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Abstract
This paper is concernedwith the existence of quasi-periodic response solutions (i.e., solutions
that are quasi-periodic with the same frequencies as forcing term) for a class of forced
reversible wave equations with derivative nonlinearity. The forcing frequency ω ∈ R

2 would
be Liouvillean which is weaker than the usual Diophantine and Brjuno conditions. The
derivative nonlinearity in the equation also leads to some difficulty in measure estimate. To
overcome it, we also use the Töplitz–Lipschitz property of vector field. The proof is based
on an infinite dimensional Kolmogorov–Arnold–Moser theorem for reversible systems.

Keywords Response solutions · Liouvillean frequency · Reversible vector field · KAM
theory · Töplitz–Lipschitz property

Mathematics Subject Classification 35L05 · 37K55 · 35B15

1 Introduction andMain Result

Consider the following forced nonlinear wave equations (NLW)with derivative nonlinearity:

utt − uxx + ε f (ωt, x, u, ux , ut ) = 0, ε > 0, (1.1)
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satisfying Dirichlet boundary conditions

u(t, 0) = 0, u(t,
π

μ
) = 0, μ > 0. (1.2)

The forcing frequency ω = (1, α), α ∈ R\Q. The forcing term f is real analytic and
satisfies

f (θ, x, y, z, w) = f (−θ, x, y, z,−w), (1.3)

f (θ,−x,−y, z,−w) = − f (θ, x, y, z, w) (1.4)

and

f (θ, x, 0, 0, 0) �= 0. (1.5)

The goal of the present paper is to prove the existence of response solutions of Eq. (1.1) via
KAM theory.

The existence problem of periodic and quasi-periodic solutions for partial differential
equations (PDEs) is an interesting and difficult problem in the fields ofmathematics, mechan-
ics and physics. Different methods are used and developed on this problem, for example,
variationalmethods,Lyapunov–Schmidt decomposition,KAMtheory andNash–Moser itera-
tion techniques. The case of periodic solutionswas firstwidely studied. The first breakthrough
was due toRabinowitz [43–45] for the forced dissipative derivativeNLWwith rational forcing
frequency ω = 1 under Dirichlet boundary conditions:

utt − uxx + αut + εF(t, x, u, ux , ut ) = 0, α > 0, x ∈ [0, π],
and

utt − uxx + αut + εF(t, x, u, ux , ut , utt , utx , uxx ) = 0, α > 0, x ∈ [0, π].
By variational methods, Rabinowitz [46] also considered the autonomous NLW on [0, π]
which had periodic solutions whenever the time period was a rational multiple of π . Later
on, based on perturbation methods (mainly Newton-like methods), Wayne [51], Craig and
Wayne [25] proved the existence of periodic solutions of theNLWon [0, π] underDirichlet or
periodic boundary conditions. The periods of such periodic solutionswere irrationalmultiples
of π . Bourgain [19] and Craig [24] also proved the existence of small-amplitude periodic
solutions for autonomous Hamiltonian and reversible derivative NLW.

For the case of quasi-periodic solutions, small divisor problem will occur. Infinite dimen-
sional KAM theory is a very powerful tool to solve it. Kuksin [34] and Wayne [51] first
studied the existence of quasi-periodic solutions for Hamiltonian PDEs by KAM methods.
One can also refer to [23, 26, 28, 37, 41, 42] and references therein. Although all these works
are concerned with autonomous equations, their methods can also be applied to the forced
ones. In the proof of KAM theorem, to handle the small divisors, the following non-resonance
conditions are required: For some constants τ > n − 1 and γ > 0,

• (Diophantine conditions) |〈k, ω〉| ≥ γ
|k|τ , for all k ∈ Z

n \ {0};
• (the first Melnikov conditions) |〈k, ω〉 ±	i | ≥ γ

〈k〉τ ;
• (the second Melnikov conditions) |〈k, ω〉 +	i ±	 j )| ≥ γ

〈k〉τ ,

where 〈k〉 = max{1, |k|}, ω ∈ R
n is the tangent frequency or the forcing frequency for the

forced case. 	i ∈ R, (i ∈ Z) are normal frequencies. 〈k, ω〉 :=∑n
i=1 kiωi . Another way to

study quasi-periodic solutions for PDEs is CWB (Craig-Wayne-Bourgain) method based on
Lyapunov–Schmidt reduction and Nash–Moser implicit function techniques. It only needs
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Diophantine and the first Melnikov conditions in the proof. One can refer to [18, 20, 49, 50]
for details. By the improved CWB method, [12, 13, 17] also considered quasi-periodically
forced nonlinear Schrödinger equations (NLS) and NLW on T

d and on compact Lie groups
and symmetric spaces, respectively. Using a variational Lyapunov–Schmidt reduction, Berti
and Procesi [15, 16] proved the existence of quasi-periodic solutions of the following wave
equations under periodic forcing:

{
utt − uxx + f (ω1t, u) = 0,

u(t, x) = u(t, x + 2π),

where the nonlinear forcing term f (ω1t, u) = a(ω1t)u2d−1 + O(u2d), d > 1 is 2π/ω1-
periodic in time (ω1 ∈ Q or ω1 ∈ R−Q ) and satisfies some analyticity assumptions. More
recently, Calleja, Celletti, Corsi and de la Llave [21] obtained response solutions for the
following four classes of quasi-periodically forced, dissipative wave equations

utt −
xu + ε−1ut + h(x, u) = f (ωt, x);
utt −
xu ± ε−1∂t (
xu)+ h(x, u) = f (ωt, x);
ε2utt −
xu + ut + h(x, u) = f (ωt, x);
ε2utt −
xu + ut + εh(x, u) = f (ωt, x),

where the forcing frequency ω is weaker than the usual Brjuno condition, i.e., the following
Brjuno function B(ω) is finite:

B(ω) =
∞∑

j=0

1

2 j
log

1

α j (ω)
, where α j (ω) = inf

k∈Zn ,

0<|k|<2 j

|〈k, ω〉|, (1.6)

which is slightly weaker than Diophantine one. The proof relies on Lindstedt series method
and contraction mapping principle.

A frequency ω ∈ R
n is called Liouvillean if it is not Diophantine but rationally indepen-

dent. It is weaker than Diophantine and Brjuno frequency. As we have mentioned above,
Diophantine or Brjuno conditions play an essential role for the persistence of invariant tori
of Hamiltonian and reversible systems. Nevertheless, it would be still possible to establish
Liouvillean KAM theory for some special system like Eq. (1.1) with only two frequencies.
Such possibility was first given by Avila et al. [1] and by Hou and You [31] in the reducibility
theory for linear quasi-periodic skew-products

{
θ̇ = ω = (1, α),

ẋ = A(θ)x .

Wang, You and Zhou [48] andWang, You [47] generalized above results to finite dimensional
nonlinear Hamiltonian case. They proved the existence of response solutions for the quasi-
periodically forced harmonic oscillators

ẍ + λ2x = ε f (ωt, x), (1.7)

where the parameter λ ∈ R, ω = (1, α) is rationally independent and f is a real analytic
function. In [39], the authors of the present paper proved the existence of smooth response
solutions in forced reversible systemwith Liouvillean frequencies. Krikorian,Wang, You and
Zhou [33] revealed the possibility of studying Liouvillian quasiperiodic dynamics with KAM
improved tools in the non-linear skew-product setting. More recently, Xu, You and Zhou
[52] first established an infinite dimensional Hamiltonian KAM theorem with Liouvillean
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frequency. As an application, they proved the existence of response solutions for the forced
NLS with Dirichlet boundary condition:

iut − uxx + V (x)u + f (ωt, x, u, ū; ξ) = 0 (1.8)

where ω = (ω1, ω2) with ω1 = (1, α), α ∈ R\Q, ω2 ∈ R
d . The tangent frequency ω

satisfies |〈k, ω1〉 + 〈l, ω2〉| ≥ γ
(|k|+|l|)τ for all k ∈ Z

2, l ∈ Z
d\{0}. The forcing ter f is a real

analytic function. Chang, Geng and Lou [22] proved the existence of bounded non-response
solutions for a class of Hamiltonian wave equations with Liouvillean forced frequencies.
Their result shows that one can not obtain quasi-periodic solutions with Liouvillean frequen-
cies for the nonlinear autonomous PDEs.

In this paper, we consider a class of non-Hamiltonian but reversible forced wave equations
(1.1). We would like to make some comments on it.

(1). Let us explain why we use the μ in the length of the interval as a parameter. In the
measure estimates, we need the condition

| d
dμ

(〈k, ω〉 +	i (μ)−	 j (μ))| ≥ c > 0, (1.9)

If ω is Diophantine, the inequality (1.9) is easily satisfied even if there is no parameter μ.
However, now ω is fixed and could be Liouvillean, to guarantee the inequality (1.9) still
holds, we use the parameter μ since 	i − 	 j = O(μ(i − j)). Note that the Eq. (1.1) with
Dirichlet boundary conditions (1.2) is equivalent to the following more natural form

utt − μ2uxx + ε f (ωt, x, u, ux , ut ) = 0, (1.10)

with u(t, 0) = 0 = u(t, π). Here the role played by the parameter μ is the same as that of
the parameter λ in (1.7) or the parameter ξ in (1.8).

(2). The presence of derivative nonlinearity in (1.1) leads the lack of smooth effect of
perturbation vector field. This brings some difficulty in the measure estimate. KAM theory
for derivative nonlinear PDEs was developed by Kuksin [36] and Kappeler and Pöschel [32]
for KdV-type equations. See also [8, 38, 53] for the unbounded perturbations of Schrödinger
equations. Berti, Biasco andProcesi [10, 11] studied the followingHamiltonian and reversible
derivative NLW, respectively:

utt − uxx + mu + f (Du) = 0, m > 0, D := √−∂xx + m, x ∈ T,

and

utt − uxx + mu = g(x, u, ux , ut ), m > 0, x ∈ T,

with

g(x, u, ux ,−ut ) = g(x, u, ux , ut ) and g(−x, u,−ux , ut ) = g(x, u, ux , ut ).

More recently, Baldi, Berti and Montalto [3] obtained KAM results for quasi-linear and fully
forced perturbations of the linear Airy equation. The proof is based on a combination of
KAM reducibility, regularization procedure and Nash–Moser iteration. These methods have
been extended and applied to quasi-linear KdV [4], fully nonlinear forced reversible NLS
[27] and quasi-linear water waves [2, 14]. See also recent reducibility results in [6, 7, 9] for
Schrödinger equations with time quasi-periodic unbounded perturbations. We point out that
frequenciesω in aboveworks are required to beDiophantine but notmoreweaker Liouvillean
as in Eq. (1.1). This is the main difference between Eq. (1.1) and those in above papers.
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Before stating our main result, we first give some notations. For the frequency ω =
(1, α), α ∈ R\Q in the Eq. (1.1), denote by pn

qn
the continued fraction approximates to α.

As in [47], we will use the quantity

Ũ (α) := sup
n>0

ln ln qn+1
ln qn

. (1.11)

α is called not super-Liouvillean if Ũ (α) < ∞. The set of ω satisfying Ũ (α) < ∞ is not
empty (see Remark 3.1) and this set includes a lot of Liouvillean frequencies. Then our main
result is stated as follows.

Theorem 1.1 Suppose ω = (1, α), α ∈ R\Q is fixed and Ũ (α) < ∞. Let μ ∈ O = [1, 2].
The function f satisfies (1.3)–(1.5). Then for any sufficiently small γ > 0, there exist ε0 > 0
and a Cantor subset Oγ ⊆ O with Lebesgue measure meas(O \ Oγ ) = O(γ ) such that if
0 < ε < ε0, for each μ ∈ Oγ , the above Eq. (1.1) admits a small amplitude time quasi-
periodic solution of the form u(t, x;μ) = U (ωt, x;μ), where U (θ, x;μ) : T

2 ×R → R is
smooth (C∞) in θ and real analytic in x .

Let us make comments on the three hypotheses (1.3)–(1.5) in Theorem 1.1.

Remark 1.1 The reversible condition (1.3) for Eq. (1.1) is very natural in KAM theory. It
guarantees that the corresponding normal frequencies during the KAM iteration are elliptic.
TheHamiltonian perturbations can play the same role as that the reversible ones do. Following
the ideas of our paper, one can build a similar Liouvillean KAM theorem to Theorem 4.1
for forced Hamiltonian derivative wave equations. In the present paper we only restrict our
attention to the reversible case since it actually contains all the difficulties that appear in the
Hamiltonian case during the KAM iteration.

Remark 1.2 For the oddness condition (1.4), on one hand, it is natural for Eq. (1.1) on [0, π
μ
]

under Dirichlet boundary conditions because {
√

2μ
π

sinμ j x, j ≥ 1} form a complete orthog-

onal basis of the subspace consisting of all odd functions in L2[0, π
μ
]. On the other hand, we

note that the following simplest equations

utt − uxx + ε f (ωt) = 0, ε > 0, f �= 0, (1.12)

have no response solutions. And the oddness condition (1.4) excludes such perturbations
ε f (ωt), thus it is also necessary.

2 Outline of the Proof

The proof of Theorem 1.1 is based on the abstract KAMTheorem 4.1 for infinite dimensional
forced reversible systems. Below let us explain the main ideas and techniques of proving
Theorems 1.1 and 4.1.

• Reversible systems formulation. Let λ j = μ2 j2 and φ j (x) =
√

2μ
π

sinμ j x, ( j ≥ 1) be
the eigenvalues and eigenfunctions of the operator

− d2

dx2
y = λy, y(0) = 0 = y

(
π

μ

)

.
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We introduce infinitely many coordinates by u = Sq = ∑
j≥1 q jφ j , then Eq. (1.1)

becomes

q̈ j + λ j q j + εg j (ωt, q, q̇) = 0, j ≥ 1 (2.1)

where g j (ωt, q, q̇) = ∫ π
μ

0 f (ωt, x,Sq, (Sq)x , (Sq)t )φ j dx and reversible condition
(1.3) becomes g j (ωt, q, q̇) = g j (−ωt, q,−q̇).

Let θ = ωt , z j = −√λ j q j + iq̇ j , z̄ j = −√λ j q j − iq̇ j , then system (2.1) becomes an
autonomous reversible one

⎧
⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ż j = i
√

λ j z j − iεg j (θ, . . . ,− zi+z̄i
2
√

λi
, . . . ,

zi−z̄i
2i , . . .),

˙̄z j = −i√λ j z̄ j + iεg j (θ, . . . ,− zi+z̄i
2
√

λi
, . . . ,

zi−z̄i
2i , . . .),

(2.2)

with respect to the involution S(θ, z, z̄) = (−θ, z̄, z). The corresponding S−reversible
vector field of system (2.2) is

X(θ, z, z̄;μ) =ω
∂

∂θ
+ i	(μ)z

∂

∂z
− i	(μ)z̄

∂

∂ z̄

+
∑

j≥1
−iεg j

∂

∂z j
+
∑

j≥1
iεg j

∂

∂ z̄ j
,

(2.3)

where 	 j (μ) = μ j, j ≥ 1, μ ∈ [1, 2].
One can verify that vector field (2.3) satisfy all the conditions in KAM Theorem 4.1, see
Sect. 8 for details.

• Solving homological equations. In infinite dimensional KAM theory, the most difficult
homological equation is

∂ωFi j (θ; ξ)+ i(	i (ξ)−	 j (ξ))Fi j (θ; ξ) = Ri j (θ; ξ), i, j ≥ 1, (2.4)

which can be solved by the non-resonance condition

|〈k, ω〉 +	i −	 j )| ≥ γ

〈k〉τ , for k �= 0 or i �= j .

However in the present paper, when i = j equation (2.4) is unsolvable due to the lack of
Diophantine restriction on ω. Therefore we have to put the whole R j j (θ) rather than its
average [R j j ] into 	 j . This leads to the following θ -dependent homological equations

∂ωFi j (θ; ξ)+ i(	i (θ; ξ)−	 j (θ; ξ))Fi j (θ; ξ) = Ri j (θ; ξ), i �= j ∈ N, (2.5)

This kind of variable coefficient homological equations also appear in the KAM theory
for unbounded perturbations [32, 35]. In [32, 35], Diophantine condition on ω is still
necessary to solve (2.5). In this paper, ω is no longer Diophantine but can be Liouvillean.
To deal with this case, we will use the method based on CD-bridge technique introduced
in [1]. Then by a rotation transformation, we have new variable coefficient homological
equations which can be solved by diagonally dominant method. Note that, for (2.5), there
are two main differences between our paper and [39, 48] for finite dimensional reversible
and Hamiltonian systems: (i) For each |k| < K , we need infinitely many non-resonance
conditions

|〈k, ω〉 +	i −	 j )| ≥ γ

〈k〉τ , i, j ≥ 1
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instead of only finitely many ones as in [39, 48]. In [39, 48], one can take a special
large truncation K due to sup

i
|	i | < +∞. Then |〈k, ω〉 + 	i − 	 j )| has an uniform

lower bound for all |k| < K . Hence [39, 48] obtain real analytic response solution for
all Liouvillean frequencies ω. However in this paper, |	i | → +∞ as i → +∞, and
we cannot take a special truncation K . Thus we cannot obtain real analytic solutions
for all Liouvillean ω but only smooth (C∞) solutions with only not super-Liouvillean
ω. Similar case also happens in [33, 47, 52]. (ii) We need verifying Töplitz–Lipschitz
property of solution for measure estimate, which is the biggest difference with [39, 47,
48, 52]. The details are given in Proposition 5.2.

• Constructing KAM scheme. Though above variable coefficient homological equations
(2.5) are solvable under non-Diophantine conditions, the upper bound of the estimate for
solutions would be very large such that the usual KAM iteration cannot be convergent. To
overcome this, we will perform finite times normal form transformations at each KAM
step. See Sect. 6.1 for details.

• Töplitz–Lipschitz Property and Measure estimate. Due to the presence of derivatives
in the nonlinearities of Eq. (1.1), there is no smoothing effects for the corresponding
perturbation vector field P in (4.1). Therefore, one can not control the shift of the normal
frequency which is necessary in the measure estimates. To give the measure estimates,
we introduce a new class of Töplitz–Lipschitz vector fields. The idea of Töplitz–Lipschitz
proerty was first introduced by Eliasson–Kuksin [26] and then developed in [10, 11, 28,
30, 42]. It can compensate the lack of smoothing effect of the perturbation vector field
P . See assumption (A4) in Sect. 4 for more details.

The rest of the paper is organized as follows. In Sect. 3, we introduce the definitions
of weighted norms for functions and vector fields and give some arithmetical properties
of irrational numbers. In Sect. 4, we state an abstract KAM theorem (Theorem 4.1) for
infinite dimensional reversible systems with non-Diophantine frequencies. In Sect. 5, we
solve homological equations for vector field with Töplitz–Lipschitz property and prove that
their solutions still admit Töplitz–Lipschitz property. In Sect. 6, we describe the details of
proving KAMTheorem 4.1. The proof of convergence of the iteration and measure estimates
are given in Sect. 7. In Sect. 8, we use the KAM theorem to prove Theorem 1.1. In Appendix
we list some technical lemmas.

3 Preliminary

3.1 Functional Setting

LetO ⊂ R
n be a parameter set of positive Lebesgue measure. Throughout the paper, for any

real or complex valued function depending on parameters ξ ∈ O, its derivatives with respect
to ξ are understood in the sense of Whitney. We denote by C1

W (O) the class of C1 Whitney
differentiable functions on O.

Suppose f ∈ C1
W (O), we define its norm as

‖ f ‖O := sup
ξ∈O

(| f (ξ)| + |∂ f

∂ξ
(ξ)|),

where | · | denotes the sup-norm of complex vectors.
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Consider an n-torus T
n = R

n/(2πZ)n and its complex neighborhood

D(r) = {θ ∈ C
n : |Imθ | < r}

(r > 0).
Suppose f (θ; ξ), (θ ∈ D(r), ξ ∈ O), is real analytic in θ ∈ D(r) and C1

W in ξ ∈ O. We
define its norm as

‖ f ‖D(r)×O := sup
(θ,ξ)∈D(r)×O

(| f (θ, ξ)| + | ∂

∂ξ
f (θ, ξ)|),

For f (θ; ξ) = ∑

k∈Zn
f̂ (k; ξ)ei〈k,θ〉 on D(r), its K (> 0) order Fourier truncation TK f is

defined as follows:

(TK f )(θ) :=
∑

k∈Zn, |k|<K

f̂ (k)ei〈k,θ〉.

where 〈k, θ〉 =
n∑

i=1
kiθi and |k| =

n∑

i=1
|ki |.

The remainder RK f of f is denoted by (RK f )(θ) := f (θ) − TK f (θ). Suppose 0 <

2σ < r , we have the following estimate for RK f :
‖RK f ‖D(r−2σ)×O ≤ 32σ−2e−Kσ ‖ f ‖D(r)×O. (3.1)

The average [ f ] of f on T
n is defined as

[ f ] := f̂ (0) = 1

(2π)n

∫

Tn
f (θ)dθ.

Let p > 0, we introduce the Banach space �p of all real or complex sequences z = (z j ) j≥1
with

‖z‖p =
∞∑

j=1
|z j |e j p < ∞.

For r , s > 0, we define the phase space

P p := T
n × �p × �p � w := (θ, z, z̄)

and a complex neighborhood

D(r , s) ≡ Dp(r , s) := {w : |Imθ | < r , ‖z‖p < s, ‖z̄‖p < s}
of T n

0 := T
n × {z = 0} × {z̄ = 0} in P p

C
:= C

n × �p × �p.

Let α = (α j ) j≥1, β = (β j ) j≥1 with α j , β j ∈ N. α and β have only finitely many nonzero
components. Suppose

f (θ, z, z̄; ξ) =
∑

α,β

fαβ(θ; ξ)zα z̄β

=
∑

k∈Zn,α,β

f̂αβ(k; ξ)ei〈k,θ〉zα z̄β,

is real analytic on D(r , s) and C1
W -smooth on O, where the notation zα z̄β = ∏

j≥1 z
α j
j z̄

β j
j .

We define

‖ f ‖D(r)×O ≡ ‖ f (·, z, z̄; ·)‖D(r)×O :=
∑

α,β

‖ fαβ‖D(r)×O|zα||z̄β |

123



Journal of Dynamics and Differential Equations (2024) 36:1065–1113 1073

and the weighted norm of f as follows:

‖ f ‖D(r ,s)×O := sup
‖z‖p<s,
‖z̄‖p<s

‖ f ‖D(r)×O

= sup
‖z‖p<s,
‖z̄‖p<s

∑

α,β

‖ fαβ‖D(r)×O|zα||z̄β |.

Consider an infinite dimensional dynamical system on D(r , s) :
ẇ = X(w), w = (θ, I , z, z̄) ∈ D(r , s),

where the vector field

X(w) =(X (θ)(w), X (z)(w), X (z̄)(w))

=(X (v)(w))v∈V ∈ P p
C
,

where V = {θ1, . . . , θn, z j , z̄ j : j ≥ 1}. In the paper, we will write vector field X(w) as the
form of differential operator

X(w) =X (θ)(w)
∂

∂θ
+ X (z)(w)

∂

∂z
+ X (z̄)(w)

∂

∂ z̄

=
∑

v∈V
X (v)(w)

∂

∂v
.

(3.2)

Definition 3.1 An analytic vector field X : D(r , s) → P p
C
is said to be real analytic, if it

satisfies

X (θ) = X (θ), X (z) = X (z̄) on Dre(r , s),

where1

Dre(r , s) = {(θ, z, z̄) ∈ D(r , s) : θ ∈ T
n, z̄ is the complex conjugate of z}.

Suppose vector field X(w; ξ) is real analytic on D(r , s) and C1
W smooth onO, we define

the weighted norm of X as follows

‖X‖s;D(r ,s)×O

=
n∑

i=1
‖X (θi )‖D(r ,s)×O + 1

s
sup

‖z‖p<s,
‖z̄‖p<s

∞∑

i=1
ei p

(
‖X (zi )‖D(r)×O + ‖X (z̄i )‖D(r)×O

)

= sup
‖z‖p<s,
‖z̄‖p<s

n∑

i=1

∑

α,β

‖X (θi )
αβ ‖D(r)×O|zα||z̄β |

+ 1

s
sup

‖z‖p<s,
‖z̄‖p<s

∞∑

i=1
ei p

∑

α,β

(
‖X (zi )

αβ ‖D(r)×O + ‖X (z̄i )
αβ ‖D(r)×O

)
|zα||z̄β |.

1 Notice that z and z̄ are independent complex variables.
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Definition 3.2 The Lie bracket of two vector fields X and Y on D(r , s) is defined as

[X , Y ](w) = DX(w) · Y (w)−DY (w) · X(w), f or w ∈ D(r , s),

where DX(w) is the differential of X at w, namely, its v-component is

[X , Y ](v) =
∑

u∈V

(
∂X (v)

∂u
Y (u) − ∂Y (v)

∂u
X (u)

)

.

3.2 Some Arithmetical Properties of Irrational Numbers

The main purpose of this subsection is to recall some arithmetical properties of irrational
numbers required in the paper.

3.2.1 Continued Fraction Expansion

Given an irrational number α ∈ (0, 1). We define inductively the following sequences:

a0 = 0, α0 = α,

ak = �α−1k−1�, αk = α−1k−1 − ak, k ≥ 1,

where �x� = max{l ∈ Z : l ≤ x}.
Setting

p0 = 0, p1 = 1, q0 = 1, q1 = a1,

and we also define inductively

pk = ak pk−1 + pk−2,
qk = akqk−1 + qk−2.

Then {qn} is the sequence of denominators of the best rational approximations for α. It
satisfies

‖kα‖T ≥ ‖qn−1α‖T, ∀ 1 ≤ k < qn, (3.3)

and

1

qn + qn+1
< ‖qnα‖T ≤ 1

qn+1
, (3.4)

where ‖x‖T := inf
p∈Z |x − p|.

3.2.2 CD Bridge

Now we choose a special subsequence {qnk } of denominators of the best rational approxima-
tions for irrational number α. For simplicity, we denote the subsequences {qnk } and {qnk+1}
by {Qk} and {Qk}, respectively.

The concept of CD bridge was first used in [1].

Definition 3.3 (CD bridge, [1]) Let 0 < A ≤ B ≤ C. We say that the pair of denominators
(ql , qn) forms a CD(A,B, C) bridge if

(1) qi+1 ≤ qAi , ∀ i = l, . . . , n − 1;
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(2) qCl ≥ qn ≥ qBl .

Lemma 3.1 ([1]) For anyA ≥ 1 there exists a subsequences {Qk} such that Q0 = 1 and for

each k ≥ 0, Qk+1 ≤ Q
A4

k , and either Qk ≥ QA
k or the pairs (Qk−1, Qk) and (Qk, Qk+1)

are both CD(A,A,A3) bridges.

Definition 3.4 (Not super-Liouvillean numbers, [47]) The irrational number α is called not
super-Liouvillean if the quantity

Ũ (α) := sup
n>0

ln ln qn+1
ln qn

< ∞.

In the sequel, we assume A ≥ 14. Then we have the following conclusion.

Lemma 3.2 ([47]) If Ũ (α) < ∞, then there is Qn ≥ QA
n−1 for any n ≥ 1. Furthermore, one

has

sup
n>0

ln ln Qn+1
ln Qn

≤ U (α), ln Qn+1 ≤ QU
n

where U (α) = Ũ (α)+ 4 lnA
ln 2 < ∞.

Remark 3.1 Notice that if

β(α) := lim sup
n>0

ln ln qn+1
ln qn

< ∞,

then Ũ (α) < ∞. In the case n = 2, if B(ω) < ∞ (see (1.6)), then β(α) = 0. Hence if
ω = (1, α) is Brjuno, then it must be not super-Liouvillean, thus a larger set than Brjuno.

4 An Infinite Dimensional Reversible KAM TheoremWithout
Diophantine Condition

Throughout the rest of the paper, we work on the space P p
C
:= C

2 × �p × �p. Denote

z�j =
{
z j , � = +,

z̄ j , � = −,

and similarly for z� = (z�j ) j≥1.
Given s, r > 0, a domain D(r , s) inP p

C
and compact subsetO ⊂ R

n of positive Lebesgue
measure, we begin with a family of real analytic vector fields of the form

X(θ, z, z̄; ξ) = N (θ, z, z̄; ξ)+ P(θ, z, z̄; ξ), (θ, z, z̄) ∈ D(r , s), ξ ∈ O, (4.1)

N = ω
∂

∂θ
+ i	(ξ)z

∂

∂z
− i	(ξ)z̄

∂

∂ z̄
,

the perturbation

P =
∑

v∈{z j ,z̄ j , j≥1}

∑

α,β

P(v)
αβ (θ; ξ)zα z̄β

∂

∂v
,
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is reversible with respect to involution S : (θ, z, z̄) �→ (−θ, z̄, z). The forcing frequency
ω ∈ R

2 is a fixed non-resonant frequency vector. Without loss of generality, let ω = (1, α)

and α ∈ R\Q is not super-Liouvillean. The normal frequencies 	 j (ξ) ∈ R ( j ≥ 1) are C1
W

on O.

Suppose above S-reversible vector field X satisfies the following four assumptions:

(A1) Asymptotics of normal frequencies:

	 j = d(ξ) j + 	̃ j , j ≥ 1, (4.2)

where d(ξ), 	̃ j ∈ C1
W (O). Moreover, there exist positive constants A0, A1 and A2

with A0 > 3A1
4 , A2 > A1 such that ∀ξ ∈ O, |d(ξ)| ≥ A0, A1 ≤ |∂ξd(ξ)| ≤ A2 and

|	̃|O ≤ A1
4 .

(A2) Melnikov non-resonance conditions: For τ ≥ 10, 0 < γ ≤ 1, ξ ∈ O,

|〈k, ω〉 + 〈l,	(ξ)〉| ≥ γ

〈k〉τ , ∀k ∈ Z
2, 1 ≤ |l| ≤ 2,

where 〈k〉 = max{1, |k|}.
(A3) Regularity: The reversible perturbation P defines a map

P : D(r , s)×O → P p
C
,

P(·, ξ) is real analytic on D(r , s) for each ξ ∈ O, and P(w, ·) is C1
W−smooth on O

for each w ∈ D(r , s). Moreover, for some ε0 > 0, ‖P‖s;D(r ,s)×O ≤ ε0.

To compensate the lack of smoothing effect of P due to the derivative nonlinearity, we
need some additional conditions on the derivatives of P . In [10, 11], to deal with it, the
authors introduced quasi-Töplitz property of functions and vector fields (first used in [42]
for NLS). However, for the case of non-diagonal variable coefficient homological equations
here, it is not easy to verify the quasi-Töplitz property of solutions. In this paper, we introduce
new Töplitz–Lipschitz property of vector field which plays the similar role to quasi-Töplitz
property but is more easy to handle. Töplitz–Lipschitz property introduced here was first
used in [26] and then in [28] for higher dimensional Hamiltonian NLS.

(A4) Töplitz–Lipschitz property: There exists ρ > 0 such that the following limits exist
and satisfy:

∥
∥
∥ lim
t→∞ 	̃ j+t

∥
∥
∥
O
≤ ε0, (4.3)

∥
∥
∥
∥
∥
lim
t→∞

∂P(zi+t )

∂z j+t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0e
−ρ|i− j |. (4.4)

∥
∥
∥
∥
∥
lim
t→∞

∂P(zi+t )

∂ z̄ j−t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0e
−ρ|i+ j |. (4.5)

∥
∥
∥
∥
∥
lim
t→∞

∂P(z̄i+t )

∂ z̄ j+t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0e
−ρ|i− j |. (4.6)

∥
∥
∥
∥
∥
lim
t→∞

∂P(z̄i+t )

∂z j−t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0e
−ρ|i+ j |. (4.7)
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Furthermore, there exists K > 0 such that when |t | > K , the following estimates
hold.

∥
∥
∥	̃ j+t − lim

t→∞ 	̃ j+t
∥
∥
∥
O
≤ ε0

|t | , (4.8)
∥
∥
∥
∥
∥

∂P(zi+t )

∂z j+t
− lim

t→∞
∂P(zi+t )

∂z j+t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0

|t |e
−ρ|i− j |, (4.9)

∥
∥
∥
∥
∥

∂P(zi+t )

∂ z̄ j−t
− lim

t→∞
∂P(zi+t )

∂ z̄ j−t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0

|t |e
−ρ|i+ j |, (4.10)

∥
∥
∥
∥
∥

∂P(z̄i+t )

∂ z̄ j+t
− lim

t→∞
∂P(z̄i+t )

∂ z̄ j+t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0

|t |e
−ρ|i− j |, (4.11)

∥
∥
∥
∥
∥

∂P(z̄i+t )

∂z j−t
− lim

t→∞
∂P(z̄i+t )

∂z j−t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ ε0

|t |e
−ρ|i+ j |, (4.12)

here when i ≤ 0 or j ≤ 0, ∂P(zi )

∂z j
, ∂P(zi )

∂ z̄ j
, ∂P(z̄i )

∂ z̄ j
, ∂P(z̄i )

∂z j
≡ 0.

Remark 4.1 If a vector field P satisfies properties (4.4)–(4.7) and (4.9)–(4.12), then it is
called a Töplitz–Lipschitz vector field. Here we only give the definition of Töplitz–Lipschitz
vector fields. One can prove that Lie bracket of two Töplitz–Lipschitz vector fields and the
solution of homological equations still satisfy Töplitz–Lipschitz property. This means that
Töplitz–Lipschitz property can be preserved along the KAM iteration. We will prove these
basic properties in Proposition 5.2 and Lemma 6.3 below.

Our KAM theorem is stated as follows.

Theorem 4.1 Assume real analytic S−reversible vector field (4.1) satisfying above assump-
tions (A1)−(A4). Then for every sufficiently small γ > 0, there exists ε > 0 depending on
τ, γ, A0, A1, A2, r , s, α, and ρ, such that if ‖P‖s;D(r ,s)×O ≤ ε, then there is a non-empty
subset Oγ ⊆ O of positive Lebesgue measure, and an S−invariant transformation � of the
form

(θ, z, z̄; ξ) �→ (θ,W (θ, z, z̄; ξ),W (θ, z, z̄; ξ)), ξ ∈ Oγ ,

where W and W are C∞ in θ and affine in (z, z̄), such that � transforms above vector field
(4.1) into

�∗X = N∗ + P∗
where

N∗ = ω
∂

∂θ
+ i (	(ξ)+ B∗(θ; ξ)) z

∂

∂z
− i

(
	(ξ)+ B∗(θ; ξ)

)
z̄

∂

∂ z̄
,

B∗ ∈ C∞(T2, R), B∗(θ) = B∗(−θ), and

P∗ =
∑

v∈{z j ,z̄ j }

∑

|α|+|β|≥2
P(v)
∗αβ(θ; ξ)zα z̄β

∂

∂v
, ξ ∈ Oγ .

Moreover, meas(O \Oγ ) = O(γ ).

The proof of the theorem is given in Sect. 6.

123



1078 Journal of Dynamics and Differential Equations (2024) 36:1065–1113

5 Homological Equation and Töplitz–Lipschitz Property of Solutions

Consider the homological equation (the unknown is F)

[N , F] + R = �R� (5.1)

on Dρ(r , s)×O, where

N = ω
∂

∂θ
+ i	(θ; ξ)z

∂

∂z
− i	(θ; ξ)z̄

∂

∂ z̄

with fixed ω = (1, α), (α ∈ R\Q), 	(θ; ξ) = 	(ξ) + B(θ; ξ) + b(θ; ξ).The normal
frequencies 	 j (ξ), j ≥ 1 satisfy (4.2). And the frequency drifts B(θ) and b(θ) are both real
analytic on D(r) and B(θ) = B(−θ), b(θ) = b(−θ). This implies N is a reversible vector
field with respect to the involution S : (θ, z, z̄) �→ (−θ, z̄, z). R is also an S−reversible
vector field of the form:

R =(Rz(θ; ξ)+ Rzz(θ; ξ)z + Rzz̄(θ; ξ)z̄)
∂

∂z

+ (Rz̄(θ; ξ)+ Rz̄z(θ; ξ)z + Rz̄z̄(θ; ξ)z̄)
∂

∂ z̄
.

(5.2)

�R� is the θ -depend normal form of R :

�R� =diagRzz(θ)z
∂

∂z
+ diagRz̄z̄ z̄(θ)

∂

∂ z̄

=
∑

j≥1
Rz j z j (θ)z j

∂

∂z j
+
∑

j≥1
Rz̄ j z̄ j (θ)z̄ j

∂

∂ z̄ j
.

For f (θ) = ( f j (θ) : j ≥ 1) on D(r), we define the norm

‖ f ‖∞,D(r) = sup
j
‖ f j‖D(r).

Moreover, suppose 	(ξ)+ [B(θ)] ∈MCω (γ, τ, K ,O) , where for τ ≥ 10, 0 < γ ≤ 1,
K > 0, the non-resonance set

MCω (γ, τ, K ,O)

:=
{

	́(ξ) : ξ ∈ O, |〈k, ω〉 + 〈l, 	́(ξ)〉| ≥ γ

〈k〉τ , ∀|k| ≤ K , 1 ≤ |l| ≤ 2

}

.
(5.3)

During the KAM iteration, it is enough to obtain the approximate solution of the the
homological equation(5.1) above. The following proposition gives the existence and estimate
of such approximate solution. A similar proposition was given in [52].

Proposition 5.1 Let {Qk} be the selected subsequence of α in Lemmas 3.1 and 3.2 with
respect to A ≥ 14, also let γ > 0, 0 < ζ, ζ̃ < 1, and 0 < 5σ < r̃ < r . If all above
assumptions on N and R are satisfied and

‖B‖∞,D(r)×O ≤ ζ, (5.4)

‖b‖∞,D(r)×O ≤ ζ̃ . (5.5)

Furthermore for some n ≥ 1, the following three assumptions are satisfied:

(i)

360r̃ Qn+1ζ ≤ (r − r̃)3, (5.6)
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(ii)

512e−
r−r̃
2 Qn+1ζ ≤ ζ̃

1
2 (r − r̃)2, (5.7)

(iii)

2C0K
2τ+1ζ̃

1
2 ≤ γ 2σ 2, (5.8)

where C0 > 0 is a constant depending only on A0, A1, A2, then above homological equation
(5.1) has a unique approximate solution F of the same form as R satisfying �F� = 0,
S∗F = F and the estimate

‖F‖s;Dρ(r̃−2σ,s)×O ≤ C0ζ
2Q2

n+1K 2τ+1

γ 2σ 2(r − r̃)4
‖R‖s;Dρ(r ,s)×O. (5.9)

Moreover, the S-reversible error term R̆ satisfies

‖R̆‖s;Dρ(r̃−4σ,s)×O

≤ C0ζ
2Q2

n+1
σ 2(r − r̃)2

e−Kσ
(
‖R‖s;Dρ(r ,s)×O + ζ̃

1
2 ‖F‖s;Dρ(r̃−2σ,s)×O

)
.

(5.10)

Proof Suppose F has the same form as R. By the definition of Lie bracket, Eq. (5.1) can be
rewritten as the following scalar form

Rzi − ∂ωF
zi + i	i (θ)Fzi = 0, (5.11)

Rz̄i − ∂ωF
z̄i − i	i (θ)Fz̄i = 0, (5.12)

Rzi z̄ j − ∂ωF
zi z̄ j + i	i (θ)Fzi z̄ j + iFzi z̄ j 	 j (θ) = 0, (5.13)

Rz̄i z j − ∂ωF
z̄i z j − i	i (θ)Fz̄i z j − iFz̄i z j 	 j (θ) = 0, (5.14)

Rzi z j − ∂ωF
zi z j + i	i (θ)Fzi z j − iFzi z j 	 j (θ) = δi j R

zi z j , (5.15)

Rz̄i z̄ j − ∂ωF
z̄i z̄ j − i	i (θ)Fz̄i z̄ j + iFz̄i z̄ j 	 j (θ) = δi j R

z̄i z̄ j , (5.16)

where δi j is the Kronecker delta symbol.
In what follows, we only give the details of solving equation (5.15). The other five ones

can be done by the same way, thus omitted.
For Eq. (5.15). If i = j, let Fz j z j (θ) = 0. If i �= j, we solve

∂ωF
zi z j − i	i (θ)Fzi z j + iFzi z j 	 j (θ) = Rzi z j . (5.17)

In the proof, denote 	i j (θ) := 	i (θ)−	 j (θ), and similarly for 	i j (ξ), Bi j (θ) and bi j (θ).

Then we rewrite the equation above as

∂ωF
zi z j − i(	i j (ξ)+ [Bi j (θ)])Fzi z j − i(Bi j (θ)− [Bi j (θ)])Fzi z j − ibi j (θ)Fzi z j = Rzi z j ,(5.18)

Let ∂ωβi j = TQn+1Bi j (θ)− [Bi j ], then one can verify that

βi j (θ) =
∑

0<|k|≤Qn+1

B̂i j (k)

i〈k, ω〉e
i〈k,θ〉, (5.19)
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is its unique solution. We have the estimate for βi j :

‖βi j‖D(r̃)×O ≤
∑

0<|k|≤Qn+1

|B̂i j (k)|O
|〈k, ω〉| e|k|r̃

≤2Qn+1
∑

0<|k|≤Qn+1
2‖Bi j‖D(r)×Oe−|k|(r−r̃)

≤256Qn+1
(r − r̃)2

‖Bi j‖D(r)×O,

(5.20)

here we use (3.3), (3.4) and the inequality: for σ > 0,
∑

k∈Z2
e−2|k|σ ≤ (1+ e)2σ−2.

Let

ui j = Fzi z j e−iβi j , vi j = Rzi z j e−iβi j ,
bi j (θ) = RQn+1Bi j (θ)+ bi j (θ).

Then Eq. (5.18) will be transformed as one on ui j . However, it is difficulty to obtain its
solution and we solve its approximate equation, i.e.,

∂ωui j − i(	i j (ξ)+ [Bi j (θ)])ui j − iTK (bi j ui j ) = TK vi j , (5.21)

and the error term

R̆3 =
∑

�=±

∑

i

∑

j �=i
e�iβ�

i jRK

(
e−�iβ�

i j Rz�i z
�
j + �ie−�iβ�

i j b�

i j F
z�i z

�
j

)
z�j

∂

∂z�i
, (5.22)

here β
�

i j is a function determined by B�

i j and can be defined as in (5.19).

Let ui j = ∑

|k|≤K ,k∈Z2
ûi j (k)ei〈k,θ〉, vi j = ∑

k∈Z2
v̂i j (k)ei〈k,θ〉, bi j =

∑

k∈Z2
b̂i j (k)e

i〈k,θ〉. We

have, for |k| ≤ K ,

i
(〈k, ω〉 − (	i j (ξ)+ [Bi j (θ)])) ûi j (k)− i

∑

|l|≤K

b̂i j (k − l)ûi j (l) = v̂i j (k).

Rewrite it as vector equation,

(Ai j + Di j )Xi j = Bi j (5.23)

where

Xi j = (ûi j (k) : |k| ≤ K )T ,

Ai j = diag
(
i〈k, ω〉 − i(	i j (ξ)+ [Bi j (θ)]) : |k| ≤ K

)
,

Di j = (−ib̂i j (k − l) : |k|, |l| ≤ K ),

Bi j = (v̂i j (k) : |k| ≤ K )T ,

Denote �r̃−2σ := diag
(
e|k|(r̃−2σ) : |k| ≤ K

)
, then

(Ai j +�r̃−2σ Di j�
−1
r̃−2σ )�r̃−2σXi j = �r̃−2σBi j (5.24)

�r̃−2σ Di j�
−1
r̃−2σ = (−ie(|l|−|k|)(r̃−2σ)b̂i j (l − k) : |k|, |l| ≤ K ).

To solve Eq. (5.24), we will use the non-resonance condition (5.3): 	(ξ) + [B(θ)] ∈
MCω(γ, τ, K ,O).
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Recall that

	 j (ξ) = d(ξ) j + 	̃ j (ξ), j ≥ 1,

	(ξ) = (	 j (ξ) : j ≥ 1), B(θ; ξ) = (Bj (θ; ξ) : j ≥ 1).

Assume ζ < A1
8 and C > 4

4A0−3A1
is a constant. It is not difficulty to prove that there

exists a constant C0 > 0 depending only on A0, A1, A2 such that

‖A−1i j ‖O ≤ C0K 2τ+1

γ 2 . (5.25)

For �r̃−2σ Di j�
−1
r̃−2σ , ‖�r̃−2σ Di j�

−1
r̃−2σ ‖O ≤ 64σ−2‖b‖∞,D(r̃)×O. By assumption (ii)

in (5.7),

‖b‖∞,D(r̃)×O ≤ 32

( r−r̃2 )2
e−

r−r̃
2 Qn+1‖B‖∞,D(r̃)×O + 2‖b‖∞,D(r̃)×O

≤ 256

(r − r̃)2
e−

r−r̃
2 Qn+1ζ + 2ζ̃ ≤ ζ̃

1
2 ,

and by (5.25) and assumption (iii) in (5.8),

‖A−1i j �r̃−2σ Di j�
−1
r̃−2σ ‖O ≤C0K 2τ+1

γ 2σ 2 ζ̃
1
2 ≤ 1/2.

This implies Ai j +�r̃−2σ Di j�
−1
r̃−2σ has a bounded inverse.

‖(Ai j +�r̃−2σ Di j�
−1
r̃−2σ )−1‖O ≤‖A−1i j ‖O

1

1− ‖A−1i j �r̃−2σ Di j�
−1
r̃−2σ ‖O

≤C0K 2τ+1

γ 2 .

Then

‖ui j‖D(r̃−2σ)×O ≤‖�r̃Xi j‖D(r̃−2σ)×O
≤‖(Ai j +�r̃−2σ Di j�

−1
r̃−2σ )−1‖O‖�r̃−2σBi j‖O

≤C0K 2τ+1

γ 2σ 2 ‖vi j‖D(r̃−σ)×O

and

‖vi j‖D(r̃−σ)×O ≤‖e−iβi j ‖D(r̃−σ)×O‖Rzi z j ‖D(r̃−σ)×O.

Since Fzi z j = ui jeiβi j , Rzi z j = vi jeiβi j ,

‖Fzi z j ‖D(r̃−2σ)×O ≤‖eiβi j ‖D(r̃−2σ)×O‖ui j‖D(r̃−2σ)×O

≤‖eiβi j ‖D(r̃)×O‖e−iβi j ‖D(r̃)×O
C0K 2τ+1

γ 2σ 2 ‖Rzi z j ‖D(r̃−σ)×O

Now we estimate ‖e±iβi j ‖D(r̃)×O. By assumptions (5.4): ‖B‖∞,D(r)×O ≤ ζ and (ii):
360r̃ Qn+1ζ ≤ (r − r̃)3 in (5.6), we have
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‖e±iβi j ‖D(r̃)×O

≤
(

1+ Qn+1
(r − r̃)2

)

‖Bi j‖D(r)×Oe90r̃ Qn+1(r−r̃)−3‖Bi j‖D(r)×O

≤ 4Qn+1
(r − r̃)2

‖B‖D(r)×Oe180r̃ Qn+1(r−r̃)−3ζ

≤ 8Qn+1
(r − r̃)2

ζ.

(5.26)

Then

‖Fzi z j ‖D(r̃−2σ)×O ≤ ‖eiβi j ‖D(r̃)×O‖e−iβi j ‖D(r̃)×O
C0K 2τ+1

γ 2σ 2 ‖Rzi z j ‖D(r̃−σ)×O

≤
(

8Qn+1
(r − r̃)2

ζ

)2 C0K 2τ+1

γ 2σ 2 ‖Rzi z j ‖D(r̃−σ)×O

≤ C0ζ
2Q2

n+1K 2τ+1

γ 2σ 2(r − r̃)4
‖Rzi z j ‖D(r)×O.

Consider the estimate for vector field F = F (z) ∂
∂z + F (z̄) ∂

∂ z̄ . It remains to consider the

estimate for F (z). It follows from above analysis that

‖F (zi )‖D(r̃−2σ)×O

= ‖Fzi ‖D(r̃−2σ)×O +
∑

j

‖Fzi z j ‖D(r̃−2σ)×O|z j | +
∑

j

‖Fzi z̄ j ‖D(r̃−2σ)×O|z̄ j |

≤ C0ζ
2Q2

n+1K 2τ+1

γ 2σ 2(r − r̃)4

⎛

⎝‖Rzi ‖D(r̃)×O+
∑

j

‖Rzi z j ‖D(r̃)×O|z j |+
∑

j

‖Rzi z̄ j ‖D(r̃)×O|z̄ j |
⎞

⎠

= C0ζ
2Q2

n+1K 2τ+1

γ 2σ 2(r − r̃)4
‖R(zi )‖D(r)×O,

then

‖F‖s;D(r̃−2σ,s)×O ≤ C3η
2
1Q

2
n+1K 2τ+1

γ 2σ 2(r − r̃)4
‖R‖s;D(r ,s)×O.

We turn to the estimate for error term R̆ in (5.22). By (3.1) and (5.26),

‖R̆zi z j ‖D(r̃−4σ)×O

= ‖eiβi jRK

(
e−iβi j Rzi z j + ie−iβi j bi j Fzi z j

)
‖D(r̃−4σ)×O

≤ ‖eiβi j ‖D(r̃−4σ)×O32σ−2e−Kσ ‖e−iβi j ‖D(r̃−2σ)×O‖Rzi z j + ibi j F
zi z j ‖D(r̃−2σ)×O

≤ C0ζ
2Q2

n+1
σ 2(r − r̃)2

e−Kσ
(
‖Rzi z j ‖D(r̃−2σ)×O + ‖bi j‖D(r̃)×O‖Fzi z j ‖D(r̃−2σ)×O

)
,

then

‖R̆‖s;D(r̃−4σ,s)×O ≤ C0ζ
2Q2

n+1
σ 2(r − r̃)2

e−Kσ
(
‖R‖s;D(r ,s)×O + ζ̃

1
2 ‖F‖s;D(r̃−2σ,s)×O

)
.

It follows from the definition of reversibility that S∗F = F and S∗ R̆ = −R̆. ��
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Finally, we verify Töplitz–Lipschitz property of solutions.

Proposition 5.2 (Töplitz–Lipschitz Property of Solutions) Let K , Qn+1,C0,O and the
parameters τ, σ, r , r̃ , s be as in Proposition 5.1. Suppose 0 < ε < 1, ε̃ > 0 and the
following inequality holds:

(
32

σ 2 e
−Kσ

) 4
3 ≤ ε̃ ≤ min

{

σ 12(2τ+3),
(

(r − r̃)2

Qn+1

)60(2τ+3)
,

(
γ 2

C0K 2τ+1

) 50
9
}

. (5.27)

If the limits lim
t→∞ Bi+t (θ), lim

t→∞ bi+t (θ), i ≥ 1 exist and

‖ lim
t→∞ Bi+t (θ)‖D(r)×O ≤ 2ε

1
2 ,

‖Bi+t (θ)− lim
t→∞ Bi+t (θ)‖D(r)×O ≤ 2ε

1
2

|t | ,

(5.28)

‖ lim
t→∞ bi+t (θ)‖D(r)×O ≤ 2ε,

‖bi+t (θ)− lim
t→∞ bi+t (θ)‖D(r)×O ≤ 2ε

|t | ,
(5.29)

and the vector field R above satisfies Töplitz–Lipschitz property (A4) with ε̃ in place of ε

on D(r̃ , s), then the vector field F (resp. the error term R̆) obtained in Proposition 5.1 also

satisfies the property (A4)with ε̃
3
5 (resp. ε̃

4
3 ) in place of ε on D(r̃−2σ, s) (resp. D(r̃−4σ, s)).

Proof In the proof, we only verify the cases ∂F (zi )

∂z j
and ∂ R̆(zi )

∂z j
, and the other cases can be done

by the same way.
From the proof of Proposition 5.1, we obtain that

∂F (zi )

∂z j
= Fzi z j = ui je

iβi j (θ)

and

∂R(zi )

∂z j
= Rzi z j = vi je

iβi j (θ).

where βi j (θ) = ∑

0<|k|<Qn+1

B̂i j (θ)

i〈k,ω〉 e
i〈k,ω〉.

We first verify Töplitz–Lipschitz property for βi, j (θ) and eiβi, j (θ). Denote βi, j,∞(θ) :=
lim
t→∞βi+t, j+t (θ). Then as in (5.20),

‖βi+t, j+t (θ)− βi, j,∞(θ)‖D(r̃),O

≤
∑

0<|k|<Qn+1

|B̂i+t (k)− B̂i,∞(k)|O + |B̂ j+t (k)− B̂ j,∞(k)|O
|〈k, ω〉| e|k|r̃

≤ 256Qn+1(r − r̃)−2 2ε
1
2

|t | ≤ ε̃− 1
1380

|t | .
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As in (5.26), one has

‖eiβi+t, j+t (θ) − eiβi, j,∞(θ)‖D(r̃),O

≤
(

8Qn+1
(r − r̃)2

ζ

)2

‖βi+t, j+t (θ)− βi, j,∞(θ)‖D(r̃),O

≤ ε̃−
2

690
ε̃− 1

1380

|t | ≤ ε̃− 1
276

|t | .

(5.30)

We then prove that vi j satisfy the Töplitz–Lipschitz property. Denote Rzz
i, j,∞ :=

limt→∞ Rzi+t ,z j+t and vi, j,∞(θ) := limt→∞ vi+t, j+t (θ). Below we will use similar nota-
tions for Fzi ,z j and ui j .

‖vi, j,∞‖D(r̃−σ),O
≤ ‖Rzz

i, j,∞‖D(r̃−σ),O‖e−βi, j,∞‖D(r̃−σ),O

≤ ε̃e−ρ|i− j |‖e−βi, j,∞‖D(r̃−σ),O

≤ ε̃
683
690 e−ρ|i− j |.

Using (5.30), we have

‖vi+t, j+t − vi, j,∞‖D(r̃−σ)×O
≤ ‖Rzi+t z j+t − Rzz

i, j,∞‖D(r̃−σ),O‖e−iβi+t, j+t ‖D(r̃−σ),O

+ ‖Rzz
i, j,∞‖D(r̃−σ),O‖e−iβi+t, j+t − e−iβi, j,∞‖D(r̃−σ),O

≤ ε̃

|t |e
−ρ|i− j | 32

σ 2 ‖e−iβi+t, j+t ‖D(r̃),O + ε̃e−ρ|i− j | 32
σ 2 ‖e−iβi+t, j+t − e−iβi, j,∞‖D(r̃),O

≤ ε̃
68
69

|t | e
−ρ|i− j |.

Let Ai, j,∞ := lim
t→∞ Ai+t, j+t and similarly for Di, j,∞, Xi, j,∞ and Bi, j,∞. Note that as in

the proof of Proposition 5.1, one has

(Ai, j,∞ + Di, j,∞)Xi, j,∞ = Bi, j,∞,

(Ai, j,∞ +�r̃ Di, j,∞�−1
r̃ )�r̃Xi, j,∞ = �r̃Bi, j,∞,

and then ‖A−1i, j,∞�r̃ Di, j,∞�−1
r̃ ‖O ≤ 1

2 .This implies Ai, j,∞+�r̃ Di, j,∞�−1
r̃ has a bounded

inverse. Moreover, one has

‖(Ai, j,∞ +�r̃ Di, j,∞�−1
r̃ )−1‖O ≤ C0K 2τ+1

γ 2 ≤ ε̃−
18
100 .

Therefore,

‖ui, j,∞‖D(r̃−2σ)×O
≤ ‖(Ai, j,∞ +�r̃−2σ Di, j,∞�−1

r̃−2σ )−1‖O‖�r̃−2σBi, j,∞‖O
≤ ‖(Ai, j,∞ +�r̃−2σ Di, j,∞�−1

r̃−2σ )−1‖O 32

σ 2 ‖vi, j,∞‖D(r̃−σ),O

≤ C0K 2τ+1

γ 2

32

σ 2 ‖vi, j,∞‖D(r̃−σ),O ≤ ε̃
8
10 e−ρ|i− j |.
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To study the Töplitz–Lipschitz property of ui j , in the following, we first consider
(
Ai+t, j+t +�r̃−2σ Di+t, j+t�−1

r̃−2σ
)

�r̃−2σ
(
Xi+t, j+t − Xi, j,∞

) = H ,

where we denote

H := �r̃−2σBi+t, j+t −�r̃−2σBi, j,∞

−
(
(Ai+t, j+t − Ai, j,∞)−�r̃−2σ (Di+t, j+t − Di, j,∞)�−1

r̃−2σ
)

�r̃−2σXi, j,∞.

Now we consider H .

‖�r̃−2σBi+t, j+t −�r̃−2σBi, j,∞‖O

≤ 32

σ 2 ‖vi+t, j+t − vi, j,∞‖D(r̃−σ),O ≤ ε̃
674
690

|t | e
−ρ|i− j |.

Recall that 	 j (ξ) = d(ξ) j + 	̃ j (ξ), j ≥ 1 (see (4.2)). Then

‖Ai+t, j+t − Ai, j,∞‖O
≤ ‖	̃i+t, j+t − 	̃i, j,∞‖O + ‖[Bi+t, j+t ] − [Bi, j,∞]‖O

≤ 8ε
1
2

|t | .

Note that the matrix

�r̃−2σ (Di+t, j+t − Di, j,∞)�−1
r̃−2σ

=
(
−ie(|l|−|k|)(r̃−2σ)(̂bi+t, j+t (l − k)− b̂i, j,∞(l − k))

)

|k|,|l|≤K
,

and

bi+t − bi,∞ = RQn+1(Bi+t − Bi,∞)+ (bi+t − bi,∞).

Moreover,

‖bi+t − bi,∞‖D(r̃−σ),O

≤ 32

( r−r̃2 )2
e−

r−r̃
2 Qn+1‖Bi+t − Bi,∞‖D(r),O + ‖bi+t − bi,∞‖D(r),O

≤ 128

(r − r̃)2
e−

r−r̃
2 Qn+1 2ε

1
2

|t | +
2ε

|t | .

It follows from above estimates that

‖�r̃−2σ (Di+t, j+t − Di, j,∞)�−1
r̃−2σ ‖O

≤
∑

k

e|k|(r̃−2σ) |̂bi+t, j+t (k)− b̂i, j,∞(k))|O

≤ 32

σ 2 ‖bi+t, j+t − bi, j,∞‖D(r̃−σ),O

≤ 32

σ 2 2

(
128

(r − r̃)2
e−

r−r̃
2 Qn+1 2ε

1
2

|t | +
2ε

|t |

)

≤ ε̃−
1

100
ε

1
2

|t | .
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We have obtained ‖�r̃−2σXi, j,∞‖O ≤ ε̃
8
10 e−ρ|i− j |.

By the estimates obtained above,

‖H‖O
≤ ‖�r̃−2σBi+t, j+t −�r̃−2σBi, j,∞‖O + ‖Ai+t, j+t − Ai, j,∞‖O‖�r̃−2σXi, j,∞‖O
+ ‖�r̃−2σ (Di+t, j+t − Di, j,∞)�−1

r̃−2σ ‖O‖�r̃−2σXi, j,∞‖O

≤ ε̃
674
690

|t | e
−ρ|i− j | + 8ε

1
2

|t | ε̃
8
10 e−ρ|i− j | + ε

1
2
ε̃

79
100

|t | e
−ρ|i− j |

≤ ε̃
79
100

|t | e
−ρ|i− j |.

This implies

‖ui+t, j+t − ui, j,∞‖D(r̃−2σ),O
= ‖(Ai+t, j+t +�r̃−2σ Di+t, j+t�−1

r̃−2σ )−1H‖O

≤ C0K 2τ+1

γ 2 ‖H‖O ≤ ε̃
61
100

|t | e
−ρ|i− j |.

Then one has

‖Fzz
i, j,∞‖D(r̃−2σ),O

≤ ‖ui, j,∞‖D(r̃−2σ),O‖eiβi, j,∞‖D(r̃−2σ),O

≤ 8ε̃
8
10 e−ρ|i− j |ε̃−

2
276 ε̃−

1
690 ≤ ε̃

3
5 e−ρ|i− j |

and

‖Fzi+t z j+t − Fzz
i, j,∞‖D(r̃−2σ),O

≤ ‖(ui+t, j+t − ui, j,∞)eiβi+t, j+t ‖D(r̃−2σ),O + ‖ui, j,∞(eiβi+t, j+t − eiβi, j,∞)‖D(r̃−2σ),O

≤ 8
ε̃

61
100

|t | e
−ρ|i− j |ε̃−

2
276 ε̃−

1
690 + 8ε̃

8
10 e−ρ|i− j |ε̃−

2
276

ε̃− 1
276

|t |

≤ ε̃
3
5

|t | e
−ρ|i− j |.

.

Finally, we consider the error term

R̆3 =
∑

�=±

∑

i

∑

j �=i
e�iβi jRK

(
e−�iβi j Rz�i z

�
j + �ie−�iβi j b�

i j F
z�i z

�
j

)
z�j

∂

∂z�i
,

∂ R̆(zi )
3

∂z j
= eiβi jRK

(
e−iβi j Rzi z j + ie−iβi j bi j Fzi z j

)
.

Denote

gi j = RK

(
e−iβi j Rzi z j + ie−iβi j bi j Fzi z j

)
= RK

(
vi j + ibi j ui j

)
.
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We have

‖gi, j,∞‖D(r̃−4σ),O

≤ 32

σ 2 e
−Kσ

(
‖vi, j,∞‖D(r̃−2σ),O + ‖bi, j,∞‖D(r̃−2σ),O‖ui, j,∞‖D(r̃−2σ),O

)

≤ ε̃
3
4

(
32

σ 2 ε̃
683
690 e−ρ|i− j | + 32

4σ 2 4εε̃
8
10 e−ρ|i− j |

)

≤ ε̃
77
50 e−ρ|i− j |.

Then using above estimates, we obtain

‖gi+t, j+t − gi, j,∞‖D(r̃−4σ),O

≤ 32

σ 2 e
−Kσ

(‖vi+t, j+t − vi, j,∞‖D(r̃−2σ),O + ‖bi+t, j+t‖D(r̃−2σ),O‖ui+t, j+t − ui, j,∞‖D(r̃−2σ),O

+ ‖ui, j,∞‖D(r̃−2σ),O‖bi+t, j+t − bi, j,∞‖D(r̃−2σ),O
)

≤ ε̃
3
4

( 32

σ 2

ε̃
68
69

|t | e
−ρ|i− j | + 32

4σ 2 2ε
ε̃

61
100

|t | e−ρ|i− j | + ε̃
8
10 e−ρ|i− j |2

(

ε̃−
1

920
1

|t | +
1

|t |
))

≤ ε̃
135
100

|t | e−ρ|i− j |.

Therefore, Töplitz–Lipschitz property for the error term R̆3 can be verified as follows:

∥
∥
∥
∥
∥
lim
t→∞

∂ R̆(zi+t)

∂z j+t

∥
∥
∥
∥
∥
D(r̃−4σ),O

= ‖gi, j,∞eiβi, j,∞‖D(r̃−4σ),O

≤ ε̃
77
50 e−ρ|i− j | 32

16σ 2 ε̃−
1

690

≤ ε̃
4
3 e−ρ|i− j |,

and
∥
∥
∥
∥
∥

∂ R̆(zi+t)

∂z j+t
− lim

t→∞
∂ R̆(zi+t)

∂z j+t

∥
∥
∥
∥
∥
D(r̃−4σ),O

≤ ‖(gi+t, j+t − gi, j,∞)eiβi+t, j+t ‖D(r̃−4σ)×O + ‖gi, j,∞(eiβi+t, j+t − eiβi, j,∞)‖D(r̃−4σ),O

≤ 2
ε̃

135
100

|t | e
−ρ|i− j |ε̃−

2
276 ε̃−

1
690 + 2ε̃

77
50 e−ρ|i− j |ε̃−

2
276

ε̃− 1
276

|t |

≤ ε̃
4
3

|t | e
−ρ|i− j |.

��

6 KAM Step

In this section, we give the proof of Theorem 4.1. Throughout this section, we denote by C
a global constant independent of any iterative step but may depend on τ , A0, A1 and A2.
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Suppose we arrive at the νth iterative step and the S−reversible vector field Xν = Nν+Pν

on D(sν, rν)×Oν , where the normal form vector field

Nν =ω
∂

∂θ
+ i	ν(θ; ξ)z

∂

∂z
− i	ν(θ; ξ)z̄

∂

∂ z̄

=ω
∂

∂θ
+ i(	(ξ)+ Bν(θ; ξ))z

∂

∂z
− i(	(ξ)+ Bν(θ; ξ))z̄

∂

∂ z̄

(6.1)

with 	 j (ξ) = d(ξ) j + 	̃ j (ξ) and d(ξ), 	̃ j ∈ C1
W (O), Bν(θ) = Bν(−θ).

The S−reversible perturbation Pν has Töplitz–Lipschitz property (A4) on D(sν, rν) with
εν, ρν in place of ε, ρ.

Our aim is to find an S−invariant transformation

�ν : D(rν+1, sν+1)×Oν → D(rν, sν)×Oν

such that�∗
νXν = Nν+1+Pν+1 with new normal form Nν+1 and amuch smaller perturbation

term Pν+1.
For notational convenience, below we denote

Qn+1 := Qn0+ν, (6.2)

where n0 ∈ N is some suitable fixed positive integer. Similar to the usual KAM literature,
for other sequences, we drop the subscript ν, write the symbol ‘+’ for ‘ν + 1’ and write
the symbol ‘−’ for ‘ν − 1’. Then the goal is to find an S−invariant transformation � :
D(r+, s+)×O → D(r , s)×O such that it transforms

X =N + P

=ω
∂

∂θ
+ i(	(ξ)+ B(θ; ξ))z

∂

∂z
− i(	(ξ)+ B(θ; ξ))z̄

∂

∂ z̄
+ P

(6.3)

into

X+ =N+ + P+

=ω
∂

∂θ
+ i(	(ξ)+ B+(θ; ξ))z

∂

∂z
− i(	(ξ)+ B+(θ; ξ))z̄

∂

∂ z̄
+ P+.

6.1 A Finite Induction

In this subsection, wewill perform a finite induction procedure due to the lack of Diophantine
condition on ω.

Let

X̃0 =Ñ0 + P̃0

=ω
∂

∂θ
+ i(	(ξ)+ B(θ, ξ))z

∂

∂z
− i(	(ξ)+ B(θ, ξ))z̄

∂

∂ z̄
+ P.

(6.4)

According to previous assumptions, we have ‖P̃0‖s;D(r ,s)×O ≤ ε.

Let 0 < r+ < r and 0 < ρ+ < ρ. To give finite induction, we let

ε̃0 = ε, r̃0 = 2r+, s̃0 = s, ρ̃0 = ρ.

K = �
(

γ 2

2ε
1
2

) 1
4τ+6

� + 1.
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Now let n ≥ n0 and define

L = 2+
⌊
2n+2−n0cτU ln Qn+1
2(24τ + 36) ln 5

2

⌋

,

r = r0
4Q4

n
, ε = ε−Q−2n+2−n0 cτU

n+1 ,

ζ =
n−n0∑

i=0
ε

1
2
i , γ = γ0 − 3

n−n0∑

i=0
ε

1
2
i ,

where the constant U = U (A) is defined in Lemma 3.2. For m = 1, 2, 3, ..., L, we define
the following sequences:

ε̃m = ε̃
5
4
m−1 = ε̃

( 54 )m

0 , ζ̃m =
m−1∑

q=0
ε̃q ,

σ̃m = r̃0
5 · 2m+2 , K (m) =

⎛

⎝ γ 2σ̃ 2
m

2C3ζ̃
1
2
m

⎞

⎠

1
2τ+1

,

K̃m =
⌊
σ̃−1m ln ε̃−1m−1

⌋
+ 1, r̃m = r̃m−1 − 5σ̃m−1,

η̃m = ε̃
1
3
m−1, s̃m = η̃ms̃m−1,

ρ̃m = L − m

L
ρ̃0 + m

L
ρ+.

(6.5)

Lemma 6.1 Let 0 < ε0 < 1 and n0 be a positive integer such that

Q−4cτU
n0+1 < ε0 < min{2−32r40 , 2−18γ 12

0 }, ln ε−10 ≤ ε
− 1

24τ+36
0 . (6.6)

Suppose Qn (see (6.2)) satisfies

Qn ≥ (n + 2− n0)2
n+2−n0cτU , c >

30(2τ + 3)

τU
, (6.7)

then for finite sequences defined above, the following three inequalities hold:

(1) 360r̃m Qn+1ζ ≤ (r − r̃m)3;

(2) 256
(r−r̃m )2

e−
r−r̃m

2 Qn+1ζ ≤ 1
2 ζ̃

1
2
m ;

(3) K̃m ≤ min{K , K (m)}.
The proof of Lemma 6.1 is postponed to the appendix.

Proposition 6.2 Suppose all the assumptions in Lemma 6.1 are still satisfied, 0 < ε0 ≤
(r0s0γ0)12τ+36

Q2cτU
n0

and

‖B‖∞,D(r̃0)×O ≤ ζ, (6.8)

then for all 	(ξ)+[B(·, ξ)] ∈MCω(γ, τ, K ,O), the following holds: For 0 ≤ m ≤ L−1,
there is an S−invariant coordinate transformation

�̃m : D(r̃m+1, s̃m+1)×O → D(r̃m, s̃m)×O
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such that S−reversible vector field
X̃m+1 = (�̃m)∗ X̃m = Ñm+1 + P̃m+1

= ω
∂

∂θ
+ i(	(ξ)+ B(θ, ξ)+ bm+1(θ, ξ))z

∂

∂z

− i(	(ξ)+ B(θ, ξ)+ bm+1(θ, ξ))z̄
∂

∂ z̄
+ P̃m+1

(6.9)

with

‖bm+1‖∞,D(r̃m+1)×O ≤ ζ̃m+1, (6.10)

‖P̃m+1‖s̃m+1;D(r̃m+1,s̃m+1)×O ≤ ε̃m+1 (6.11)

Moreover, �̃m satisfies

‖�̃m − id‖s̃m+1;D(r̃m+1,s̃m+1)×O ≤ C ε̃
81
100
m , (6.12)

‖D�̃m − Id‖s̃m+1;D(r̃m+1,s̃m+1)×O ≤ C ε̃
47
100
m . (6.13)

Proof Suppose

X̃m = Ñm + P̃m,

where Ñm and P̃m satisfy (6.8), (6.9)–(6.11) with m in place of m + 1. P̃m can be rewritten
as

P̃m = R̃m + (P̃m − R̃m),

with

R̃m =
∑

v∈{z j ,z̄ j }

∑

|k|≤K̃m ,
|α|+|β|≤1

P̃(v)
m,kαβe

i〈k,θ〉zα z̄β ∂

∂v (6.14)

We set the parameters (r , r̃ , ζ, ζ̃ , γ, σ, K ) in Section 5 to be (r , r̃m, ζ, ζ̃m, γ, σ̃m, K̃m)

here. Then, by Lemma 6.1, the assumptions (i)–(iii) in (5.6–(5.8)) are satisfied. It follows
that the homological equation

[Ñm, Fm] + R̃m = �R̃m�

admits an S−invariant approximate solution Fm on D(r̃m − 2σ̃m, s̃m) × O satisfying the
estimate

‖Fm‖s̃m ,D(r̃m−2σ̃m ,s̃m )×O ≤ C0ζ
2Q2

n+1 K̃ 2τ+1
m

γ 2σ̃ 2
m(r − r̃m)4

‖R̃m‖s̃m ,D(r̃m ,s̃m )×O. (6.15)

By the definition of ε, n ≥ n0 and c >
5(12τ+18)

2τU ,

ε̃m ≤ ε̃0 = ε = ε−Q−2n+2−n0 cτU
n+1 ≤ Q−120(2=τ+3)

n+1 ,

Qn+1 ≤ ε̃
− 1

120(2τ+3)
m .

In the proof of Lemma 6.1, we have obtained

K̃m ≤
(
1

ε̃0

) 1
12τ+18 ≤ ε̃

− 1
12τ+18

m .
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By the definition of σ̃m,

σ̃m = r0
5 · 2m+3 Q

−4
n+1 ≥ Q−5

n+1ε
1

24(2τ+3) ,

1

σ̃m
≤ Q5

n+1ε
− 1

2(24τ+36) ≤ ε̃
− 1

24τ+36
m .

Owing to the assumptions on ε0, one can obtain

ε0 ≤ (r0s0γ0)12τ+36

Q2cτU
n0

≤ γ 12τ+36
0 ,

1

γ0
≤
(
1

ε0

) 1
12τ+36 ≤

(
1

ε

) 1
12τ+36

and

1

γ
≤ 2

γ0
≤ 2

(
1

ε

) 1
12τ+36 ≤ 2ε̃

− 1
12τ+36

m .

It is obvious to obtain that

1

(r − r̃m)4
≤
(
8Q4

n

r0

)4

≤ Q2
n+1 ≤ ε̃

− 1
60(2τ+3)

m .

Using the inequalities above, we have

‖Fm‖s̃m ,D(r̃m−2σ̃m ,s̃m )×O

≤ C0ζ
2Q2

n+1 K̃ 2τ+1
m

γ 2σ̃ 2
m(r − r̃m)4

‖R̃m‖s̃m ,D(r̃m ,s̃m )×O

≤ C0ζ
2Q2

n+1 K̃ 2τ+1
m

γ 2σ̃ 2
m(r − r̃m)4

ε̃m

≤ 16C0ε0ε̃
1− 2

10(24τ+36)− 2τ+1
12τ+18− 2

12τ+36− 20
10(24τ+36)− 2

10(24τ+36)
m

≤ ε̃
81
100
m .

(6.16)

Let �̃m = φ1
Fm

, then

X̃m+1 = (�̃m)∗ X̃m

= (Ñm + R̃m) ◦ Xt
F + R̃m ◦ Xt

F + (P̃m − R̃m) ◦ Xt
F

= Ñm + �R̃m�+ Ř +
1∫

0

[R̃m(t), Fm] ◦ φt
Fm dt + (P̃m − R̃m) ◦ φ1

Fm

= Ñm+1 + P̃m+1,

(6.17)

where

Ñm+1 = Ñm + �R̃m�,

P̃m+1 = R̆m +
∫ 1

0
(φt

Fm )∗[R̃m(t), Fm]dt + (φ1
Fm )∗(P̃m − R̃m), (6.18)
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where R̃m(t) = (1− t)(�R̃m�+ R̆m)+ t R̃m .

Now

bm+1, j (θ, ξ) = bm, j (θ, ξ)+ iR̃
z j z j
m (θ, ξ),

for which we have

‖bm+1‖∞,D(r̃m+1)×O ≤ ‖bm‖∞,D(r̃m )×O + ‖diag R̃zz
m ‖∞,D(r̃m )×O

≤ ‖bm‖∞,D(r̃m ,s̃m )×O + ‖P̃m‖s̃m ;D(r̃m ,s̃m )×O
≤ ζ̃m + ε̃m ≤ ζ̃m+1

Now we consider the estimate for coordinate transformation �̃m := φ1
Fm

. To this end, we
first prove

‖DFm‖s̃m+1,D(r̃m+1,s̃m+1)×O ≤ ε̃
47
100
m . (6.19)

Indeed, by Cauchy’s estimate and (6.16), one has

‖DFm‖s̃m+1,Dρ̃m+1 (r̃m+1,s̃m+1)×O

= ‖DFm‖s̃m+1,Dρ̃m+1 (r̃m−5σ̃m ,s̃m+1)×O

≤ 1

η̃m+1
C

3σ̃m
‖Fm‖s̃m ,Dρ̃m (r̃m−2σ̃m ,s̃m )×O

≤ C

3
ε̃
( 81
100− 1

3− 1
24τ+36 )

m ≤ ε̃
47
100
m .

As a consequence, for every −1 ≤ t ≤ 1 the flow φt
Fm

generated by vector field Fm defines
an S−invariant coordinate transformation

φt
Fm : D(r̃m+1, s̃m+1)×O → D(r̃m, s̃m)×O

and by Gronwall’s inequality and (6.16) (6.19).

‖φt
Fm − id‖s̃m+1,D(r̃m+1,s̃m+1)×O ≤ C‖Fm‖s̃m+1,D(r̃m+1,s̃m+1)×O ≤ C ε̃

81
100
m ,

‖Dφt
Fm − I d‖s̃m+1,D(r̃m+1,s̃m+1)×O ≤ C‖DFm‖s̃m+1,D(r̃m+1,s̃m+1)×O ≤ C ε̃

47
100
m .

Finally, we give the estimate for P̃m+1 in (6.18). It follows from the definition of K̃m that

e−K̃m σ̃m = ε̃m−1 = ε̃
4
5
m .

By the conclusion in (5.10) and (6.16),

‖R̆m‖s̃m ,D(r̃m−4σ̃m ,s̃m )×O

= C0ζ
2Q2

n+1σ̃−2m (r − r̃m)−2e−K̃m σ̃m
(
‖R̃m‖s̃m ,D(r̃m ,s̃m )×O

+ ‖bm‖D(r̃m )‖Fm‖s̃m ,D(r̃m−2σ̃m ,s̃m )×O
)

≤ C0 · 4ε0ε̃−
2

10(24τ+36)− 20
10(24τ+36)− 1

10(24τ+36)+ 4
5

m (ε̃m + ζ̃
1
2
m ε̃

81
100
m )

≤ C0 · 4ε0ε̃−
2

10(24τ+36)− 20
10(24τ+36)− 1

10(24τ+36)+ 4
5+ 81

100
m

≤ ε̃
8
5
m .

(6.20)
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Using Cauchy’s estimate and above estimate, we have

‖R̆m‖s̃m+1,D(r̃m+1,s̃m+1)×O

≤ 1

η̃m+1
‖R̆m‖s̃m ,D(r̃m−4σ̃m ,s̃m )×O

≤ ε̃
− 1

3
m ε̃

8
5
m ≤ 1

4
ε̃m+1.

(6.21)

Then we get the estimate for R̃m(t) = (1− t)(�R̃m�+ R̆m)+ t R̃m obtained above,

‖R̃m(t)‖s̃m ,D(r̃m−4σ̃m ,4s̃m+1)×O
≤ ‖R̆‖s̃m ,D(r̃m−4σ̃m ,s̃m )×O + 2‖P̃m‖s̃m ,D(r̃m ,s̃m )×O

≤ ε̃
8
5
m + 2ε̃m .

(6.22)

The estimates for R̃m(t) and Fm imply that

‖(φt
Fm )∗[R̃m(t), Fm]‖s̃m+1,D(r̃m+1,s̃m+1)×O

≤ 2

η̃m+1σ̃m
‖R̃m(t)‖s̃m ,D(r̃m−4σ̃m ,4s̃m+1)×O‖Fm‖s̃m ,D(r̃m−4σ̃m ,4s̃m+1)×O

≤ 2ε̃
− 1

3
m ε̃

− 1
24τ+36

m (2ε̃m + ε̃
8
5
m)ε̃

81
100
m ≤ 1

4
ε̃m+1.

(6.23)

Consider the estimate for ‖(φ1
Fm

)∗(P̃m − R̃m)‖s̃m+1;D(r̃m+1,s̃m+1)×O. We rewrite P̃m − R̃m

as P̃m − R̃m = P̃(1)m + P̃(2)m where

P̃(1)m =
∑

v∈{z j ,z̄ j : j≥1}

∑

|k|>K̃m ,
|α|+|β|≤1

P̃(v)
m,kαβe

i〈k,θ〉zα z̄β ∂

∂v

and

P̃(2)m =
∑

v∈{z j ,z̄ j : j≥1}

∑

k∈Z2,
|α|+|β|≥2

P̃(v)
m,kαβe

i〈k,θ〉zα z̄β ∂

∂v
.

Then

‖(φ1
Fm )∗(P̃m − R̃m)‖s̃m+1;D(r̃m+1,s̃m+1)×O
≤ 2‖P̃(1)m‖s̃m+1;D(r̃m−5σ̃m ,s̃m+1)×O + 2‖P̃(2)m‖s̃m+1;D(r̃m−5σ̃m ,s̃m+1)×O

≤ 2η̃−1m+1
32

(5σ̃m)2
e−5K̃m σ̃m‖P̃m‖s̃m ;D(r̃m ,s̃m )×O + 2η̃m+1‖P̃m‖s̃m ;D(r̃m ,s̃m )×O

≤ 64

25
ε̃
− 1

3
m ε̃4m ε̃

− 1
12τ+18

m ε̃m + 2ε̃
1
3
m ε̃m ≤ 1

2
ε̃m+1.
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All these estimates yield that

‖P̃m+1‖s̃m+1;D(r̃m+1,s̃m+1)×O
≤ ‖R̆m‖s̃m+1,D(r̃m+1,s̃m+1)×O + ‖(φt

Fm )∗[R̃m(t), Fm]‖s̃m+1,D(r̃m+1,s̃m+1)×O
+ ‖(φ1

Fm )∗(P̃m − R̃m)‖s̃m+1;D(r̃m+1,s̃m+1)×O
≤ ε̃m+1.

��

Now we verify the Töplitz–Lipschitz property of P̃m+1.

Lemma 6.3 Suppose the vector field P̃m in X̃m = Ñm + P̃m above satisfies Töplitz–Lipschitz
property (A4)on D(r̃m, s̃m)with ε̃m, ρ̃m in place of ε, ρ. Then the vector field P̃m+1 inPropo-
sition 6.2 also satisfies Töplitz–Lipschitz property (A4) on D(r̃m+1, s̃m+1) with ε̃m+1, ρ̃m+1
in place of ε, ρ.

Proof From the proof of Proposition 6.2, it is not difficult to verify the following inequality
holds:

(
32

σ̃ 2
m
e−K̃m σ̃m

) 4
3 ≤ ε̃m ≤ min

{

σ̃ (24τ+36)
m ,

(
(r − r̃m)2

Qn+1

)60(2τ+3)
,

(
γ 2

C0 K̃
2τ+1
m

) 50
9
}

.

It is just the assumption (5.27) in Proposition 5.2 if we replace (r , r̃ , γ, σ, K ) in Section
5 by (r , r̃m, γ, σ̃m, K̃m). Then using Proposition 5.2, Fm and R̆m in Proposition 6.2 satisfy

Töplitz–Lipschitz property (A4)with ε̃
3
5
m , ε̃

4
3
m , respectively, in place of ε on D(r̃m−5σ̃m, s̃m).

Below we verify P̃m+1 satisfies Töplitz–Lipschitz property (A4). Note that it can be
rewritten as

P̃m+1 = R̆m + P̃m − R̃m + [P̃m, Fm] + 1

2! [[Ñm, Fm], Fm] + 1

2! [[P̃m, Fm], Fm]

+ · · · + 1

i ! [· · · [Ñm, Fm] · · · , Fm︸ ︷︷ ︸
i

] + 1

i ! [· · · [P̃m, Fm] · · · , Fm︸ ︷︷ ︸
i

] + · · · .

Thus it suffices to verify [P̃m, Fm] and P̃m − R̃m satisfy Töplitz–Lipschitz property.

• We first prove [P̃m, Fm] satisfies Töplitz–Lipschitz property.
By the definition of Lie bracket, the zi−component of [P̃m, Fm] is

[P̃m, Fm](zi ) =
∑

u∈V

(
∂ P̃(zi )

m

∂u
F (u)
m + ∂F (zi )

m

∂u
P̃(u)
m

)

.

In what follows, we only consider ∂
∂z j
[P̃m, Fm](zi ) and the derivatives with respect

to the other components are similarly analyzed. To this end, it suffices to consider
∑

h

∂2 P̃
(zi )
m

∂zh∂z j
F (zh)
m and

∑

h

∂ P̃
(zi )
m

∂zh
∂F

(zh )
m

∂z j
in ∂

∂z j
[P̃m, Fm](zi ) since the other terms can be simi-

larly studied.
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Let pzzi j := lim
t→∞

∂ P̃
(zi+t )
m

∂z j+t , f zzi j := lim
t→∞

∂F
(zi+t )
m

∂z j+t . Then
∥
∥
∥
∥
∥

∑

h

(
∂2 P̃(zi+t )

m

∂zh∂z j+t
F (zh )
m − lim

t→∞
∂2 P̃(zi+t )

m

∂zh∂z j+t
F (zh )
m

)∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

≤ ‖Fm‖D(r̃m−2σ̃m ,s̃m )

∥
∥
∥
∥
∥

∂ P̃
(z j+t )
m

∂z j+t
− pzzi j

∥
∥
∥
∥
∥
D(r̃m ,s̃m )

≤ ε̃
1+ 81

100
m

|t | e−ρ̃m |i− j | ≤ ε̃
16
25
m

ε̃m+1
|t | e−ρ̃m+1|i− j |.

∥
∥
∥
∥
∥

∑

h

(
∂ P̃(zi+t )

m

∂zh+t
∂F (zh+t )

m

∂z j+t
− pzzih f

zz
h j

)∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

≤
∑

h

‖ f zzh j ‖D(r̃m+1,s̃m+1)

∥
∥
∥
∥
∥

∂ P̃(zi+t )
m

∂zh+t
− pzzih

∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

+
∑

h

‖pzzih‖D(r̃m+1,s̃m+1)

∥
∥
∥
∥
∥

∂F (zh+t )
m

∂z j+t
− f zzh j

∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

+
∑

h

∥
∥
∥
∥
∥

∂ P̃(zi+t )
m

∂zh+t
− pzzih

∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

∥
∥
∥
∥
∥

∂F (zh+t )
m

∂z j+t
− f zzh j

∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

≤
∑

h

‖ f zzh j ‖D(r̃m−2σ̃m ,s̃m )

∥
∥
∥
∥
∥

∂ P̃(zi+t )
m

∂zh+t
− pzzih

∥
∥
∥
∥
∥
D(r̃m ,s̃m )

+
∑

h

‖pzzih‖D(r̃m−4σ̃m ,s̃m )

∥
∥
∥
∥
∥

∂F (zh+t )
m

∂z j+t
− f zzh j

∥
∥
∥
∥
∥
D(r̃m ,s̃m )

+
∑

h

∥
∥
∥
∥
∥

∂ P̃(zi+t )
m

∂zh+t
− pzzih

∥
∥
∥
∥
∥
D(r̃m ,s̃m )

∥
∥
∥
∥
∥

∂F (zh+t )
m

∂z j+t
− f zzh j

∥
∥
∥
∥
∥
D(r̃m−2σ̃m ,s̃m )

≤
∑

h

⎛

⎝ ε̃
1+ 3

5
m

|t | e−ρ̃m | j−h|e−ρ̃m |i−h| + ε̃
1+ 3

5
m

|t | e−ρ̃m |i−h|e−ρ̃m | j−h| + ε̃
1+ 3

5
m

|t | e−ρ̃m |i−h|e−ρ̃m | j−h|
⎞

⎠

≤ 3ε̃
1+ 3

5
m

|t | e−ρ̃m+1|i− j |∑

h

e−(ρ̃m−ρ̃m+1)(| j−h|+|i−h|)

≤ 3̃ε
3
10
m

ε̃m+1
|t | e−ρ̃m+1|i− j |, if ε̃

1
20
m

e(ρ̃m−ρ̃m+1) + 1

e(ρ̃m−ρ̃m+1) − 1
≤ 1.

• We prove P̃m − R̃m satisfies Töplitz–Lipschitz property.
Let

P̃m − R̃m = P̃(1)m + P̃(2)m

where

P̃(1)m =
∑

v∈{z j ,z̄ j : j≥1}

∑

|k|>K̃m ,
|α|+|β|≤1

P̃(v)
m,kαβe

i〈k,θ〉zα z̄β,

P̃(2)m =
∑

v∈{z j ,z̄ j : j≥1}

∑

k∈Z2,
|α|+|β|≥2

P̃(v)
m,kαβe

i〈k,θ〉zα z̄β .
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We write

P̃(zi )
(1)m =

∑

|k|>K̃m

P̃(zi )
m,k00e

i〈k,θ〉 +
∑

|k|>K̃m , j

P̃(zi )
m,ke j0

ei〈k,θ〉z j +
∑

|k|>K̃m , j

P̃(zi )
m,k0e j

ei〈k,θ〉 z̄ j ,

and

∂ P̃(zi )
(1)m

∂z j
=

∑

|k|>K̃m

P̃(zi )
m,ke j0

ei〈k,θ〉 = RK̃m

∂ P̃(zi )
m

∂z j
(θ, 0, 0).

Then
∥
∥
∥
∥
∥
∥

∂ P̃(zi+t )
(1)m

∂z j+t
− lim

t→∞
∂ P̃(zi+t )

(1)m

∂z j+t

∥
∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

≤ 32

σ̃ 2
m
e−K̃m σ̃m

∥
∥
∥
∥
∥

∂ P̃(zi+t )
m

∂z j+t
− lim

t→∞
∂ P̃(zi+t )

m

∂z j+t

∥
∥
∥
∥
∥
D(r̃m ,s̃m )

≤ ε̃
3
4
m

ε̃m

|t | e
−ρ̃m |i− j |

≤ ε̃
1
2
m

ε̃m+1
|t | e−ρ̃m+1|i− j |.

For P̃(zi )
(2)m, we note that

P̃(zi )
(2)m =

∑

|α|+|β|≥2
P̃(zi )
m,αβ(θ)zα z̄β

= P̃(zi )
m,el+ j ,0

(θ)zl z j + P̃(zi )
m,el ,e j (θ)z̄l z j + P̃(zi )

m,0,el+ j
(θ)z̄l z̄ j + O(‖z‖3p)

and

∂ P̃(zi )
(2)m

∂z j
= O

(
∑

l

zl
∂2 P̃(zi )

m

∂zl∂z j
(θ, 0, 0)

)

.

Then
∥
∥
∥
∥
∥
∥

∂ P̃(zi+t )
(2)m

∂z j+t
− lim

t→∞
∂ P̃(zi+t )

(2)m

∂z j+t

∥
∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)×O

≤ C

∥
∥
∥
∥
∥

∑

l

zl
∂2 P̃(zi+t )

m

∂zl∂z j+t
(θ, 0, 0))− lim

t→∞
∑

l

zl
∂2 P̃(zi+t )

m

∂zl∂z j+t
(θ, 0, 0))

∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)×O

≤ C sup
‖z±‖p<s̃m+1

∑

l

|zl |
∥
∥
∥
∥
∥

∂

∂zl

(
∂ P̃(zi+t )

m

∂z j+t
− lim

t→∞
∂ P̃(zi+t)

m

∂z j+t

)∥
∥
∥
∥
∥
D(r̃m , 12 s̃m )×O

≤ C sup
‖z±‖p<s̃m+1

∑

l

|zl |e
p|l|

s̃m

∥
∥
∥
∥
∥

∂ P̃(zi+t )
m

∂z j+t
− lim

t→∞
∂ P̃(zi+t)

m

∂z j+t

∥
∥
∥
∥
∥
D(r̃m ,s̃m )×O

≤ Cs̃m+1
s̃m

ε̃m

|t | e
−ρ̃m |i− j |
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≤ C ε̃
1
12
m

ε̃m+1
|t | e−ρ̃m+1|i− j |. (6.24)

Similarly, one can verify that
∥
∥
∥
∥
∥
∥
lim
t→∞

∂ P̃(zi+t )
(1)m

∂z j+t

∥
∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

≤ ε̃
1
2
m ε̃m+1e−ρ̃m+1|i− j | (6.25)

and
∥
∥
∥
∥
∥
∥
lim
t→∞

∂ P̃(zi+t )
(2)m

∂z j+t

∥
∥
∥
∥
∥
∥
D(r̃m+1,s̃m+1)

≤ C ε̃
1
12
m ε̃m+1e−ρ̃m+1|i− j |. (6.26)

Therefore, P̃m+1 satisfies Töplitz–Lipschitz property with ε̃m+1, ρ̃m+1 in place of ε, ρ.

��
After performing L steps of finite iteration, we take r+ = r̃0

2 and s+ = s̃L . It is obvious
that

r+ ≤ r̃L−1 − r̃0
2m+1

= r̃L , (6.27)

s+ = ε̃
4
3 (( 54 )L−1)
0 s̃0. (6.28)

All above analysis implies that

Corollary 6.1 Consider X in (6.3). For every 0 < γ < 1, τ ≥ 10, s > 0, r > 0, ρ > 0,
A ≥ 14, if

	+ [B] ∈MCω(γ, τ, K ,O),

‖B‖∞,D(r)×O ≤ ζ, (6.29)

‖P‖s;D(r ,s)×O ≤ ε (6.30)

and P has Töplitz–Lipschitz property on D(r , s), then there exists s+ > 0, r+ > 0, ρ+ > 0,
and a real analytic, nearly identity, S−invariant transformation

� : D(r+, s+)×O → D(r , s)×O

of the form

(θ, z, z̄) �→ (θ,W (θ, z, z̄),W (θ, z, z̄))

where W and W are affine in z, z̄, which transforms above X into

X+ = N+ + P+

= ω
∂

∂θ
+ i(	(ξ)+ B+(θ, ξ))z

∂

∂z
− i(	(ξ)+ B+(θ, ξ))z̄

∂

∂ z̄
+ P+

(6.31)

with

‖B+‖∞,D(r+)×O ≤ ζ+, (6.32)

‖P+‖s+;D(r+,s+)×O ≤ ε+, (6.33)
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and P+ has Töplitz–Lipschitz property on D(r+, s+), Moreover, � satisfies

‖�− id‖s+;D(r+,s+)×O ≤ ε
4
5 , (6.34)

‖D�− Id‖s+;D(r+,s+)×O ≤ ε
9
20 . (6.35)

Proof Take

� = �̃0 ◦ �̃1 ◦ · · · ◦ �̃L−1,

then by Proposition 6.2, we have

X+ = �∗X = N+ + P+ = ÑL + P̃L

with B+ = B + bL and thus

‖B+‖∞,D(r+)×O ≤ ‖B‖∞,D(r̃L )×O + ‖bL‖∞,D(r̃L )×O
≤ ζ + ζ̃L

≤ ζ+.

By Proposition 6.2 and Lemma 6.3, (6.33) holds true and P+ has Töplitz–Lipschitz prop-
erty.

Now we verify (6.34) and (6.35).

‖�− id‖s+;D(r+,s+)×O =‖�̃0 ◦ �̃1 ◦ · · · ◦ �̃L−1 − id‖s+;D(r+,s+)×O
≤‖�̃0 − id‖s̃1;D(r̃1,s̃1)×O

+
L−1∑

j=1

j−1∏

b=0
‖D�̃b‖s̃b+1;D(r̃b+1,s̃b+1)×O‖�̃ j − id‖s̃ j+1;D(r̃ j+1,s̃ j+1)×O

≤C ε̃
81
100
0 + 4C ε̃

81
100
1

≤2C ε̃
81
100
0 ≤ ε

4
5 .

We first have

‖D�̃−1
m − Id‖s̃m+1;D(r̃m+1,s̃m+1)×O ≤

∞∑

j=1
‖D�̃m − Id‖ js̃m+1;D(r̃m+1,s̃m+1)×O

≤
∞∑

j=1

(

C ε̃
47
100
m

) j

≤ 2C ε̃
47
100
m ,

(6.36)
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then

‖D�− I d‖s+;D(r+,s+)×O
= ‖D(�̃0 ◦ �̃1 ◦ · · · ◦ �̃L−1)− I d‖s+;D(r+,s+)×O

≤
L−2∏

b=0
‖D�̃b‖s̃b+1;D(r̃b+1,s̃b+1)×O‖D�̃L−1 − I d‖s̃L ;D(r̃L ,s̃L )×O

+
L−2∑

j=0

j∏

b=0
‖D�̃b‖s̃b+1;D(r̃b+1,s̃b+1)×O‖D�̃−1

j − I d‖s̃m+1;D(r̃m+1,s̃m+1)×O

≤ 2C ε̃
47
100
L−1 + 2C

L−2∑

j=0
ε̃

47
100
j ≤ ε

9
20 .

��

6.2 An Infinite Induction

Given r > 0, s > 0, ρ > 0, τ ≥ 10, 0 < γ < 1, A ≥ 14 and U defined in Sect. 5. Suppose
c is a constant with c >

30(2τ+3)
τU . Let 0 < ε < 1 and n0 ∈ N such that

Q−4cτU
n0+1 < ε < min

{
(rsγ )12τ+36

Q2cτU
n0

, 2−32r40 , 2−18γ 12
0

}

(6.37)

and

ln ε−1 ≤ ε−
1

24τ+36 . (6.38)

For ν ≥ 1, we first define

εν = εν−1 · Q−2ν+1cτU
n0+ν , ε0 = ε. (6.39)

We also define other sequences as follows.

ζν =
ν−1∑

i=0
ε

1
2
i , γν = γ0 − 3

ν−1∑

i=0
ε

1
2
i , γ0 = γ,

Kν =
⌊
(

γ 2
ν

2ε
1
2
ν

) 1
4τ+6 ⌋

+ 1, rν = r0
4Q4

n0+ν−1
, r0 = r ,

sν = sν−1 · ε
4
3

((
5
4

)2+�
2ν cτU ln Qn0+ν−1

24(2τ+3) ln 5
2

�
−1
)

ν−1 , s0 = s,

ρν = ρ0

(

1−
ν+1∑

i=2
2−i

)

, ρ0 = ρ, Dν = D(rν, sν).

(6.40)

Obviously, s0 > · · · > sν > sν+1 > · · · ↘ 0 and r0 > · · · > rν > rν+1 > · · · ↘ 0.
According to the preceding analysis in Sect. 6.1, we obtain the following iterative lemma.
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Lemma 6.4 (Iterative Lemma) Suppose ε satisfies (6.37) and (6.38), and the S−reversible
vector field

Xν = Nν + Pν

= ω
∂

∂θ
+ i(	(ξ)+ Bν(θ; ξ))z

∂

∂z
− i(	(ξ)+ Bν(θ; ξ))z̄

∂

∂ z̄
+ Pν(θ, z, z̄; ξ)

on Dν ×Oν satisfies

‖Bν‖∞,D(rν )×Oν
≤ ζν. (6.41)

	(ξ)+ [Bν(·; ξ)] ∈MCω(γν, τ, Kν,Oν), (6.42)

‖Pν‖sν ;Dν×Oν
≤ εν (6.43)

and Pν has Töplitz–Lipschitz property (A4) with εν, ρν in place of ε, ρ. Then there exists a
real analytic, S−invariant transformation

�ν : Dν+1 ×Oν → Dν

of the form (θ, z, z̄; ξ) �→ (θ,Wν(θ, z, z̄; ξ),W ν(θ, z, z̄; ξ)), where Wν and W ν are affine
in z, z̄, satisfying

‖�ν − id‖sν+1;Dν+1×Oν
≤ ε

4
5
ν ,

‖D�ν − Id‖sν+1;Dν+1×Oν
≤ ε

9
20
ν

and a closed subset

Oν+1 = Oν \
⋃

Kν≤|k|<Kν+1

⋃

0<|l|≤2
�ν+1
kl (γν+1), (6.44)

where

�ν+1
kl (γν+1) = {ξ ∈ Oν : |〈k, ω〉 + 〈l,	(ξ)+ [Bν+1]〉| < γν+1

〈k〉τ }

such that Xν+1 = (�ν)
∗Xν = Nν+1 + Pν+1 satisfies the same assumptions as Xν with

‘ν + 1’ in place of ‘ν’.

Proof By the assumptions (6.41), (6.42) and (6.43), applying Corollary 6.1, we obtain a
real analytic, S−invariant transformation �ν as described in the lemma such that Xν+1 =
(�ν)

∗Xν = Nν+1 + Pν+1. Moreover, the estimate

‖Bν+1 − Bν‖∞,D(rν+1)×Oν
≤ 2εν ≤ ε

1
2
ν (6.45)

holds.
The new parameter setOν+1 can be constructed as follows. For all ξ ∈ Oν and |k| < Kν,

by (6.45),

|〈k, ω〉 + 〈l,	(ξ)+ [Bν+1]〉|
≥ |〈k, ω〉 + 〈l,	(ξ)+ [Bν]〉| − |〈l, [Bν+1] − [Bν]〉|

≥ γν

〈k〉τ −
ε

1
2
ν

〈k〉τ ≥
γν+1
〈k〉τ .

Then it remains to exclude the resonant sets �ν+1
kl (γν+1) for Kν ≤ |k| < Kν+1 and 0 < |l| <

2, and we thus obtain the desired parameter set Oν+1 in (7.2).
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Applying Corollary 6.1 again, on Dν+1 × Oν+1, Xν+1 has the same properties as those
of Xν . ��

7 Convergence andMeasure Estimates

7.1 Convergence

We begin with the S−reversible vector field
X0 = N0 + P0

= N + P

= ω
∂

∂θ
+ i	(ξ)z

∂

∂z
− i	(ξ)z̄

∂

∂ z̄
+ P(θ, z, z̄; ξ)

(7.1)

on D(r , s) with ξ ∈ O. 	 j ∈ C1
W (O) and B0 = 0. The non-resonance condition

	 ∈MCω(γ0, τ, K0,O0)

is satisfied by setting

O0 = O \
⋃

0<|k|≤K0

⋃

0<|l|≤2
�0
kl(γ0). (7.2)

The perturbation

‖P0‖s0;D0×O0 ≤ ε0.

We conclude form the iterative Lemma 6.4 that there exists a decreasing sequence of
domains Dν ×Oν and a sequence of transformations

�ν := �0 ◦ · · · ◦�ν−1 : Dν ×Oν−1 → D0,

such that (�ν)∗X0 = Nν+Pν, ν ≥ 1,which satisfies the properties inLemma6.4. Following
from [40],�ν converge uniformly on D∞×Oγ ⊆ ⋂

ν≥0
Dν×Oν,where D∞ := T

2×{0}×{0},
Oγ := ⋂

ν≥0
Oν, to a Whitney smooth family of smooth (C∞) torus embedding

� : T
2 ×Oγ → P.

Similarly, Bν converge uniformly on T
2 ×Oγ to a limit B∗. Moreover,

‖X ◦�ν −D�ν · Nν‖sν ;Dν×Oγ

≤‖D�ν‖sν ;Dν×Oγ
‖(�ν)∗X − Nν‖sν ;Dν×Oγ

=O(εν).

Let ν →∞, we have X ◦� = D� · N∗ on D∞ for each ξ ∈ Oγ , where

N∗ =ω
∂

∂θ
+ i(	(ξ)+ B∗(θ; ξ))z

∂

∂z
− i(	(ξ)+ B∗(θ; ξ))z̄

∂

∂ z̄
. (7.3)

As in [40], � can be extended to D(0, s
2 )×Oγ since � is affine in z, z̄. More precisely,

uniformly on D(0, s
2 )×Oγ , we have

(�ν)∗X − Nν −→ �∗X − N∗ =: P∗, as ν →∞,
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such that

P∗ =
∑

v∈{z j ,z̄ j , j≥1}

∑

|α|+|β|≥2
P(v)
∗αβ(θ; ξ)zα z̄β

∂

∂v
.

At last, we verify C∞ smoothness of �∞ on θ . For �ν defined above,

‖D�ν‖sν ,Dν×O ≤
ν−1∏

j=0
‖D� j‖s j ,Dj×O ≤

ν−1∏

j=0

(

1+ ε
9
20
j

)

≤ 2,

then

‖�ν+1 −�ν‖sν+1,Dν+1×O ≤ ‖D�ν‖sν ,Dν×O · ‖�ν − id‖sν ,Dν×O ≤ 2ε
4
5
ν .

By the definition of εν we know that for every b ∈ Z
2, there exists some N ∈ N so that for

all ν ≥ N , we have 2

(
4Q4

n0+ν

r0

)|b|
≤ ε

− 2
5

ν .

Then by Cauchy estimate, we have
∣
∣
∣
∣
∂ |b|

∂θb

(
�ν+1 −�ν

)
∣
∣
∣
∣ ≤r−|b|ν+1 ‖�ν+1 −�ν‖sν+1,Dν+1×O

≤
(
4Q4

n0+ν

r0

)|b|
· 2ε

4
5
ν

≤ε
− 2

5
ν · ε

4
5
ν = ε

2
5
ν ,

which implies the limit �∞ = lim
ν→∞�ν is C∞ smooth on θ .

7.2 Measure Estimates

In this subsection, we complete the Lebesgue measure estimate of the parameter setO \Oγ .

In the process of constructing iterative sequences, we obtain a decreasing sequence of closed
sets O0 ⊃ O1 ⊃ · · · such that Oγ = ⋂

ν≥0
Oν and

O \Oγ =
⋃

ν≥0

⋃

Kν−1<|k|≤Kν ,
0<|l|≤2

�ν
kl(γν), (7.4)

where for ν ≥ 0,

�ν
kl(γν) =

{

ξ ∈ Oν−1 : |〈k, ω〉 + 〈l,	(ξ)+ [Bν]〉| < γν

〈k〉τ
}

here B0 = 0, K−1 = 0.
In the following, it remains to consider the case of l = ei − e j , i �= j, which is the most

difficult one.

Note that 	 j (ξ) = d(ξ) j + 	̃ j (ξ). ‖Bν‖∞,D(rν )×Oν−1 ≤ 2ε
1
2
0 ,

Let

	ν(ξ) := 	(ξ)+ [Bν],
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�ν
knm(γν) :=

{

ξ ∈ Oν−1 : |〈k, ω〉 +	ν,n(ξ)−	ν,m(ξ)〉| < γν

K τ
ν

}

,

and

Mν := 〈k, ω〉 +	ν,n(ξ)−	ν,m(ξ).

Lemma 7.1 Suppose C = C(A0, A1, A2) is a constant defined in Section 5. Then for any given
n,m ∈ Nwith |n−m| ≤ CKν , there are n0,m0, t ≥ 1with1 ≤ n0 ≤ 2CKν, 1 ≤ m0 ≤ 2CKν

such that n = n0 + t,m = m0 + t . Thus
⋃

n,m≥1
�ν
knm ⊂

⋃

1≤n0,m0≤2CKν ,t≥1
�ν
k,n0+t,m0+t .

Proof It is easy to see that there exists a t0 ≥ 1 such that |n − t0| ≤ CKν . Take n0 = n − t0
and m0 = n0 + m − n, then

|m0| ≤ |n0| + |m − n| ≤ 2CKν .

We have ��

Lemma 7.2 For fixed k, n0,m0,

meas

(
⋃

t∈N
�ν
k,n0+t,m0+t

)

≤ c
γν

K
τ
2
ν

,

here c is a constant depending on A0, A1, A2 and meas(O).

Proof Let 	ν, j = d(ξ) j +	0
ν, j , and Mν(t) = 〈k, ω〉 +	ν,n0+t −	ν,m0+t .

From the Töplitz–Lipschitz property of Pν , we conclude that

|Mν(t)− lim
t→∞Mν(t)| < ε0

|t | .

Let

�ν
k,n0,m0,∞ :=

{

ξ ∈ Oν−1 : | lim
t→∞Mν(t)| < γν

K
τ
2
ν

}

.

For ξ ∈ Oν−1\�ν
k,n0,m0,∞, | limt→∞ Mν(t)| ≥ γν

K
τ
2

ν

.

When |t | > K
τ
2
ν , for ξ ∈ Oν−1\�ν

k,n0,m0,∞, we have

|Mν(t)| ≥| lim
t→∞Mν(t)| − |Mν(t)− lim

t→∞Mν(t)|
≥ γν

K
τ
2
ν

− ε0

t

≥ γν

K
τ
2
ν

− ε0

K
τ
2
ν

≥ γν

K τ
ν

.

Thus

Oν−1 \ �ν
k,n0,m0,∞ ⊆ {ξ ∈ Oν−1 : |Mν(t)| ≥ γν

K τ
ν

}
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then

�ν
k,n0,m0,∞ ⊇

⋃

|t |>K τ/2
ν

{ξ ∈ Oν−1 : |Mν(t)| < γν

K τ
ν

}.

Notice that by Lemma 9.2, one has |∂ξ (Mν(t))| ≥ A1
4 , then

meas
(
�ν
k,n0,m0,∞

) ≤ c
γν

K τ
ν

and

meas

⎛

⎜
⎝

⋃

|t |>K
τ
2

ν

{

ξ ∈ Oν−1 : |Mν(t)| < γν

K τ
ν

}
⎞

⎟
⎠ ≤ c

γν

K τ
ν

.

When |t | ≤ K
τ
2
ν , consider the resonant set

�ν
k,n0,m0,t := {ξ ∈ Oν−1 : |Mν(t)| < γν

K τ
ν

}.

We have

meas

⎛

⎜
⎝

⋃

|t |≤K
τ
2

ν

�ν
k,n0,m0,t

⎞

⎟
⎠ ≤ 2K

τ
2
ν

cγν

K τ
ν

≤ c
γν

K
τ
2
ν

.

Therefore,

meas

(
⋃

t∈N
�ν
k,n0+t,m0+t

)

≤ c
γν

K
τ
2
ν

.

��
According to the above analysis, we obtain the following lemma.

Lemma 7.3 Let τ > 10. Then the total measure of resonant set should be excluded during
the KAM iteration is

meas
(
O \Oγ

) = O(γ ).

Proof

O \Oγ =
⋃

ν≥0

⋃

Kν−1<|k|≤Kν ,
0<|l|≤2

�ν
kl(γν),

meas
(
O \Oγ

) ≤
∑

ν≥0
meas

⎛

⎜
⎜
⎝

⋃

Kν−1<|k|≤Kν ,
0<|l|≤2

�ν
kl(γν)

⎞

⎟
⎟
⎠

≤
∑

ν≥0
cKν

γν

K
τ
2
ν

= O(γ ).

��
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8 Proof of Theorem 1.1

We give the proof of Theorem 1.1 by Theorem 4.1.

Letλ j = μ2 j2 andφ j (x) =
√

2μ
π

sinμ j x, ( j ≥ 1) be the eigenvalues and eigenfunctions

of operator − d2

dx2
under Dirichlet boundary conditions y(0) = 0 = y( π

μ
). We also denote

ψ j (x) =
√

2μ
π

cosμ j x , and obviously d
dx φ j (x) = μ jψ j (x).

To write Eq. (1.1) as an infinite dimensional reversible system, we introduce for p > 0
the following two Banach spaces consist of odd functions

W p
odd = {u =

∑

j≥1
q jφ j : ‖u‖p =

∑

j≥1
epj |q j | < ∞}, (8.1)

and even functions

W p
even = {u =

∑

j≥0
p jψ j : ‖u‖p =

∑

j≥0
epj |p j | < ∞}. (8.2)

Through the inverse discrete Fourier transform S : �p → W p
odd (resp. W p

even), W p
odd (resp.

W p
even) may be identified with the space �p.

Let u = Sq = ∑

j≥1
q jφ j ∈W p

odd . We write

f (θ, x, u, ux , ut ) =
∑

i, j,h≥0
fi jh(θ, x)uiu j

xu
h
t .

By conditions (1.3)–(1.5), fi jh(θ, x) satisfies

fi jh(−θ, x) = (−1)h fi jh(θ, x)

and

fi jh(θ,−x) = (−1)i+h+1 fi jh(θ, x).

For every x and i, j, h ≥ 0, fi jh(·, x) is real analytic in the strip {θ : |Imθ | < r , r > 0}. For
every θ, fi jh(θ, ·) ∈Wρ

p ∪W p
even .

Then Eq. (1.1) is written as

q̈ j + λ j q j + εg j (ωt, q, q̇) = 0, j ≥ 1 (8.3)

where g j (ωt, q, q̇) = ∫ π
μ

0 f (ωt, x,Sq, (Sq)x , (Sq)t )φ j dx and reversible condition (1.3)
becomes g j (ωt, q, q̇) = g j (−ωt, q,−q̇).

Let z j = −√λ j q j + iq̇ j , z̄ j = −√λ j q j − iq̇ j , then Eq. (8.3) can be rewritten as
⎧
⎪⎪⎨

⎪⎪⎩

θ̇ = ω,

ż j = i
√

λ j z j − iεg j (θ, . . . ,− zi+z̄i
2
√

λi
, . . . ,

zi−z̄i
2i , . . .),

˙̄z j = −i√λ j z̄ j + iεg j (θ, . . . ,− zi+z̄i
2
√

λi
, . . . ,

zi−z̄i
2i , . . .), j ≥ 1

(8.4)

which is reversible with respect to the involution S(θ, z, z̄) = (−θ, z̄, z).
Let s > 0, then on D(r , s) the corresponding S−reversible vector field of system (8.4) is

X(θ, z, z̄;μ) = N (θ, z, z̄;μ)+ P(θ, z, z̄;μ), (8.5)
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and

N = ω
∂

∂θ
+ i	(μ)z

∂

∂z
− i	(μ)z̄

∂

∂ z̄
,

P =
∑

j≥1
−iεg j

∂

∂z j
+
∑

j≥1
iεg j

∂

∂ z̄ j
.

where 	 j (μ) = √
λ j = μ j .

Now we give the verification of assumptions (A1)–(A4) for (8.5).
Verifying assumptions (A1) and (A2): Taking ξ ≡ μ ∈ [1, 2] as the parameter. 	 j (ξ) =

d(ξ) j+	̃ j (ξ)with d(ξ) = ξ, 	̃ j (ξ) = 0. Let A1 = 1 and it is obvious that (A1) is satisfied.
Then 〈k, ω〉 + 〈l,	(ξ)〉 = 〈k, ω〉 + ξ 〈l〉 �≡ 0 on [1, 2]. and

|∂ξ (〈k, ω〉 + 〈l,	(ξ)〉)| = |〈l〉| ≥ 1

Then there is a subset O ⊂ [1, 2] of positive Lebesgue measure such that (A2) holds.
Verifying assumptions (A3) and (A4):
We first verify (A3).

f (θ, x, u, ux , ut ) = b0(θ, x)+ O(|u|),
where b0(−θ, x) = b0(θ, x), b0(θ,−x) = −b0(θ, x) and b0(θ, x) = ∑

i≥1 b̂0i (θ)φi (x) ∈
W p

odd . Suppose sup
|Imθ |<r

‖b0(θ, ·)‖p < s.

In the following, let C = C(r) > 0 be some appropriate large constant and take ε0 = Cε.

Note that P(θ) = 0 and P(z±i ) = ∓iεg j = ∓iε ∫
π
μ

0 (b0(θ, x)φi + O(|u|))dx . Then
‖P‖s;D(r ,s)

= 1

s
sup

‖z±‖p<s

∑

i≥1
ei p

(
‖P(zi )‖D(r)×O + ‖P(z̄i )‖D(r)×O

)

≤ Cε

s
(‖b0(θ, ·)‖p + ‖z‖p) ≤ Cε = ε0.

We then verify (A4). Without loss of generality, we only verify the case of

f (θ, x, u, ux , ut ) = b0(θ, x)+ b1(θ, x)u + b2(θ, x)ux + b3(θ, x)ut ,

and other higher order terms can be verified similarly and won’t cause any essential difficulty.
Here

b0(−θ, x) = b0(θ, x), b0(θ,−x) = −b0(θ, x),

b1(−θ, x) = b1(θ, x), b1(θ,−x) = b1(θ, x),

b2(−θ, x) = b2(θ, x), b2(θ,−x) = −b2(θ, x),

b3(−θ, x) = −b3(θ, x), b3(θ,−x) = b3(θ, x).

One can expand bl(θ, x) (l = 0, 1, 2, 3) as follows: for l = 0, 2,

bl(θ, x) =
∑

k≥1
b̂lk(θ)φk(x) ∈W p

odd ,

and for l = 1, 3,

bl(θ, x) =
∑

k≥1
b̂lk(θ)ψk(x) ∈W p

even .
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Suppose

|b̂lk(θ)| ≤ e−pk sup
|Imθ |<r

‖bl(θ, ·)‖p ≤ Ce−pk, l = 1, 2, 3.

Denote c = 1
4 (

√
2μ
π

)3. We have

gi (ωt, q, q̇) =
∫ π

μ

0
f (ωt, x,Sq, (Sq)x , (Sq)t )φi dx

=
∫ π

μ

0
b0(θ, x)φi dx ±

∑

k± j=±i

c

μ
q j b̂1k(θ)±

∑

k± j=±i
cjq j b̂2k(θ)±

∑

k± j=±i

c

μ
q̇ j b̂3k(θ).

Then

P(zi ) = −iεgi (θ, . . . ,− z j + z̄ j
2μ j

, . . . ,
z j − z̄ j

2i
, . . .)

= −iε
∫ π

μ

0
b0(θ, x)φi dx

±
∑

k± j=±i

iεc

2μ2 j
b̂1k(θ)(z j + z̄ j )±

∑

k± j=±i

iεc

2μ
b̂2k(z j + z̄ j )±

∑

k± j=±i

εc

2μ
b̂3k(θ)(z j − z̄ j )

Hence

∂P(zi )

∂z j
=

∑

k− j=i

(

− iεc

2μ2 j
b̂1k(θ)+ iεc

2μ
b̂2k(θ)+ εc

2μ
b̂3k(θ)

)

+
∑

k− j=−i

(
iεc

2μ2 j
b̂1k(θ)− iεc

2μ
b̂2k(θ)− εc

2μ
b̂3k(θ)

)

+
∑

k+ j=i

(
iεc

2μ2 j
b̂1k(θ)+ iεc

2μ
b̂2k(θ)− εc

2μ
b̂3k(θ)

)

.

∂P(zi+t )

∂z j+t
= − iεc

2μ2( j + t)
b̂1(i+ j+2t)(θ)+ iεc

2μ
b̂2(i+ j+2t)(θ)+ εc

2μ
b̂3(i+ j+2t)(θ)

+ iεc

2μ2( j + t)
b̂1( j−i)(θ)− iεc

2μ
b̂2( j−i)(θ)− εc

2μ
b̂3( j−i)(θ)

+ iεc

2μ2( j + t)
b̂1(i− j)(θ)+ iεc

2μ
b̂2(i− j)(θ)− εc

2μ
b̂3(i− j)(θ).

Taking ε0 = Cε and ρ = p, we get

∥
∥
∥
∥
∥
lim
t→∞

∂P(zi+t )

∂z j+t

∥
∥
∥
∥
∥
D(r ,s)×O

≤ Cεe−|i− j |ρ = ε0e
−|i− j |ρ.
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Since e−ρ|i+ j+2t | = e−ρ(i+ j)e−2ρt ≤ 1
t e
−ρ|i− j |, then

∥
∥
∥
∥
∥

∂P(zi+t )

∂z j+t
− lim

t→∞
∂P(zi+t )

∂z j+t

∥
∥
∥
∥
∥
D(r ,s)×O

=
∥
∥
∥− iεc

2μ2( j + t)
b̂1(i+ j+2t)(θ)+ iεc

2μ
b̂2(i+ j+2t)(θ)+ εc

2μ
b̂3(i+ j+2t)(θ)

+ iεc

2μ2( j + t)
b̂1( j−i)(θ)+ iεc

2μ2( j + t)
b̂1(i− j)(θ)

∥
∥
∥
D(r)×O

≤ Cε

t
‖b̂1(i+ j+2t)(θ)‖D(r) + Cε‖b̂2(i+ j+2t)(θ)‖D(r) + Cε‖b̂3(i+ j+2t)(θ)‖D(r)

+ Cε

t
‖b̂1( j−i)(θ)‖D(r) + Cε

t
‖b̂1(i− j)(θ)‖D(r)

≤ ε0

|t |e
−|i− j |ρ.
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Appendix. Proofs of Some Technical Lemmas

Proof of Inequality (5.25) in Proposition 5.1

Proof Below to estimate ‖A−1i j ‖O , we first estimate

| ∂
∂ξ

(	i j + [Bi j ])|
(〈k, ω〉 − (	i j + [Bi j ])2 .

For i �= j, on one hand, since 	 j (ξ) = d(ξ) j + 	̃ j (ξ),

|∂ξ	i j | = |∂ξd(i − j)+ ∂ξ (	̃i − 	̃ j )| ≤ (A2 + 2|	̃|O)|i − j |.
|∂ξ [Bi j ]| ≤ 2‖B‖∞,D(r)×O ≤ 2ζ |i − j |.

Then

|∂ξ (	i j + [Bi j ])| ≤ (A2 + 3A1

4
)|i − j |.

On the other hand,

|∂ξ (	i j + [Bi j ])| ≥ |∂ξ	i j | − |∂ξ [Bi j ]| ≥ A1

4
|i − j |,

thus

A1

4
|i − j | ≤ |∂ξ (	i j + [Bi j ])| ≤ (A2 + 3A1

4
)|i − j |.

Note that

|〈k, ω〉 − (	i j + [Bi j ])| ≥ |	i j | − |[Bi j ]| − |〈k, ω〉|
≥ (A0 − 3A1

4
)|i − j | − K .
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Then when |i − j | > CK ,

|∂ξ (	i j + [Bi j ])
(〈k, ω〉 − (	i j + [Bi j ]))2 ≤

(A2 + 3A1
4 )

CK
.

When |i − j | ≤ CK , due to 	(ξ)+ [B] ∈MCω(γ, τ, K ,O),

|∂ξ (	i j + [Bi j ])
(〈k, ω〉 − (	i j + [Bi j ]))2 ≤

(A2 + 3A1
4 )CK 2τ+1

γ 2 .

Then for all i �= j,

|∂ξ (	i j + [Bi j ])|
(〈k, ω〉 − (	i j + [Bi j ]))2 ≤

(A2 + 3A1
4 )CK 2τ+1

γ 2 .

Therefore,

‖A−1i j ‖O

= max|k|≤K
sup
ξ∈O

(
1

|〈k, ω〉 − (	i j (ξ)+ [Bi j (θ)])| +
| ∂
∂ξ

(	i j + [Bi j ])|
(〈k, ω〉 − (	i j + [Bi j ])2

)

≤ (1+ A2 + 3A1
4 )CK 2τ+1

γ 2 =: C0K 2τ+1

γ 2 .

��

Proof of Lemma 6.1

Proof (1) In fact, by Lemma 3.1, one has Qn+1 ≥ QA
n .

r̃m ≤ r̃0 = 2r+,

(r − r̃m)3 ≥ (r − 2r+)3 ≥ (
r0
8Q4

n
)3,

and

360r̃m Qn+1ζ
(r − r̃m)3

≤ 360r̃m Qn+1ζ(
8Q4

n

r0
)3

≤ 360
2r0

4Q4
n+1

Qn+12ε
1
2
0
512Q12

n

r30

= C
Q12

n ε
1
2
0

Q3
n+1r20

≤ 1.

(9.1)

Thus we have our conclusion 360r̃m Qn+1ζ ≤ (r − r̃m)3.
(2) From Lemma 3.1, we have Qn+1 ≥ QA

n and ln Qn+1 ≤ QU
n . Using these and (6.7),

256

(r − r̃m)2
e−

r−r̃m
2 Qn+1ζ ≤ 256(

8Q4
n

r0
)2e−

r−r̃m
2 Qn+12ε

1
2
0 ,

256 · 64 · 2
r20

ε
1
2
0 ≤ 1

2
,

Q8
ne
−(r−r̃m )Qn+1 ≤ e

− r0
8Q4

n
Qn+1

Q8
n ≤ e

− Qn+1
Q5
n Q8

n
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≤ e
− Q

1
2
n+1 ln Qn+1

Q5
n eQn ln Qn+1 ≤ e− ln Qn+1(Q

A
2 −5
n −Qn)

≤ e−(ln Qn+1)Q
A
2 −5−1
n ≤ Q−(n+2−n0)2n+2−n0 cτU

n+1

=
(

ε

ε−

)n+2−n0
≤ ε ≤ ζ̃m,

thus

256

(r − r̃m)2
e−

r−r̃m
2 Qn+1ζ ≤ 1

2
ζ̃

1
2
m .

(3) We prove K̃m ≤ K (m) and K̃m ≤ K .

We first prove K̃m ≤ K (m). Owing to 2n+2−n0 cτU
2(24τ+36) ≥ 5 and

m ≤ L − 1 = 1+
⌊
2n+2−n0cτU ln Qn+1
2(24τ + 36) ln 5

2

⌋

,

then we have the inequalities

K̃m ≤ 2

σ̃m
ln

1

ε̃m−1
≤ 5 · 2m+2 · 4Q4

n+1
r0

ln
1

ε( 54 )m−1

≤ 160( 52 )
m−1Q4

n+1
r0

ln
1

ε
≤ 160( 52 )

� 2
n+2−n0 cτU ln Qn+1

2(24τ+36) ln 5
2

�
Q4

n+1
r0

ln
1

ε

≤ 160Q
2n+2−n0 cτU
2(24τ+36) +4

n+1
r0

ln
1

ε
≤ Q

2n+2−n0 cτU
(24τ+36)

n+1 ln
1

ε

≤
(
1

ε

) 1
24τ+36 (1

ε

) 1
24τ+36 =

(
1

ε

) 1
12τ+18

,

(9.2)

and

2L+2 ≤
(
5

2

)� 2
n+2−n0 cτU ln Qn+1

2(24τ+36) ln 5
2

�
≤ Q

2n+2−n0 cτU
2(24τ+36)

n+1 ,

1

2m+2
≥ 1

2L+2
≥ Q

− 2n+2−n0 cτU
2(24τ+36)

n+1 ≥ ε
1

2(24τ+36) .

We conclude from all these inequalities that

K (m)

K̃m
≥
⎛

⎝ γ 2σ̃ 2
m

2C0ζ̃
1
2
m

⎞

⎠

1
2τ+1

· ε 1
12τ+18

≥
(

γ 2
0 r

2
0

(20 · 2m+2Q4
n+1)2 · 2C0 · 2ε 1

2

) 1
2τ+1

· ε 1
12τ+18

≥
(

γ 2
0 r

2
0

C0Q8
n+1

) 1
2τ+1

·
(
1

ε

) 1
2(2τ+1)− 1

12τ+18− 1
2(24τ+36)
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≥
(

γ 2
0 r

2
0

C0Q8
n+1

) 1
2τ+1

· Q2n+2−n0 cτU
(

1
2(2τ+3)− 1

12τ+18− 1
2(24τ+36)

)

n+1

≥
(

γ 2
0 r

2
0

C0Q8
n+1

) 1
2τ+1

· Q2n+2−n0 8
n+1 ≥ 1,

i.e., K̃m ≤ K (m).

In (9.2), we have obtained K̃m ≤ ( 1
ε
)

1
12τ+18 . This together with K ≥

(
γ 2

2ε
1
2

) 1
4τ+6

shows

that

K̃m

K
≤
( 1

ε

) 1
12τ+18

(
γ 2

2ε
1
2

) 1
4τ+6

≤
(
1

ε

) 1
12τ+18

(
2ε

1
2

γ 2

) 1
4τ+6

≤
(
2ε

1
6

γ 2

) 1
4τ+6

≤ 1,

(9.3)

i.e., K̃m ≤ K .

Thus we complete the proof of K̃m ≤ min{K , K (m)}.
��

Some Basic Inequalities

Lemma 9.1 (Cauchy’s estimate, [29]) Suppose 0 < δ < r . f (θ, z, z̄) is real analytic on
D(r , s), then

∥
∥
∥
∥

∂ f

∂θb

∥
∥
∥
∥
D(r−δ,s)

≤ c

δ
‖ f ‖D(r ,s),

∥
∥
∥
∥
∥

∂ f

∂z±i

∥
∥
∥
∥
∥
D(r ,s/2)

≤ c

s
‖ f ‖D(r ,s)e

p|i |,

here c is a constant.

Lemma 9.2 ([5]) Let g : I → R be b + 3 times differentiable, and assume that

(1) ∀σ ∈ I there exists s ≤ b + 2 such that g(s)(σ ) > B.
(2) There exists A such that |g(s)(σ )| ≤ A for ∀σ ∈ I and ∀s with 1 ≤ s ≤ b + 3.

Define

Ih ≡ {σ ∈ I : |g(σ )| ≤ h},
then

meas(Ih)
meas(I)

≤ A

B
2
(
2+ 3+ · · · + (b + 3)+ 2B−1

)
h

1
b+3 .

123



1112 Journal of Dynamics and Differential Equations (2024) 36:1065–1113

References

1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies.
Geom. Funct. Anal. 21(5), 1001–1019 (2011)

2. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth.
Invent. Math. 214(2), 739–911 (2018)

3. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy
equation. Math. Ann. 359(1–2), 471–536 (2014)

4. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris 352(7–8),
603–607 (2014)

5. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlin-
earity 12(4), 823–850 (1999)

6. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations,
II. Commun. Math. Phys. 353(1), 353–378 (2017)

7. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations.
I. Trans. Am. Math. Soc. 370(3), 1823–1865 (2018)

8. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators andKAM
methods. Commun. Math. Phys. 219(2), 465–480 (2001)

9. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in
d-dimensions with polynomial time-dependent perturbation. Anal. PDE 11(3), 775–799 (2018)

10. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Ann. Sci.
Éc. Norm. Supér. (4) 46(2), 301–373 (2013)

11. Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech.
Anal. 212(3), 905–955 (2014)

12. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multi-
plicative potential. Nonlinearity 25(9), 2579–2613 (2012)

13. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on T
d with a multiplicative

potential. J. Eur. Math. Soc. (JEMS) 15(1), 229–286 (2013)
14. Berti, M., Montalto, R.: Quasi-periodic water waves. J. Fixed Point Theory Appl. 19(1), 129–156 (2017)
15. Berti, M., Procesi, M.: Quasi-periodic oscillations for wave equations under periodic forcing. Atti Accad.

Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16(2), 109–116 (2005)
16. Berti, M., Procesi, M.: Quasi-periodic solutions of completely resonant forced wave equations. Commun.

Partial Differ. Equ. 31(4–6), 959–985 (2006)
17. Berti, M., Procesi, M.: Nonlinear wave and Schrödinger equations on compact Lie groups and homoge-

neous spaces. Duke Math. J. 159(3), 479–538 (2011)
18. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations.

Ann. Math. (2) 148(2), 363–439 (1998)
19. Bourgain, J.: Periodic solutions of nonlinear wave equations. In: Harmonic Analysis and Partial Differ-

ential Equations (Chicago, IL, 1996), Chicago Lectures in Mathematics, pp. 69–97. Univ. Chicago Press,
Chicago (1999)

20. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of
Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

21. Calleja, R., Celletti, A., Corsi, L., de la Llave, R.: Response solutions for quasi-periodically forced,
dissipative wave equations. SIAM J. Math. Anal. 49(4), 3161–3207 (2017)

22. Chang, N., Geng, J., Lou, Z.: Bounded non-response solutions with Liouvillean forced frequencies for
nonlinear wave equations. J. Dyn. Differ. Equ. 33(4), 2009–2046 (2021)

23. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions.
Commun. Math. Phys. 211(2), 497–525 (2000)

24. Craig,W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. Panoramas et Synthèses
[Panoramas and Syntheses], vol. 9. Société Mathématique de France, Paris (2000)

25. Craig, W., Wayne, C.: Newton’s method and periodic solutions of nonlinear wave equations. Commun.
Pure Appl. Math. 46(11), 1409–1498 (1993)

26. Eliasson, L., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435
(2010)

27. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equa-
tions. J. Differ. Equ. 259(7), 3389–3447 (2015)

28. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional
cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

29. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary
conditions. J. Differ. Equ. 209(1), 1–56 (2005)

123



Journal of Dynamics and Differential Equations (2024) 36:1065–1113 1113

30. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2),
383–427 (2011)

31. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems.
Invent. Math. 190(1), 209–260 (2012)

32. Kappeler, T., Pöschel, J.: KdV&KAM, volume 45 of Ergebnisse derMathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd
Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2003)

33. Krikorian, R., Wang, J., You, J., Zhou, Q.: Linearization of quasiperiodically forced circle flows beyond
Brjuno condition. Commun. Math. Phys. 358(1), 81–100 (2018)

34. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum.
Funktsional. Anal. i. Prilozhen. 21(3), 22–37 (1987)

35. Kuksin, S.: On small-denominators equations with large variable coefficients. Z. Angew. Math. Phys.
48(2), 262–271 (1997)

36. Kuksin, S.: A KAM-theorem for equations of the Korteweg–de Vries type. Rev. Math. Math. Phys. 10(3),
ii+64 (1998)

37. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear
Schrödinger equation. Ann. Math. (2) 143(1), 149–179 (1996)

38. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded pertur-
bations. Commun. Math. Phys. 307(3), 629–673 (2011)

39. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean fre-
quencies. J. Differ. Equ. 263(7), 3894–3927 (2017)

40. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)
41. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup.

Pisa Cl. Sci. (4) 23(1), 119–148 (1996)
42. Procesi, M., Xu, X.: Quasi-Töplitz functions in KAM theorem. SIAM J. Math. Anal. 45(4), 2148–2181

(2013)
43. Rabinowitz, P.: Periodic solutions of nonlinear hyperbolic partial differential equations. Commun. Pure

Appl. Math. 20, 145–205 (1967)
44. Rabinowitz, P.: Periodic solutions of nonlinear hyperbolic partial differential equations, II. Commun. Pure

Appl. Math. 22, 15–39 (1968)
45. Rabinowitz, P.: Time periodic solutions of nonlinear wave equations. Manuscr. Math. 5, 165–194 (1971)
46. Rabinowitz, P.: Free vibrations for a semilinear wave equation. Commun. Pure Appl. Math. 31(1), 31–68

(1978)
47. Wang, J., You, J.: Boundedness of solutions for non-linear quasi-periodic differential equations with

Liouvillean frequency. J. Differ. Equ. 261(2), 1068–1098 (2016)
48. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans.

Am. Math. Soc. 369(6), 4251–4274 (2017)
49. Wang, W.: Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math. J.

165(6), 1129–1192 (2016)
50. Wang, W.: Quasi-periodic solutions for nonlinear Klein–Gordon equations. arXiv:1609.00309 (2017)
51. Wayne, C.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun.

Math. Phys. 127(3), 479–528 (1990)
52. Xu, X., You, J., Zhou, Q.: Quasi-periodic solutions of NLS with Liouvillean frequency. arxiv preprint

arXiv:1707.04048 (2017)
53. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24(4),

1189–1228 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1609.00309
http://arxiv.org/abs/1707.04048

	A KAM Theorem for the Time Quasi-periodic Reversible Perturbations of Linear Wave Equations Beyond Brjuno Conditions
	Abstract
	1 Introduction and Main Result
	2 Outline of the Proof
	3 Preliminary
	3.1 Functional Setting
	3.2 Some Arithmetical Properties of Irrational Numbers 
	3.2.1 Continued Fraction Expansion
	3.2.2 CD Bridge


	4 An Infinite Dimensional Reversible KAM Theorem Without Diophantine Condition
	5 Homological Equation and Töplitz–Lipschitz Property of Solutions
	6 KAM Step
	6.1 A Finite Induction
	6.2 An Infinite Induction

	7 Convergence and Measure Estimates
	7.1 Convergence
	7.2 Measure Estimates

	8 Proof of Theorem 1.1
	Acknowledgements
	Appendix. Proofs of Some Technical Lemmas
	Proof of Inequality (5.25) in Proposition 5.1
	Proof of Lemma 6.1
	Some Basic Inequalities

	References




