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Abstract
We introduce first-time sensitivity for a homeomorphism of a compact metric space, that is a
condition on the first increasing times of open balls of the space. Continuum-wise expansive
homeomorphisms, the shift map on the Hilbert cube, and also some partially hyperbolic
diffeomorphisms satisfy this condition. We prove the existence of local unstable continua
satisfying similar properties with the local unstable continua of continuum-wise expansive
homeomorphisms, but assuming first-time sensitivity. As a consequence we prove that first-
time sensitivity (with some additional technical assumptions) implies positive topological
entropy.
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1 Introduction

In the studyof chaotic systems, the hyperbolic ones play a central role.Hyperbolicity appeared
as a source of chaos [2, 32] and it was seen to be such a strong notion that several chaotic
systems just do not satisfy it. Indeed, works of Pugh and Shub [31] indicate that little hyper-
bolicity is sufficient to obtain chaotic dynamics. The existence of unstable manifolds with
hyperbolic behavior is enough for proving, for example, sensitivity to initial conditions and
positive topological entropy, so partially hyperbolic diffeomorphisms are important exam-
ples of non-hyperbolic chaotic systems. A general idea that we explore in this work is to
understand how several features of hyperbolic systems can be present on chaotic systems, or,
in other words, how we can prove parts of the hyperbolic dynamics using chaotic properties.
Assuming only sensitivity to initial conditions there is not much we can prove, even when
the space is regular such as a closed surface, since there exist examples of sensitive surface
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homeomorphisms that do not satisfy several features of hyperbolic systems. Indeed, we dis-
cuss one example in Proposition3.18 that is sensitive, has zero topological entropy, has only
one periodic point, which is a fixed point, and has local stable (unstable) sets as segments of
regular flow orbits and, hence, do not increase when iterated backward (forward).

A classical and much stronger property on separation of distinct orbits is Expansiveness.
The study of expansive surface homeomorphisms goes back to works of Hiraide [16] and
Lewowicz [25]where a complete characterization of expansivenesswas given: surface expan-
sive homeomorphisms are exactly the pseudo-Anosov ones. An important step of the proof
is that expansiveness implies that stable and unstable sets form a pair of transversal singular
foliations with a finite number of singularities. Indeed, both works study in detail properties
of local stable/unstable sets of expansive homeomorphisms and obtain similar properties with
the hyperbolic local stable/unstable manifolds.

The idea of considering dynamical properties that are stronger than sensitivity and weaker
than expansiveness, and understanding how we can obtain part of the hyperbolic dynamics
for these properties is what motivates the definition of the main property we consider in
this paper, the first-time sensitivity. Before defining it precisely, it is important to observe
that a few generalizations of expansiveness have already been considered in the literature
[4, 5, 8–11, 19–21, 27, 30], and among these the more general one is the continuum-wise
expansiveness introduced by Kato in [19]. It is known that cw-expansive homeomorphisms
of Peano continua are sensitive [15] and, thus, cw-expansiveness generalizes expansiveness
and is stronger than sensitivity at the same time. Moreover, cw-expansive homeomorphisms
of Peano continua have local stable/unstable continua with uniform diameter on every point
of the space [20] with properties that resemble the expansive and hyperbolic cases, and this is
enough to prove positive topological entropy [19]. This makes cw-expansiveness an example
of a dynamical property that fits the idea of this paper explained above. Now we proceed to
the definition of first-time sensitivity and for that we define and explain sensitivity.

Definition 1.1 A map f : X → X defined in a compact metric space (X , d) is sensitive
if there exists ε > 0 such that for every x ∈ X and every δ > 0 there exist y ∈ X with
d(x, y) < δ and n ∈ N satisfying d( f n(x), f n(y)) > ε.The number ε is called the sensitivity
constant of f .

Sensitivity means that for each initial condition there are arbitrarily close distinct initial
conditions with separated future iterates.We can also explain sensitivity as follows. Denoting
by B(x, δ) = {y ∈ X; d(y, x) < δ} the ball centered at x and radius δ, sensitivity implies
the existence of ε > 0 such that for every ball B(x, δ) there exists n ∈ N such that

diam( f n(B(x, δ))) > ε,

where diam(A) = sup{d(a, b); a, b ∈ A} denotes the diameter of A. Thus, sensitivity
increases the diameter of non-trivial balls of the space. Now we define the first increasing
time of balls of the space.

Definition 1.2 (First-increasing time) Let f : X → X be a sensitive homeomorphism, with
sensitivity constant ε > 0, of a compact metric space (X , d). Given x ∈ X and r > 0 let
n1(x, r , ε) ∈ N be the first iterate of B(x, r) with diameter greater than ε, that is, n1(x, r , ε)
satisfies:

diam f n1(x,r ,ε)(B(x, r)) > ε and

diam f j (B(x, r)) ≤ ε for every j ∈ [0, n1(x, r , ε)) ∩ N.

We call the number n1(x, r , ε) the first increasing time (with respect to ε) of the ball B(x, r).
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Fig. 1 Property F1

Fig. 2 Property F2

Definition 1.3 (First-time sensitivity) We say that f is first-time sensitive (or simply ft-
sensitive) if f : X → X is a sensitive homeomorphism, with sensitivity constant ε > 0,
of a compact metric space (X , d) and there is a sequence of functions (rk)k∈N : X → R

∗+
starting on a constant function r1 and strictly decreasing monotonically to 0, such that for
each γ ∈ (0, ε] there is mγ > 0 satisfying the following inequalities:

(F1) |n1(x, rk+1(x), γ ) − n1(x, rk(x), γ )| ≤ mγ

(F2) |n1(x, rk(x), γ ) − n1(x, rk(x), ε)| ≤ mγ

for every x ∈ X and for every k ∈ N such that rk(x) ≤ γ .

Condition (F1) means the following: if we start decreasing the radius of the ball centered
at x (the sequence (rk(x))k∈N) and keeps checking the first increasing times of the balls
B(x, rk(x)) with respect to γ (the numbers n1(x, rk(x), γ )), we obtain that when rk(x)
changes to rk+1(x), the difference between the first increasing times n1(x, rk(x), γ ) and
n1(x, rk+1(x), γ ) is bounded by the constantmγ that does not depend on k ∈ N or on x ∈ X
(see Fig. 1). Condition (F2) means the following: if we decrease the sensitivity constant ε to
γ and check the first increasing times of the ball B(x, rk(x)) with respect to γ and ε (the
numbers n1(x, rk(x), γ ) and n1(x, rk(x), ε)) we obtain that their difference is bounded by
the constant mγ that does not depend on k ∈ N nor on x ∈ X (see Fig. 2).

Ft-sensitivity can be defined in anymetric space, but for our purposeswe impose additional
hypothesis on the space. We assume that (X , d) is a compact and connected metric space
satisfying:

(P1) there exists r > 0 such that B(x, r ′) is connected for every r ′ ∈ (0, r) and every x ∈ X ;
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(P2) the map (x, s) → B(x, s) is continuous in the Hausdorff topology;

where A denotes the closure of a set A. Properties (P1) and (P2) mean that balls with
sufficiently small radius are connected and that these balls vary continuously with their
centers and radius. These are mild conditions on the topology of the space and are satisfied,
for example, by all closed manifolds, the Hilbert cube [0, 1]Z and more generally by Peano
continua, that are compact, connected and locally connected metric spaces, when they are
endowed with a convex metric (see [18]).

Now we explain the structure of this paper. In Sect. 2 we prove that first-time sensitivity
implies the existence of local unstable continua with uniform diameter on every point of
the space satisfying similar properties with the local unstable continua of cw-expansive
homeomorphisms. We call them local cw-unstable continua and Sect. 2 is devoted to prove
their existence and main properties. In Sect. 3 we discuss our main examples of first-time
sensitive homeomorphisms: the cw-expansive homeomorphisms, the full shift on the Hilbert
cube [0, 1]Z, and some partially hyperbolic diffeomorphisms. We also briefly discuss how
to find the local cw-unstable continua in each case. In Sect. 4 we present our attempts to
prove that first-time sensitivity implies positive topological entropy, explain the difficulties
and how to circumvent them with some additional technical hypotheses.

2 Local cw-unstable Continua

Let f : X → X be a homeomorphism of a compact metric space (X , d). We consider the
c-stable set of x ∈ X as the set

Ws
c (x) := {y ∈ X; d( f k(y), f k(x)) ≤ c for every k ≥ 0}

and the c-unstable set of x as the set

Wu
c (x) := {y ∈ X; d( f k(y), f k(x)) ≤ c for every k ≤ 0}.

We consider the stable set of x ∈ X as the set

Ws(x) := {y ∈ X; d( f k(y), f k(x)) → 0 when k → ∞}
and the unstable set of x as the set

Wu(x) := {y ∈ X; d( f k(y), f k(x)) → 0 when k → −∞}.
The dynamical ball of x with radius c is the set

�c(x) = Wu
c (x) ∩ Ws

c (x).

We say that f is expansive if there exists c > 0 such that

�c(x) = {x} for every x ∈ X .

We say that f is continuum-wise expansive if there exists c > 0 such that �c(x) is totally
disconnected for every x ∈ X . We denote by Cs

c (x) the c-stable continuum of x , that is the
connected component of x on Ws

c (x), and denote by Cu
c (x) the c-unstable continuum of x ,

that is the connected component of x on Wu
c (x).

Existence of local unstable/stable continua
It is proved in [20] that for a cw-expansive homeomorphism the following holds:
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Theorem 2.1 (Theorem 1.6 in [20]) If f : X → X is a cw-expansive homeomorphism of a
Peano continuum (X , d), with cw-expansivity constant c > 0, then for every ε > 0 there
exists δ > 0 such that

diam(Cs
ε (x)) ≥ δ and diam(Cu

ε (x)) ≥ δ for every x ∈ X .

This means that the ε-stable and ε-unstable sets of any point x ∈ X contain continua with
uniform diameter intersecting at x . In this subsection we prove a similar result using only
first-time sensitivity.

Theorem 2.2 Let f : X → X be a homeomorphism defined on a compact and connected
metric space satisfying the Properties (P1) and (P2).

(a) If f is ft-sensitive, then for each ε > 0 there exists δ > 0 such that

diam(Cu
ε (x)) ≥ δ for every x ∈ X .

(b) If f −1 is ft-sensitive, then for each ε > 0 there exists δ > 0 such that

diam(Cs
ε (x)) ≥ δ for every x ∈ X .

We remark that in the proof of this theorem we only use property (F1) on the definition of
ft-sensitivity and that property (F2) will be important to prove the main properties of these
continua later in this section. To prove this result, we first note that for a fixed sensitivity
constant ε, the first increasing time n1(x, r , ε) depends basically on the radius r and not
exactly on x ∈ X .

Lemma 2.3 If f : X → X is sensitive, with sensitivity constant ε > 0, and X is a compact
metric space, then for each r > 0, there exists N ∈ N such that

n1(x, r , ε) ≤ N for every x ∈ X .

Proof If the conclusion is not true, then there exists r > 0 such that for each n ∈ N there
exists xn ∈ X such that n1(xn, r , ε) ≥ n. This means that

diam( f j (B(xn, r))) ≤ ε for every j ∈ {0, . . . , n − 1}.
If x = limk→∞ xnk , then uniform continuity of f assures that

diam( f j (B(x, r))) = lim
k→∞ diam( f j (B(xnk , r))) ≤ ε for every j ∈ N,

contradicting sensitivity. 
�
Proof of the Theorem 2.2 Assume that f is sensitive homeomorphism with sensitivity con-
stant c > 0 and choose r ∈ (0, c), given by Property (P1) on the space X , such that B(x, r ′) is
connected for every r ′ ∈ (0, r). Let ε ∈ (0, r) be arbitrary and note that ε is also a sensitivity
constant of f . By hypothesis (F1), there exist (rk)k∈N : X → R

∗+ and mε ∈ N satisfying

n1(x, rk+1(x), ε) − n1(x, rk(x), ε) ≤ mε.

For each m ∈ N, let xm = f −m(x) and, for each k ∈ N, consider

rk,m = rk(xm) and nk,m = n1(xm, rk,m, ε).

Lemma2.3 assures the existence of N ∈ N such that

n1(x, r1(x), ε) ≤ N for every x ∈ X .
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Then, (F1) assures that for each m ≥ N , we can choose km ∈ N such that

nkm−1,m < m ≤ nkm ,m .

It follows that

|nkm ,m − m| < |nkm ,m − nkm−1,m | < mε.

The definitions of nkm ,m and rkm ,m guarantees that

diam( f j (B(xm, rkm ,m)) ≤ ε for every j ∈ [0, nkm ,m) ∩ N

and diam( f nkm ,m (B(xm, rkm ,m))) > ε.

Since f −1 is uniformly continuous, there exists δ > 0 such that

diam(A) ≥ ε implies diam( f −n(A)) ≥ δ for every n ∈ [0,mε].
This assures that

diam( f m(B(xm, rkm ,m))) = diam( f m−nkm ,m ( f nkm ,m (B(xm, rkm ,m)))) ≥ δ.

For each m ≥ N , let Cm = f m(B(xm, rkm ,m)) and notice that Cm is a continuum satisfying:

(1) x ∈ Cm ;
(2) diam(Cm) ≥ δ;
(3) diam( f − j (Cm)) ≤ ε when 0 ≤ j ≤ m (see Fig. 3).

Thus, if Cx is an accumulation continuum of the sequence (Cm)m∈N in the Hausdorff
metric, that is,

Cx = lim
l→∞Cml ,

then Cx satisfies:

(1) Cx is a continuum, as a Hausdorff limit of continua;
(2) diam(Cx ) ≥ δ, since diam(Cml ) ≥ δ for every ml ≥ N ;
(3) x ∈ Cx , since x ∈ Cml for every ml ≥ N ;
(4) Cx ⊂ Wu

ε (x), since for each j ∈ N we have

diam( f − j (Cx )) = lim
l→∞( f − j (Cml )) ≤ ε.

This proves that diam(Cu
ε (x)) ≥ δ for every x ∈ X and complete the proof of the first item.

A similar argument deals with item (b) where f −1 is ft-sensitive and proves, in this case,
that diam(Cs

ε (x)) ≥ δ for every x ∈ X . 
�
This actually generalizes Theorem2.1 since we can prove it assuming Theorem2.2 as

follows. First, we observe that Peano continua do not necessarily satisfy hypothesis (P1) and
(P2) on the space, but every Peano continuum can be endowed with a convex metric and,
in this case, hypothesis (P1) and (P2) are satisfied. A metric D for a continuum X is called
convex if for each x, y ∈ X , there exists z ∈ X such that

(3) D(x, z) = D(x, y)

2
= D(y, z).

This assures that the closure of the open ball equals the closed ball, i. e.,

BD(x, δ) = {y ∈ X; D(x, y) ≤ δ} for every x ∈ X and δ > 0.
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Fig. 3 The choice of km and Cm

Then, Theorem 3.3 in [29] ensures that (P2) is satisfied. See [18, Proposition 10.6] for a
proof that balls with a convex metric satisfy (P1). We will prove in Proposition3.4 that cw-
expansivity implies first-time sensitivity when defined on spaces satisfying (P1) and (P2)
and, in particular, Peano continua endowed with a convex metric. Thus, Theorem2.1 is a
particular case of Theorem2.2 if we assume the space is endowed with a convex metric. For
a general metric, we can argument as follows.

Lemma 2.4 [22] If d and D are compact metrics on the same space X generating the same
topology, then for every ε > 0 there exists ρ > 0 such that

D(x, y) < ρ implies d(x, y) < ε for every (x, y) ∈ X × X .

Proof If this is not the case, there exists ε > 0 such that for each n ∈ N there exists
(xn, yn) ∈ X × X such that

D(xn, yn) <
1

n
and d(xn, yn) ≥ ε.

Thus, (xn)n∈N and (yn)n∈N are sequences of X that have the same accumulation points on
the metric D but are at least ε-distant from each other on the metric d . Thus, if (xnk )k∈N
converges to z on the metric D, then (ynk )k∈N also does. But on the metric d they cannot
converge to z simultaneously and we obtain a sequence that converges to z on the metric D
but do not on the metric d , contradicting that they generate the same topology. 
�
Proof of Theorem 2.1 Let diamd and diamD denote the diameter on the metric d and D,
respectively. For each ε > 0 choose ε′ ∈ (0, ε) given by Lemma2.4 such that

D(x, y) < ε′ implies d(x, y) < ε for every (x, y) ∈ X × X .

If x ∈ X and y ∈ Cu
ε′(x), that is,

D( f −n(x), f −n(y)) < ε′ for every n ∈ N,

then the choice of ε′ assures that

d( f −n(x), f −n(y)) ≤ ε for every n ∈ N.

Hence, Cu
ε′(x) is an ε-unstable continuum on the metric d . Now let ρ ∈ (0, ε′) given by

Theorem2.2 be such that

diamD(Cu
ε′(x)) ≥ ρ for every x ∈ X .
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The previous lemma assures the existence of δ ∈ (0, ρ) such that

d(x, y) < δ implies D(x, y) < ρ for every (x, y) ∈ X × X .

It follows that

diamd(C
u
ε′(x)) ≥ δ for every x ∈ X

since diamD(Cu
ε′(x)) ≥ ρ. Thus, Cu

ε′(x) is an ε-unstable continuum on the metric d with
diameter at least δ for every x ∈ X . A similar argument proves that Cs

ε′(x) is an ε-stable
continuum on the metric d with diameter at least δ for every x ∈ X . 
�
Properties of local cw-unstable continua
The proof of Theorem2.2 is actually more important then the statement of the result itself
since it gives us an alternative way of creating local unstable continua that we will use in this
paper and can be summarized as follows. For each x ∈ X and each m ∈ N we choose an
appropriate radius rm > 0 such that

n1( f
−m(x), rm, ε) ∈ [m,m + mε]

and this implies that any accumulation continuum of the sequence

( f m(B( f −m(x), rm)))m∈N

is an ε-unstable continuum,with diameter at least δ that comes from the uniform continuity of
f mε . In this subsectionwewill discuss themain properties of continua that can be constructed
in this way and compare them with properties of the local unstable continua of cw-expansive
homeomorphisms. For that, we define the set of such continua as follows:

Fu =
{
C = lim

k→∞ f nk (B( f −nk (x), rnk ))

∣∣∣∣ x ∈ X , nk → ∞, rnk → 0, γ ∈ (0, ε],
n1( f −nk (x), rnk , γ ) ∈ (nk, nk + mγ ]

}
.

Elements of Fu are called local cw-unstable continua and are the main object of discussion
of this section. We proved in Theorem2.2 that there exist local cw-unstable continua passing
through each x ∈ X . We will prove that local cw-unstable continua are unstable, that is,
every C ∈ Fu satisfies

diam( f k(C)) → 0 when k → −∞,

and that their diameter increases uniformly (depending only on the sensitivity constant γ )
when they are iterated forward. These properties are similar to the properties satisfied by the
local stable/unstable continua of cw-expansive homeomorphisms and this is the reason that
we call continua in Fu local cw-unstable.

The sensitivity constant γ in the definition ofFu will determine the increasing and decreas-
ing times of local cw-unstable continua. Thus, we separate continua inFu that are associated
with distinct sensitivity constants as follows: for each γ ∈ (0, ε], let

Fu
γ =

{
C = lim

k→∞ f nk (B( f −nk (x), rnk ))

∣∣∣∣ x ∈ X , nk → ∞, rnk → 0,
n1( f −nk (x), rnk , γ ) ∈ (nk, nk + mγ ]

}
.

We note that Fu and Fu
γ depend on the sensitivity constant ε and during this whole section

we will choose ε as in the beginning of the proof of Theorem2.2. In the next result we prove
that the diameter of continua in Fu

γ increase more than ε in at most 2mγ iterates. In the proof
we use the following notation: if A ⊂ X , then n1(A, ε) denotes the first increasing time of
the set A with respect to ε.
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Proposition 2.5 If C ∈ Fu
γ , then there exists �γ ∈ {0, 1, . . . , 2mγ } such that

diam( f �γ (C)) ≥ ε.

Proof If C ∈ Fu
γ , then there exist x ∈ X , nk → ∞ and rnk → 0 such that

C = lim
k→∞ f nk (B( f −nk (x), rnk )) and

n1( f
−nk (x), rnk , γ ) ∈ (nk, nk + mγ ] for every k ∈ N.

Property (F2) says that

|n1( f −nk (x), rnk (x), γ ) − n1( f
−nk (x), rnk (x), ε)| ≤ mγ

and this assures that

n1( f
−nk (x), rnk , ε) ∈ (nk, nk + 2mγ ].

Consequently,

n1( f
nk (B( f −nk (x), rnk )), ε) ∈ {1, 2, . . . , 2mγ } for every k ∈ N

and, thus, there exist �γ ∈ {1, 2, . . . , 2mγ } and an infinite subset K ⊂ N such that

n1( f
nk (B( f −nk (x), rnk )), ε) = �γ for every k ∈ K .

Therefore,

diam( f �γ (C)) = lim
k→∞ diam( f �γ ( f nk (B( f −nk (x), rnk )))) ≥ ε

and the proof is complete. 
�
In the next proposition we prove that local cw-unstable continua increase regularly in the

future.

Proposition 2.6 If C ∈ Fu, then for each n ∈ N there is n′ ∈ {n, . . . , n + mε} such that
diam( f n

′
(C)) ≥ ε.

Proof IfC ∈ Fu , thenC ∈ Fu
γ for some γ ∈ (0, ε), and, hence, there exist x ∈ X , nk → ∞

and rnk → 0 such that

C = lim
k→∞ f nk (B( f −nk (x), rnk )) and

n1( f
−nk (x), rnk , γ ) ∈ (nk, nk + mγ ] for every k ∈ N.

As in the proof of the previous proposition, property (F2) assures that

n1( f
−nk (x), rnk , ε) ∈ (nk, nk + 2mγ ] for every k ∈ N.

For each n ∈ N we use property (F1) to reduce, if necessary, for each k ∈ N the radius rnk
to rtk so that

n1( f
−nk (x), rtk , ε) ∈ {nk + n, . . . , nk + n + mε}.

This implies that

n1( f
nk (B( f −nk (x), rtk )), ε) ∈ {n, . . . , n + mε} for every k ∈ N
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and consequently, for each k ∈ N there is �k ∈ {n, . . . , n + mε} such that

diam ( f �k ( f nk (B( f −nk (x), rnk )))) ≥ diam ( f �k ( f nk (B( f −nk (x), rtk )))) > ε.

Thus, there exists n′ ∈ {n, . . . , n + mε} and an infinite subset K ⊂ N such that

diam ( f n
′
( f nk (B( f −nk (x), rnk )))) > ε for every k ∈ K

and, hence,

diam( f n
′
(C)) = lim

k→∞ diam( f n
′
( f nk (B( f −nk (x), rnk )))) ≥ ε.

This completes the proof. 
�
This regularity ensures that the set of the increasing times of a local cw-unstable continuum
is syndetic. Recall that a subset S ⊂ N is syndetic if there is p(S) ∈ N such that

{n, n + 1, . . . , n + p(S)} ∩ S 
= ∅ for every n ∈ N.

The set of increasing times of a subset C ⊂ X with respect to a sensitivity constant c > 0 is
the set

SC,c = {n ∈ N; diam( f n(C)) ≥ c}.
Corollary 2.7 If C ∈ Fu, then SC,ε is syndetic.

Proof Proposition2.6 assures that

{n, n + 1, . . . , n + mε} ∩ SC,ε 
= ∅ for every n ∈ N,

that is, SC,ε is syndetic with p(C) = mε for every C ∈ Fu . 
�
These results imply that every first-time sensitive homeomorphism is syndetically sen-

sitive. Recall that a homeomorphism f : X → X of a compact metric space (X , d) is
syndetically sensitive if there exists c > 0 such that SU ,c is syndetic for every non-empty
open subset U ⊂ X (see [24, 28] and the references therein for more information on synde-
tically sensitivity).

Corollary 2.8 If f is first-time sensitive, then it is syndetically sensitive.

Proof LetU be a non-empty and open subset of X , x ∈ U , γ ∈ (0, ε) be such that B(x, 2γ ) ⊂
U , and choose C ⊂ Fu , given by Theorem2.2, such that C ⊂ Cu

γ (x). Since diam(C) ≤ 2γ
and x ∈ C , it follows that C ⊂ U and this implies that SC,ε ⊂ SU ,ε. Proposition2.6 assures
that SC,ε is syndetic and the previous inclusion assures that SU ,ε is syndetic. 
�

Another immediate corollary of Proposition2.6 is that the diameter of future iterations of
local cw-unstable continua cannot become arbitrarily small after it reaches size ε.

Corollary 2.9 There exists δ > 0 such that if C ∈ Fu
γ , then

diam( f n(C)) ≥ δ for every n ≥ 2mγ .

Proof The proof of Corollary2.7 assures that for each n ≥ 2mγ there exists m ∈ SC,ε such
that |m − n| ≤ mε . Let δ > 0, given by uniform continuity of f and f −1, such that if
diam(A) ≥ ε then

diam( f k(A)) ≥ δ whenever |k| ≤ mε.

Since diam( f m(C)) ≥ ε and |m − n| ≤ mε , it follows that diam( f n(C)) ≥ δ. 
�
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This corollary is the version in the case of first-time sensitive homeomorphisms of the
following important property of cw-expansive homeomorphisms:

Proposition 2.10 [19, Proposition 2.2]. There exists δ ∈ (0, ε) such that if A is a subcontin-
uum of X with diam(A) ≤ δ and

diam( f n(A)) ≥ ε for some n ∈ N,

then

diam( f j (A)) ≥ δ for every j ≥ n.

In the last result of this subsection we prove that local cw-unstable continuum are (global)
unstable. We also recall that in the case of cw-expansive homeomorphisms, local stable and
local unstable continua are respectively stable and unstable (see [19]).

Proposition 2.11 If C ∈ Fu, then limn→∞ diam( f −n(C)) = 0.

Proof If C ∈ Fu
γ , then there exist x ∈ X , nk → ∞ and rnk → 0 such that

C = lim
k→∞ f nk (B( f −nk (x), rnk )) and

n1( f
−nk (x), rnk , γ ) ∈ (nk, nk + mγ ] for every k ∈ N.

It is enough to prove that for each α ∈ (0, γ ) there exists �α ∈ N such that

diam( f −n(C)) ≤ α for every n ≥ �α.

Since

nk < n1( f
−nk (x), rnk , γ ) ≤ n1( f

−nk (x), rnk , ε),

it follows from property (F2) that

nk − n1(xnk , rnk , α) < n1( f
−nk (x), rnk , ε) − n1( f

−nk (x), rnk , α) ≤ mα.

Let �α = mα + 1 and note that if n ≥ �α , then the previous inequality assures that

nk − n1( f
−nk (x), rnk , α) < n.

For each n ≥ �α consider kn ∈ N such that

n ≤ nk for every k ≥ kn,

recall that limk→∞ nk = ∞. This implies that

0 ≤ nk − n < n1( f
−nk (x), rnk , α) for every k ≥ kn

and, hence,

diam( f −n( f nk (B( f −nk (x), rnk )))) = diam( f nk−n(B( f −nk (x), rnk ))) ≤ α

for every k ≥ kn . This assures that

lim
k→∞ diam( f −n( f nk (B( f −nk (x), rnk )))) ≤ α
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for every n ≥ �α . Therefore

diam( f −n(C)) = diam

(
f −n

(
lim
k→∞ f nk (B( f −nk (x), rnk ))

))

= lim
k→∞ diam

(
f −n( f nk (B( f −nk (x), rnk )))

)
≤ α

for every n ≥ �α , which finishes the proof. 
�

At the end of this section we note that in the definition on first-time sensitivity nothing
is said about the map γ �→ mγ . In the following proposition we choose the numbers mγ

satisfying (F1) and (F2) and such that γ �→ mγ is a non-increasing function. This will be
used later in Sect. 4.

Proposition 2.12 If f is a first-time sensitive homeomorphism with a sensitivity constant
ε > 0, then for each γ ∈ (0, ε), there exists mγ > 0 satisfying (F1), (F2), and: if δ < γ ,
then mγ ≤ mδ .

Proof For each γ ∈ (0, ε) consider m′
γ > 0, given by the definition of first-time sensitivity,

satisfying

(F1) |n1(x, rk+1(x), γ ) − n1(x, rk(x), γ )| ≤ m′
γ

(F2) |n1(x, rk(x), γ ) − n1(x, rk(x), ε)| ≤ m′
γ

for every x ∈ X and for every k ∈ N such that rk(x) ≤ γ . We first prove that if δ ≤ γ , then
3m′

δ also bounds the differences above. Indeed, if δ ≤ γ , then

n1(x, rk(x), γ ) ≥ n1(x, rk(x), δ)

and, hence,

|n1(x, rk(x), ε) − n1(x, rk(x), γ )| ≤ |n1(x, rk(x), ε) − n1(x, rk(x), δ)| ≤ m′
δ, (1)

where the second inequality is ensured by (F2). Also, using triangular inequality, (F1), (F2),
and (1) we obtain:

|n1(x, rk+1(x), γ ) − n1(x, rk+1(x), δ)|+
|n1(x, rk+1(x), γ ) − n1(x, rk(x), γ )| ≤ |n1(x, rk+1(x), δ) − n1(x, rk(x), δ)|+

|n1(x, rk(x), δ) − n1(x, rk(x), γ )|
|n1(x, rk+1(x), ε) − n1(x, rk+1(x), δ)|+

≤ |n1(x, rk+1(x), δ) − n1(x, rk(x), δ)|+
|n1(x, rk(x), δ) − n1(x, rk(x), ε)|

≤ 3m′
δ.

To define (mγ )γ∈(0,ε), we define a sequence (mn)n∈N as follows: let m1 = 3m′
ε
2
, and induc-

tively define for each n ≥ 2,

mn = max{3m′
ε
n
,mn−1 + 1}.

For each n ≥ 2 and γ ∈
[

ε
n , ε

n−1

)
, let mγ = mn . Since the sequence (mn)n∈N is

increasing, it follows that γ �→ mγ is non-increasing. Finally, we prove that for each γ ∈
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(0, ε), mγ satisfies (F1) and (F2). Given γ ∈ (0, ε], there is n ≥ 2 such that γ ∈
[

ε
n , ε

n−1

)
.

Since ε
n ≤ γ , it follows that

|n1(x, rk+1(x), γ ) − n1(x, rk(x), γ )| ≤ 3m′
ε
n

≤ mn = mγ and

|n1(x, rk(x), ε) − n1(x, rk(x), γ )| ≤ m′
ε
n

≤ mn = mγ ,

for every x ∈ X and for every k ∈ N such that rk(x) ≤ γ . 
�

3 Examples of First-time Sensitive Homeomorphisms

In this section we discuss three distinct classes of systems satisfying first-time sensitivity.
They are the continuum-wise expansive homeomorphisms, the shift map on the Hilbert
cube [0, 1]Z, and some partially hyperbolic diffeomorphisms. We will discuss them on three
separate subsections.
Continuum-wise expansive homeomorphisms
We start this subsection recalling the definition of cw-expansiveness.

Definition 3.1 We say that f is continuum-wise expansive if there exists c > 0 such that
Wu

c (x) ∩ Ws
c (x) is totally disconnected for every x ∈ X . Equivalently, for each non-trivial

continuum C ⊂ X , that is C is not a singleton, there exists n ∈ Z such that

diam( f n(C)) > c.

The number c > 0 is called a cw-expansivity constant of f .

Wewill prove that cw-expansiveness implies ft-sensitivity on spaces satisfying (P1) and (P2).
To prove this we will need the following lemma that obtains further consequences on the first
increasing times of sensitive homeomorphisms defined on spaces satisfying hypothesis (P2).

Lemma 3.2 If f : X → X is sensitive, with a sensitivity constant ε > 0, and X satisfies
hypothesis (P2), then there is a sequence (rk)k∈N : X → R

∗+ starting on r1 = ε
2 and strictly

decreasing monotonically to 0 such that (n1(x, rk(x), ε))k∈N is strictly increasing and

diam( f n1(x,rk (x),ε)(B(x, rk+1(x)))) = ε for every x ∈ X and k ∈ N.

Proof For each x ∈ X , let r1(x) = ε
2 and note that the continuity of f n1(x,r1(x),ε) and

hypothesis (P2) assure that if r is sufficiently close to r1, then

diam( f n1(x,r1(x),ε)(B(x, r))) > ε.

Also, if r is sufficiently small, then uniform continuity of f assures that

diam( f n1(x,r1(x),ε)(B(x, r))) < ε.

It follows from the hypothesis (P2) that there exists r2(x) ∈ (0, r1(x)) such that

diam( f n1(x,r1(x),ε)(B(x, r2(x)))) = ε.

The first increasing time n1(x, r2(x), ε) of B(x, r2(x)) with respect to ε satisfies

diam( f n1(x,r2(x),ε)(B(x, r2(x)))) > ε and

diam( f j (B(x, r2(x)))) ≤ ε for every j ∈ {0, . . . , n1(x, r2(x), ε) − 1}.
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This implies that n1(x, r2(x), ε) > n1(x, r1(x), ε) since

diam( f j (B(x, r2(x), ε))) ≤ ε for every j ∈ {0, . . . , n1(x, r1(x), ε)}
and diam( f n1(x,r2(x),ε)(B(x, r2(x)))) > ε. By inductionwe can define a decreasing sequence
of real numbers (rk(x))k∈N such that (n1(x, rk(x), ε))k∈N is an increasing sequence of pos-
itive integer numbers and that

diam( f n1(x,rk (x))(B(x, rk+1(x)))) = ε for every k ∈ N.

Since this can be done for every x ∈ X , the proof is complete. 
�
Remark 3.3 We note that if (n1(x, rk(x), ε))k∈N is strictly increasing, then

lim
k→∞ rk(x) = 0.

Indeed, if this is not the case, there exists r > 0 and a subsequence (rkn )n∈N such that
kn → ∞ and

rkn (x) > r for every n ∈ N.

Thus,

n1(x, rkn , ε) ≤ n1(x, r , ε) for every n ∈ N

and this implies that the subsequence (n1(x, rkn (x), ε))n∈N is bounded. But this contra-
dicts the hypothesis of (n1(x, rk(x)))k∈N being strictly increasing since this implies that
limk→∞ n1(x, rk(x)) = ∞.

Theorem 3.4 cw-expansive homeomorphisms defined in compact and connected metric
spaces satisfying hypothesis (P1) and (P2) are first-time sensitive.

Proof First, note that, since X satisfies Property (P1), then it is locally connected and, in
particular, a Peano continuum. Every cw-expansive homeomorphism defined on a Peano
continuum is sensitive. This is a consequence of [15, Theorem 1.1], where it is proved that
cw-expansive homeomorphisms defined on a Peano continuum do not have stable points,
that are points x ∈ X satisfying: for each ε > 0 there exists δ > 0 such that

B(x, δ) ⊂ Ws
ε (x).

Thus, we have that f is sensitive and consider ε > 0 a sensitivity constant of f . Let (rk)k∈N
be the sequence given by Lemma3.2 such that (n1(x, rk(x), ε))k∈N is strictly increasing and

diam( f n1(x,rk (x),ε)(B(x, rk+1(x)))) = ε for every x ∈ X and k ∈ N.

We will first prove property (F2) of the definition of first-time sensitivity. Suppose that (F2)
is not valid, that is, for some constant γ ∈ (0, ε], there are sequences (xm)m∈N ⊂ X and
(km)m∈N ⊂ N such that km → ∞ when m → ∞ and

lim
m→∞(n1(xm, rkm (xm), ε) − n1(xm, rkm (xm), γ )) = ∞.

We can assume that

n1(xm, rkm (xm), γ ) < n1(xm, rkm (xm), ε) for every m ∈ N

and, hence, that

γ < diam f n1(xm ,rkm (xm ),γ )(B(xm, rkm (xm))) ≤ ε for every m ∈ N.
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For each m ∈ N, the continuum

Cm = f n1(xm ,rkm (xm ),γ )(B(xm, rkm (xm))).

satisfies to following conditions:

(1) diam(Cm) ≥ γ ;
(2) diam( f − j (Cm)) ≤ ε, ∀ j ∈ [0, n1(xm, rkm (xm), γ )];
(3) diam( f j (Cm)) ≤ ε, ∀ j ∈ [0, n1(xm, rkm (xm), ε) − n1(xm, rkm (xm), γ ) − 1].
Let C be an accumulation continuum of the sequence (Cm)m∈N in the Hausdorff topology,
that is,

C = lim
l→∞Cml .

Property (1) assures that diam(C) ≥ γ . Since

lim
m→∞(n1(xm, rkm (xm), ε) − n1(xm, rkm (xm), γ ) = ∞

and

n1(xm, rkm (xm), ε) ≥ n1(xm, rkm (xm), ε) − n1(xm, rkm (xm), γ )

it follows that

lim
m→∞ n1(xm, rkm (xm), ε) = ∞.

Lemma2.3 assures that limm→∞ rkm (xm) = 0, since otherwise

(n1(xm, rkm (xm), ε))m∈N
would have a bounded subsequence. This implies that

lim
m→∞ n1(xm, rkm (xm), γ ) = ∞.

Thus, Properties (2) e (3) assure that

diam( f j (C)) = lim
l→∞( f j (Cml )) ≤ ε for every j ∈ Z

and C is a non-trivial ε-stable and ε-unstable continuum, contradicting cw- expansiveness.
This proves property (F2). Now, we prove property (F1).

Suppose that (F1) is not valid, that is, for some constant γ ∈ (0, ε], there are sequences
(xm)m∈N ⊂ X and (km)m∈N ⊂ N such that km → ∞ when m → ∞ and

lim
m→∞ |n1(xm, rkm+1(xm), γ ) − n1(xm, rkm (xm), γ )| = ∞.

Using property (F2), that was proved for the sequence (rk)k∈N, there is mγ ∈ N such that

|n1(x, rk(x), ε) − n1(x, rk(x), γ )| < mγ

for every x ∈ X and for every k ∈ N such that rk(x) < γ . A simple triangle inequality
assures that

lim
m→∞ |n1(xm, rkm+1(xm), ε) − n1(xm, rkm (xm), ε)| = ∞.

Choose a sequence (�m)m∈N of positive numbers satisfying limm→∞ �m = ∞ and

|n1(xm, rkm+1(xm), ε) − n1(xm, rkm (xm), ε)| ≥ 2�m for every m ∈ N.
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Let δ ∈ (0, ε) be given by [19, Proposition 2.2] such that if A is a subcontinuum of X with
diam(A) ≤ δ and

diam( f n(A)) ≥ ε for some n ∈ N,

then

diam( f j (A)) ≥ δ for every j ≥ n.

Since for each m ∈ N we have

n1(xm, rkm+1(xm), ε) ≥ |n1(xm, rkm+1(xm), ε) − n1(xm, rkm (xm), ε)|
we obtain

lim
m→∞ n1(xm, rkm+1(xm), ε) = ∞

and using Lemma2.3, as in the proof of (F2), we obtain

lim
m→∞ rkm+1(xm) = 0.

Thus, we can assume that

rkm+1(xm) < δ/2 for every m ∈ N.

For each m ∈ N, let

Cm = f n1(xm ,rkm (xm ),ε)+�m (B(xm, rkm+1(xm))).

Recall that the sequence (rk)k∈N was chosen so that

diam( f n1(xm ,rkm (xm ),ε)(B(xm, rkm+1(xm)))) = ε

for every m ∈ N. Since B(xm, rkm+1(xm)) is a subcontinuum of X , by property (P1) on the
space, and it has diameter smaller than δ, we obtain

diam( f j (B(xm, rkm+1(xm)))) ≥ δ for every j ≥ n1(xm, rkm (xm), ε).

In particular,

diam(Cm) = diam( f n1,ε(xm ,rkm (xm ))+�m (B(xm, rkm+1(xm)))) ≥ δ.

Thus, the following conditions hold for every m ∈ N:

(4) diam(Cm) ≥ δ,
(5) diam( f − j (Cm)) ≤ ε for every j ∈ {0, . . . , �m} and
(6) diam( f j (Cm)) ≤ ε for every j ∈ {0, . . . , �m}.
Considering an accumulation continuum

C = lim
i→∞Cmi

on the Hausdorff topology, we have that C is a continuum, since it is a limit of continua,
diam(C) ≥ δ, since

diam(Cm) ≥ δ for every m ∈ N,

and

diam( f j (C)) = lim
i→∞ diam( f j (Cmi )) ≤ ε for every j ∈ Z
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since �m → ∞. Thus, C is a non-trivial ε-stable and ε-unstable continuum contradicting
cw-expansiviness. This proves property (F1) and completes the proof. 
�

Theorem2.2 ensures the existence of cw-unstable continua with uniform diameter in
every point of the space x ∈ X . Since cw-unstable continua are indeed local unstable, they
are contained in the local unstable continua Cu

ε (x). For some time we tried to prove that the
local unstable continua are cw-unstable, i.e., belong to Fu . We could just prove it with the
following additional hypothesis:

Definition 3.5 Let f be a homeomorphism of a compact metric space X and 0 < r < c. We
say that the first increasing time with respect to c of a ball B(x, r) is controlled by a subset
C ⊂ B(x, r) if

n1(x, r , c) = n1(C, c).

Let f be a cw-expansive homeomorphism with cw-expansivity constant c = 2ε > 0. We
say that the local unstable continua control the increasing time of the balls of the space if
the first increasing time of every ball B(x, r) of radius r < ε is controlled by the connected
component of x in Cu

ε (x) ∩ B(x, r).

Proposition 3.6 If f is a cw-expansive homeomorphismwith cw-expansivity constant 2ε > 0
and the local unstable continua control the increasing time of the balls of the space, then
Cu

ε (x) ∈ Fu for every x ∈ X.

Proof Let δ ∈ (0, ε) be given by Theorem2.1 such that

diam(Cu
ε (x)) ≥ δ for every x ∈ X ,

and choose m2ε ∈ N such that for each x ∈ X there exists k ∈ {0, . . . ,m2ε} such that

diam( f k(Cu
ε (x))) > ε.

For each x ∈ X and m ∈ N let

rm(x) = diam( f −m(Cu
ε (x)))

and note that

rm(x) ≤ 2ε for every m ∈ N and

rm(x) → 0 when m → ∞,

recall from [19] that

Cu
ε (x) ⊂ Wu(x) for every x ∈ X .

We will prove that

(1) f m(B( f −m(x), rm(x))) → Cu
ε (x) when m → ∞, and

(2) n1( f −m(x), rm(x), 2ε) ∈ (m,m + m2ε] for every m ∈ N.

Note that the choice of rm(x) ensures that

Cu
ε (x) ⊂ f m(B( f −m(x), rm(x))) for every m ∈ N.

Thus, if C is an accumulation continuum of the sequence

( f m(B( f −m(x), rm(x))))m∈N,
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then Cu
ε (x) ⊂ C . It follows from the choice of (rm(x))m∈N and m2ε that

n1( f
−m(x), rm(x), 2ε) ≤ m + m2ε for every m ∈ N.

The hypothesis that the local unstable continua control the increasing time of the balls of the
space ensures that

n1( f
−m(x), rm(x), 2ε) > m for every m ∈ N,

since in this case we have

n1( f
−m(x), rm(x), 2ε) = n1( f

−m(Cu
ε (x)), 2ε) > m.

This proves (2) and also ensures that C is an ε-unstable continuum, since C would be the
limit of a sequence ( f mi (B( f −mi (x), rmi )))i∈N with mi → ∞ and

diam( f j (B( f −mi (x), rmi ))) ≤ 2ε for every j ∈ {0, . . . ,mi } and i ∈ N.

Then it follows that C ⊂ Cu
ε (x), since Cu

ε (x) is the connected component of x in Wu
ε (x),

and we conclude (1) and the proof. 
�
Shift on the Hilbert cube [0, 1]Z
Let X = [0, 1]Z and consider the following metric on X : for each x = (xi )i∈Z and y =
(yi )i∈Z in X , let

d(x, y) = sup
i∈Z

|xi − yi |
2|i | .

Consider the bilateral backward shift

σ : [0, 1]Z → [0, 1]Z
(xi )i∈Z �→ (xi+1)i∈Z

.

In this section we prove that σ is first-time sensitive and characterize their cw-local unstable
continua.

Theorem 3.7 The shift map σ : [0, 1]Z → [0, 1]Z is first-time sensitive.

Proof Wefirst prove that σ is sensitive (this can be found in [1]).We prove that any ε < c = 1
4

is a sensitivity constant of σ . Given δ > 0 and x = (xi )i∈Z ∈ X , choose i0 ∈ Z such that
c/2i0 < δ. Let

yi0 =
{
xi0 + c, if xi0 ∈ [0, 1/2]
xi0 − c, if xi0 ∈ (1/2, 1].

Then, the sequence y = (. . . , x−1, x0, x1, . . . , xi0−1, yi0 , xi0+1 . . .), that is x changing only
the i0-th coordinate xi0 with yi0 , belongs to X and is contained in the ball centered at x and
radius δ, since

d(y, x) = sup
i∈Z

( |yi − xi |
2|i |

)
= |xi0 ± c − xi0 |

2i0
= c

2i0
< δ.

Also, note that

d(σ i0(x), σ i0(y)) = sup
i∈Z

( |xi+i0 − yi+i0 |
2|i |

)
= |xi0 − xi0 ± c| = c > ε
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and that this is enough to prove that σ is sensitive. Nowwe prove that σ is first-time sensitive.
For each x = (xi )i∈Z ∈ X and y = (yi )i∈Z ∈ X we have

y = (yi )i∈Z ∈ B(x, ε) ⇔ sup
i∈Z

( |xi − yi |
2|i |

)
< ε

⇔ |xi − yi | < 2|i |ε for every i ∈ Z

⇔ yi ∈ (xi − 2|i |ε, xi + 2|i |ε) for every i ∈ Z.

A similar argument proves that

y = (yi )i∈Z ∈ σ j
(
B

(
x,

ε

2n

))

if, and only if,

yi ∈
(
xi+ j − 2|i+ j | ε

2n
, xi+ j + 2|i+ j | ε

2n

)
∩ [0, 1] for every i ∈ Z.

For each x ∈ X , n ∈ N and j ∈ N we have

2 j−nε ≤ diam
(
σ j

(
B

(
x,

ε

2n

)))
≤ 2 j−n+1ε. (2)

Indeed, letting for each i ∈ Z and j ∈ N

Ii, j =
(
xi+ j − 2|i+ j | ε

2n
, xi+ j + 2|i+ j | ε

2n

)
∩ [0, 1],

we have

diam
(
σ j

(
B

(
x,

ε

2n

)))
= sup

i∈Z
diam(Ii, j )

2|i | ,

and since

2 j−nε ≤ diam(Ii, j )

2|i | ≤ 2 j−n+1ε

for every i ∈ Z, we obtain the desired inequalities. For each γ ∈ (0, ε], choose kγ ∈ N such
that

ε

2kγ +1 ≤ γ <
ε

2kγ
. (3)

From inequality (2) we obtain

diam
(
σ j

(
B

(
x,

ε

2n

)))
≤ ε

2kγ +1 ≤ γ when 0 ≤ j ≤ n − kγ − 2,

and

diam
(
σ j

(
B

(
x,

ε

2n

)))
≥ ε

2kγ
> γ if j ≥ n − kγ .

This implies that n1
(
x, ε

2n , γ
)
is either n − kγ − 1 or n − kγ for every n ∈ N. Thus,

n1
(
x,

ε

2n+1 , γ
)

− n1
(
x,

ε

2n
, γ

)
≤ 2

and

n1
(
x,

ε

2n
, ε

)
− n1

(
x,

ε

2n
, γ

)
≤ kγ + 2

(in the last inequality we used that n1
(
x, ε

2n , ε
)
is either n or n + 1). Since this holds for

every n ∈ N, consideringmγ = kγ +2, we have that (mγ )γ∈(0,ε] satisfies the Properties (F1)
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and (F2) for sequence of the radius
(

ε
2n

)
n∈N. Given that

(
ε
2n

)
n∈N decrease monotonically to

0, we conclude that σ is first-time sensitive. Notice that γ �→ mγ is non-increasing, since
mγ = kγ + 2 where kγ satisfies (3). 
�

Remark 3.8 We remark that there are no cw-expansive homeomorphisms on infinite dimen-
sional compact metric spaces. This was proved by Kato in [19] generalizing a result of Mañé
in the case of expansive homeomorphisms [26]. Even though first-time sensitive homeo-
morphisms share important properties with cw-expansive homeomorphisms, as proved in
Sect. 2, it is not possible to adapt the proof of Kato/Mañé to the case of first-time sensitive
homeomorphisms.

A direct consequence of Proposition3.7 is the following:

Corollary 3.9 There exist first-time sensitive homeomorphisms on infinite dimensional com-
pact metric spaces.

Remark 3.10 We remark that the theorem of Kato assures that σ : [0, 1]Z → [0, 1]Z is not
cw-expansive, but it is easy to choose non-trivial continua in arbitrarily small dynamical
balls. For each r > 0, the continuum

Cr =
∏
i<0

{0} × [0, r ] ×
∏
i>0

{0}

is non-degenerate and

diam(σ n(Cr )) ≤ diam(Cr ) = r for every n ∈ Z.

We note that Cr is both an r -stable and r -unstable continuum that is not cw-stable nor cw-
unstable since its diameter does not increase in the future or in the past. We also note that Cr

is both stable and unstable, since

diam(σ n(Cr )) ≤ r

2|n| for every n ∈ Z.

Remark 3.11 We remark that σ contains local stable continua that are not stable, and local
unstable continua that are not unstable, on every point of the space. For each ε ∈ (0, c) and
x = (xi )i∈Z ∈ X , the non-trivial continuum

Cx =
∏
i∈Z

{[xi − ε, xi + ε] ∩ [0, 1]}

is contained in Ws
ε (x) ∩ Wu

ε (x). Indeed, if y = (yi )i∈Z ∈ Cx , then

yi ∈ [xi − ε, xi + ε] for every i ∈ Z

and this implies that

d(σ n(x), σ n(y)) = sup
i∈Z

|xi+n − yi+n |
2|i |

≤ sup
i∈Z

ε

2|i |
≤ ε
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for every n ∈ Z. Moreover, Cx is not stable. Indeed, for each α ∈ (0, ε], the sequence
y = (yi )i∈Z defined as follows

yi =
⎧⎨
⎩
xi , i < 0
xi + α, i ≥ 0 and xi ∈ [0, 1/2]
xi − α, i ≥ 0 and xi ∈ (1/2, 1]

belongs to Cx , but

d(σ n(y), σ n(x)) = sup
i∈Z

|yi+n − xi+n |
2|i |

= sup
i≥−n

|xi+n ± α − xi+n |
2|i |

= α

for every n ∈ N, that is, y /∈ Ws(x). This assures that

diam(σ n(Cx )) ≥ ε for every n ≥ 0

and that Cx is not stable. A similar argument proves that Cx is a local unstable continuum
that is not unstable.

The next proposition characterizes the local cw-unstable continua of the shift map.

Proposition 3.12 AcontinuumC belongs toFu if, and only if, there are x = (xi )i∈Z ∈ [0, 1]Z
and k ∈ N ∪ {0} such that

C =
∏
i∈Z

{[xi − 2i−kε, xi + 2i−kε] ∩ [0, 1]}.

Proof According to the proof of Theorem3.7, any ε < c = 1
4 is a sensitivity constant of

σ , the sequence (rn)n∈N in the definition of first-time sensitivity is
( ε

2n

)
n∈N

, and for each

γ ∈ (0, ε] there exists kγ ∈ N such that

ε

2kγ +1 ≤ γ <
ε

2kγ
, mγ = kγ + 2, and

n1
(
y,

ε

2n
, γ

)
∈ {n − kγ − 1, n − kγ } for every y ∈ [0, 1]Z and n ∈ N. (4)

Thus, if C ∈ Fu , then C ∈ Fu
γ for some γ ∈ (0, ε), and, hence, there exist x ∈ [0, 1]Z, and

increasing sequences (l j ) j∈N and (n j ) j∈N ⊂ N such that

C = lim
j→∞ σ n j

(
B

(
σ−n j (x),

ε

2l j

))
and

n1

(
σ−n j (x),

ε

2l j
, γ

)
∈ (n j , n j + mγ ] for every j ∈ N. (5)

As in the proof of Theorem3.7, we have

B

(
σ−n j (x),

ε

2l j

)
=

∏
i∈Z

{[
xi−n j − 2|i | ε

2l j
, xi−n j + 2|i | ε

2l j

]
∩ [0, 1]

}
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and, consequently,

σ n j

(
B

(
σ−n j (x),

ε

2l j

))
=

∏
i∈Z

{[
xi − 2|n j+i | ε

2l j
, xi + 2|n j+i | ε

2l j

]
∩ [0, 1]

}

for every j ∈ N. Thus,

C = lim
j→∞

∏
i∈Z

{[
xi − 2|n j+i | ε

2l j
, xi + 2|n j+i | ε

2l j

]
∩ [0, 1]

}

=
∏
i∈Z

{[
xi − lim

j→∞ 2|n j+i |−l j ε, xi + lim
j→∞ 2|n j+i |−l j ε

]
∩ [0, 1]

}
.

Note that the limit lim j→∞ 2|n j+i |−l j exists since the iterations of the previous closed balls
converge to C (by hypothesis) so each of their coordinates, and hence the radius of each
interval, also converge. Moreover, (4) ensures that

n1

(
σ−n j (x),

ε

2l j
, γ

)
∈ {l j − kγ − 1, l j − kγ } for every j ∈ N,

and this with (5) ensure that

n j ∈ {l j − kγ − mγ − 1, . . . , l j − kγ − 1} for every j ∈ N,

that is,

n j − l j ∈ {−kγ − mγ − 1, . . . ,−kγ − 1} for every j ∈ N.

Thus, for each i ∈ Z there exists j0 ∈ N such that

|n j + i | = n j + i for every j ≥ j0,

and, hence,

|n j + i | − l j ∈ {−kγ − mγ − 1 + i, . . . ,−kγ − 1 + i} for every j ≥ j0.

Since the limit lim j→∞ 2|n j+i |−l j exists, there exists

−k ∈ {−mγ − kγ , . . . ,−kγ − 1}
and j1 ≥ j0 such that

2|n j+i |−l j = 2i−k for every j ≥ j1.

So, lim
j→∞ 2|n j+i |−l j = 2i−k and, hence,

C =
∏
i∈Z

{[xi − 2i−kε, xi + 2i−kε] ∩ [0, 1].

Now, suppose that there exists k ∈ N such that

C =
∏
i∈Z

{[xi − 2i−kε, xi + 2i−kε] ∩ [0, 1]}.

We will prove that

C = lim
j→∞ σ j

(
B

(
σ− j (x),

ε

2 j+k

))
.
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As above,

σ j
(
B

(
σ− j (x),

ε

2 j+k

))
=

∏
i∈Z

{[xi − 2|i+ j |− j−kε, xi + 2|i+ j |− j−kε] ∩ [0, 1]}

for every j ∈ N. Thus, if i ∈ N and j ≥ |i |, then
|i + j | = i + j, 2|i+ j |− j−k = 2i−k,

[xi − 2|i+ j |− j−kε, xi + 2|i+ j |− j−kε] = [xi − 2i−kε, xi + 2i−kε],
and, hence,

C and σ j
(
B

(
σ− j

(
x,

ε

2 j+k

)))

have the same coordinates between −i and i . Since this holds for every i ∈ N and j > |i |, it
is enough to conclude the desired limit and the proof. 
�
Remark 3.13 We note that all objects in the above proofs depend on the metric you choose
for the space, from the sequence of radius ( ε

2n )n∈N, to the numbers mγ and also the local
cw-unstable continua in Fu . We invite the reader to prove similar results with a different
metric for the Hilbert cube and see how these objects change.

Partially Hyperbolic Diffeomorphisms
In this subsection we discuss first-time sensitivity in the context of partially hyperbolic
diffeomorphisms. The ideas and techniques of this paper are from topological dynamics and
we will try to stay in the world of topological dynamics even though we need to talk about
differentiability to define partial hyperbolicity.

Definition 3.14 A diffeomorphism f : M → M of a closed smooth manifold is called par-
tially hyperbolic if the tangent bundle splits into three Df -invariant sub-bundles T M =
Es ⊕ Ec ⊕ Eu where Es is uniformly contracted, Eu is uniformly expanded, one of them is
non-trivial, and the splitting is dominated (see [12] for more details on this definition).

Classical and important examples of partially hyperbolic diffeomorphisms are obtained
from direct products of an Anosov diffeomorphism f : M → M of a closed smoothmanifold
M and the identity map or with a rotation of the unit circle S

1. These examples are first-
time sensitive and this is a consequence of the following more general proposition. Recall
that an equicontinuous homeomorphism g is defined as the family of iterates (gn)n∈N being
equicontinuous.

Proposition 3.15 If f is a first-time sensitive homeomorphism and g is an equicontinuous
homeomorphism, then f × g is first-time sensitive.

Proof Let f : X → X be a first-time sensitive homeomorphism and g : Y → Y be an
equicontinuous homeomorphism of compact metric spaces X and Y .We consider the product
metric on the space X×Y . Let ε > 0 be a sensitivity constant of f and (rk)k∈N be the sequence
of functions, given by first-time sensitivity, such that for each γ ∈ (0, ε] there is mγ > 0
satisfying properties (F1) and (F2). Since g is equicontinuous and Y is compact, there exists
δγ > 0 such that

BY (y, δγ ) ⊂ Ws
γ,g(y) ∩ Wu

γ,g(y) for every y ∈ Y .
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Defining sk : X × Y → R
∗+ by sk(x, y) = rk(x), this implies that

n1, f ×g((x, y), sk(x, y), γ ) = n1, f (x, rk(x), γ )

for every (x, y) ∈ X × Y and k ∈ N such that rk(x) ≤ δγ . Since the sequences (rk)k∈N
and (n1, f (x, rk(x), γ ))k∈N satisfy the Properties (F1) and (F2), it follows that (sk)k∈N and
(n1, f ×g((x, y), sk(x, y), γ ))k∈N also satisfy them and with the same mγ . Since this holds
for every γ > 0, we conclude that f × g is ft-sensitive. 
�
This is also true in the case of time-1 maps of Anosov flows and the proof is basically
the same, with the direction of the flow acting as the equicontinuous homeomorphism. We
also prove that the existence of continua with hyperbolic behavior and controlling the first
increasing time of balls of the space implies first-time sensitivity.

Theorem 3.16 Let f : X → X be a sensitive homeomorphism of a compact metric space
(X , d). If there are 0 < λ1 ≤ λ2 < 1 such that for each ball B(x, r) there is a continuum
Cx,r ⊂ B(x, r) that controls the first increasing time of B(x, r), with diam(Cx,r ) ≥ r and
satisfying:

λ−n
1 d(y, z) ≤ d( f n(y), f n(z)) ≤ λ−n

2 d(y, z) (6)

for every n ∈ N and y, z ∈ Cx,r , then f is first-time sensitive.

Proof Let c > 0 be a sensitivity constant of f , ε ∈ (0, c], and define

rk(x) = 2λk1ε for every x ∈ X and every k ∈ N.

Choose a ∈ N such that λa2 < 1
4 and let mε = a + 1. For each ball B(x, rk(x)) consider a

continuum Cx,rk (x) ⊂ B(x, rk(x)) as in the hypothesis. Since diam(Cx,rk (x)) ≥ rk(x), there
are y, z ∈ Cx,rk (x) such that d(y, z) = rk(x). Thus,

d( f k(y), f k(z)) ≥ λ−k
1 d(y, z) = 2λ−k

1 λk1ε = 2ε > ε,

and this implies that

n1(x, rk(x), ε) ≤ k for every k ∈ N.

Also, for each k ≥ a,

d( f k−a(y), f k−a(z)) ≤ λ−k+a
2 d(y, z) = 2λk1λ

−k+a
2 ε ≤ 2λa2ε <

ε

2
< ε

(the second inequality is ensured by λk1λ
−k
2 ≤ 1, since by hypothesis λ1 ≤ λ2). This implies

that

n1(Cx,rk (x), ε) ≥ k − a,

and since Cx,rk (x) controls the first increasing time of B(x, rk(x)), it follows that

n1(x, rk(x), ε) ≥ k − a.

Thus,

k − a ≤ n1(x, rk(x), ε) ≤ k

and, then

|n1(x, rk+1(x), ε) − n1(x, rk(x), ε)| ≤ |k + 1 − (k − a)| = a + 1
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for every k ≥ a and every x ∈ X . Now, for each γ ∈ (0, ε) consider �γ , kγ ∈ N satisfying

2λ
kγ

2 ε ≤ 2λ
�γ +1
1 ε ≤ γ < 2λ

�γ

1 ε,

and let

mγ = max{kγ , |kγ − �γ + 1|}.
Thus, for each k ≥ max{�γ , kγ },

d( f k−�γ (y), f k−�γ (z)) ≥ λ
�γ −k
1 d(y, z) = 2λ

�γ

1 ε > γ

and

d( f k−kγ (y), f k−kγ (z)) ≤ 2λ
kγ −k
2 λk1ε ≤ 2λ

kγ

2 ε < γ

and, hence,

k − kγ ≤ n1(x, rk(x), γ ) ≤ k − �γ .

Therefore,

|n1(x, rk+1(x), γ ) − n1(x, rk(x), γ )| ≤ |k + 1 − �γ − (k − kγ )|
= |kγ − �γ + 1|

and

|n1(x, rk(x), ε) − n1(x, rk(x), γ )| ≤ k − (k − kγ ) = kγ

for every k such that rk(x) ≤ γ , ensuring Properties (F1) and (F2). 
�
Recall that for a partially hyperbolic diffeomorphism, the strong unstable manifold of x ∈ M
is the submanifold tangent to Eu(x) and is denoted byWuu

ε (x). The StableManifold Theorem
ensures that the strong unstable manifolds satisfy the estimates (6) of the previous theorem.
Thus, partially hyperbolic diffeomorphisms where strong unstable manifolds (or some sub-
manifold of them) control the increasing times of the balls of the space are first-time sensitive.

In the discussion about local cw-unstable continua of partially hyperbolic diffeomor-
phisms, the strong unstable manifolds seem to play a central role and following question
seems natural to consider:

Question 1 Are local cw-unstable continua of partially hyperbolic diffeomorphisms neces-
sarily strong unstable manifolds?

We prove that this question can be answered affirmatively in the case of the product of a
linear Anosov diffeomorphism of Tn with the identity id of S1.

Proposition 3.17 If f A is a linear Anosov diffeomorphism of the Torus T
n and id is the

identity map of S1, then for the product fA × id on T
n+1, the continua in Fu are strong

unstable manifolds.

Proof Let g = f A × id and C ∈ Fu . Then C ∈ Fu
γ for some γ ∈ (0, ε), and, hence, there

exist x = (y, z) ∈ T
n × S

1, nk → ∞, and rnk → 0 such that

C = lim
k→∞ gnk (B(g−nk (x), rnk )) and

n1(g
−nk (x), rnk , γ ) ∈ (nk, nk + mγ ] for every k ∈ N.
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Fig. 4 Modified irrational flow

We will prove that C ⊂ T
n × {z}. Indeed, in the product metric,

BTn×S1(x, r) = BTn (y, r) × (z − r , z + r)

and, hence, for each k ∈ N,

B(g−nk (x), rnk ) = BTn ( f −nk
A (y), rnk ) × (z − rnk , z + rnk ).

Since rnk → 0 and gnk acts as the identity on (z − rnk , z + rnk ), it follows that

C = lim
k→∞ gnk (B(g−nk (x), rnk )) ⊂ lim

k→∞ f nkA (B( f −nk
A (y), rnk )) ⊂ T

n × {z}.

Since g = f A on Tn × {z}, it follows by the local product structure of f A that C ⊂ Wuu
ε (x).


�
The case of partially hyperbolic diffeomorphisms that are the time-1 map of an Anosov

flow seems to be similar to the above proposition but we believe this could not be the case
for skew-product partially hyperbolic diffeomorphisms. This goes beyond the scope of this
paper, though.
Sensitive but not first-time sensitive

In this subsection we write precisely the example we briefly discussed in the introduction
of a sensitive homeomorphism of T2 that is not first-time sensitive and do not satisfy several
of important features of the hyperbolic systems.We begin with an irrational flow on the Torus
generated by a constant vector field F (whose every orbit is dense in T2) and multiply F by
a non-negative smooth function g : T2 → R with a single zero at a point p ∈ T

2. The flow
ϕ generated by the vector field gF has a fixed point on p with one stable orbit (that is dense
in the past) one unstable orbit (that is dense in the future) and any orbit distinct from these
three is dense in the future and in the past (see Fig. 4).

Proposition 3.18 If f : T2 → T
2 is the time-1 map of the flow generated by the vector field

gF, then f is sensitive but not first-time sensitive.

Proof To prove that f is sensitive we just note that in every open ball of the space B(x, r)
there are points in the stable orbit of p and points that are not in the stable orbit of p. Recall
that both the backward part of the stable orbit of p and the forward orbit of a point that is
not in the stable orbit of p are dense on T

2. Thus, we can find y, z ∈ B(x, r) such that
y ∈ Ws(p) and the future orbit of z is dense on T

2 and, hence, there exists k ∈ N such that
d( f k(y), f k(z)) > 1

2 . To prove that f is not first-time sensitive, we use techniques from [3]
where it is proved that ϕ is not geometric expansive but is kinematic expansive, meaning that
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the separation of orbits is not geometric, since generic orbits are parallel straight lines, but
local different orbits should be separated in time. We formalize this argument as follows.

For each x ∈ T
2 and ε > 0 let Cε(x) be the connected component of x in the flow orbit

of x contained in B(x, ε). We will prove the existence of ε > 0 such that

Wu
ε (x) ⊂ Cε(x) for every x 
= p. (7)

If x belongs to the stable orbit of p, then (7) contradicts the existence of cw-unstable continua
containing x , that should increase in the future (see Theorem 2.2 and Proposition 2.5), but
since it is a small segment of flow orbit contained in the stable orbit of p, then it could not
increase in the future.

Let ε > 0 be such that if y ∈ Wu
ε (x) and segments of orbits of x and y with length ε are

α-distant from each other, then the segments of orbit of f −k(x) and f −k(y) with length ε

are also α-distant from each other for every k ∈ N. The existence of ε follows from the fact
that the orbits of the irrational flow are parallel lines and that the orbits of ϕ are contained in
the orbits of the irrational flow. If y ∈ Wu

ε (x) \ Cε(x), then it is in a different local orbit but
its past orbit follows the past orbit of x . Let α > 0 be the distance between the segments of
orbits of length ε of x and y. Choose times (nk)k∈N such that f −nk (x) converge to p. The
choice of ε ensure that f −nk (y) remain at a distance greater than α

2 from p and since p is the
only fixed point of ϕ, there is a lower bound n ∈ N for the number of iterates of f to ensure
the orbit of y is 2ε-distant from p, while, the number of iterates for the orbit of x goes to
infinity since f −nk (x) converge to p. This ensures the existence k ∈ N such that

d( f −nk−n(x), f −nk−n(y)) > ε

contradicting that y ∈ Wu
ε (x). 
�

4 Positive Topological Entropy

In the study of chaotic systems, the topological entropy is an important invariant that mea-
sures the complexity of the dynamics. Positivity of topological entropy is strongly related
with chaotic properties of such systems. It is known that positive topological entropy implies
distinct notions of chaos (see [13] for an example and the references therein). Let us define
topological entropy precisely. During this whole section f : X → X denotes a homeo-
morphism of a compact metric space. Given n ∈ N and δ > 0, we say that E ⊂ X
is (n, δ)-separated if for each x, y ∈ E , x 
= y, there is k ∈ {0, . . . , n} such that
d( f k(x), f k(y)) > δ. Let s(n, δ) denotes the maximal cardinality of an (n, δ)-separated
subset E ⊂ X (since X is compact, s(n, δ) is finite). Let

h( f , δ) = lim sup
n→∞

1

n
log sn( f , δ).

Note that h( f , δ) increases as δ decreases to 0 and define

h( f ) = lim
δ→0

h( f , δ).

The example in Proposition3.18 is a sensitive homeomorphism of T2 with zero topologi-
cal entropy. Indeed, it is proved in [33] that every continuous flow on a compact two-manifold
has zero topological entropy. Kato proved that cw-expansive homeomorphisms have posi-
tive topological entropy, when defined on compact metric spaces with positive topological
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dimension [20]. The existence of local unstable continua with several properties that resem-
ble hyperbolic unstable manifolds, assures the existence of several distinct (n, δ)-separated
points (see Theorem 4.1 in [19] for more details).

In this subsection we obtain similar results in the case of first-time sensitive homeomor-
phisms. In [23] some restrictions on increasing times of open sets and their relation with
topological entropy were also discussed. It is important to note that we were not able to
prove that first-time sensitivity always implies positive topological entropy. The idea we
explore here follows the proof of Kato for cw-expansive homeomorphisms exchanging local
unstable continua by the local cw-unstable continua. It presented some difficulties that we
were only able to circumvent with some additional hypotheses. We explain them in what
follows.

The first difference to note is that for ft-sensitive homeomorphisms, the existence of local
unstable continua that are also stable, and hence do not increase in the future (see remarks
3.10 and3.11), do not allow us to start the proof with any local unstable continua. The
choice of a local cw-unstable continuum is enough to deal with this problem since they
increase in the future. The second difference, illustrated by the following example, recalls
that in the proof of Kato after iterating an unstable continuum to increase its diameter we
can take a pair of distinct unstable subcontinua that can again be iterated and increase, and
this can be done indefinitely in the future. But this is not necessarily true in the case of
ft-sensitive homeomorphisms since local cw-unstable continua can contain several proper
stable subcontinua.

Example 4.1 Let c = 1
4 and ε ∈ (0, c). Consider the cw-unstable continuum as in the

Proposition3.12:

D =
∏
i∈Z

([xi − 2iε, xi + 2iε] ∩ [0, 1]).

Choose M ∈ N such that 2Mε > c and, hence,

diam(σ M (D)) > c.

For each m ≥ M , let

ym = min([xm − 2mε, xm + 2mε] ∩ [0, 1]) and
zm = max([xm − 2mε, xm + 2mε] ∩ [0, 1]).

Define continua C1 and C2 as follows:

C1 =
∏
i<0

{xi+M } × [yM , yM + 1/12] ×
∏
i>0

[yi+M , yi+M + 1/12]

and

C2 =
∏
i<0

{xi+M } × [zM − 1/12, zM ] ×
∏
i>0

[zi+M − 1/12, zi+M ].

Note that C1 and C2 are subcontinua of σ M (D) satisfying

(1) d(C1,C2) > 1/12,
(2) diam(σ n(C1)) = 1/12 for every n ∈ N, and
(3) diam(σ n(C2)) = 1/12 for every n ∈ N.


�
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This property of indefinitely splitting unstable continua to increase in the future is the
core of the proof of Kato of positivity of topological entropy in the case of cw-expansive
homeomorphisms. In the following we state this as a definition for any homeomorphism and
repeat the proof of Kato to prove it implies positive topological entropy. We denote by C(X)

the set of all subcontinua of X and by dH the Hausdorff distance on C(X) defined as

dH (C,C ′) = inf{ε > 0; C ⊂ B(C ′, ε) and C ′ ⊂ B(C, ε)}.
Definition 4.2 We say that C ∈ C(X) can be indefinitely split to increase if there exist δ > 0
and M ∈ N such that diam f M (C) ≥ δ and for each n ∈ N and (i1, . . . , in) ∈ {0, 1}n there
exists Ci1i2···in ∈ C(X) satisfying:

(1) Ci1i2···in ⊂ f nM (C),
(2) diam f M (Ci1i2···in ) ≥ δ,
(3) Ci1i2···in−1in ⊂ f M (Ci1i2···in−1), and
(4) dH (Ci1i2···in−10,Ci1i2···in−11) ≥ δ

3 .

It was pointed to us by the referees that this definition is close to the notion of periodic
weak horseshoe in [17] (see Lemma 2.2 and Proposition 2.1 there).

Theorem 4.3 Let f : X → X be a homeomorphism of a compact metric space. If there exists
a continuum that can be indefinitely split to increase, then f has positive topological entropy.

Proof Let C ∈ C(X), δ > 0, M ∈ N and (Ci1i2···in )i1,...,in ,n be as in the previous definition.
For each n ∈ N and (i1, . . . , in) ∈ {0, 1}n choose

yi1i2...in ∈ Ci1i2···in ,

and let

xi1i2···in = f −nM (yi1i2...in ).

Applying condition (2) of above definition inductively we obtain that

xi1i2···in ∈ C for every (i1, . . . , in) ∈ {0, 1}n and n ∈ N.

We prove that for each n ∈ N the set

An = {xi1i2···in | (i1, . . . , in) ∈ {0, 1}n}
is (nM, δ/3)-separated. Indeed, if xi1···in , x j1··· jn ∈ An are distinct, then there exists k ∈
{1, 2, . . . , n} such that

jl = il for every l ∈ {1, . . . , k − 1}, and jk 
= ik .

Assume without loss of generality that ik = 0 and jk = 1. Condition (3) ensures that

dH (Ci1i2···ik−10,Ci1i2···ik−11) ≥ δ/3,

and since condition (2) ensures that

f kM (xi1i2···ik−10ik+1···in ) ∈ Ci1i2···ik−10 and

f kM (xi1i2···ik−11 jk+1··· jn ) ∈ Ci1i2···ik−11,

it follows that

d( f kM (xi1···in ), f kM (x j1··· jn )) ≥ δ/3.
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Since for each n ∈ N, An has 2n elements and is (nM, δ/3)-separated, it follows that

s(nM, δ/3) ≥ 2n for every n ∈ N.

Thus,

h( f , δ/3) = lim sup
n→∞

1

n
· log s(n, δ/3)

≥ lim sup
n→∞

(
1

nM
· log s(nM, δ/3)

)

≥ lim sup
n→∞

1

nM
· log 2n

≥ lim sup
n→∞

n

nM
· log 2

= 1

M
· log 2 > 0

and, hence, h( f ) > 0. 
�
Proposition 4.4 Every local unstable continuum of a cw-expansive homeomorphism of a
Peano continuum can be indefinitely split to increase.

Proof Let c > 0 be a cw-expansivity constant of f , and ε ∈ (0, c). The following was proved
by Kato in [19]:

(1) for each γ ∈ (0, ε) there exists mγ ∈ N such that n1(C, ε) ≤ mγ for every ε-unstable
continuum C with diam(C) ≥ γ , and

(2) there exists δ > 0 such that diam( f n(C)) ≥ δ for every n ≥ n1(C, ε) and every ε-
unstable continuum C .

Let C be an ε-unstable continuum, choose γ ∈ (0, diam(C)), consider mγ and δ given by
(1) and (2) above and let M = max{mγ ,mδ/3}. Thus, diam( f M (C)) ≥ δ and we can choose
C0 and C1 subcontinua of f M (C) such that

diam(Ci ) ≥ δ/3 for i ∈ {0, 1}, and dH (C0,C1) ≥ δ/3.

Since M ≥ mδ/3, it follows that diam( f M (Ci )) ≥ δ, for each i ∈ {0, 1} and, again, we
can choose continua Ci0 and Ci1 with diameter larger than δ/3 and dH (Ci0,Ci1) ≥ δ/3.
Inductively, we can define the family (Ci1i2···in )i1,...,in ,n satisfying items (1), (2), and (3) in
Definition4.2. 
�

In the case of first-time sensitive homeomorphisms, the local cw-unstable continua
increase when iterated forward. Thus, to prove that they can be split to increase it is enough
to prove that they can be split by continua in Fu . The next definition is a formalization of
this idea.

Definition 4.5 We say that C ∈ Fu can be indefinitely split in Fu if there exists δ > 0 such
that C ∈ Fu

δ and for each n ∈ N and (i1, . . . , in) ∈ {0, 1}n there exists Ci1i2···in ∈ C(X)

satisfying:

(1) Ci1i2···in ∈ Fu
γ for some γ ≥ δ

(2) Ci1i2···in−1in ⊂ f 2mδ (Ci1i2···in−1), and
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(3) dH (Ci1i2···in−10,Ci1i2···in−11) ≥ δ
3 .

Proposition 4.6 For a first-time sensitive homeomorphism, if a continuum can be indefinitely
split in Fu, then it can be indefinitely split to increase.

Proof If C ∈ Fu can be indefinitely split in Fu , then there exists δ > 0 and a family
(Ci1i2···in )i1i2···in ,n satisfying conditions (1), (2) and (3) in Definition4.5. Let M = m2δ and
consider δ′ ∈ (0, δ) given by Lemma2.9 such that

diam( f M (C)) ≥ δ′ and diam( f M (Ci1i2···in )) ≥ δ′

for every (i1, . . . , in) ∈ {0, 1}n and every n ∈ N. Conditions (1), (2) and (3) of Definition4.2
follow easily from that. 
�

Aconsequenceof this is that the existence of a continuum inFu that canbe indefinitely split
in Fu would imply positive topological entropy for a first-time sensitive homeomorphism.
A difficulty that appears is that for C ∈ Fu we can choose x, y ∈ f 2mδ (C) such that
d(x, y) ≥ δ′

3 and Theorem 2.2 ensures the existence of continua C0,C1 ∈ Fu
δ containing x

and y, respectively, but we could not prove that C0 and C1 are contained in f 2mδ (C). Thus,
the following is still an open question:

Question 2 Do continua in Fu of a first-time sensitive homeomorphism can be indefinitely
split in Fu?

Assuming that the answer for Question2 could be negative, we tried a distinct approach
to prove positive topological entropy that we explain below. In the case of cw-expansive
homeomorphisms, it is proved in [7] the existence of a hyperbolic cw-metric, generalizing
the hyperbolic metric in the case of expansive homeomorphisms in [14]. We explain the
hyperbolic cw-metric below and discuss the existence of a hyperbolic ft-metric for first-time
sensitive homeomorphisms with additional assumptions on Fu . After that, we explain how
the existence of a hyperbolic ft-metric is enough to prove positive topological entropy. Let

E = {(p, q,C) : C ∈ C(X), p, q ∈ C}.
For p, q ∈ C denote C(p,q) = (p, q,C). The notation C(p,q) implies that p, q ∈ C and that
C ∈ C(X). Define

f (C(p,q)) = f (C)( f (p), f (q))

and consider the sets

Csε(X) = {C ∈ C(X) : diam( f n(C)) ≤ ε for every n ≥ 0} and

Cuε (X) = {C ∈ C(X) : diam( f −n(C)) ≤ ε for every n ≥ 0}.
These sets contain exactly the ε-stable and ε-unstable continua of f , respectively.

Theorem 4.7 (Hyperbolic cw-metric- [6]) If f : X → X is a cw-expansive homeomorphism
of a compact metric space X, then there is a function D : E → R satisfying the following
conditions.

(1) Metric properties:

(a) D(C(p,q)) ≥ 0 with equality if, and only if, C is a singleton,
(b) D(C(p,q)) = D(C(q,p)),
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(c) D([A ∪ B](a,c)) ≤ D(A(a,b)) + D(B(b,c)), a ∈ A, b ∈ A ∩ B, c ∈ B.

(2) Hyperbolicity: there exist constants λ ∈ (0, 1) and ε > 0 satisfying

(a) if C ∈ Csε(X) then D( f n(C(p,q))) ≤ 4λnD(C(p,q)) for every n ≥ 0,
(b) if C ∈ Cuε (X) then D( f −n(C(p,q))) ≤ 4λnD(C(p,q)) for every n ≥ 0.

(3) Compatibility: for each δ > 0 there is γ > 0 such that

(a) if diam(C) < γ , then D(C(p,q)) < δ for every p, q ∈ C,
(b) if there exist p, q ∈ C such that D(C(p,q)) < γ , then diam(C) < δ.

In the case of first-time sensitive homeomorphisms, we could not expect to obtain a
function in the whole set E since there could be continua in arbitrarily small dynamical balls.
Then we will restrict the set E considering only continua in Fu as follows

Eu = {(p, q,C) : C ∈ Fu, p, q ∈ C}
and obtain a similar result. We will need though to add two hypothesis to Fu so that the
function D and its properties can be written precisely. In the first we ask that Fu is invariant
by f −1, that is,

if C ∈ Fu, then f −1(C) ∈ Fu .

In the second we ask that Fu is closed by connected unions, that is

if A, B ∈ Fu and A ∩ B 
= ∅, then A ∪ B ∈ Fu .

We tried to prove these hypotheses are always satisfied for first-time sensitive homeomor-
phisms, but there were some technical details that we could not circumvent. The following is
the ft-metric that we were able to obtain in the case of first-time sensitive homeomorphisms.
The proof is an adaptation of the proof of the cw-metric switching cw-expansiveness and the
properties of the local unstable continua proved by Kato for ft-sensitivity and the properties
of the local cw-unstable continua we proved in Section 2.

Theorem 4.8 (Hyperbolic ft-metric) Let f : X → X be a first-time sensitive homeomor-
phism, of a compact and connected metric space X satisfying hypothesis (P1) and (P2), with
a sensitivity constant ε > 0. If Fu is invariant by f −1 and closed by connected unions, then
there is a function D : Eu → R satisfying the following conditions.

(1) Metric properties:

(a) D(C(p,q)) > 0 for every C(p,q) ∈ Eu,
(b) D(C(p,q)) = D(C(q,p)),
(c) D([A ∪ B](a,c)) ≤ D(A(a,b)) + D(B(b,c)), a ∈ A, b ∈ A ∩ B, c ∈ B.

(2) Hyperbolicity: there exists λ ∈ (0, 1) satisfying

(a) if C(p,q) ∈ Eu, then D( f −n(C(p,q))) ≤ 4λnD(C(p,q)) for every n ≥ 0.

(3) Compatibility: for each δ > 0 there is γ > 0 such that

(a) if diam(C) < γ , then D(C(p,q)) < δ for every p, q ∈ C,
(b) if there exist p, q ∈ C such that D(C(p,q)) < γ , then diam(C) < δ.
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Proof of Theorem 4.8 For each γ ∈ (0, ε), consider mγ > 0, given by Proposition2.12. Let
m = m ε

2
, λ = 2−1/m , and define the function

ρ : Fu → R

C �→ λn1(C,ε).

Consider the map D : Eu → R given by

D(C(p,q)) = inf
n∑

i=1

ρ(Ai
(ai−1,ai )

)

where the infimum is taken over all n ≥ 1, a0 = p, a1, . . . , an = q , and A1, . . . , An ∈ Fu

such that C = ⋃n
i=1 A

i . The proof of this theorem is based on the following inequalities

D(C(p,q)) ≤ ρ(C) ≤ 4D(C(p,q)) (8)

for every C(p,q) ∈ Eu .

(1) Metric properties: items (b) and (c) are direct consequences of the definition of the
function D, while item (a) is a consequence of the fact that if C ∈ Fu , then n1(C, ε) is
a finite positive number, so ρ(C) > 0, and then inequalities (8) ensure that

D(C(p,q)) ≥ 1

4
ρ(C) > 0.

(2) Hyperbolicity: If C ∈ Fu , then

diam( f −n(C)) ≤ ε for every n ≥ 0,

n1(C, ε) < +∞ and diam( f n1(C,ε)(C)) > ε.

This implies that

n1( f
−n(C), ε) = n + n1(C, ε) for every n ≥ 0,

and, hence, the following holds for every n ∈ N:

ρ( f −n(C)) = λn1( f
−n(C),ε) = λn+n1(C,ε)

= λnλn1(C,ε) = λnρ(C).

Inequalities (8) ensure the following holds for every n ∈ N:

D( f −n(C(p.q))) ≤ ρ( f −n(C)) = λnρ(C) ≤ 4λnD(C(p.q)).

Recall the hypothesis that Fu is invariant by f −1, so

f −n(C) ∈ Fu for every n ∈ N.

(3) Compatibility: Inequalities (8) ensure that the compatibility between ρ and diam is
enough to obtain compatibility between D and diam. The compatibility between ρ and
diam is proved as follows:
(a) Given δ > 0, choose n ∈ N such that λn < δ. Let γ > 0, given by continuity of f ,
be such that if C ∈ C(X) satisfies diam(C) < γ , then

diam( f i (C)) < ε whenever |i | ≤ n.
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This implies that n1(C, ε) > n and, hence, that

ρ(C) = λn1(C,ε) < λn < δ.

(b) Given δ > 0, let γ = λ2mδ . If ρ(C) < γ , then

λn1(C,ε) < λ2mδ and n1(C, ε) > 2mδ.

Proposition2.5 assures that C /∈ Fu
δ . Proposition2.12 ensures that

C /∈ Fu
α for any α ∈ (δ, ε).

Indeed, if α > δ, then mα ≤ mδ and, hence,

n1(C, ε) > 2mδ ≥ 2mα,

and again Proposition2.5 ensures that C /∈ Fu
α . Since C ∈ Fu , it follows that C ∈ Fu

α

for some α ∈ (0, δ), and, hence,

diam(C) ≤ α < δ.


�
The first inequality in (8) is assured by the definition of D, while the following result

ensures the other inequality. Its proof is an adaptation of Lemma 2.4 of [7].

Lemma 4.9 The function ρ satisfies:

ρ

(
n⋃

i=1

Ci

)
≤ 2ρ(C1) + 4ρ(C2) + · · · + 4ρ(Cn−1) + 2ρ(Cn) (9)

for all C1, . . . ,Cn ∈ Fu such that Ci ∩ Ci+1 
= ∅ for every i ∈ {1, . . . , n − 1}.
Proof First, we will prove this result for n = 2. Consider C = A ∪ B with A, B ∈ Fu and
A ∩ B 
= ∅. We claim that either

n1(A, ε) ≤ m + n1(C, ε) or n1(B, ε) ≤ m + n1(C, ε). (10)

Indeed, we know that diam f n1(C,ε)(C) > ε, so either

diam f n1(C,ε)(A) >
ε

2
or diam f n1(C,ε)(B) >

ε

2
.

Assume we are in the first case (the second is analogous). Since A ∈ Fu , property (F2)
ensures that

|n1(A, ε/2) − n1(A, ε)| ≤ m,

and since

n1(A, ε/2) ≤ n1(C, ε) ≤ n1(A, ε)

it follows that

n1(A, ε) − n1(C, ε) ≤ m,

so the first inequality in (10) holds and the claim is proved. If n1(A, ε) ≤ m+n1(C, ε), then

ρ(A) = λn1(A,ε) ≥ λm+n1(C,ε) = λmλn1(C,ε) = 1

2
ρ(C),
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since 0 < λ < 1 and λm = 1/2, and this implies 2ρ(A) ≥ ρ(C). Similarly, if n1(B, ε) ≤
m + n1(C, ε) we obtain 2ρ(B) ≥ ρ(C) and conclude that

ρ(C) ≤ 2max{ρ(A), ρ(B)}. (11)

This completes the proof in the case n = 2. Arguing by induction, suppose that given n ≥ 3,
the conclusion of the lemma holds for every k < n and let C = ⋃n

i=1 Ci with

Ci ∩ Ci+1 
= ∅ for every i ∈ {1, . . . , n − 1} and

Ci ∈ Fu for every i ∈ {1, . . . , n}.
In what follows the hypothesis that Fu is closed by connected unions is used in a few steps,
though we will not mention it. Consider the following inequalities

ρ(C1) ≤ ρ(C1 ∪ C2) ≤ · · · ≤ ρ(C1 ∪ · · · ∪ Cn−1) ≤ ρ(C). (12)

If ρ(C) ≤ 2ρ(C1), then (9) is proved and if 2ρ(C1 ∪ · · · ∪Cn−1) < ρ(C), then (11) implies
that ρ(C) ≤ 2ρ(Cn), which also implies (9). Thus, we assume that

2ρ(C1) < ρ(C) ≤ 2ρ(C1 ∪ · · · ∪ Cn−1).

This and (12) imply that there is 1 < r < n such that

2ρ(C1 ∪ · · · ∪ Cr−1) < ρ(C) ≤ 2ρ(C1 ∪ · · · ∪ Cr ).

The first inequality and (11) imply that

ρ(C) ≤ 2ρ(Cr ∪ · · · ∪ Cn).

Thus,

ρ(C) = ρ(C)

2
+ ρ(C)

2
≤ ρ(C1 ∪ · · · ∪ Cr ) + ρ(Cr ∪ · · · ∪ Cn).

Since (9) holds for these two terms, by the induction assumption, the proof ends. 
�
Theorem 4.10 Let f : X → X be a first-time sensitive homeomorphism, of a compact and
connected metric space X satisfying hypothesis (P1) and (P2). If Fu is invariant by f −1 and
closed by connected unions, then f has positive topological entropy.

Proof We will prove that there exists M ∈ N, δ > 0, and C ∈ Fu such that diam( f M (C)) ≥
δ, and for each n ∈ N and (i1, . . . , in) ∈ {0, 1}n , there exists Ci1i2···in ∈ Fu satisfying:

(1) diam( f M (Ci1i2···in )) ≥ δ;
(2) (a) C0 ∩ f M (C) 
= ∅ and C1 ∩ f M (C) 
= ∅;

(b) Ci1i2···in−1in ∩ f M (Ci1i2···in−1) 
= ∅;
(3) dH (Ci1i2···in−10,Ci1i2···in−1,1) ≥ δ/3;
(4) for each k ∈ N, n ≥ k and (i1, i2, . . . , in) ∈ {0, 1}n ,

diam

⎛
⎝n−k⋃

j=0

f − jM (Ci1···ik+ j )

⎞
⎠ <

δ

3
.
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We first prove the existence of this family of continua (Ci1i2···in )i1i2···in ,n and after we prove
it is enough to prove positive topological entropy. In Theorem 4.8 we proved the existence
of a ft-metric D : Eu → R with a hyperbolic constant λ ∈ (0, 1). Consider δ > 0, given by
Corollary 2.9, satisfying: if C ∈ Fu

γ , then

diam( f n(C)) ≥ δ for every n ≥ 2mγ .

The compatibility between diam and D ensures the existence of α ∈ (0, δ) such that

D(C) < α implies diam(C) <
δ

6
.

Consider M ∈ N such that M ≥ 2mδ/6 and

4λM

1 − λM
< α,

and choose any C ∈ Fu
δ/6. Corollary2.9 ensures that

diam f k(C) ≥ δ for every k ≥ 2mδ/6.

Since M ≥ 2mδ/6, then diam f M (C) ≥ δ. Thus, we can choose x0 and x1 in f M (C) with
d(x0, x1) ≥ δ. Theorem 2.2 ensures the existence of C0,C1 ∈ Fu

δ/6 with x0 ∈ C0 and
x1 ∈ C1. Thus,

diam(Ci ) ≤ δ

6
and xi ∈ Ci ∩ f M (C)

for each i ∈ {0, 1}, so dH (C0,C1) ≥ δ/3 (proving items (2) (a), (3) and (4) for C,C0 and
C1). Also, Corollary 2.9 ensures that

diam( f M (C0)) ≥ δ and diam( f M (C1)) ≥ δ,

since M ≥ 2mδ/6, implying item (1) for C0 and C1. Now, for each i ∈ {0, 1}, consider
xi,0, xi1 ∈ f M (Ci ) such that d(xi0, xi1) ≥ δ and Ci0,Ci1 ∈ Fu

δ/6 with

xi,0 ∈ Ci,0 and xi,1 ∈ Ci,1.

Thus,

dH (Ci0,Ci1) ≥ δ/3 for each i ∈ {0, 1}
and

diam f M (Ci j ) ≥ δ for each (i, j) ∈ {0, 1}2.
Moreover, the hyperbolicity of D ensures that

D( f −M (Ci j )) ≤ 4λMD(Ci j ) < α for every (i, j) ∈ {0, 1}2,
which implies that

diam( f −M (Ci j )) ≤ δ

6
for every (i, j) ∈ {0, 1}2.

Thus, for each (i, j) ∈ {0, 1}2,

diam(Ci ∪ f −M (Ci j )) ≤ diam(Ci ) + diam( f −M (Ci j )) <
δ

3
.
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Fig. 5 Local cw-unstable
continua δ/3 distant with past
iterates exponentially small

Figure5 illustrates these choices and estimates. Following the same steps inductively, for
each n ≥ 2 and (i1i2 · · · in−1) ∈ {0, 1}n−1 we create continua, Ci1i2···in−1,0 and Ci1i2···in−1,1

in Fu
δ/6, with

Ci1i2···in−1,0 ∩ f M (Ci1i2···in−1) 
= ∅ and Ci1i2···in−1,1 ∩ f M (Ci1i2···in−1) 
= ∅
and

dH (Ci1i2···in−10,Ci1i2···in−11) ≥ δ/3.

Since Ci1i2···in−1in ∈ Fu , then, by Corollary 2.9,

diam f M (Ci1i2···in−1in ) ≥ δ.

The properties of D (triangular inequality and hyperbolicity on Fu) ensure that for each
k ∈ N, n ≥ k and (i1, i2, · · · , in) ∈ {0, 1}n we have

D

⎛
⎝n−k⋃

j=1

f − jM (Ci1···ik+ j )

⎞
⎠ ≤

n−k∑
j=1

D( f − jM (Ci1···ik+ j ))

≤
n−k∑
j=1

4λ− jM

≤ 4

(
λM

1 − λM

)

< α,
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Here we just write f − jM (Ci1···ik+ j ) omitting the marked points, which are

f −( j−1)M (xi1,··· ,ik+ j−1) and f −( j+1)M (xi1,··· ,ik+ j+1)

where xi1,··· ,il is a point of the intersection Ci1···il ∩ f M (Ci1···il−1) for each l ∈ N. Since, by
hypothesis,

n−k⋃
j=1

f − jM (Ci1···ik+ j ) ∈ Fu,

the compatibility between D and diam ensures that

diam

⎛
⎝n−k⋃

j=1

f − jM (Ci1···ik+ j )

⎞
⎠ <

δ

6

and, therefore,

diam

⎛
⎝n−k⋃

j=0

f − jM (Ci1···ik+ j )

⎞
⎠ ≤ diam(Ci1···ik ) + diam

⎛
⎝n−k⋃

j=1

f − jM (Ci1···ik+ j )

⎞
⎠

<
δ

6
+ δ

6
= δ

3
.

This proves the existence of the family (Ci1...in )i1,...,in ,n satisfying (1) to (4). To prove that
this implies positive topological entropy, we use (2) and choose points

xi ∈ Ci ∩ f M (C) for each i ∈ {0, 1},
and for each n ≥ 2 and (i1, i2, . . . , in) ∈ {0, 1}n , choose

xi1i2···in ∈ Ci1i2···in ∩ f M (Ci1i2···in−1).

We will prove that, for each n ∈ N, the set

An = {yi1i2···in = f −nM (xi1i2···in ); (i1, i2, . . . , in) ∈ {0, 1}n}
is (nM, δ/3)−separated. Indeed, if yi1···in , y j1··· jn ∈ An are distinct, then there exists k ∈
{1, 2, . . . , n} such that jk 
= ik and

jl = il for every l ∈ {1, . . . , k − 1}.
Assume, without loss of generality, that ik = 0 and jk = 1. Since

yi1i2···in = f −nM (xi1i2···in ) ∈ f −nM (Ci1i2···in )

and

y j1 j2··· jn = f −nM (x j1 j2··· jn ) ∈ f −nM (C j1 j2··· jn ),

we have that

f kM (yi1···in ) ∈ f (−n+k)M (Ci1i2···in ) ⊂
n−k⋃
j=0

f − jM (Ci1i2···ik+ j )
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and

f kM (y j1··· jn ) ∈ f (−n+k)M (C j1 j2··· jn ) ⊂
n−k⋃
j=0

f − jM (C j1 j2··· jk+ j )

Item (4) ensures that

f kM (yi1···in ) ∈ B(xi1···ik−10, δ/3) and f kM (y j1··· jn ) ∈ B(xi1···ik−11, δ/3),

and this implies that

d( f kM (yi1···in ), f kM (y j1··· jn )) ≥ δ/3,

since d(xi1···ik−10, xi1···ik−11) ≥ δ by item (3) (recall that xi1···ik−10, xi1···ik−11 ∈ Ci1···ik−1in ).
Since for each n ∈ N, An has 2n elements and is (nM, δ/3)-separated, it follows that

s(nM, δ/3) ≥ 2n for every n ∈ N.

Thus,

h( f , δ/4) = lim sup
n→∞

1

n
· log s(n, δ/4)

≥ lim sup
n→∞

(
1

nM
· log s(nM, δ/4)

)

≥ lim sup
n→∞

1

nM
· log 2n

≥ lim sup
n→∞

n

nM
· log 2

= 1

M
· log 2 > 0

and, hence, h( f ) > 0. 
�
Question 3 Are the hypotheses on Fu of being invariant by f −1 and closed by connected
unions satisfied by all first-time sensitive homeomorphisms?
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