0 for 0 < |q − e| ≤ δ.

We have kept (V3) in the case α ∈]0, 1], on the one hand to obtain a certain symmetry
in the statements of Theorem 2.2, on the other hand the study of approximated solutions
near collisions under (V3) will be useful in Sect. 3 to prove the existence of a non-collision
heteroclinic orbit at infinity for every α ∈]0, 2[ (see Theorem 3.1 below).
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3 Existence of Heteroclinic Orbits

In this section, the existence of non-collision heteroclinic orbits at infinity for (HS) will be
established. Consider the problem⎧⎨

⎩
q̈ + V ′(q) = 0,
q(−∞) = 0, |q(+∞)| = +∞,

q̇(±∞) = 0,
(P)

where V behaves like (1) near e and satisfies the assumptions (V1)-(V3) of Theorem 2.2.
The natural condition for V at infinity for (P) is lim|q|→+∞ V (q) = 0. More precisely, we

assume

(V’4) V (q) ∼ − a

|q|b as |q| → +∞ for some a > 0, b > 2.

When α ∈]0, 1], we need a further property of V near e

(V5) there exists φ ∈ C2(]0, r [, R) for some r ∈]0, |e|/4[ such that

V (q) = φ(|q − e|) ∀ q ∈ Br (e).

Theorem 3.1 Suppose (V1)-(V3), (V’4) and (V5)(only when α ∈]0, 1]).
Then there exists at least one non-collision orbit of (P).

We now pass to the proof of Theorem 3.1. Solutions of (P) can be found as critical points
of the functional

I (q) =
∫
R

[1
2
|q̇|2 − V (q)

]
dt

defined on the set

�∞
0 = {q ∈ H ; q(−∞) = 0, |q(+∞)| = +∞, q(t) �= e ∀ t ∈ R}

where

H =
{
q ∈ H1

loc(R,RN ),

∫
R

|q̇|2dt < +∞
}
.

In [14] the case α ≥ 2 (strong force case) has been studied and the existence of one classical
solution of (P) has been found as a minimizer of I on�∞

0 . In our situation where 0 < α < 2,
we make a perturbation to the potential as in Theorem 2.2 and we consider for every n the
problem ⎧⎨

⎩
q̈ + V ′

εn
(q) = 0,

q(−∞) = 0, |q(+∞)| = +∞,

q̇(±∞) = 0.
(Pn)

Since Vεn is a strong force, we can use Lemma 1.1, and a standard compactness argument
provides the existence of a classical (non-collision) solution qn of (Pn) as a minimizer of the
functional

In(q) =
∫
R

[1
2
|q̇|2 − Vεn (q)

]
dt

on �∞
0 , i.e. qn ∈ �∞

0 such that

In(qn) = inf
q∈�∞

0

In(q). (26)
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By normalization, we can assume that

|qn(0)| = |e|
4

and |qn(t)| <
|e|
4

∀ t < 0.

Remark also that qn has energy zero.
Nowwe observe that In(qn) ≤ infq∈�∞

0
I1(q) = c1 < +∞.We deduce then the existence

of a constant C > 0 independent of n such that ||qn ||H ≤ C and
∫
R

−V (qn)dt ≤ C . Thus
there is a subsequence still denoted by (qn) and a function q ∈ H such that qn converges
weakly in H and uniformly inCloc(R, R2) to q . By Fatou’s lemma

∫
R

−V (q)dt ≤ C , so the
set of collisions D = {t ∈ R, q(t) = e} is of measure 0. In a standard way, we can see that
q ∈ C2(R \ D,R2), satisfies (HS) and has energy zero in R \ D, that is q is a generalized
solution of (HS).

Lemma 3.2 q(t) �= e for all t ∈ R.

Proof We prove by contradiction assuming q(t̃) = e for some t̃ ∈ R. From (V3) and the
conservation of the energy, q satisfies the property (9) and then we can see that the collisions
times of q are isolated. Moreover there is a sequence (tn) such that tn −→ t̃ and |qn(t) − e|
takes its local minimum at t = tn .

As in Theorem 2.2 we define δn = |qn(tn) − e| and d = lim
n→+∞

εn

δ2−α
n

∈ [0,+∞] (we
extract a subsequence if necessary).
If we suppose that d = +∞, we can see as in Lemma 2.6 that qn has a self intersection i.e.
there exist σ1 < σ2 such that qn(σ1) = qn(σ2) and indeqn |[σ1,σ2] = 1. Here we consider the
function

un(t) =
{
qn(t + σ1 − σ2) if t ≤ σ2,

qn(t) if t ≥ σ2.

Then un ∈ �∞
0 and it is easy to see that In(un) < In(qn), which contradicts (26).

Therefore we get d < +∞. In that case, there is a function xα,d such that after taking a
subsequence still denoted by n,

δ−1
n

[
qn

(
δ

α+2
2

n s + tn

)
− e

]
−→ xα,d(s) = |xα,d(s)|

(
cos(θα,d(s))e1 + sin(θα,d(s))e2

)

in C2
loc(R,R2) where (e1, e2) is an orthonormal basis of R2 and θα,d : R −→ R satisfies

θα,d(0) = 0 and the properties (20)-(21).
In polar coordinates, there exists θn : R → R such that

qn(t) − e = |qn(t) − e|
(
cos(θn(t))e1 + sin(θn(t))e2

)
.

For α ∈]1, 2[, we have from (21) �θα,d > 2π . Repeating the argument of Theorem 2.2, we
get that qn has a self intersection around e which is a contradiction as above.
For α ∈]0, 1], we will use (V5) to get a contradiction. Here �θα,d > π and qn cannot have
a self intersection. However there exists L > 0 such that θα,d(L) − θα,d(−L) > π . Setting

σ1,n = tn − δ
α+2
2

n L and σ2,n = tn + δ
α+2
2

n L , for sufficiently large n we have

|qn(t) − e| ≤ r , ∀ t ∈ [σ1,n, σ2,n],
θn(σ2,n) − θn(σ1,n) > π,

θ̇n(t) > 0 ∀ t ∈ [σ1,n, σ2,n]. (27)
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Let σ ′
1,n, σ

′
2,n ∈ [σ1,n, σ2,n] such that

θn(σ
′
2,n) − θn(σ

′
1,n) = π.

We consider the function q̂n defined by

q̂n(t) = qn(t) if t ∈ R \ [σ ′
1,n, σ

′
2,n],

q̂n(t) − e = |qn(t) − e|
(
cos

( − θn(t) + 2θn(σ
′
1,n)

)
e1 + sin

( − θn(t) + 2θn(σ
′
1,n)

)
e2

)

if t ∈ [σ ′
1,n, σ

′
2,n].

That is q̂n |[σ ′
1,n ,σ

′
2,n ] and qn |[σ ′

1,n ,σ
′
2,n ] are axially symmetric with respect to the axis joining the

two points qn(σ ′
1,n) and qn(σ

′
2,n).

Clearly q̂n ∈ �∞
0 and from (V5), since V is radially symmetric about e in Br (e), we get

that In(qn) = In(q̂n) = inf
q∈�∞

0

In(q). It follows that q̂n is of classC2 and satisfies the equation

q̈ + V ′
εn

(q) = 0. By the uniqueness of solution of ordinary differential equation, we deduce
that qn = q̂n , which enters in contradiction with (27). Therefore we conclude that q(t) �= e
for all t ∈ R. ��
End of the proof of Theorem 3.1. To prove that q is a solution of (P), it remains to show
that q(−∞) = 0, |q(+∞)| = +∞ and q̇(±∞) = 0. Using the formula (4) and the fact
that I (q) < +∞ one can see that |q(−∞)| and |q(+∞)| exist and they are 0 or +∞. Since
|q(t)| = lim |qn(t)| ≤ |e|/4 ∀ t ≤ 0, then q(−∞) = 0.

To show that |q(+∞)| = +∞, we suppose that |q(+∞)| = 0. We will construct as in
[12] a function Qn ∈ �∞

0 such that In(Qn) < In(qn). Indeed, let ε ∈]0, |e|/16[ and Tε > 0
such that q(Tε) ∈ Bε the open ball of radius ε about 0. For sufficiently large n we have
qn(Tε) ∈ B2ε . We consider the function Qn ∈ �∞

0 different from qn for t < Tε such that

Qn(t) =
⎧⎨
⎩
0 if t < Tε − 1,
(t − Tε + 1)qn(Tε) if t ∈ [Tε − 1, Tε],
qn(t) if t ≥ Tε.

Since Vεn = V in B2ε and Vεn ≤ V , we have

In(Qn) − In(qn) ≤ 2ε2 + max
x∈B2ε

−V (x) −
∫ Tε

−∞

[1
2
|q̇n |2 − V (qn)

]
dt . (28)

On the other hand, since |qn(0)| = |e|/4 and |qn(Tε)| ≤ 2ε < |e|/8, there are t1 < t2 in
[0, Tε] such that

|qn(t1)| = |e|
4

, |qn(t2)| = |e|
8

and
|e|
8

≤ |qn(t)| ≤ |e|
4

for all t ∈ [t1, t2].
By the formula (4), it holds that

∫ Tε

−∞

[1
2
|q̇n |2 − V (qn)

]
dt ≥

∫ t2

t1

[1
2
|q̇n |2 − V (qn)

]
dt

≥ |e|
8

√
2m0 (29)

where m0 = min
|e|
8 ≤|x |≤ |e|

4

−V (x) > 0.

Then combining (28) and (29), we get In(Qn) − In(qn) < 0 for sufficiently small ε, which
contradicts (26). We conclude that |q(+∞)| = +∞.
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From the conservation of energy and the fact that V (q(t)) −→ 0 as t → ±∞, it follows that
1

2
|q̇(t)|2 = −V (q(t)) −→ 0 as t → ±∞, that is q̇(±∞) = 0. The proof is complete.
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