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Abstract

This paper is concerned with the existence of quasi-periodic response solutions (i.e., solutions
that are quasi-periodic with the same frequencies as forcing term) for a class of forced
reversible wave equations with derivative nonlinearity. The forcing frequency & € R? would
be Liouvillean which is weaker than the usual Diophantine and Brjuno conditions. The
derivative nonlinearity in the equation also leads to some difficulty in measure estimate. To
overcome it, we also use the Toplitz—Lipschitz property of vector field. The proof is based
on an infinite dimensional Kolmogorov—Arnold—Moser theorem for reversible systems.
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1 Introduction and Main Result

Consider the following forced nonlinear wave equations (NLW) with derivative nonlinearity:

Urp — Uxy +8f(wt,x,u,ux,u[):07 €>05 (1'1)
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satisfying Dirichlet boundary conditions
w(t,0) =0, u(t, —)=0, u>0. (1.2)
"

The forcing frequency w = (1,«), o € R\Q. The forcing term f is real analytic and
satisfies

fO,x,y,z,w) = f(—0,x,y,z, —w), (1.3)
f(07 X, =Y, _w)=_f(97xﬂy7Z7w) (14)

and
f(6,x,0,0,0) # 0. (1.5)

The goal of the present paper is to prove the existence of response solutions of Eq. (1.1) via
KAM theory.

The existence problem of periodic and quasi-periodic solutions for partial differential
equations (PDEs) is an interesting and difficult problem in the fields of mathematics, mechan-
ics and physics. Different methods are used and developed on this problem, for example,
variational methods, Lyapunov—Schmidt decomposition, KAM theory and Nash—Moser itera-
tion techniques. The case of periodic solutions was first widely studied. The first breakthrough
was due to Rabinowitz [43—45] for the forced dissipative derivative NLW with rational forcing
frequency w = 1 under Dirichlet boundary conditions:

Uy — Uyy + oy +F(t, x,u,ux,u;) =0, o >0, x €[0,r],
and
Upp — Ugx + ity + EF(E, X, u, Uy, Up, Ugy, Upy, Uyy) =0, @ >0, x€[0,r].

By variational methods, Rabinowitz [46] also considered the autonomous NLW on [0, 7]
which had periodic solutions whenever the time period was a rational multiple of 7. Later
on, based on perturbation methods (mainly Newton-like methods), Wayne [51], Craig and
Wayne [25] proved the existence of periodic solutions of the NLW on [0, 7 ] under Dirichlet or
periodic boundary conditions. The periods of such periodic solutions were irrational multiples
of m. Bourgain [19] and Craig [24] also proved the existence of small-amplitude periodic
solutions for autonomous Hamiltonian and reversible derivative NLW.

For the case of quasi-periodic solutions, small divisor problem will occur. Infinite dimen-
sional KAM theory is a very powerful tool to solve it. Kuksin [34] and Wayne [51] first
studied the existence of quasi-periodic solutions for Hamiltonian PDEs by KAM methods.
One can also refer to [23, 26, 28, 37, 41, 42] and references therein. Although all these works
are concerned with autonomous equations, their methods can also be applied to the forced
ones. In the proof of KAM theorem, to handle the small divisors, the following non-resonance
conditions are required: For some constants 7 > n — l and y > 0,

e (Diophantine conditions) |(k, w)| > IIZ\T’ forall k € Z" \ {0};

e (the first Melnikov conditions) |(k, @) & ;| > #;

o (the second Melnikov conditions) |{k, w) + £2; = ;)| > <12/)T ,

where (k) = max{l, |k|}, ® € R" is the tangent frequency or the forcing frequency for the
forced case. Q; € R, (i € Z) are normal frequencies. (k, ®) := Z:‘l:l ki w;. Another way to
study quasi-periodic solutions for PDEs is CWB (Craig-Wayne-Bourgain) method based on
Lyapunov—Schmidt reduction and Nash—-Moser implicit function techniques. It only needs
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Diophantine and the first Melnikov conditions in the proof. One can refer to [18, 20, 49, 50]
for details. By the improved CWB method, [12, 13, 17] also considered quasi-periodically
forced nonlinear Schrédinger equations (NLS) and NLW on T¢ and on compact Lie groups
and symmetric spaces, respectively. Using a variational Lyapunov—Schmidt reduction, Berti
and Procesi [15, 16] proved the existence of quasi-periodic solutions of the following wave
equations under periodic forcing:

Uy —uxx + f(wit,u) =0,
u(t,x) =u(t,x +2m),

where the nonlinear forcing term f(wit, u) = a1+ 0w?),d > 11is 27 /wi-
periodic in time (w; € Q or w; € R — Q) and satisfies some analyticity assumptions. More
recently, Calleja, Celletti, Corsi and de la Llave [21] obtained response solutions for the
following four classes of quasi-periodically forced, dissipative wave equations

Uy — Axu 4wy +h(x, u) = f(ot, x);

g — Ayu £ 3 (Ayu) + hix, u) = f(ot, x);
szu” — Ayu—+u; +hix,u) = f(ot, x);

ezun — Ayu+u; +eh(x,u) = f(ot, x),

where the forcing frequency w is weaker than the usual Brjuno condition, i.e., the following
Brjuno function B(w) is finite:

1 1
B(w) = Z_: 2 log otj(a))’ where aj (w) = klenzt;, | [k, w)|, (1.6)
j=0 0<k|<2i
which is slightly weaker than Diophantine one. The proof relies on Lindstedt series method
and contraction mapping principle.

A frequency w € R" is called Liouvillean if it is not Diophantine but rationally indepen-
dent. It is weaker than Diophantine and Brjuno frequency. As we have mentioned above,
Diophantine or Brjuno conditions play an essential role for the persistence of invariant tori
of Hamiltonian and reversible systems. Nevertheless, it would be still possible to establish
Liouvillean KAM theory for some special system like Eq. (1.1) with only two frequencies.
Such possibility was first given by Avila et al. [1] and by Hou and You [31] in the reducibility
theory for linear quasi-periodic skew-products

0=w=(,a),
= A®®)x.

Wang, You and Zhou [48] and Wang, You [47] generalized above results to finite dimensional
nonlinear Hamiltonian case. They proved the existence of response solutions for the quasi-
periodically forced harmonic oscillators

¥+ A%x = e f(wt, x), (1.7)

where the parameter 1 € R, @ = (1, ) is rationally independent and f is a real analytic
function. In [39], the authors of the present paper proved the existence of smooth response
solutions in forced reversible system with Liouvillean frequencies. Krikorian, Wang, You and
Zhou [33] revealed the possibility of studying Liouvillian quasiperiodic dynamics with KAM
improved tools in the non-linear skew-product setting. More recently, Xu, You and Zhou
[52] first established an infinite dimensional Hamiltonian KAM theorem with Liouvillean
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frequency. As an application, they proved the existence of response solutions for the forced
NLS with Dirichlet boundary condition:

i —yy + V@X)u+ f(ot,x,u,u;E) =0 (1.8)

where w = (w1, wy) with wq ( La),a € R\Q, on € R4, The tangent frequency w
satisfies [(k, w1) + ([, w2)| > (\k|+|l 7 forallk € Z2,1 € Zd\{O} The forcing ter f is a real
analytic function. Chang, Geng and Lou [22] proved the existence of bounded non-response
solutions for a class of Hamiltonian wave equations with Liouvillean forced frequencies.
Their result shows that one can not obtain quasi-periodic solutions with Liouvillean frequen-
cies for the nonlinear autonomous PDEs.

In this paper, we consider a class of non-Hamiltonian but reversible forced wave equations
(1.1). We would like to make some comments on it.

(1). Let us explain why we use the p in the length of the interval as a parameter. In the
measure estimates, we need the condition

d
IT((k,w>+Qi(M)—Qj(M))I >c>0, (1.9)
u

If w is Diophantine, the inequality (1.9) is easily satisfied even if there is no parameter (.
However, now o is fixed and could be Liouvillean, to guarantee the inequality (1.9) still
holds, we use the parameter u since ©; — ; = O(u(i — j)). Note that the Eq. (1.1) with
Dirichlet boundary conditions (1.2) is equivalent to the following more natural form

Uy — Wty + & f (@, X, u, 1y, ug) =0, (1.10)

with u(¢,0) = 0 = u(z, 7). Here the role played by the parameter u is the same as that of
the parameter X in (1.7) or the parameter & in (1.8).

(2). The presence of derivative nonlinearity in (1.1) leads the lack of smooth effect of
perturbation vector field. This brings some difficulty in the measure estimate. KAM theory
for derivative nonlinear PDEs was developed by Kuksin [36] and Kappeler and Poschel [32]
for KdV-type equations. See also [8, 38, 53] for the unbounded perturbations of Schrodinger
equations. Berti, Biasco and Procesi [10, 11] studied the following Hamiltonian and reversible
derivative NLW, respectively:

Uy — Uyx +mu+ f(Du) =0, m > 0, D::\/m, xeT,
and
Upp — Uy +mu = g(X, u, Uy, u;), m >0, xeT,
with
gx,u,uy, —uy) =gx,u,uyx,u;) and g(—x,u, —uy, u;) = g(x, u, uy, Us).

More recently, Baldi, Berti and Montalto [3] obtained KAM results for quasi-linear and fully
forced perturbations of the linear Airy equation. The proof is based on a combination of
KAM reducibility, regularization procedure and Nash—-Moser iteration. These methods have
been extended and applied to quasi-linear KdV [4], fully nonlinear forced reversible NLS
[27] and quasi-linear water waves [2, 14]. See also recent reducibility results in [6, 7, 9] for
Schrodinger equations with time quasi-periodic unbounded perturbations. We point out that
frequencies w in above works are required to be Diophantine but not more weaker Liouvillean
as in Eq. (1.1). This is the main difference between Eq. (1.1) and those in above papers.
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Before stating our main result, we first give some notations. For the frequency o =
(1,a), @ € R\Q in the Eq. (1.1), denote by % the continued fraction approximates to .
As in [47], we will use the quantity

) Inl
U(a) = sup a1 (1.11)

n>0 Ingp

« is called not super-Liouvillean if Ij(a) < 00. The set of w satisfying l~](oz) < 00 is not
empty (see Remark 3.1) and this set includes a lot of Liouvillean frequencies. Then our main
result is stated as follows.

Theorem 1.1 Suppose w = (1, ), a € R\Q is fixed and [/(oz) <oo.Letp e O=1[1,2].
The function f satisfies (1.3)—(1.5). Then for any sufficiently small y > 0, there exist g > 0
and a Cantor subset O, € O with Lebesgue measure meas(O \ O,) = O(y) such that if
0 < & < &, for each n € O,, the above Eq. (1.1) admits a small amplitude time quasi-
periodic solution of the form u(t, x; ;1) = U(wt, x; i), where U0, x; 1) : T xR — Ris
smooth (C*) in 0 and real analytic in x.

Let us make comments on the three hypotheses (1.3)—(1.5) in Theorem 1.1.

Remark 1.1 The reversible condition (1.3) for Eq. (1.1) is very natural in KAM theory. It
guarantees that the corresponding normal frequencies during the KAM iteration are elliptic.
The Hamiltonian perturbations can play the same role as that the reversible ones do. Following
the ideas of our paper, one can build a similar Liouvillean KAM theorem to Theorem 4.1
for forced Hamiltonian derivative wave equations. In the present paper we only restrict our
attention to the reversible case since it actually contains all the difficulties that appear in the
Hamiltonian case during the KAM iteration.

Remark 1.2 For the oddness condition (1.4), on one hand, it is natural for Eq. (1.1) on [0, %]

under Dirichlet boundary conditions because {,/ 27“ sin ujx, j > 1} formacomplete orthog-

onal basis of the subspace consisting of all odd functions in LZ[O, %]. On the other hand, we
note that the following simplest equations

Uy — gy +Ef(wt) =0, £ >0, f #0, (1.12)

have no response solutions. And the oddness condition (1.4) excludes such perturbations
e f(wt), thus it is also necessary.

2 Outline of the Proof

The proof of Theorem 1.1 is based on the abstract KAM Theorem 4.1 for infinite dimensional
forced reversible systems. Below let us explain the main ideas and techniques of proving
Theorems 1.1 and 4.1.

o Reversible systems formulation. Let A ; = w?j% and dj(x) =,/ % sinpjx, (j >1)be
the eigenvalues and eigenfunctions of the operator
2

dx?

y =2y, y(0>=0=y<5>.
i
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We introduce infinitely many coordinates by u = Sq = ijl qj¢;, then Eq. (1.1)
becomes

Gj+rjqj+egjlwt.q,q) =0, j=1 @2.1)

where gj(wt,q,q) = fo" f(ot,x,8q,(Sq)x, (Sq))¢;jdx and reversible condition
(1.3) becomes g;(wt,q,q) = gj(—wt, q, —q).

Letf = wt, z; = —\/quj +igj,z; = —«/quj — iqg, then system (2.1) becomes an
autonomous reversible one

0= o,
g =iyhjzj —iegj (O, ... —5 L HEE L), 2.2)
gj = —iyAjzj +iegi@. ...~ L EEEL L),

with respect to the involution S(0, z,z) = (—0, z, z). The corresponding S—reversible
vector field of system (2.2) is

_ d . 0 . _ 90
X(0,z,z; ) =0— +1Qwz— — i)z
0z 0z

a0 2.3
. a ) d .
+2iesig 4 Diesige
Jj=1 ’ j>1

where Q;(u) = nj, j>1, pe[l,2]
One can verify that vector field (2.3) satisfy all the conditions in KAM Theorem 4.1, see
Sect. 8 for details.

e Solving homological equations. In infinite dimensional KAM theory, the most difficult
homological equation is

00 Fij(0;8) +1(S2i(5) — Q2 (§) Fij(0:8) = Rij(0:8), i,j=1, (2.4)

which can be solved by the non-resonance condition

[k, w) + Q2 — Q)| > # fork #Qori # j.
However in the present paper, when i = j equation (2.4) is unsolvable due to the lack of
Diophantine restriction on . Therefore we have to put the whole R;;(6) rather than its
average [R;;] into €2;. This leads to the following #-dependent homological equations

00 Fij(0;8) +1(82:(0;8) — Q;(0:8)Fij(0:8) = R;ij(0:8), i#jeN, (2.5)

This kind of variable coefficient homological equations also appear in the KAM theory
for unbounded perturbations [32, 35]. In [32, 35], Diophantine condition on w is still
necessary to solve (2.5). In this paper, w is no longer Diophantine but can be Liouvillean.
To deal with this case, we will use the method based on C D-bridge technique introduced
in [1]. Then by a rotation transformation, we have new variable coefficient homological
equations which can be solved by diagonally dominant method. Note that, for (2.5), there
are two main differences between our paper and [39, 48] for finite dimensional reversible
and Hamiltonian systems: (i) For each |k| < K, we need infinitely many non-resonance
conditions

[k, w) + Qi — Q)| = cohjz1

(k)
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instead of only finitely many ones as in [39, 48]. In [39, 48], one can take a special
large truncation K due to sup |€2;| < +oo. Then |(k, w) + €; — ;)| has an uniform

lower bound for all |k| < Kl . Hence [39, 48] obtain real analytic response solution for
all Liouvillean frequencies w. However in this paper, |2;| — 400 asi — 400, and
we cannot take a special truncation K. Thus we cannot obtain real analytic solutions
for all Liouvillean w but only smooth (C°°) solutions with only not super-Liouvillean
w. Similar case also happens in [33, 47, 52]. (ii) We need verifying Toplitz—Lipschitz
property of solution for measure estimate, which is the biggest difference with [39, 47,
48, 52]. The details are given in Proposition 5.2.

e Constructing KAM scheme. Though above variable coefficient homological equations
(2.5) are solvable under non-Diophantine conditions, the upper bound of the estimate for
solutions would be very large such that the usual KAM iteration cannot be convergent. To
overcome this, we will perform finite times normal form transformations at each KAM
step. See Sect. 6.1 for details.

e Toplitz—Lipschitz Property and Measure estimate. Due to the presence of derivatives
in the nonlinearities of Eq. (1.1), there is no smoothing effects for the corresponding
perturbation vector field P in (4.1). Therefore, one can not control the shift of the normal
frequency which is necessary in the measure estimates. To give the measure estimates,
we introduce a new class of Toplitz—Lipschitz vector fields. The idea of Toplitz—Lipschitz
proerty was first introduced by Eliasson—Kuksin [26] and then developed in [10, 11, 28,
30, 42]. It can compensate the lack of smoothing effect of the perturbation vector field
P. See assumption (A4) in Sect. 4 for more details.

The rest of the paper is organized as follows. In Sect.3, we introduce the definitions
of weighted norms for functions and vector fields and give some arithmetical properties
of irrational numbers. In Sect.4, we state an abstract KAM theorem (Theorem 4.1) for
infinite dimensional reversible systems with non-Diophantine frequencies. In Sect.5, we
solve homological equations for vector field with Toplitz—Lipschitz property and prove that
their solutions still admit Toplitz—Lipschitz property. In Sect. 6, we describe the details of
proving KAM Theorem 4.1. The proof of convergence of the iteration and measure estimates
are given in Sect. 7. In Sect. 8, we use the KAM theorem to prove Theorem 1.1. In Appendix
we list some technical lemmas.

3 Preliminary

3.1 Functional Setting

Let O C R” be a parameter set of positive Lebesgue measure. Throughout the paper, for any
real or complex valued function depending on parameters & € O, its derivatives with respect
to & are understood in the sense of Whitney. We denote by C‘l,v (O) the class of C! Whitney

differentiable functions on O.
Suppose f € C‘],V(O), we define its norm as

0
I fllo :==sup(|f(&)]+ Il(f)l),
£cO &

where | - | denotes the sup-norm of complex vectors.
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Consider an n-torus T" = R" /(27 Z)" and its complex neighborhood
D(r) = {6 € C": Imf]| < r}

(r > 0).
Suppose f(0; &), (0 € D(r), & € O), is real analyticin 8 € D(r) and C‘l,V in& € O. We
define its norm as

Bl
I flIpeyxo = sup  (IfO, )+ 110,860,
0,6)eD(r)x O &
For f(0;6) = Y. f(k; £)el®% on D(r), its K(> 0) order Fourier truncation Tk f is
keZn

defined as follows:
Tk HO) = Y Fle®?.
keZn, |k|<K
n n
where (k,0) = Y k;if; and |k| = >_ |kil.
i=1 i=1
The remainder R f of f is denoted by (Rx f)(0) := f(6) — Tk f(6). Suppose 0 <
20 < r, we have the following estimate for Rg f :
IRk fllpe—201x0 < 3202 X fllp@ryx0- 3.1
The average [ f] of f on T" is defined as

-~ 1
= 0 = 0 d@.
1= FO = s [ 7@

Let p > 0, we introduce the Banach space £7 of all real or complex sequences z = () j>1
with

00
lzllp =) lzjle? < oc.
j=1
For r, s > 0, we define the phase space
PP =T"x € x£P s w:=(0,2z32)
and a complex neighborhood
D(r,s) = Dp(r,s) :={w: [Imo| <r, |zll, <s, lIzll, < s}

of I :=T" x { =0} x {Z=0} in PL :=C" x €7 x ¢V,
Leta = (a))j>1, B = (Bj)j>1 withe, B; € N. « and B have only finitely many nonzero
components. Suppose

[O.2,56) =) fup®:6)7°7F
a.p
= Y Japlkg)el®O2zF,
keZM a8
is real analytic on D(r, s) and C éV-smooth on O, where the notation z%z# = I1 =1 z‘;j ij .
We define

£ lptyxo = 1 ¢ 2% Mpexo = Y I fapl Diryx012%1127]
a,B
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and the weighted norm of f as follows:

I fllpesyxo == sup | fllperyxo
llzll p<s,
lzllp<s
= sup Y [l fupllDirxol®1IZ1.
lzllp<s. 4p
”ZHp<S

Consider an infinite dimensional dynamical system on D(r, s) :
w=Xw), w=(0,1,z,2) € D(r,s),
where the vector field

X(w) =X w), X (w), X (w))
=(XY (w))ver € PL,

where ¥ = {61, ...,6h, z;,Zz; : j > 1}. In the paper, we will write vector field X (w) as the
form of differential operator

d d 5, D
Xw) =XPw)— + XD w)— + X©w)—
20 9z 0z

0
— (v)
= E XY (w) v

vey

(3.2)

Definition 3.1 An analytic vector field X : D(r,s) — Pg is said to be real analytic, if it
satisfies

X0 =x@ x@ =x® on D(r,s),
where!
D"(r,s) ={0,z,7) € D(r,s) : 0 € T", Z is the complex conjugate of z}.

Suppose vector field X (w; &) is real analytic on D(r, s) and C ‘I,V smooth on O, we define
the weighted norm of X as follows

”X”s;D(r,s)xO
n 1 00 )
— Z ||X(9i)||D(r,s)xO + ; sup Zelp (“X(Zi)”D(r)XO + ||X(Zi)||D(r)xO)
i=1 lzllp<s, 5y

Izl p<s

n
0; -
= sup DY IXPIpeyxollIZ]

Hz_”p<5, i=1 a.p
Izllp<s

1 > . z. _
+~ sup e 3 (1X Iperxo + 1X5 b <o ) 121171
§ llzll p<s. i=1 a.p
Izl p<s

' Notice that z and 7 are independent complex variables.
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Definition 3.2 The Lie bracket of two vector fields X and Y on D(r, s) is defined as
[X,Y](w) =DX(w) - Y(w) — DY (w) - X(w), for we D(r,s),
where DX (w) is the differential of X at w, namely, its v-component is

( (
X,y =3 (ag(uw Y _ aguwx(u))

ue?

3.2 Some Arithmetical Properties of Irrational Numbers

The main purpose of this subsection is to recall some arithmetical properties of irrational
numbers required in the paper.

3.2.1 Continued Fraction Expansion

Given an irrational number « € (0, 1). We define inductively the following sequences:
ap=0, ap =,
-1 -1
ak = Lak_lja Qf = o — dk, k>1,

where x| = max{l € Z : [ < x}.
Setting

po=0, pr=1,qgo=1, q1 =ai,
and we also define inductively
Dk = ak Pk—1 + Pk—2,
qk = akqk—1 + qk—2.

Then {g,} is the sequence of denominators of the best rational approximations for «. It
satisfies

lkatllT = llgn—1ellT, V1 <k <gp, (3.3)

and

1
—— < lgnellT < , (34)
qn + qn+1 qn+1

where || x|t := inf |x — p|.
pEL

3.2.2 CD Bridge

Now we choose a special subsequence {g,, } of denominators of the best rational approxima-
tions for irrational number «. For simplicity, we denote the subsequences {g,, } and {g,+1}

by {Qx} and {Q;}, respectively.
The concept of CD bridge was first used in [1].

Definition 3.3 (CD bridge, [1]) Let 0 < A < B < C. We say that the pair of denominators
(g1, gn) forms a CD(A, B, C) bridge if

() gip1 <g?, Yi=1l...,n—1;
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) qf = qn = qP.

Lemma 3.1 ([1]) For any A > 1 there exists a subsequences { Qy} such that Qo = 1 and for
eachk >0, Qr41 < Qk , and either Qy > Qk or the pairs (Qi_1, Qx) and (Qk, Qk+1)
are both CD(A, A, .A3) bridges.

Definition 3.4 (Not super-Liouvillean numbers, [47]) The irrational number « is called not
super-Liouvillean if the quantity

- Inl
Ua) = sup% < 00
n>0 ngn

In the sequel, we assume A > 14. Then we have the following conclusion.

Lemma 3.2 ([47]) Iflj(a) < 00, then there is Q, > Q;;‘flfor any n > 1. Furthermore, one
has

Inl
sup L 1 4), 1n @yt < QU
n>0 In Qn

where U(a) = U(a) —i—4111:1“24 < 0.

Remark 3.1 Notice that if

Inl
B(a) :=lim supw < 00,

n>0 In dn

then U(oz) < 00. In the case n = 2, if B(w) < oo (see (1.6)), then f(«) = 0. Hence if
o = (1, o) is Brjuno, then it must be not super-Liouvillean, thus a larger set than Brjuno.

4 An Infinite Dimensional Reversible KAM Theorem Without
Diophantine Condition

Throughout the rest of the paper, we work on the space P(’é = C? x £P x £P. Denote
0 st 0= +7
Zja 0=

and similarly for z¢ = (Z?)sz
Given s, r > 0, adomain D(r, s) in Pé and compact subset O C R” of positive Lebesgue
measure, we begin with a family of real analytic vector fields of the form

X0,2,2,6)=N@0,z,2:6)+ P(0,2,7;€), 0,2,2) € D(r,s), £ € O, 4.1

N = ol 4i@E: e
= —_— —_— =1 —,
g TS, L9z

the perturbation

P= > > rYe: g)zazﬂ3

velzj,zj.j=1} o.B
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is reversible with respect to involution S : (0, z,2) +— (—#6, z, z). The forcing frequency
o € R? is a fixed non-resonant frequency vector. Without loss of generality, let w = (1, &)
and o € R\Q is not super-Liouvillean. The normal frequencies 2;(§) € R (j > 1) are C ‘1,‘,
on O.

Suppose above S-reversible vector field X satisfies the following four assumptions:

(A1) Asymptotics of normal frequencies:
Qj=dE)j+Q, j=>1, (4.2)

where d(§), Q jecC év (O). Moreover, there exist positive constants Ag, A} and A;
with Ag > %, Ay > Ay suchthat V& € O, |[d(§)] = Ag, A1 < |0gd(§)] < A2 and

IGlo < 4L
(A2) Melnikov non-resonance conditions: Fort > 10,0 <y <1,£ € O,
Ik, @) + (I, QEN = ﬁ VkeZ2, 1<l <2,

where (k) = max{1, |k|}.
(A3) Regularity: The reversible perturbation P defines a map

P:D(r,s)xO—)’Pé,

P(-, &) is real analytic on D(r, s) for each & € O, and P(w, ) is Cév—smooth on O
for each w € D(r, 5). Moreover, for some g9 > 0, || Plls;p(r,5)x0 =< €0.

To compensate the lack of smoothing effect of P due to the derivative nonlinearity, we
need some additional conditions on the derivatives of P. In [10, 11], to deal with it, the
authors introduced quasi-Toplitz property of functions and vector fields (first used in [42]
for NLS). However, for the case of non-diagonal variable coefficient homological equations
here, it is not easy to verify the quasi-Toplitz property of solutions. In this paper, we introduce
new Toplitz—Lipschitz property of vector field which plays the similar role to quasi-Toplitz
property but is more easy to handle. Toplitz—Lipschitz property introduced here was first
used in [26] and then in [28] for higher dimensional Hamiltonian NLS.

(A4) Toplitz-Lipschitz property: There exists p > 0 such that the following limits exist
and satisfy:

lim Q4| < eo, (4.3)
t—00 O
P(Zi+z) L
Jlim aa < goePli—il, (4.4)
—00 i
Ly D(r,s)xO
(Zi+t) P
lim aP_ < goePlitil, 4.5)
t—00 BZj_t -
D(r,s)xO
P @ite) o
lim aa_ < goe Il (4.6)
t—00 :
Lt N persyxo
o PGi+r) o
lim < goePlitil, 4.7
t—00 3Zj—t
D(r,s)xO
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Furthermore, there exists K > 0 such that when |f| > K, the following estimates

hold.
~ ~ &
[ = Jim @50 <22, (4.8)
: t—00 o ]
@itt) (Zi4r)
d P — lim dpT < ioe—pli—jl, 4.9)
I T T
(Zitt) (Zit1)
AP O < 20 g=pli+il, (4.10)
0zjmt 7% Bt | gxo
(Zigr) (Zitr)
OPT i 22 < S0 e=pli=il, .11
0Zj44 t—>00 974y DGy %O |t]
(Zitt) (Zitt)
0P _ g 227 < Delitil, (4.12)
0z =00 9z Dor)xO |t
. . P apE) apGE) §pG)
here wheni < 0Oor j <0, TR i oat i 0

Remark 4.1 1If a vector field P satisfies properties (4.4)—(4.7) and (4.9)—(4.12), then it is
called a Toplitz—Lipschitz vector field. Here we only give the definition of Toplitz—Lipschitz
vector fields. One can prove that Lie bracket of two Toplitz—Lipschitz vector fields and the
solution of homological equations still satisfy Toplitz—Lipschitz property. This means that
Toplitz—Lipschitz property can be preserved along the KAM iteration. We will prove these
basic properties in Proposition 5.2 and Lemma 6.3 below.

Our KAM theorem is stated as follows.

Theorem 4.1 Assume real analytic S—reversible vector field (4.1) satisfying above assump-
tions (A1)—(A4). Then for every sufficiently small y > 0, there exists ¢ > 0 depending on
T, ¥, Ao, A1, Az, r, s, a, and p, such that if || Plls. pr.s)x0 < &, then there is a non-empty
subset O,, C O of positive Lebesgue measure, and an S—invariant transformation ® of the
form

0,2,2;6) > (0, W(0,2,%;6), W(0,2,%;€)), £ € Oy,

where W and W are C* in 0 and affine in (z, 7), such that ® transforms above vector field
(4.1) into

®*X = N, + P,

where

N—a'Q B, (0; 8'9 B, (0; 20
L= FHQE) +B0:6) 25 —i(20) + B.E D) 35

By € C®(T%, R), B«(6) = B.«(—0), and

g 0
P, = Z Z Pi;;,(e;é)z“zﬂg/,éeoy.

velzj,zj} lal+Bl=2
Moreover, meas(O \ O,) = O(y).

The proof of the theorem is given in Sect. 6.
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5 Homological Equation and Toplitz-Lipschitz Property of Solutions

Consider the homological equation (the unknown is F)
[N.F]+ R =[R] 5.1

on D,(r,s) x O, where
0 0 — 0
N=w— +iQ(0; — —iQ(0; &)z—
Wgg TIRE: )G 1RO 5

with fixed v = (1, @), (¢ € R\Q), Q6;&) = Q&) + B(O; &) + b(09; £).The normal
frequencies 2;(£), j > 1 satisfy (4.2). And the frequency drifts B(9) and b(0) are both real
analytic on D(r) and B(0) = B(—0), b(6) = b(—0). This implies N is a reversible vector
field with respect to the involution S : (0,z,z) — (—6,2Z,z). R is also an S—reversible
vector field of the form:

_ 9
R =(R*(0; &) + R*(0; &)z + R*(0; E)z)g
i i . T 5.2)
+ (R*(0; &) + R¥(0; £)z + R¥(0; S)Z)ZTE'

[R] is the 8-depend normal form of R :

d - 0
[R] =diagR¥(0)z — + diagRZZ(0) —
0z 0z

0 - 0
= RZi%i (0 zi— + R%i%i (0 Zi—.
Z ®) iag Z ©) 5
Jj=1 Jj=1

For f(6) = (fj(6) : j = 1) on D(r), we define the norm

I/ loo. Dy = sup I fillDr)-
j

Moreover, suppose 2(§) + [B(#)] € MCy, (v, 7, K, O), where fort > 10,0 < y <1,
K > 0, the non-resonance set

MC, (v, 1, K, O)

Y (53)

— VIkl =K, 1<l <2;.
(k)*

During the KAM iteration, it is enough to obtain the approximate solution of the the
homological equation(5.1) above. The following proposition gives the existence and estimate
of such approximate solution. A similar proposition was given in [52].

= {s’z(g) CE €O, |k, o)+ (I, Q&) >

Proposition 5.1 Ler {Qy} be the selected subfequence of a in Lemmas 3.1 and 3.2 with
respect to A > 14, alsolet y > 0,0 < ¢, ¢ < 1,and 0 < 50 < ¥ < r. If all above
assumptions on N and R are satisfied and

I Blloo, p(ryx0 < ¢, (5.4
16lloc, Dryx0 < € (5.5)
Furthermore for some n > 1, the following three assumptions are satisfied:
()
3607 Qui1¢ < (r — ), (5.6)
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(ii)
512e 7 Qi < E3(r —7)2, (5.7)

(iii)
2C0KZTHET < 202, (5.8)
where Cy > 0 is a constant depending only on Ay, A1, Ay, then above homological equation

(5.1) has a unique approximate solution F of the same form as R satisfying [F] = 0,
S*F = F and the estimate

- ) - C0§2Q2+1K21+1 X so
I Flls;p,—20.5)x0 = W” ls:D,(r.5)x0- (5.9)
Moreover, the S-reversible error term R satisfies
||R||S;Dp(F—4(T,S)XO
(5.10)

COQ‘ZQ2 1 — ~1
=< T_n’;;z Ko (”R”s;D/,(r,s)xO +¢2 ”F”s;D,)(f—ZU,s)XO) .

Proof Suppose F has the same form as R. By the definition of Lie bracket, Eq. (5.1) can be
rewritten as the following scalar form

R — 9, F% +iQ;(0)F% =0, (5.11)
RY% — 9,F% —iQ;(0)F% =0, (5.12)
R% — 8, 4% 4+1Q;(0) F4% +iF%%Q;(0) =0, (5.13)
R% — 3, F5% —iQ;(0) F% —iF%iQ;(6) =0, (5.14)
RE% — 9, F4% 4 iQ;(0) F4% —iF%%i Q;(0) = §;; R%%, (5.15)
RY% — 9, F% —iQ;(0)F9% +iF%%Q;(0) = 8;; RV, (5.16)

where §;; is the Kronecker delta symbol.

In what follows, we only give the details of solving equation (5.15). The other five ones
can be done by the same way, thus omitted.

For Eq. (5.15). If i = j, let F%i%i(0) =0.1If i # j, we solve

3oy F4% — 19 (0) F5% +iF4%Q;(0) = R4, (5.17)

In the proof, denote 2;;(0) := 2;(0) — 22;(8), and similarly for £2;;(§), B;;(0) and b;; (0).
Then we rewrite the equation above as

00 F/51 = (S (€) + [Biy VD F¥ — i(Byj (6) — [Bij @)D F% — by () F*) = R(543)

Let 3,8ij = 7g, ., Bij(0) — [Bi;], then one can verify that

Bij (k)
BiO)= Y ch w>el<kﬁ>, (5.19)
0<|k|=Qn+1 ’
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is its unique solution. We have the estimate for g;;:

3 1Bi;®)lo iz
0<ii=on K@)
<20n+1 Z 21Bij Il pgryxoe ™ K= (5.20)
0<IkI= Q1
<256Qn+l|
(r —7)?

here we use (3.3), (3.4) and the inequality: foro > 0, Y e 2klo < (1 4 )20 2.
kez?

I1BijllpFxo <

|Bijllperyxo;

Let
ujj = FZiZ/e*iﬂij’ vij = Rz"zfe*iﬁij7
bij(®) = Ro,, By (@) +bij ©).

Then Eq. (5.18) will be transformed as one on u;;. However, it is difficulty to obtain its
solution and we solve its approximate equation, i.e.,

Oouij —1(82i(§) + [Bij(0)Duij — 1Tk (b;;uij) = Tk vij, (5.21)
and the error term
. ; d
=> ZZteﬂiijK ( ~0if; R%% 4 pie 0P v, Fz,z;) L5 (6522
o=% i j#i dz;
here ﬂig/. is a function determined by Bigj and can be defined as in (5 19).

Letu;; = Y d;;(k)e® v = 3 8;;k)el®, Z b;; (k)el®-) We
k|<K keZ? kez?
have, for |k| < K,

i ((k, @) — (R () + By O)D) ity (k) —i Y by (k — Dty (1) = by k).
[l|l<K
Rewrite it as vector equation,
(Aij + Dij)%,’j = Bl’j (5.23)
where
Xij = (@) - k| < K)T,
Aij = diag (i(k, w) — (&) + [Bi; ()] : k| < K),
Djj = (— b, k=D k|, |1 = K),
Bij = (b;j(k) : k| < K)T,
Denote Aj_y, = diag (1729 : |k| < K), then
(Aij + Ai_oe DijA;_lzg)AF—Qoxij = A;_25Bij (5.24)
Ai2o Dij AL, = (—ielTIDE20p 5 — ) < k|, 11| < K).
To solve Eq. (5.24), we will use the non-resonance condition (5.3): (&) + [B(0)] €
MCy(y, 1, K, O).
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Recall that

Q&) =d®&)j+QE), j=1,
QE) =(QjE):j=1), BO:&) = (Bj(0;6):j>1).

Assume ¢ < % and C > ﬁ is a constant. It is not difficulty to prove that there
exists a constant Cop > 0 depending only on Ag, Ay, Az such that

3 COKZI+1

1A o < ——— (5.25)

14
For A; 25 DijA; 5,0 1A7-20 Dij AL, llo < 640 2IIblloc, by x 0 By assumption (ii)

in (5.7),
1Bllo. Dy <0 < (,_;)2e‘%9"+‘ 1Blloo. 0 %0 + 201blloo. D@y x0
2
256 _rig - -1
< ——5e T4+ 20 < (2,
(r —7)?

and by (5.25) and assumption (iii) in (5.8),

. . C0K2r+l ~1
[A;;" Ai—20 Dij Az 5, ll0 EWCZ <1/2.
This implies A;; + Aj_25D; jA}:—IZU has a bounded inverse.
I(Aij + Ar—20 Dij A, ) o <A o — : —
I ”A,‘j Af—ZJDijA;,ZJHO
C0K2r+l
<=
Y
Then
luijll pF—20)x0 <NA7Xijll pF—20)x0
<II(A;; + AF—ZaDijA;__lzg)il lollAi—2sBijllo
C0K2T+l
EW“UHHDG—U)XO
and

10ij Il pG—oyx0 <Ne™Pi | pE—oyxo I R%% | p—oyx -
Since F*i%i = uijei/sff, R%% = vijeiﬂif,

I F5 | p—20yx0 <1€P7 | p—20yxo il DG —20)x 0
. . 2t+1
<|lePii ||D(f)x0||e_lﬁ” ||D(f)xOW”RZZZ] I pGE-0)x0

Now we estimate ||t/ || 7). By assumptions (5.4): || Blloo. n(r)x 0
3607 Q11 < (r — 7)3 in (5.6), we have

< ¢ and (ii):
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j:' .
lle*iPi lpi~xo

(1 4 ﬂ || Bi; ||D(r)><oe907Qn+1(V—f)_3 I1Bijllparyxo
—7

< e

- (4Qn+)12 “B”D(r)xoelgon,,+l(r4)-3; (5.26)
80n+1

—(r=r2

Then

. . 2t+1
IF%% | p—20yx0 < 1677 | piyolle™ i lp@)x0= 57— IR lIpG—o)x0

2 2t+1
- ( 80n+1 ) CoK

iz
- r)2§ oy | R**/|| pi—o)x O

CO Q 2f+l o
L”HR“' Ipe)xo-

y262(r —7)

Consider the estimate for vector field F = F® 83—2 + F®OL a . It remains to consider the

estimate for F@ . It follows from above analysis that

IF | p—20)x 0
= F¥lpG-20)x0 + I 1 F¥ | p—aayxolzjl + Y IF | pi_ze)x0lZj]

J J
_ CO; Qn+1 2t+l

o | IR Ip@xo+Y IR Ip@xolzil+ Y IR I p@xolZl|

J J
— w”R(a)”D o
y202(r — )4 ")x0:
then
2 +1
| Flls; pG—-20,5)x0 < MIIRIIJ :D(r,5)xO-
’ ’ =yl -t

We turn to the estimate for error term R in (5.22). By (3.1) and (5.26),

| R/ || p(F—4o)x O

= e R (7 R +ie b, F59 ) I p—ao) o

IA

iBij -2 ,—Ko | ,—iBij %4 tizj
1% 1| p(7—a0)x 0320 2™ K Nle TP || p—20) x OI1RFET + iy F%1 | pi—20y x0
J

< CO{ Qn+1 7Ka

e (IR 115 -201x0 + by Dy <0 | F¥/ 162090 )+
then

CO; Qn+l —K(r

o2(r — 72° (”R”rD(r S)><O+§2“F”A DG 2m)xo)

||R||S;D(Ff4a,s)><(9 <
It follows from the definition of reversibility that S*F = F and S*R = —R. O
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Finally, we verify Toplitz—Lipschitz property of solutions.
Proposition 5.2 (Toplitz—Lipschitz Property of Solutions) Let K, Qn+1, Co, O and the

parameters t,0,r,F,s be as in Proposition 5.1. Suppose 0 < ¢ < 1, & > 0 and the
following inequality holds:

4 L2\ 60Q2T+3) 2 ?
3 i -7’ ’
(pe_m) < < min {012(2z+3)7 (O’Qir)) i (%) } (5.27)
n+1 0

If the limits lim B;y,(0), lim b;y,(0), i > 1 exist and
—00 —00

. 1
| im B, (@)llpryxo < 2¢2,
—00

28% (5.28)
1Biv:(0) — lim B (O)pryxo < ——,
t—00 2]
Il tl_l)lgo bivi@)peryxo =< 2e,
(5.29)

. 2¢e
1Di4: (@) — lim by (@)lIDGryxo < —,
t—00 |t|

and the vector field R above satisfies Toplitz—Lipschitz property (A4) with ¢ in place of
on D(F, s), then the vector field F (resp. the error term R) obtained in Proposition 5.1 also

satisfies the property (A4) with & 3 (resp. & 3 )inplace of e on D(r —20, s) (resp. D(r —40, 5)).

. (z;) R(zi)
Proof In the proof, we only verify the cases 352 — and agz —, and the other cases can be done
*J *J

by the same way.
From the proof of Proposition 5.1, we obtain that

(zi)
oF — Fu% — uijei,s,j(e)
0z;
and
(zi)
& — RZiZj — U[jeiﬂij(e).
azj'
Bi;©) i
where ;;(0) = Y ﬁeuk,m,

0<lk]<Qun+1
We first verify Toplitz—Lipschitz property for §; ;(6) and e'%ii®  Denote f;. j00(0) =
tlim Bitt,j+:(0). Then as in (5.20),
— 00

| Bist,j+:(0) — Bi,j,oc @) D), 0
- Z [Biti (k) — Bioco(k)|o + |Bj1s (k) — Bj,oo(k)k?e\k\;
[(k, w)]

1 L

2e2 1380
< 256Q,41(r —f)*zﬁ—l < 0

O<|k|<Qn+1
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As in (5.26), one has

||ei/3i+r,j+r(9) — eiBi.j.oo(®) Ip@.0

80, ?
(( : +)125) 1Biste.j+1(0) = Bi j.oo @)l D)0

(5.30)

1 L
2 & 1380 276

It

™M

690

M

=

It

lim;_, oo R¥+0%7+ and v; j 00 (0) 1= lim;_ o0 Viqy, j4¢(0). Below we will use similar nota-
tions for F%-% and u;;.

We then prove that v;; satisfy the Toplitz—Lipschitz property. Denote Rl"] o =

lvi, j, 00l DGF—0),0

< IR ol pi—o).0lle Pl piE—0).0
< e e pg)0
< generli—il,

Using (5.30), we have

lVits, j+r — Vi, j,o0ll DGF—0)xO

< IR+ — RE lpi—o).0lle™ 5 [ pi—g) 0

+ ||R,“, oonm;_g) olle™ Pt —eTPurx | p_) o

32
<= |t| e Pli— ]\ ”e Bitt,j+t ||D(r)(9+<9‘3 pli— JI ”e Bitr.j+t —e I,Bi,j.oo”D(F),O
68
©
< é e—Pli=jl
1

Let Aj j,oo := tlim Ajyt,j+r and similarly for D; j «, X;, j 0o and B;, j oo. Note that as in
—00
the proof of Proposition 5.1, one has
(Ai,j,00 + Di j.co)Xi joo = Bi,joos
(A j,00 + AfDi,j,ooAf_l)Ain,j,oo = A;iBij 00s

and then || A;” . OOA;D,-,j,OOA;_IHO < %.Thisimplies Ai,j,oo—l—A;Di,j,ooA;l has a bounded
inverse. Moreover, one has

COKZ‘L'+]

%

1
1(Ai oo + AiDijoo AT ) o < —7 =

™M
g
3

Therefore,

li, j, 00l DG=20)% 0O

< 1A, j.o0 + Aj—20 Di jioo A ) o A7 —20Br .o ll0

IA

_ 32
1A + Ar—20 Dijoo A5, 0 5 10 joll G-,

COK2t+1 32 & —p\l—/l
7 o — Vi, j,00ll DF—0).0 < ET0€
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To study the Toplitz—Lipschitz property of u;;, in the following, we first consider

(Ai+t,j+t + Ai2g Di+t,j+tA;_120) Ai—og (Xigr jor — Xij.oo) = H,
where we denote
H = Aj 26 Biyi j+1 — Ai—26Bij.oo
- ((Ai+t,j+l —Ajjoo) = Niog (Dite, jrt — Di,j,oo)A;_,l20> ANi_26Xi j 0o
Now we consider H.
IA7—26Bite,j+t — Ni—26Bij,cllO
32 £690

< ;Ilvm,ﬂt —Vi,j,00ll DF=0),0 = n

Recall that Q;(§) =d(§)j + Qj (&), j = 1 (see (4.2)). Then

lAits, jre — Aijollo
< R4t j+r — Qi joollo + ILBits,j+:] — [Bi,j.0lllo
1
8¢e2

It

IA

Note that the matrix
Ai—20(Dit1.j41 — Dijoo) A7y,
_ (_ie(\ll—lk\)(f—Za)(EH[MH[ (- k) _Ei,j,oo(l — k))>|k|.u|sl< ,
and
bit —bi oo =R, (Bitt — Bico) + (bitr — bi co)-
Moreover,

18; 1+ — bi ol DGE—0).0

32 i
< (r_;)ze 7 41| By — Bi ool Dy, 0 + Ibist — birsolDiry.0
2
128 .5, 282 26
S —e¢ 7 Qn+1 + —
(r—7)? |£] |7

It follows from above estimates that
-1
| A7—26 (Ditt,j+t — Di j.oo) Dy, llO

<Y M2 () =Dy (K)o
k

32
p ||Qi+;,j+t - Qi,j7w||D(f—a),O

1
32 128 r—F 22 2¢
2 _TQ)H—I —
o ((r —7e° i |r|)

IA

IA

A
m
=l
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. ~§ _ P
We have obtained [|Aj_25X; j,collo < €T0€ pli=jl,
By the estimates obtained above,

IHlo
S NAF—26Bigs, jrt — Ni—26Bi joollo + 1Aigs, jrt — A j,oollo Ai—26 X, j00llO
~1
+ A7 26 (Ditt,j+1 — Di j.oo) N5 ol Ai—26 Xi j.ollO

~ 1 ~ 19
< %0 —nli=jl 4 982 af o—nli=jl 4 38T —pli=j]
e |] |]
_ 79
E10 —pli— I
I
This implies

letits, jre — Ui, j 0ol DF=20),0

= (Aisr,jrt + Ai—2o Disr jri A ) Hllo

61
Cok 7! 100 pli-ji
< o < S el
14 |]

Then one has

175 ool DE-20),0

< i .00l DG—20).0 1€ | p—20).0

8 P 1 3 PR
nge*ml*ﬂg*ﬁg*m < gge*ml*]\

IA

and

zittzj+t
[FT — FE llp—20),0

< N Wi, jrr — Mi,j,oo)elﬁ”"”’ |l pG—20),0 + ||Mi.,j,oo(e”3"*"-”’ - elﬂi'j'w)”D(f72a),O
61

6L 1

< 8ﬂe*miﬁ'lg*%g*ﬁ + 851%67'0“7”57% £ 2

B |7]
23

< &2 pli-jl

e

Finally, we consider the error term

< —oifi; p%° | . 0B 2.0 d
R = ZzzeglﬂuRK (e 0B RS 1 pie Qlﬂz./bijZ, z,)zii

0
o=% i j#i 3z

’

3
0z

aRE) . ,

Denote
g&ij = Rk (e_iﬁi/RZiZ-f + ie_iﬁiféij inz-f) =Rk (v,‘j + iéiju,‘j) .
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We have

llgi.j.00ll DF—40),0

—K
= 575 (101 0ollD-200.0 + 15 120,011,061l D -200,0)
< g1 gone Pli—il 1 —Z gegt0ePli—Jl
- (02 402

< %ePli-il,
Then using above estimates, we obtain

lgi+e.j+t — &i.j.coll DGF—40),0

32
K
=3¢ 7 (Nvist,j+t — Vi j.ooll DG—20),0 + 16,4 j4el DE—20), 0 Wit j41 — Ui, ool DGF—20),0

+ llui j, oo”D(fon),O”QiH,j-H —Qi,j,oo”D(Ferr),O)

1

3,32 869 : 32 1 1

7 e Pli—Jl e—Pli=jl —pli—jl 4
SE“( ST +40_22 |t| +ite 2( 90— + ))

Therefore, Toplitz—Lipschitz property for the error term Rj3 can be verified as follows:

gRGi*+D ig
: 8
lim —— = [1gi,j,00€ """ p(F—40),0
t—00 azj+t
D(F—40),0
.32 1
< g%e—ﬂll Jl £769%
1602
ST
< &3e pli ]l’
and
3R(Zi+t) BIé(Zi-H)
e im P
; t—00 ;
Lj+t Lt | p—de),0
< isr, j+t — 8i.7,00)€PH 4 | D _ayx0 + I18i,j,00 €FH+ — ePiico) | ni sy 0
135 L
£ 100 . 77 .. 2 & 276
<2l e Pliilg g 4 s Re liilg i T
2] 7]
L4
3
< € e Pli—Jjl
|f|
]
6 KAM Step

In this section, we give the proof of Theorem 4.1. Throughout this section, we denote by C
a global constant independent of any iterative step but may depend on 7, Ag, A; and Aj.
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Suppose we arrive at the v’ I iterative step and the S—reversible vector field X, = N, + P,
on D(sy, ry,) x O,, where the normal form vector field

0 . 0 ;'
N, :w% + 182, (0; S)za—Z — 192, (6; é,%)za—Z

0 L —
=0+ 1(Q(8) + By (0; %))ZETZ —i(R2() + B, (0: 8))z PE

6.1)

with Q;(§) =d(§)j + Q;(§) and d(§), Q; € C‘I}V(O), B,(0) = B,(-0).

The S—reversible perturbation P, has Toplitz—Lipschitz property (A4) on D(s,, r,) with
&y, py in place of ¢, p.

Our aim is to find an S—invariant transformation

D, : D(rl)+17s\)+]) x 0, = D(rl)7 Su) x O,

such that ®} X, = N,1+ P,4+1 withnew normal form N, ;| and a much smaller perturbation
term Pyy1.
For notational convenience, below we denote

On+1 = QnOJer (6.2)

where no € N is some suitable fixed positive integer. Similar to the usual KAM literature,
for other sequences, we drop the subscript v, write the symbol ‘+’ for ‘v 4+ 1’ and write
the symbol ‘—’ for ‘v — 1’. Then the goal is to find an S—invariant transformation ® :
D(r4,s4+) x O — D(r,s) x O such that it transforms

X=N+P
. o . _ 0 (6.3)
=w— +1(QE)+BO;&)z— —i(QE)+BO:;§)z—=+ P
20 0z 0z
into
Xy =Ny + Pyt

d d - _ 0
=ooy +1(2(5) + B+(8; E))Za* — () + B+(0:8)z— + P+.
z 0z

6.1 A Finite Induction

In this subsection, we will perform a finite induction procedure due to the lack of Diophantine
condition on .

Let
Xo =No+ Py
a . a . _ 0 (6.4)
=w— +i(Q2() + B0, §)z— —i(Q(E) + B(O,§)z—- + P.
a0 0z 0z

According to previous assumptions, we have || Irsolls;p(,,s)xo <e.
LetO <ry <rand0 < py < p. To give finite induction, we let

go=2¢,70 =2ry,50 =S, 00 = p-

1

2 4116

K= L(”—]) I+ 1.
2e2
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Now let n > ng and define

L_os 21+2=m0 07 In Q,;Jr]
22471 4+ 36) In 3

ro _nt2=ng er Uy
_4Q3’ 8_8_Qn+1 ’
n—no n—ny

=Y &, y=w-3) &,
par i=0

where the constant U = U (A) is defined in Lemma 3.2. Form = 1,2, 3, ..., L, we define
the following sequences:

1
2t+1

2C3¢8, (6.5)

5
Igm:\‘a—illng‘_lfj'i'l, fm:;m—l_S&m—]»

Lemma 6.1 Let 0 < g9 < 1 and ng be a positive integer such that

_ 1

0,47V < g9 < minf273%r, 27 8y2), gyt <g) T (6.6)

Suppose Q,, (see (6.2)) satisfies

302t 4+ 3)
U

then for finite sequences defined above, the following three inequalities hold:

(1) 3607, Q18 < (r =)’
@) Bpe 2 Oig < 34

(3) K, < min{K, K™},

On > (n+2—np)2"F""ctU, ¢ > (6.7)

The proof of Lemma 6.1 is postponed to the appendix.

Proposition 6.2 Suppose all the assumptions in Lemma 6.1 are still satisfied, 0 < gy <

(rosoyp) 127 +36

e and
Q%O v
”B”oo,D(fU)xO =g, (6.8)

then for all Q(§) +[B(-, §)] € MC,(y, T, K, O), the following holds: For0 <m < L —1,
there is an S—invariant coordinate transformation

D, 2 DFsts Smg1) X O = D(Fp, 5m) X O

@ Springer



1090 Journal of Dynamics and Differential Equations (2024) 36:1065-1113

such that S—reversible vector field
va-&-l = (&)m)*}?m = ~m+1 + ﬁm-ﬂ—l

P 0
:a,ﬁJri(gz(g)+B(9,.»§)+bm+1(9,%‘))zafZ (6.9)

a -
—i(QE) + B, &) + bny1(0, *;‘))28*z + P

with
16m+1 o0, DGy 1)x O < Tmt1s (6.10)
1 P15 D1 s ) x O =< Emep1 (6.11)
Moreover, ®,, satisfies
- 81
1®m = idl5,,1: DGt 50snx0 < CEm" (6.12)
”’D&)m Id”‘nﬁrl iD(Fnt1,5m41)x O = = CS IOO (613)

Proof Suppose

Xm = Nm + Fm,
where ﬁm and ﬁm satisfy (6.8), (6.9)—(6.11) with m in place of m + 1. ﬁm can be rewritten
as

ﬁm=§m+(ﬁm_§m)v

with
= Y% By
m,K,
av
Velz.Zi) k1<K, v (6.14)
o]+ B1=<1

We set the parameters (r, 7, ¢, E y, o, K) in Section 5 to be (r, y, ¢, ;:m, Y, Om, I?m)
here. Then, by Lemma 6.1, the assumptions (i)—(iii) in (5.6—(5.8)) are satisfied. It follows
that the homological equation

[N, Fnl+ Ry = [Ru]

admits an S—invariant approximate solution F,, on D(ry, — 26y, Sm) x O satisfying the
estimate

CO{ Qn+1 2‘L’+1
yzay%l(r_rm)4

5(127+18)
2tU

”Fm||§m’D(;m*25m,§m)><O = ”R ”vm D (Fp Sm)x O+ (615)

By the definition of ¢, n > ng and ¢ >

—2”+27”OC1’U < Q—120(2=T+3)

Em <8 =¢€=¢_ Q,,+1 n+1 s

120(2z+f)
Qn+1 =< 8

In the proof of Lemma 6.1, we have obtained
7 ( 1 ) 1211+18 P 1+18
m == <&, TN
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By the definition of &,,,

s o -4 S 0> 424(21%*)
Om = 5 omy3 Qug1 Z Lo 87079,
— < Qn+18 WHFO < Fy
Om

1
241436

Owing to the assumptions on €y, one can obtain

127436
rosS
(rosoyvo) < yl2eH36

0= —(peo =N
no

1 ( 1 ) 12r1+36 (1) 1211+36
Yo &0 3

1
T2t+36 [
l 5 3 S 2 (1) + S zgm 12{+36.
14 Yo £

and

It is obvious to obtain that

4
1 8 4 _ 1
< Qn < Qz <, ezl

r—)* =\ ro =

Using the inequalities above, we have

| 1150, DGpp— 26 5m)x ©
Co*Qp K
- )/25,%1(1” — )t
Cot? Q2  KZT!_ (6.16)
~ y2ar—it "

IR l5,0, DG ) x O

1— 2 2t 2 20 2
~' T T0(241+36)  T2r+18  12r+36  10(24t+36) _ 10(241+36)

Let ,, = ¢},m, then

Xm+1 = (&)n1)*)2m
:(Nm+iém)oxt1:+1émox%+(ﬁm_ﬁm)ox%

1
i N . ~ L (6.17)
= Nm + [[Rm]] + R+ /[Rm(t)v F] °¢;7mdt + (P — Rp) °¢'}17m
0
= ~m+l + ﬁerl’
where
Nm+l = Nm + Hkm]],
~ o 1 ~ ~ ~
Pm+1 = Rm +/ (¢§?m)*[Rm(t)7 Fm]dt + (d’}?m)*(Pm - Rm)v (618)
0
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where R, (1) = (1 — 1)([Ru] 4 Rin) + 1 Ry
Now
bing1,j (0, &) = by, ;(0,6) + iR, 7 (8, 8),
for which we have

16m+1llo0, DFEny 1) xO = 1w lloo, Dy x0 + 1diag R oo, Dy x O
< Nbmlloo, DG, 5m)x© T 1 P 15,0 DGy ) x O
= Cm + gm =< §m+l

Now we consider the estimate for coordinate transformation &Dm = qﬁ}; . To this end, we
first prove

47
1D F 151, DGims1 s xO < Emp” (6.19)

Indeed, by Cauchy’s estimate and (6.16), one has

1D Eon I3, Dpiy Fnt1,5m+1)x O

= ”DF ||Sm+] me+1 (rm_S&m;5m+l)XO
1 C
= T]m+1 3Um ”F ”sm, pm(rm—Z(rm,sm)XO

C (8L_1__1
< 7531100 37 25 4736)
3
As a consequence, for every —1 <t < 1 the flow ¢>tFm generated by vector field F,,, defines
an S—invariant coordinate transformation

A7
<Em.

(b;:m D@yt Smr1) X O — D[Py, i) X O
and by Gronwall’s inequality and (6.16) (6.19).

81
100
ld||sm+1 D1, 5ms1)xO = Cll Fm ||Sm+1 D@t 1,5mp1)xO = Cém

t
gt —

1D,

)

47
100
Id”sm-H D (Fpt1,5m+1)xO = = C”DF IIYm-%—l D (g1, Smy1)xO = = Cé‘

Finally, we give the estimate for ﬁm+l in (6.18). It follows from the definition of K m that

e Kmom =z, =%

§mu>

By the conclusion in (5.10) and (6.16),

| Rint 15, , D (o —461m,5m) x ©

202 = 2 —K P
= C0e2 02416, 2 = F) 2~ (1R ls, Dz 51 x0

o 12,y | o ||gm,D<;,,,72&m,;m>xo)

) 2 " L (6.20)
< CO 48()8 T 10(24t+36) ~ 10(24t+36) 10(24r+36) 5( m rég\ 0)
2 20 L4y 8L
5 CO 48 10(24r+?6) 10(247+36) 10(24r+36) 5 100
8
< &n.
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Using Cauchy’s estimate and above estimate, we have

| Rim ||§m+1 D (Frnt1,5m+1)x O

=< =
Nm+1

| R |15, Dy —46m,5m) x O 6.21)
1

=< ng+1'

1
3

I i

<é&n’E

Then we get the estimate for Ru(t) = (1 — t)([[]ém]] + Rm) + tR,, obtained above,

| R (O 15, Do —46m 45 41) x O
< 1RW3,0, DG —46m.5m)x© T 20 P50, DG, 5m) x © (6.22)

8
g 4+ 28,

IA

The estimates for R, (t) and F,, imply that

1% Y[R (@)s Foulllssr. Dps i) x O

2 .
= == IR OI5,. G460 450 )< O 1 Fm 5, DG 460 450 1)x0  (6.23)
Nm+10m :
[ B 81 1.
<28, & Mo (28 + Sm)gmo = —Em+1-

~

Consider the estimate for || (¢,1vm)*(15m — Iém)ngerl D 1.5mi1)x O~ We rewrite P, — Rn
as f’m — Iém = ﬁ(])m + Is(z)m where

~ 0
5 (V) i(k,0
Pom= ) > Pl
velzj.zjzl) k=K,
lee]+[Bl<1
and
; 0
B 5V ik.0) azp 9
Pom =), D Pk v’
velz;.zjjz1) kez?,
loe|+[B1=2
Then

1, ) (P — R 5,11 D1 i) x O

< 2/ P(iym 15015 DGin—56m 5man) x O T 21 Poym 15015 DG —56m 5 1) X O
32
|
= 21 (55,72

64 % 12 1Jr18 3 1
h o -
< g"?m EmEm Em 2858, < EsmH.

—5K,,6 ~ - ~
N Pl DGop5o)x © F 20m1 1 P15, DG i) x O
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All these estimates yield that

Pt 1 15,1: DGt 1,5 ) x O
y , .
< NRmll5i1. DGt Sy x0 T 1DE ) (R (1) Fndll5, 11, DGors 1 5ns) x O
: . 5
+ 1@E, ) (P — R 5 1: DG 1.5ms 1) x O

=< gm+1-

Now we verity the Toplitz—Lipschitz property of Fm+l-

Lemma 6.3 Suppose the vector field ﬁm inX m= ]Vm + ﬁm above satisfies Toplitz—Lipschitz
property (A4) on D(Fy,, S) With€y,, pm inplace of e, p. Then the vector field §m+1 in Propo-
sition 6.2 also satisfies Toplitz—Lipschitz property (A4) on D(Fiya1, Sm+1) With €1, Pmt1
in place of ¢, p.

Proof From the proof of Proposition 6.2, it is not difficult to verify the following inequality
holds:

3 - 60(27+3) 50
32 _kma'm ’ < (24‘L'+36) (I" B rm)2 )/2 o
=€ &, < min | — N == )
O Ont1 CoK2

It is just the assumption (5.27) in Proposition 5.2 if we replace (r,7,y,0, K) in Section
Sby (r, Fm, ¥V, Om, Km) Then using Proposmon 5.2, F,;, and Rm in Proposition 6.2 satisfy

Toplitz—Lipschitz property (A4) with & sm, sm, respectively, in place of € on D (7, — 56, Sim)-
Below we verify P4 satisfies Toplitz—Lipschitz property (A4). Note that it can be
rewritten as

Puii =Ry + Py — Ry, +[Pm,F]+ [[Nm,F]F]Jr [[Pm,Fm]F]
1 - ~
+ot = [Ny Fal o ,Fm]+.—,[~~[Pm,Fm]~~ ol
L N—— ———’ 1. —————
i i
Thus it suffices to verify [Fm, F,]and ﬁm — ﬁm satisfy Toplitz—Lipschitz property.

e We first prove [Fm, Fu] satisfies Toplitz-Lipschitz property.
By the definition of Lie bracket, the z; —component of [ P,,, F},] is

In what follows, we only consider a‘%[ﬁm, F,,]) and the derivatives with respect
J
to the other components are similarly analyzed. To this end, it suffices to consider

2 a5@) 4 =2p)
Z 0P F(Z") and ) OB 9Fm” ip 32 [P,,, F,,]@ since the other terms can be simi-
h

3z,0z; dzp  0zj

larly studied.
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Let p 1= lim 2B gz oy Th
— lim m “2 = lim 1 . n
et Pij Soo 0zj4e 7 i) t—>00 0%j+1 ¢

2 5 Zitt) 2 5 (@itr)
(8 P @n) _ 94 i F(zu))
h

D(Ft1,5m+1)

m lim
02107+ 1=00 07,07 4

3ﬁr£fj+t) .

< N Fnll DG —26.5m) a2 i
J D 5m)
S+ 16
< gml I e —Pmli—Jjl < S m+l *5m+l\i*j‘_
t

0Zhyt  0Zj4r

ai)rffiﬂ) 8Frf11h+t) .
= i i

=[]

D(Fmt1,5m+1)

(Zr+r)
0P,
22
= Z WS 1D G ) -
9zt L
D(Fnt1,8m+1)
aF(Zh+z)
44 ~ ~ m _ fiz
+ Z ”pih ‘|D(r,n+1,s,n+1) 32741 th
h ! DGt 1 ms1)
aP(«m) aF(Zh+t)
ih - hj
32h+t - < 0Zj+1 R
D(Fin+1,85m+1) D (Fy41,5m+1)
5 (Zite)
aP,
22
< Z Wi DG 260500 | 57— = P
Zh+t -
D (Fim»Sm)
(Zhtt)
JdF,
44 _ I m _ fIZ
+ 2 NP D —demsn) | 52 y
h s DG m)
5 (Zigr) (Zh+1)
+Z 9P 2z dFn _ rz2
e ~ i 0z )41 hj
D 5m) / DGy —26m.5m)
143 1+7 1+—
< Z Sm _ﬂm‘] h _pm‘l h|+ _,Om|1 hl _Pm|J hl +
o\ Tl I 1
1z 1+2
&m e~ Pmt1li—jl Z e~ (Pm—Pm+1)(|j=hI+1i=h])
U
h

3z ~ (Bm—Pm+1)

310 Em+1 e Pmrtli=jl if 520 emThm + 1 <1

m , m — = 1.
|[| e(pm Pmt1) — 1

IA

e We prove P, — R, satisfies Toplitz—Lipschitz property.
Let
P = R = Pym + Poym

where

Pam= ) D Pl

Velzj,2j =1} (k> K,
la|+IBI=1

f’(z)m = Z Z P(Vkaﬁe (k.0) e

velz),zjjz1)  kez?,
la|+1B1>2

%z

_ﬁm li—

7P,

7.

hl =i —hl

@ Springer



1096 Journal of Dynamics and Differential Equations (2024) 36:1065-1113

We write
p(zi) _ p(zi) ik, B (zi) i(k,0) 5 (zi) i(k,0
Piym = Z P, oo '+ Z P, keoe Yzj + Z Pkaej 'z
lk|>Kon lk|> K. j Ik|> K. j
and
(i)
8P aP(Zz
9T m _ 5 (2 i(k.6) _ >
9z Z P, keOe( >—RK,,,
T k=R
Then
(Zz+t) (Zz-H)
P P
(T (Dm

aZ.,+1 [—>00 aZl/+[ 5 5
D(rerlaSerl)

32 Ry 080 3P
< e Kndn ~ lim
T Zjpr 1700 WZju | o

3E.
g‘rﬁl ﬁe*/’nm*]‘

”,%8'"“ e~ Pmtili=jl
-

For P . we note that

2)ym>
( 1 ( 1
PS5 = Y B0
loe|+[B81=2
= B o @azy+ P Oz + B, ©FF+ 0(zl)
and
p(zi)
oP P(Zz)
o= (Zzl 6.0,0) ).
j
Then

2)m _ 2)m
0Zj41 1500 074y

>

l

3P(Zl+t) 8P(Zl+t)
lim

D(Fm1,5m+1)x O
32 p (Zi+1) (Zz+z)

Z——(6.0,0)) — lim Zz; ®,0,0))

lazj +t

3 (aﬁn(f,urf) . 813,;Zi+t)>
lim

<C

02707 j+¢
i DGg1.5mi1) %O

<c s Yl

Iy <$mi1 <7 2

0Zj 4+ 1500 0z

D(Fp. 35m)x O

eplll ai)’glziﬁ) . af,"(ert)
<C sup Z |z1] —= 3 — lim 3
||Zi||[7<§m+1 1 Sm Z‘j+t e Zj+t D (P, Sm)x O

< Cmrt Em o pli-j)
Sm [t
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-
~3 E€m+1 _j i— i
SCS&Z—M e~ Pmili=Jl,

(6.24)
Similarly, one can verify that

B (Zitt)
oP
lim —Lm

1
< &
t—00 azj+t

By 1o Pt li=]

(6.25)
D(;erl VENI‘FI)
and

1 o
< Cénlf 8m+le_pm+1|l_]|
1—00 8Zj+t

. (6.26)
D(’:m-%—l s§m+l)

Therefore, P, satisfies Toplitz—Lipschitz property with &1, fm1 in place of €, p.

[}
After performing L steps of finite iteration, we take r = o
that

> and s = 5. It is obvious

. 7o .

V+§VL—1—72m+1 =rL, (6.27)
43)L_q

sy =80 W Vg,

(6.28)
All above analysis implies that
Corollary 6.1 Consider X in (6.3). Forevery0 <y < 1,7 > 10,5 > 0,r >0, p > 0,
A> 14, if
Q+[B]l e MCyu(y,1,K,0),

| Blloo,p(ryx0 < &, (6.29)
IPlls:pirs)x0 < € (6.30)
and P has Toplitz—Lipschitz property on D(r, s), then there exists s; > 0, r1 > 0, py > 0,
and a real analytic, nearly identity, S—invariant transformation

D :D(ry,54) x O — D(r,s) xO
of the form

0,2,2) > (0, W(,2.2), W, z,2)
where W and W are affine in z, 7, which transforms above X into
Xy =Ny+ Py

= w—

. 9. 3 (6.31)
+i(QRE) + B1(0,8)z— —i(Q(E) + B(0,8)z2— + Py
00 0z 07
with
1B lloo,D)x0 < &, (6.32)
I Pollse:Diry s yx0 < E4s (6.33)
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and Py has Toplitz—Lipschitz property on D(r4, s4), Moreover, ® satisfies

. 4
P — ld||s+;D(r+,s+)xO <e&, (6.34)

9
ID® — Id|ls,;D@ry 5. )x0 < €20. (6.35)

Proof Take
®=dgodjo---0ds_,
then by Proposition 6.2, we have
X, =®*X =N, + P, =N, + P
with By = B + by, and thus

| B+ lloo,p(rs)x 0 = 1 Blloo, D7 )x0 + I1PL oo, D) x O
<S¢+

<.

By Proposition 6.2 and Lemma 6.3, (6.33) holds true and P4 has Toplitz—Lipschitz prop-

erty.
Now we verity (6.34) and (6.35).

I1® —idls,;perys)x0 =lPoo @ro-- 0Pt —idls;;Dry,50)x0
<%0 — idlls;; D .5)x0
L—1j-1
+ Z 1_[ DDy 5, 11:DGpr1.5541)x O IR = 1A 5;41: DG 41,501 xO
j=1b=0

1

81 8
<Cg;™ +4Ce/™

PIS

81
<2C§)™ <e5.
‘We first have

ID®,, — 1|l

Sm1: DFEpt1,Sm41) x O

Nk

5 —1
ID®,," —1d|l5,,1;DFns1,50)x0 =

-
Il

(6.36)

47 \J 47
Ce0 ) <2CE™,

Nk

=
1

~.
I
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then

DD — Id||s+;D(r+,s+)><(9
= D(@goPjo---0®r_1) — Idlls,:D(ry.5,)xO

L-2
< ]_[ IDPol5,.1: DGprt 5ps)xO N PPL—1 — 1|5, Dy ,51)xO
b=0
L-2 j
5 51
+ Y [T I1PPols,1: DG 50O DT = 1dll5,, 41 D1 i) <O
j=0 b=0
L-2
47 A7 9
<2CE®, +2C) E™ <em.
j=0

6.2 An Infinite Induction

Givenr > 0,5 >0,p >0,7>10,0 <y <1, A> 14 and U defined in Sect.5. Suppose
c is a constant with ¢ > %@H). Let0 < & < 1 and ng € N such that

—detU Ny s
Qno+1 < & < min Tgw, 277y, 2770y, (6.37)
and
Ine ! < 87ﬁ+36. (6.38)
For v > 1, we first define
6y =601~ Optiy TV g0 = 6. (6.39)

We also define other sequences as follows.

v—1 v—1
1 1
L=y &, n=n-3) &. w=y
i=0 i=0

1
2\ #+6
Y ro
u=L< o +l,ru=74Q4 L TO =T,
2V¢tUIn Qn0+vfl

24| )
g((g) 24Q2t+3)In 3 _1>
3\\12

v+l
Pv = o (1 _Zzl> , po=p, Dy = D(ry, sy).

(6.40)

» 50 =S,

Obviously, sog > -+ >, > 541 > --- \(Oandrg>--->r, >r,41 >--- (0.
According to the preceding analysis in Sect. 6.1, we obtain the following iterative lemma.
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Lemma 6.4 (Iterative Lemma) Suppose ¢ satisfies (6.37) and (6.38), and the S—reversible
vector field

X, =N,+ P,

— 0L 1HQE) + By 0: £)2- — Q) + By @ D) + Po(0.2.7: 8)
00 9z a9z

on D, x O, satisfies

| Bvlloo, D(ryyx 0, < v 6.41)
Q&)+ [Bu(;8)] € MCyh(pr, T, Ky, O)), (6.42)
I Pylls,; Dy x0, < &v (6.43)

and P, has Toplitz—Lipschitz property (A4) with ¢, p, in place of €, p. Then there exists a
real analytic, S—invariant transformation

®,: Dys1 x O, — D,

of the form (0, z,%; &) — (0, W, (0, z,7; ), W,(0, z, Z; §)), where W, and W, are affine
in z, z, satisfying

4
[P, — id”suH;DH]xOv <e&y,

9
”DqDV - Id”sv+1:Dl,+1><(9V =< ‘91)20

and a closed subset

owi=0,\  |J U o, (6.44)
K, <|k|<K,+1 0<|l|<2
where
To (o) = 1€ € Oy 1 [(k, @) + {1, QE) + [Bu1])] < Z“{)*j}

such that X,11 = (9,)*X, = Nyy1 + Pyt satisfies the same assumptions as X, with
v+ 17 in place of ‘v’.

Proof By the assumptions (6.41), (6.42) and (6.43), applying Corollary 6.1, we obtain a
real analytic, S—invariant transformation &, as described in the lemma such that X, ;| =
(®,)*X) = Ny+1 + Py41. Moreover, the estimate

1
|Byr1 — By ”oo,D(rvH)xOv <2 < ‘91)2 (6.45)

holds.

The new parameter set O,, 41 can be constructed as follows. For all ¢ € O, and |k| < K,
by (6.45),

[k, w) + (I, 2(8) + [Bvy1])]
> [(k, @) + (I, 2(&) + [B,])| — {1, [Bus1] — [Bu])]

1

2
&
Vv Voo Yv+1

> .
Tkt k)T T (k)T

Then it remains to exclude the resonant sets F,‘:IH (yv41) for Ky, < k| < K41 and0 < |I] <
2, and we thus obtain the desired parameter set O, 41 in (7.2).
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Applying Corollary 6.1 again, on Dy 41 x O, 41, X,+1 has the same properties as those
of X,. m]

7 Convergence and Measure Estimates
7.1 Convergence

We begin with the S—reversible vector field

Xo=No+ P
=N+P (7.1)
) Q@) — Q@ + PO, 2.5 €)
=o—+i — =i — '3, %
“90 ‘8z “az “f
on D(r,s) withé € 0. Q; € C‘I)V (0) and By = 0. The non-resonance condition
Q € MCy(y0, T, Ko, Op)
is satisfied by setting
o=0\ {J U Mo (72)

0<|k|<Ko 0<[l|<2
The perturbation
”PO”so:DoxOo =< &0.

We conclude form the iterative Lemma 6.4 that there exists a decreasing sequence of
domains D, x O, and a sequence of transformations

P 2:<I>00---0(I>V,1 :D\,XOU,1—>D0,

suchthat (®V)*Xy = N,+P,, v > 1, whichsatisfies the properties in Lemma 6.4. Following

from [40], ¥ converge uniformly on Do, X O, € (] Dy, x O, where Dy := T2 x {0} x {0},
v>0

0, = ) 0,, to a Whitney smooth family of smooth (C*) torus embedding

v=>0
@ : T? x 0, - P.
Similarly, B, converge uniformly on T? x O, to a limit B,. Moreover,
IX 0 ®" — DO - Nylly,:p,x0,
<ID®"(ls,:p,x0, [(®")*X — Nylls,:p,x0,

=0(&y).
Let v — oo, we have X 0 ® = D® - N, on D, foreach § € O,,, where
) . 0 . [
Ny =0— +1(R2(8) + Bx(0:§))z— —1(Q(E) + B«(0; )z —=. (7.3)
00 0z 90z

As in [40], ® can be extended to D (O, %) x O, since @ is affine in z, z. More precisely,
uniformly on D(0, %) x O,, we have

(®")*X — N, — ®*X — N, =: P, as v — 00,
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such that
3 W) (g gy 058 0
P, = Z D Pay0:6)°2 P
velz)Z,j21) lal+BI=2

At last, we verify C*° smoothness of ®* on 6. For ®" defined above,

v—1 v—1
9
ID®" l,.0,x0 < [ 1P®jl5;.0,x0 <[] (1 +el ) <2,
Jj=0 j=0

then

4
1 . 3
10" — @VIl5,,1,Dy01x0 < IDPVIls,, D, x0 - [Py — idlls, D, x0 < 265

By the definition of &, we know that for every b € Z2, there exists some N € N so that for
1] 2

408 ., -%
all v > N, we have 2 "g*‘ <o,

Then by Cauchy estimate, we have

—|b
(@ — @) <r, v+t —

q;V ||Sv+lev+l xO

bl
_< Q”””) 2ed
ro

<&y - €

51l
’89b

it

4
5
v

= wi

=&

)

which implies the limit ®*° = lim ®" is C* smooth on 6.
V—>00

7.2 Measure Estimates

In this subsection, we complete the Lebesgue measure estimate of the parameter set O\ O,,.
In the process of constructing iterative sequences, we obtain a decreasing sequence of closed
sets Og D O1 D --- such that O, = () O, and

v>0
ono, =) U  Tuow. (7.4)
v=0 K, _1 <|k|=K,,
0<|l1<2

where for v > 0,

F}:l(yl)) = {%— S OI)—] : |<k7a)) —+ <l, Q(%‘) + [BU]>| < <]):;'T }

here B =0, K_| = 0.
In the following, it remains to consider the case of / = ¢; — e, i # j, which is the most
difficult one.

Note that ;(£) = d(&)j + 2;(). [ Bylloo, i) x 0y, < 283
Let

Q,(8) = Q) +[B)],
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IﬁﬂmrzFeowuuhm+gm@%ﬁgﬁan<£ﬁ,

and

MY = (k, C{)) +Qv,n(g) _Qv,m(s)

Lemma 7.1 SupposeC = C(Ao, A1, A2) isaconstant defined in Section 5. Then for any given
n,m € Nwith|n—m| < CK,, thereareng, mo,t > lwithl < ng <2CK,,1 <mg < 2CK,,
such thatn = ng +t,m = mqg + t. Thus

U 1—‘I‘c}nm C U Flg,no+t,m0+t'

n,m>1 1<ng,mp<2CK,,t>1

Proof Tt is easy to see that there exists a 7y > 1 such that |[n — t9| < CK,. Takeng =n — 1y
and mo = ng +m — n, then

|mo| < |ng|l + |m — n| <2CK,.

We have O

Lemma 7.2 For fixed k, no, mo,

v )/U
meas (U l—‘k,no—}—t,mo+t) =c—,

teN va
here c is a constant depending on Ao, A1, Ay and meas(O).
Proof Let @, ; =d(§)j + Qg,j, and M, (1) = (k, o) + 2, 041 — 2, pps-
From the Toplitz—Lipschitz property of P,, we conclude that

€0

IMy(t) — lim My(1)] < —.
t—00 ]

Let
rv —leco, | lim My(t)| < 2
k,ng,mop,00 * v=le e Y % .
K
For & € Ov—1\T'} 0 1o.oer |1iMi—s00 My (1)] > V—j
When [t > K7, for & € Oy 1\, .0 o> We have
IMy,(@)] =| lim M, ()| — [My(t) — lim M,(7)|
—00 1—00
> yvf - 870
ki !
LA LOT -
- z z - T
sz KVZ KV
Thus

14
Oumt \ T sy g 00 € (€ € Oum = IML(0)] 2 22)
v
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then

MR nomoce 2 | (E€Ou1:1M, (z)|<—}

U
t]>K?

Notice that by Lemma 9.2, one has |0 (M, (1))| > %, then

W
meas (r;(),n(),m(),oo) E Kr
and
14 14
meas U {“g‘ e Oy_1: IMy@®)| < —UT} < CK—VI.
vV v

T
lt|>K.}?
T
When |t| < K.?, consider the resonant set

Fl]c),no,mo,t ={ecO0,1: M1 < 7}

KT
We have
5 CW Yv
v 2 "
meas U Fk_no,mo’, <2K; Xe <c—.
z v Ky
lt|<K?
Therefore,
v )/1)
meas <U 1—‘k,n()—H,m()-f-t> =c r-
teN K

According to the above analysis, we obtain the following lemma.

Lemma 7.3 Let T > 10. Then the total measure of resonant set should be excluded during
the KAM iteration is

meas (O \ O,) = O(y).

Proof

ono, =] U 1o,

v>0 K, <|k|=Ky,
0<l|/|<2

meas (O \ O,) Z meas U o)

V>0 Ky_1<[k|<K,,
0<|/]<2
<ZCK,, == 0.
v=>0
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8 Proof of Theorem 1.1

We give the proof of Theorem 1.1 by Theorem 4.1.

Leti; = w?j?and dj(x) =,/ 27" sinujx, (j > 1)betheeigenvalues and eigenfunctions

d2

of operator — yre

under Dirichlet boundary conditions y(0) = 0 = y(%). We also denote

vi(x) =,/ 27“ cos /4 jx, and obviously %qu(x) = ujv;x).
To write Eq. (1.1) as an infinite dimensional reversible system, we introduce for p > 0
the following two Banach spaces consist of odd functions

Why=1u=Y aqj;:llul, = e"|q;| < oo}, (8.1)
jz1 =1

and even functions

When =1{u =Y _pjj < lul, =Y e |p;| < oo}. (82)

j=0 j=0

Through the inverse discrete Fourier transform S : £/ — Wg daq (resp. WE o), Wf 4q (resp.
W, .,) may be identified with the space £7.

Letu=8qg= ) q;p; € Wfdd. We write
j=1

fO, x,u,uyx,ur) = Z fijn (0, x)uiu/{uﬁ'.
i,j,h=0
By conditions (1.3)—(1.5), fi;jn (0, x) satisfies
fijn(=0.%) = (=1 fijn(0. x)
and
fijn (0, =x) = (=D £i340, %).

Forevery x and i, j, h > 0, fijn(-, x) is real analytic in the strip {6 : [Im#| < r, r > 0}. For
every 0, fijn(0,-) € W}’; UW:en.
Then Eq. (1.1) is written as

Gj+rjqj+egj(ot,q,q) =0, j =1 8.3)

where g;(wt,q,q) = foﬁ f(wt, x,8q,(Sq)x, (Sq):)¢;dx and reversible condition (1.3)
becomes g;(wt, q,q) = gj(—wt, q, —q).

Letz; = —\/qu/' +1ig;j,zj = —~/Ajq; —iqj, then Eq. (8.3) can be rewritten as
b =0,
tj=iyhjzj —iegj O, ... =52, HEE L), (8.4)
Zj=—i/Az) +iggj(9,...,—zzfji:,..., S, =1

which is reversible with respect to the involution S(0, z, 7) = (-0, Z, 2).
Lets > 0, then on D(r, s) the corresponding S—reversible vector field of system (8.4) is

X(0,z,z;0) =N, z,z; ) + PO, 2,2, 1), (8.5)
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and

N =0 +iQ(0 — Q07—
=w—+i — —i —,
26 Mz sz
. a . ad
jzl ’ jzl

where Q;(n) = \/Aj = uj.

Now we give the verification of assumptions (A1)-(A4) for (8.5).

Verifying assumptions (A1) and (A2): Taking & = u € [1, 2] as the parameter. Q;(§) =
d(“;‘)j—l—ij(E) withd(§) =&, ij(E) = 0.Let A = 1 and itis obvious that (A1) is satisfied.
Then (k, w) + (I, 2(&)) = (k, w) + &() #0on[l,2]. and

|9g ((k, @) + (1, QEONT =D =1

Then there is a subset O C [1, 2] of positive Lebesgue measure such that (A2) holds.
Verifying assumptions (A3) and (A4):
We first verify (A3).

f(97x5 u, uy, M[) = b()(@,x) + 0('“')7

where bo(—6, x) = bo(8, x), bo(0, —x) = —bo(0, x) and by (0, x) = D ;- boi (0)i(x) €
WP, . Suppose sup ||bo(6, )|, < s.

|ImO|<r
In the following, let C = C(r) > 0 be some appropriate large constant and take ¢y = Ce.

Note that P® = 0 and P& = Fieg; = Fie [y (bo(8, x)$; + O(lu]))dx. Then
”P”S;D(r,s)

1 ; ‘ z
= s Y& (1P g0 + 1PPlpgyxo)

Sl lp<s =1

IA

Ce

T(Ilbo(Q, INp +lizllp) = Ce = go.

We then verify (A4). Without loss of generality, we only verify the case of
fO, x,u,uy,u;) =bo0,x) 4+ b1(0, x)u + br(0, x)uy + b3(0, x)uy,

and other higher order terms can be verified similarly and won’t cause any essential difficulty.
Here

bo(=0,x) = bo(0, x), bo(0, —x) = —bo(0, x),
bi(=0,x) =b10,x), b1(8, —x) = b1(8, x),
by (=0, x) = by(0, x), ba(0, —x) = —b2(0, x),
b3(_97 x) - _b3(97 x)5 b3(95 _x) - b3(99-x)'
One can expand b; (0, x) (I =0, 1, 2, 3) as follows: for/ =0, 2,
bi(0,x) =Y b(O)¢r(x) € Wl
k>1
and for/ =1, 3,

bi(0,x) =Y bix(©)Y(x) € Wiien.
k>1

@ Springer



Journal of Dynamics and Differential Equations (2024) 36:1065-1113 1107

Suppose

b (0) < e sup [0, )|, < Ce P, 1=1,2,3.

|ImO|<r

Denote ¢ = %(,/ 27“)3. We have

g q.4) = / " F(t %, Sq. (Sq)x. (Sq))didx

/ bo(®, X)idx + Y ;q/blk(Q)i D cigibu(6) £ Z —q,lm(e)

kEj==%i ktj==%i ktj=
Then
. iz 2=
pe) = 4 i@, ... _Y oo oo
iegi @, ..., TR T )
= —is/ﬁbo(é,x)(pidx
0
iec _ iec ~ _ ec _
Z @G ) Z g ouG I Z S bw @@ =)
ktj==i ktj==i k+j==+i
Hence
opE) iec -~
=> b1k<9>+—bzk<9)+—b3k<9)
0z; ~ . 2
k—j=i
EC A EC ~
> blk(9> b2k<9)——b3k<9))
—. 2u 2p
iec » iec A &c -
+ (2 75 bw(®) + 5 b (0) — 7b3k(9)>~
i \ZHE w i
9 P Gi+t) B iec B (9)+i8c[; o ©) + scl; o ©)
T = T2 10 1G+j+21) 2(i+j+21) 2 3Gi+j+21)
ISC
m 1(] iH(0) — bz(, iH(0) — b3(] i (0)
4 (e)+ b ©) b ©).
202 +1) b ) 2(-J) 3(i—))

Taking ¢9 = Ce and p = p, we get

o PGi+r)
lim

t—00 3Zj+t

< CeelimilP = gpe~li=ile,

D(r,s)xO
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Since e Pliti+21 — o—p(i+))e—2p1 < %eﬂoll'*jl’ then

o PG+t o PG+
— lim
0Zj4+r 170 0Zj4y

D(r,s)xO

H _ 16‘.6' l;
2u2(j + 1)

131(,,'—:')(9) +

iec A ec ~
1Gi+j+20(0) + EbZ(i+j+2t)(9) + Eb3(i+j+2z)(9)

TR L )©)
2u2(j + 1) 22+ 1) " lbexo

Ce ~ ~ ~
< T||b1(i+j+2t)(9)||D(r) + Cellbai+j+20 D pey + Cellbsgivjr20 Ol pir

Ce + Ce A
+ T”bl(jfi)(e)”D(r) + T”bl(ifj)(e)”D(r)

< 20 li=ilp,
I
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Appendix. Proofs of Some Technical Lemmas
Proof of Inequality (5.25) in Proposition 5.1

Proof Below to estimate || Ai_j1 llo, we first estimate
|%(Qij + [Bi; DI
((k, ) — (2 + [Bij 12’
Fori # j, on one hand, since ;(§) =d(§)j + 52,-(5),
105 Qij = 10:d (i — j) + 0: (% — 2))| < (A2 +2I1Ql0)li — jl.
[0:[Bijll < 2| Bllco,p(ryx0 < 2¢]i — jI.

Then
3A1 . .
[0 (2 + [Bij D] < (A2 + T)|l —Jl
On the other hand,
Ay

[0g (2 + [Bij DI = 02| — [9:[Bij]l > Tll —Jls
thus

Ay 3Ay ..

Tll — JI < 10:(2; + [Bij DI < (A2 + T)ll —Jl

Note that

[(k, w) — (2 + [Bi; DI = 2] — |[Bij1l — I{k, w)]

3A1,,. .
Z(AO—T)V—JI—K.

@ Springer



Journal of Dynamics and Differential Equations (2024) 36:1065-1113 1109

Then when |i — j| > CK,

19 (R +[Bij) _ (Aa+GH)
((k, w) = (ij + [Bij1)* ~ CK
When |i — j| < CK, dueto Q(§) + [B] € MCy(y, 7, K, O),
19 (Qj + By _ (As+ 3H)CK>!
((k, w) — (ij + [Bij1)? ~ y? .
Then for all i # j,

|3§(Qij +[B,'j])| _ (A2+%)CKZI+1
((k, @) = (€2 + [BijD)* ~ y2
Therefore,

-1
”A,'j lo

1 |4 () + [Bij D)
ax sup +
KI=K gco \ |(k, @) — (i (&) + [Bij(O)D]  ((k, w) — (Qij + [Bij])?
_ (1 +A2+ %)CKZT-FI . COK21+1

y? 2
|
Proof of Lemma 6.1
Proof (1) In fact, by Lemma 3.1, one has Q, 1 > QZA-
Fm < ;0 = 2r+,
—EY s —2r) > 3
(r—7rm)” =@ —2ry)” = (SQ4 )
and
3607 Qns18 _ Q4
(r_fm)3
1512Q12
< 360—— Q1260 —— ©.1)
n+1 o
1
12,3
=C O 802 <1.
Qn+1’0

Thus we have our conclusion 3607, Q,+1¢ < (r — Fn)3.
(2) From Lemma 3.1, we have Q41 > QA andIn Q41 < Q,lf. Using these and (6.7),

r—rim 4 ;m 1
7( 25~6 )26_ 2 Qn+l 6( 80, )2 - Q11+128(§,
r—Tn

256 - 64 - 2

S
IA
| =

r

0

8 Fm) _%Q}'Hrl 8 7Qﬂ7‘5‘>1 8
—(r—r

ne ( m) On+1 S e 80, Qn S e On Qn
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1
_ anﬁ»l InQy %}_5
e Qg eQn In Qpy1 < e_ln On+1(Qn —0n)

IA

51 _
< e MO’ T < Q;J(rriﬂfnoﬂ"” "0etU

e n+2—ng
— <& ={m
E_

256 Tn
(r — Fm)z
(3) We prove K, < K™ and K,, < K.

We first prove K,, < K. Owing to % > 5 and

thus

1-1
Qn+l; < —

2

S

2n+27n0 Ul
m<L—1=1+ ” nQ;*‘ ,
20247 +36)In3

then we have the inequalities

. 2 1 _5-2m2 40 1
Kn < —In- = ntl 1 5
Om 8m—1 ro 8(2’1)"171

220U g,

L 3
103"y 1 _160G) ot gl 1
- 1o e 1o 8 9.2)
2)1+2 nOCTU+ R
160Q 2(124t+36) 1 ont ;"OL'TU 1
< —Hro In-<g90, 4:214 O I~

IA

1ﬁ1ﬁ 1ﬁ
)6 -0

and
+2-
5 L2” "0 ctU In Q5n+l 210 1
oL+2 (7 2(247+36)In 5 Q 2(24z+%6)
2 =
1 1 _ n+2-ng .y .
>——>0 2Q4t436) o o324 F36)
om+2 — JL+2 — n+1 = .
We conclude from all these inequalities that
-
T+1
K™ y262 1
_ > ’"1 . g2t 418
K 52
" 2COCm
1
2,2 2T+l
T
> Y070 £ Ti18

(20274204, )2.2C - 267

i
. S B
Vozr(% el ( 1 > 20cFD)  T2eF18 T 22t F36)

Co Qn+l €
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1
2.2 2t+1 +2— 1 1 1
( Yoo ) z nO”U(z(zr+3) - 12r+18*2<24r+36)>

COQ?E-‘,—I n+1
1
2.2\ =
- [ _Y'o . Q2"+12—"08 >
B C0Q§l+1 " B
ie., Iem < Km,
. ~ [ . . 2 ﬁ
In (9.2), we have obtained K,, < (;) 1. This together with K > ( X shows
262
that
- 1 1 1 |\ T
Kn _ (&)"7F <1) 7S (22
K - }/2 41:1+6 - & yz
(7) 9.3)
28% 411+6
=\ <1,
ie., I?m <K.

Thus we complete the proof of I€m <min{K, K (’”)}.

Some Basic Inequalities

Lemma 9.1 (Cauchy’s estimate, [29]) Suppose 0 < § < r. f(0, z, Z) is real analytic on
D(r,s), then

A

af
200

af

oE
0z;

c
= 5||f||D(r,s)7
D(r—34,s)

IA

c .
E”f”D(r,s)emlla

D(r,s/2)
here c is a constant.
Lemma9.2 ([5]) Let g : Z — R be b + 3 times differentiable, and assume that

(1) Yo € T there exists s < b + 2 such that g*)(¢) > B.
(2) There exists A such that |g(s)(o)| < AforVo € TandVswithl <s <b+ 3.

Define
Ip={o €Z:|g(o)| =h},

then

meas(Z;) A —1\ 7 s
— < 212434+ +bB+3)+2B" ) hd.
meas(Z) ~— B ( o AR ) ’
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