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Abstract
In this paper, we study the existence of global attractors for a class of discrete dynami-
cal systems naturally originated from impulsive dynamical systems. We establish sufficient
conditions for the existence of a discrete global attractor. Moreover, we investigate the rela-
tionship among different types of global attractors, i.e., the attractor A of a continuous
dynamical system, the attractor Ã of an impulsive dynamical system and the attractor Â of a
discrete dynamical system. Two applications are presented, one involving an integrate-and-
fire neuron model, and the other involving a nonlinear reaction-diffusion initial boundary
value problem.
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1 Introduction

The theory of impulsive dynamical systems describes the evolution of processes where the
continuous dynamics are interruptedby abrupt changes of state, i.e., the systemcan experience
a sudden “impulse”. For example, the introduction of a new predator or the removal of
a food source can cause a sudden change in the population of a species, which can be
modeled using an impulsive dynamical system. The new phenomena presented in impulsive
dynamical systems have been drawn attention because of their irregularity. Besides, these
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systems admit a more complex structure than the non-impulsive systems and have many
real-world applications. The reader may consult [4, 5, 8, 9, 11, 15, 17] for more details.

In 1990, Saroop Kaul [12] constructed the theory of impulsive dynamical systems where
the impulses depend on the state, that is, there exists a set in the phase space which is
responsible by the discontinuities of the system.Although this theory is well-developed, there
is no study of the long-term behavior of discrete dynamical systems that arise naturally from
a given impulsive dynamical system. Given an impulsive dynamical system (X , π, I , M) it
is possible, under certain conditions, to construct an associated discrete dynamical system
(X̂ , g). Some recursive properties as periodicity, minimality and recurrence are developed for
this new class of discrete dynamical systems in [13]. However, the theory of global attractors
has not been explored for this new class of discrete dynamical systems. Therefore, in this
paper, we aim to investigate the existence of global attractors for such discrete systems. In
what follows, we describe the organization of the paper.

In Sect. 2, we present the basis of the theory of impulsive dynamical systems. In particular,
we exhibit some results on global attractors that will be useful in themain results of this paper.

Section 3 is dedicated to studying the long-term behavior of the class of discrete dynamical
systems of type (X̂ , g) associated with a class of impulsive dynamical systems of type
(X , π, I , M). We define the concept of discrete global attractors, and we exhibit sufficient
conditions for the existence of a such attractor, see Theorem 3.11. Some characterizations of
the discrete global attractor are given in Theorems 3.12 and 3.14.

In general, there is no relation among the existence of the attractors A, Ã and Â of
the systems (X , π), (X , π, M, I ) and (X̂ , g), respectively. This fact is illustrated in Sect. 4,
based on some examples. Moreover, in Subsection 4.1, we provide some conditions to relate
these attractors (see Theorem 4.14). In Subsection 4.2, we establish the existence of the
discrete global attractor of (X̂ , g) provided (X , π) and (X , π, M, I ) admits their attractors,
see Theorem 4.17.

In Sect. 5, we present two applications. Subsection 5.1 deals with the existence and the
relationship among the global attractors A, Ã and Â of an integrate-and-fire neuron model.
In Sect. 5.2, we consider the nonlinear reaction-diffusion initial boundary value problem

⎧
⎨

⎩

ut − �u = f (u) for (x, t) ∈ � × (0,∞),

u(x, t) = 0, for (x, t) ∈ ∂� × (0,∞),

u(x, 0) = u0(x), for x ∈ �,

under impulse perturbation, where � is a bounded smooth domain of Rn (n ≥ 2) with
smooth boundary, � is the Laplace operator in �, and u0 ∈ L2(�). The nonlinearity f
satisfies some general conditions. We investigated the existence and the relationship among
the global attractors A, Ã and Â.

2 Preliminaries

Consider ametric space (X , d). LetR+ = {x ∈ R : x ≥ 0},N = {1, 2, . . .} andN0 = N∪{0}.
We represent by B(X) the set of all bounded subsets from X .

A semidynamical system (or semiflow) on X is a family of maps {π(t) : t ∈ R+} acting
from X to X satisfying the following conditions:

(a) π(0) = I , where I : X → X is the identity operator;
(b) π(t + s) = π(t)π(s) for all t, s ∈ R+;
(c) R+ × X � (t, x) �→ π(t)x ∈ X is continuous.
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A semiflow on X will be denoted simply by (X , π).
Let Z ⊂ X and � ⊂ R+ be given. The past of Z with respect to the set � is given by

F(Z ,�) =
⋃

t∈�

π(t)−1(Z).

For each fixed x ∈ X and t ∈ R+, the set F(x, t) in the context of semiflows is not singleton
in general. See [3] for more details.

Given a semiflow (X , π), a nonempty closed subset M ⊂ X is called an impulsive set if
for each x ∈ M there exists εx > 0 such that

⋃

t∈(0,εx )

{π(t)x} ∩ M = ∅, (2.1)

i.e., the trajectories of (X , π) are in some sense “transversal” to the set M .

Definition 2.1 An impulsive dynamical system (X , π, M, I ) consists of a semiflow (X , π),
an impulsive set M ⊂ X and a continuous function I : M → X called impulsive function.

Remark 2.2 In [4, 5, 8, 9], an impulsive setM satisfies the following property: for each x ∈ M
there exists εx > 0 such that

F(x, (0, εx )) ∩ M = ∅ and
⋃

t∈(0,εx )

{π(t)x} ∩ M = ∅.

However, the condition

F(x, (0, εx )) ∩ M = ∅ (2.2)

is not necessary to obtain many properties of attractors, as discussed throughout this paper.
In this way, we consider just condition (2.1) to define an impulsive set.

An important tool to study the evolution of an impulsive dynamical system is the impact
function, i.e., the function φ : X → (0,∞] given by

φ(x) =
{
s, if π(s)x ∈ M and π(t)x /∈ M for 0 < t < s,
∞, if π(t)x /∈ M for all t > 0.

If φ(x) < ∞, then φ(x) stands for the smallest positive time such that the trajectory of x
meets M . The function φ is not continuous in general (see [8]). Using the impact function,
we can describe the impulsive positive trajectory of x ∈ X in (X , π, M, I ) that is represented
by a map

π̃(·)x : Jx → X

defined on some interval Jx ⊆ R+ containing 0, given inductively by the following way: if
φ(x) = ∞ then π̃(t)x = π(t)x for all t ∈ R+. On the other hand, if φ(x) < ∞ then we set
x = x+

0 and we define π̃(·)x on [0, φ(x+
0 )] by

π̃(t)x =
{

π(t)x+
0 , if 0 ≤ t < φ(x+

0 ),

I (π(φ(x+
0 ))x+

0 ), if t = φ(x+
0 ).

In order to simplify the notation, write s0 = φ(x+
0 ), x1 = π(s0)x

+
0 and x+

1 = I (π(s0)x
+
0 ).

Since s0 < ∞, the previous process can go on, but now starting at x+
1 . If φ(x+

1 ) = ∞ then we

123



Journal of Dynamics and Differential Equations

define π̃(t)x = π(t − s0)x
+
1 for all t ≥ s0. But, if s1 = φ(x+

1 ) < ∞ i.e., x2 = π(s1)x
+
1 ∈ M

then we define π̃(·)x on [s0, s0 + s1] by

π̃(t)x =
{

π(t − s0)x
+
1 , if s0 ≤ t < s0 + s1,

I (x2), if t = s0 + s1.

Here, denote x+
2 = I (x2). This process ends after a finite number of steps if φ(x+

n ) = ∞ for
some n ∈ N0, or it may proceed indefinitely, if φ(x+

n ) < ∞ for all n ∈ N0 and, in this case,

π̃(·)x is defined in the interval [0, T (x)), where T (x) =
∞∑

i=0

si can be finite or infinite. The

reader may consult [4, 5, 8, 9, 12] for more details.
Note that

π̃(t)x = π(t − tk)x
+
k , tk ≤ t < tk+1, (2.3)

where x+
0 = x , t0 = 0 and tk =

k−1∑

j=0
φ(x+

j ), k ≥ 1.

In order to study the long-termbehavior of impulsive dynamical systems,we shall consider
the following condition:

(H) There exists ξ > 0 such that φ(x) ≥ ξ for every x ∈ I (M).

This condition guarantees that an impulsive dynamical system is defined for all positive
times. Note that, if I (M) is a compact set and I (M) ∩ M = ∅ then condition (H) holds.

Next, we recall the concepts of invariance, impulsive ω̃-limit sets, asymptotic compactness
and dissipativeness.

Definition 2.3 A subset A ⊂ X is called:

(a) positively π̃-invariant, if π̃(t)A ⊂ A for all t ∈ R+;
(b) negatively π̃-invariant, if π̃(t)A ⊃ A for all t ∈ R+;
(c) π̃-invariant, if it is both positively π̃ -invariant and negatively π̃-invariant.

Definition 2.4 Let B ∈ B(X). The impulsive ω-limit set of B in (X , π, M, I ) is defined as

ω̃(B) =
⋂

t≥0

⋃

s≥t

π̃(s)B = {x ∈ X : there exist sequences {tn}n∈N ⊂ R+

and {xn}n∈N ⊂ B such that tn
n→∞−→ ∞ and π̃(tn)xn

n→∞−→ x}.
Definition 2.5 An impulsive dynamical system (X , π, M, I ) is called asymptotically com-

pact, if given a set B ∈ B(X), a sequence {tn}n∈N ⊂ R+ with tn
n→∞−→ ∞, and a sequence

{xn}n∈N ⊂ B, then the sequence {π̃(tn)xn}n∈N possesses a convergent subsequence in X .

Lemma 2.6 [4, Lemma 3.3] Let B ∈ B(X). Assume that (X , π, M, I ) is asymptotically
compact satisfying condition (H). Then ω̃(B) is nonempty, compact and attracts the set B.

Remark 2.7 The proof of Lemma 2.6 does not require condition (2.2).

Definition 2.8 An impulsive dynamical system (X , π, M, I ) is called dissipative, if there
exists a set B0 ∈ B(X), called absorbing set, such that for every B ∈ B(X) there exists a
time TB ≥ 0 such that π̃(t)B ⊂ B0 for all t ≥ TB .
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As described in [4], for the purpose of obtain a well behavior of the evolution of impulsive
dynamical systems, we shall consider condition (T):

(T) If x ∈ M , {zn}n∈N ⊂ X is a sequence that converges to z and t > 0 are such that

π(t)zn
n→∞−→ x , then there exist a subsequence {znk }k∈N and a sequence {αk}k∈N ⊂ R,

αk
k→∞−→ 0, such that t + αk ≥ 0 and π(t + αk)znk ∈ M .

Condition (T) implies the following result on the continuity of φ, which does not require
condition (2.2).

Theorem 2.9 Let (X , π, M, I ) be an impulsive dynamical system satisfying condition (T).
Then φ is upper semicontinuous in X and it is continuous in X\M.

Proof The continuity of φ in X\M is a particular case of [4, Theorem 5.2]. The upper
semicontinuity of φ in X follows by the last part of the proof of [4, Theorem 5.2]. ��

In Lemma 2.10, under conditions (H) and (T), we present sufficient conditions for an
impulsive dynamical system to be asymptotically compact. This result is a consequence of
[4, Lemma 6.3] and its proof does not require condition (2.2).

Lemma 2.10 [4, Lemma 6.3] Let (X , π, M, I ) be an impulsive dynamical system satisfying
conditions (H) and (T). If the semiflow (X , π) is compact and (X , π, M, I ) is dissipative,
then (X , π, M, I ) is asymptotically compact.

Lemma 2.11 deals with an important property that is used in the proof of the existence
of a global attractor. This result is presented in [4, Lemma 6.7] for multivalued impulsive
systems. However, the authors provide a proof using condition (2.2). In contrast, in the paper
[6], the authors consider a version of [4, Lemma 6.7] under weaker conditions but for positive
invariant sets. Since our result holds for any bounded set, we rewrite the proof of [6, Lemma
2.9] for the case of single-valued impulsive dynamical systems, using condition (T).

Lemma 2.11 Let (X , π, M, I ) be an impulsive dynamical system satisfying conditions (H)
and (T). Assume that (X , π, M, I ) is asymptotically compact and let B ⊂ X be a bounded
set. Then ω̃(B) ∩ M ⊂ ω̃(B)\M.

Proof Let x ∈ ω̃(B) ∩ M . Then there exist sequences {tn}n∈N ⊂ R+ and {xn}n∈N ⊂ B such

that tn
n→∞−→ ∞ and

π̃(tn)xn
n→∞−→ x .

Using (2.3), for each n ∈ N, there exists an integer kn ≥ 0 such that τ nkn ≤ tn < τ nkn+1 and

π̃(tn)xn = π(tn − τ nnk )(xn)
+
kn

,

where π̃(t)xn = π(t − τ nkn )(xn)
+
kn

for τ nkn ≤ t < τ nkn+1 (if tn < φ(xn), then we may just
take τ nkn = 0 and kn = 0, and if the number of jumps is finite and equal to kn , then we
set τ nkn+1 = ∞) and τ nj , j ∈ N, are the jump times in the trajectory starting at xn . Up to
subsequences, we may consider the following three cases:

(i) tn − τ nkn
n→∞−→ 0+,

(i i) tn − τ nkn
n→∞−→ r > 0,

(i i i) tn − τ nkn
n→∞−→ ∞.
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Case (i). Let m0 ∈ N be such that 1
m0

< εx , where εx > 0 comes from condition (2.1).

Define wm
n = π̃(tn + 1

m )xn for m ≥ m0 and n ∈ N. By condition (H), we may assume that
tn + 1

m ∈ (τ nkn , τ
n
kn+1) for all m ≥ m0 and n ∈ N. Using the asymptotic compactness, we

also may assume that wm
n

n→∞−→ ym for every m ≥ m0. Note that ym ∈ ω̃(B), m ≥ m0. We
claim that ym /∈ M for all m ≥ m0. In fact, note that

wm
n = π̃

(

tn + 1

m

)

xn = π

(

tn + 1

m
− τ nkn

)

(xn)
+
kn

= π

(
1

m

)

π̃(tn)xn
n→∞−→ π

(
1

m

)

x,

which implies that ym = π( 1
m )x , m ≥ m0. Since 1

m < εx for all m ≥ m0, we conclude that

ym /∈ M , i.e., ym ∈ ω̃(B)\M for all m ≥ m0. Hence, ym = π
( 1
m

)
x

m→∞−→ x and the proof
of this case is complete.
Case (i i). Let m1 ∈ N be such that τ nkn < tn − 1

m − r
2 < τ nkn+1 for all m ≥ m1. Using the

asymptotic compactness of (X , π, M, I ), up to subsequences, we have

π̃(τ nkn )xn = (xn)
+
kn

n→∞−→ z,

for some z ∈ ω̃(B). Now, define wm
n = π̃(tn − 1

m )xn for m ≥ m1 and n ∈ N. Then

wm
n = π

( r

2

)
π

(

tn − 1

m
− τ nkn − r

2

)

(xn)
+
kn

n→∞−→ π

(

r − 1

m

)

z := ym ∈ ω̃(B).

We claim that ym /∈ M for all m ≥ m1. Indeed, if ym ∈ M for some m ≥ m1, it follows by

condition (T) that, up to a subsequence, there exists {αn}n∈N ⊂ R such that αn
n→∞−→ 0 and

π
(
tn − 1

m − τ nkn + αn

)
(xn)

+
kn

∈ M which implies

r = lim sup
n→∞

(tn − τ nkn ) ≤ lim sup
n→∞

(τ nkn+1 − τ nkn ) = lim sup
n→∞

φ((xn)
+
kn

)

≤ lim sup
n→∞

(

tn − 1

m
− τ nkn + αn

)

= r − 1

m
,

which is a contradiction. Hence, the claim follows.
On the other hand, x = π(r)z as π̃(tn)xn = π(tn − τ nkn )(xn)

+
kn

n→∞−→ π(r)z. Hence,

ym = π

(

r − 1

m

)

z
m→∞−→ π (r) z = x

which completes the proof of case (i i).
Case (i i i). Using again the asymptotic compactness of (X , π, M, I ), up to a subsequence,

we may assume that π̃
(
tn − 1 − 1

m

)
xn = π

(
tn − τ nkn − 1 − 1

m

)
(xn)

+
kn

converges and, for

each m ∈ N, there exists ym ∈ ω̃(B) such that

π̃

(

tn − 1

m

)

xn = π (1) π

(

tn − τ nkn − 1 − 1

m

)

(xn)
+
kn

n→∞−→ ym .

We claim that ym /∈ M for all m ∈ N. If ym ∈ M for some m ∈ N then, by condition

(T), up to a subsequence, there exists a sequence {αn}n∈N ⊂ R such that αn
n→∞−→ 0 and

π
(
tn − 1

m − τ nkn + αn

)
(xn)

+
kn

∈ M which implies

π̃

(

tn − 1

m
+ αn

)

∈ M
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which is a contradiction. Hence, ym /∈ M for all m ∈ N.
The compactness of ω̃(B) implies that ym

m→∞−→ x0 (passing to a subsequence if necessary).
Since

π̃ (tn) xn = π

(
1

m

)

π̃

(

tn − 1

m

)

xn
n→∞−→ π

(
1

m

)

ym = x,

as m → ∞, we obtain x = x0. It follows that ym converges to x and the proof of case (i i i)
is complete. ��

Given two nonempty subsets A, B ⊆ X , we denote the Hausdorff semidistance between
A and B (in this order) by

dH(A, B) := sup
a∈A

inf
b∈B d(a, b).

Definition 2.12 A nonempty set Ã ⊂ X is called a global attractor for (X , π, M, I ) if:

(i) Ã is pre-compact and Ã = Ã\M ;
(ii) Ã is π̃-invariant;
(iii) dH(π̃(t)B, Ã)

n→∞−→ 0 for every B ∈ B(X).

By [5, Proposition 4.1], if the global attractor exists, then it is uniquely determined.
The next result deals with the existence of the global attractor. The proof of Theorem 2.13

follows by [4, Theorem3.9] and [4, Corollary 4.8], and condition (2.2) is not needed as we
have Lemma 2.11.

Theorem 2.13 Let (X , π, M, I ) be an impulsive dynamical system satisfying (H).

(i) If (X , π, M, I ) has a global attractor Ã then it is asymptotically compact and dissipative.
(i i) If (X , π, M, I ) is asymptotically compact, dissipative with absorbing set B0, and it

satisfies (T), then it has a global attractor Ã.

As in the non-impulsive case, we can characterize the global attractor through global solution.

Definition 2.14 A function ψ : R → X is called a global solution of π̃ if

π̃(t)ψ(s) = ψ(t + s), for all t ≥ 0 and s ∈ R.

If ψ(0) = x then we say that ψ is a global solution through x . Moreover, if ψ(R) is bounded
in X then ψ is said to be a bounded global solution.

Theorem 2.15 If (X , π, M, I ) has a global attractor Ã and I (M) ∩ M = ∅, then
Ã = {x ∈ X : there exists a bounded global solution of π̃ through x}.

Proof The proof is analogous to the proof of [5, Proposition 4.3] and condition (2.2) is not
required. ��
Remark 2.16 If M = ∅, then the previous results are valid for the continuous semidynamical
system (X , π). The definitions of invariance, ω-limit sets, asymptotic compactness, and
dissipativeness in (X , π) are the same as those previously defined, where we replace π̃ with
π . The global attractor of (X , π) is a compact set A ⊂ X that is π-invariant and satisfies

dH(π(t)B,A)
n→∞−→ 0 for every B ∈ B(X). A global solution of π will be represented by

ϕ : R → X , that is, a map such that π(t)ϕ(s) = ϕ(t + s), for all t ≥ 0 and s ∈ R. Since
conditions (H) and (T) are related to the impulse set M , Lemma 2.6, Lemma 2.10, Theorem
2.13 and Theorem 2.15 hold for the semidynamical system (X , π) without these conditions.
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3 The Discrete Global Attractor

In [13], SaroopKaul introduced a new class of discrete dynamical systems that arise naturally
fromagiven impulsive dynamical system.More specifically, consider an impulsive dynamical
system (X , π, M, I ) satisfying the following general conditions:

(H1) (X , π, M, I ) satisfies conditions (H) and (T);

(H2) there exists z ∈ I (M) such that φ(z+k ) < ∞ for all k ∈ N0;

(H3) I (M) ∩ M = ∅.
Now, define the set

X̂ = {x ∈ I (M) : φ(x+
k ) < ∞ for all k ∈ N0}

and the map g : X̂ → X̂ by

g(x) = I (π(φ(x))x). (3.1)

Firstly, note by condition (H2) that the set X̂ is nonempty. Also, g maps X̂ to X̂ , hence,
(X̂ , g) defines a discrete dynamical system on X̂ associated with the impulsive dynamical
system (X , π, M, I ). Note that g0(x) = x and gn(x) = x+

n for all x ∈ X̂ and n ∈ N0.
Consequently, g(x+

n ) = x+
n+1 for all x ∈ X̂ and n ∈ N0. The positive orbit of a point x in

(X̂ , g) is represented by

Ô(x) = {gn(x) : n ∈ N0}.
The map g : X̂ → X̂ defined in (3.1) depends on the impact function φ, the impulsive

function I and the semiflow π . Under conditions (H1), (H2) and (H3), we have the following
result.

Lemma 3.1 Assume that (X , π, M, I ) satisfies conditions (H1)-(H3). Then the map g is
continuous on X̂ .

Proof Since condition (T) holds, it follows by Theorem 2.9 that φ is continuous on X\M .
By (H3), we obtain X̂ ∩ M = ∅. Moreover, I is continuous on M and R+ × X � (t, x) �→
π(t)x ∈ X is continuous. Hence, g is continuous on X̂ . ��

The following definitions are established based on concepts already known in the theory
of attractors for discrete dynamical systems, as presented in [10].

Definition 3.2 A subset B̂ ⊂ X̂ is said to be:

(i) positively g-invariant w.r.t. (X̂ , g), if g(B̂) ⊂ B̂;
(i i) negatively g-invariant w.r.t. (X̂ , g), if g(B̂) ⊃ B̂;

(i i i) g-invariant if it is both positively and negatively g-invariant w.r.t. (X̂ , g).

The positive orbit of a point x ∈ X̂ is positively g-invariant, but it is not generally negatively
g-invariant.

Example 3.3 Let S1 = {z ∈ C : |z| = 1}, X = S1 × R and λ : C → C be a map given by
λ(z) = ei(θ+2πα) for z = eiθ , where α defines an irrational rotation. Now, let us consider the
semiflow {π(t) : t ≥ 0} given by

π(t)(z, s) = (z, t + s),
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for all z ∈ S1, s ∈ R and t ∈ R+. Define the impulsive set M = S1 × {2} and the impulsive
function I : M → S1 × {0} by I (z, s) = (λ(z), 0), (z, s) ∈ M . Since φ(z, 0) < ∞ for all

z ∈ S1, we have X̂ = I (M). Note that Ô(z, 0) = X̂ for every z ∈ S1. Although Ô(z, 0) is
positively g-invariant for every z ∈ S1, it is not negatively g-invariant since e2πniαz �= z for
every n ∈ N.

Definition 3.4 The omega limit set of a subset B̂ ⊂ X̂ is given by

ω̂(B̂) = {x ∈ X̂ : there exist sequences {xk}k∈N ⊂ B̂ and {nk}k∈N ⊂ N

with nk
k→∞−→ ∞ such that gnk (xk)

k→∞−→ x}.
In Example 3.3, ω̂(z, 0) = X̂ for every z ∈ S1.
Next, we provide some properties of omega limit sets.

Lemma 3.5 Assume that (X , π, M, I ) satisfies conditions (H1)-(H3).

(a) If B̂ ⊂ X̂ is compact and positively g-invariant, then ω̂(B̂) is nonempty and compact.
(b) Given B̂ ⊂ X̂ , the omega limit set ω̂(B̂) is positively g-invariant.

Proof Let us prove item (b). Suppose that ω̂(B̂) �= ∅ and let x ∈ ω̂(B̂). Then there are

sequences {xk}k∈N ⊂ B̂ and {nk}k∈N ⊂ N with nk
k→∞−→ ∞ such that gnk (xk)

k→∞−→ x .

By the continuity of g (see Lemma 3.1), we have gnk+1(xk) = g(gnk (xk))
k→∞−→ g(x), i.e.,

g(x) ∈ ω̂(B̂). ��
Let B(X̂) denote the set of all bounded subsets from X̂ . Next, we present the concept of

a global attractor for the system (X̂ , g).

Definition 3.6 A set Â ⊂ X̂ is called a discrete global attractor for (X̂ , g) if:

(i) Â is compact;
(ii) Â is g-invariant;
(iii) dH(gn(B̂), Â)

n→∞−→ 0 for every B̂ ∈ B(X̂).

The property (iii) means that the discrete global attractor Â g-attracts all the bounded sets
from X̂ .

If a discrete global attractor exists, then it is uniquely determined. Indeed, suppose that
Â1 and Â2 are discrete global attractors for (X̂ , g). By invariance, gn(Âi ) = Âi , i = 1, 2,
for all n ∈ N0. Consequently,

dH(Â1, Â2) = dH(gn(Â1), Â2)
n→∞−→ 0

and

dH(Â2, Â1) = dH(gn(Â2), Â1)
n→∞−→ 0.

Hence, Â1 = Â2.
The notions of asymptotic compactness and dissipativeness are presented in the sequel.

These conditions will play an important role for the existence of the discrete global attractor.

Definition 3.7 A discrete dynamical system (X̂ , g) is called asymptotically compact if, given

a set B̂ ∈ B(X̂), a sequence {nk}k∈N ⊂ R+ with nk
k→∞−→ ∞, and a sequence {xk}k∈N ⊂ B̂,

then the sequence {gnk (xk)}k∈N admits a convergent subsequence in X̂ .
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Definition 3.8 A discrete dynamical system (X̂ , g) is called bounded dissipative if, there
exists a set B̂0 ∈ B(X̂), called absorbing set, such that for every B̂ ∈ B(X̂) there exists an
integer nB̂ ≥ 0 such that gn(B̂) ⊂ B̂0 for all n ≥ nB̂ .

Lemma 3.9 Assume that (X , π, M, I ) satisfies condition (H), I (M) ∩ M = ∅, X̂ �= ∅, and
(X̂ , g) is asymptotically compact. Then for any bounded set B̂ ⊂ X̂ , the omega limit set

ω̂(B̂) is nonempty and compact. Further, dH(gn(B̂), ω̂(B̂))
n→∞−→ 0.

Proof Let B̂ ⊂ X̂ be a bounded set. Given x ∈ B̂, it follows by the asymptotic compactness
of (X̂ , g) that {gk(x)}k∈N admits a convergent subsequence in X̂ . Hence, ω̂(B̂) �= ∅.

Now, let {xm}m∈N ⊂ ω̂(B̂) be a sequence. For each m ∈ N, there exist sequences

{wm
k }k∈N ⊂ B̂ and {nmk }k∈N ⊂ N with nmk

k→∞−→ ∞ such that gn
m
k (wm

k )
k→∞−→ xm . Thus,

for each m ∈ N, one can obtain km > m such that

d
(
gn

m
km (wm

km ), xm
)

<
1

m
.

Using the asymptotic compactness of (X̂ , g), we may assume up to a subsequence that

gn
m
km (wm

km
)
m→∞−→ z ∈ ω̂(B̂). Hence, xm

m→∞−→ z and ω̂(B̂) is compact.

Lastly, suppose to the contrary that there are ε > 0, {xk}k∈N ⊂ B̂ and nk
k→∞−→ ∞ such

that

d(gnk (xk), ω̂(B̂)) ≥ ε,

for all k ∈ N. Again, by the asymptotic compactness, there exists w ∈ X̂ such that

d(gnk (xk), w)
k→∞−→ 0. This means that w ∈ ω̂(B̂) and we obtain a contradiction. ��

Lemma 3.10 Assume that (X , π, M, I ) satisfies conditions (H1)-(H3), and (X̂ , g) is asymp-
totically compact. Then the omega limit set ω̂(B̂) is negatively g-invariant for every
B ∈ B̂(X̂).

Proof Let B̂ ∈ B(X̂) and x ∈ ω̂(B̂). Then there are sequences {xk}k∈N ⊂ B̂ and nk
k→∞−→ ∞

such that gnk (xk)
k→∞−→ x . Since (X̂ , g) is asymptotically compact, there exists z ∈ X̂ such

that, taking a subsequence if necessary,

gnk−1(xk)
k→∞−→ z.

Note that z ∈ ω̂(B̂). Using Lemma 3.1, we obtain

gnk (xk) = g(gnk−1(xk))
k→∞−→ g(z).

By uniqueness, x = g(z) ∈ g(ω̂(B̂)). Hence, ω̂(B̂) ⊂ g(ω̂(B̂)). ��

In Theorem 3.11, we establish sufficient conditions for the existence of a discrete global
attractor.

Theorem 3.11 Assume that (X , π, M, I ) satisfies conditions (H1)-(H3) and (X̂ , g) is asymp-
totically compact and bounded dissipative with absorbing set B̂0. Then (X̂ , g) has a discrete
global attractor Â given by Â = ω̂(B̂0).
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Proof By Lemma 3.9, ω̂(B̂0) is nonempty and compact. By Lemmas 3.5 and 3.10, ω̂(B̂0) is
g-invariant. Let us show that ω̂(B̂0) attracts all the bounded sets from X̂ . Indeed, let B̂ ⊂ X̂
be a bounded set. Note that ω̂(B̂) ⊂ ω̂(B̂0). Thus, using Lemma 3.9, we get

dH(gn(B̂), ω̂(B̂0)) ≤ dH(gn(B̂), ω̂(B̂))
n→∞−→ 0.

By the uniqueness of the discrete global attractor, we conclude that Â = ω̂(B̂0) is the discrete
global attractor of (X̂ , g). ��

Next, we give some characterizations of a discrete global attractor.

Theorem 3.12 Let Â be the discrete global attractor of (X̂ , g). Then

(a) Â is the minimal subset of X̂ which is closed and g-attracts bounded sets from X̂;
(b) Â = ⋃

B̂∈B(X̂)
ω̂(B̂).

Proof (a) Let K̂ be a closed set in X̂ which g-attracts bounded sets from X̂ . Then

dH(Â, K̂ ) = dH(gn(Â), K̂ )
n→∞−→ 0,

that is, Â ⊂ K̂ .
(b) Since Â is a discrete global attractor, we have

⋃
B̂∈B(X̂)

ω̂(B̂) ⊂ Â. On the other hand,

let x ∈ Â. Since g(Â) = Â, there exists a1 ∈ Â such that g(a1) = x . Now, we can take
a2 ∈ Â such that g(a2) = a1. Continuing with this process, one can obtain ak+1 ∈ Â such
that g(ak+1) = ak , k ∈ N. Thus,

d(x, ω̂(Â)) = d(gk(ak), ω̂(Â))
k→∞−→ 0.

By the boundedness of Â, we conclude the other set inclusion. ��
Definition 3.13 A function ψ̂ : Z → X̂ is called a discrete global solution of g if

gn(ψ̂(k)) = ψ̂(k + n)

for all k ∈ Z and n ∈ N. If ψ̂(0) = x , we say that ψ̂ is a discrete global solution through x .
Further, ψ̂ is said to be bounded if there exists a bounded set B̂ ⊂ X̂ such that ψ̂(k) ⊂ B̂ for
all k ∈ Z.

We end this section, characterizing the discrete global attractor through the bounded
discrete global solutions.

Theorem 3.14 Let Â be the discrete global attractor of (X̂ , g). Then

Â = {x ∈ X̂ : there exists a bounded discrete global solution of g through x}.
Proof Let x ∈ X̂ and ψ̂ be a bounded discrete global solution of g through x . Then x =
ψ̂(0) = gk(ψ̂(−k)) for all k ∈ N0. Since {ψ̂(−k)}k∈N is bounded, we have

d(x, Â) = d(gk(ψ̂(−k)), Â)
k→∞−→ 0,

that is, x ∈ Â.
On the other hand, let x ∈ Â. Since g(Â) = Â, there is a−1 ∈ Â such that g(a−1) = x .

Also, there exists a−2 ∈ Â such that g(a−2) = a−1. Continuing with this process, one can
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obtain a−k−1 ∈ Â such that g(a−k−1) = a−k for every k ∈ N. Note that gk(a−k) = x for all
k ∈ N and

gm+n(a−k) = am+n−k,

whenever m, n, k ∈ N and m + n − k < 0. Define the map ψ̂ : Z → X̂ by

ψ̂(k) =
{
ak if k < 0, k ∈ Z,

gk(x) if k ∈ N0.

Let k ∈ Z and n ∈ N0. If k ≥ 0 then

gn(ψ̂(k)) = gn(gk(x)) = gn+k(x) = ψ̂(k + n).

If k < 0 and k + n ≥ 0 then

gn(ψ̂(k)) = gn(ak) = gn+k(g−k(ak)) = gn+k(x) = ψ̂(k + n).

If k < 0 and k + n < 0 then

gn(ψ̂(k)) = gn(g(ak−1)) = gn+1(ak−1) = an+k = ψ̂(n + k).

Thus, ψ̂ is a discrete global solution of g through x . By construction, ψ̂(k) ⊂ Â for all k ∈ Z.
Therefore, ψ̂ is a bounded discrete global solution of g through x . ��

4 Relationship Among the AttractorsA, Ã and Â
Let (X , π) be a continuous semidynamical system, (X , π, M, I ) be an associated impulsive
dynamical system and (X̂ , g) be its associated discrete dynamical system. Does the existence
of a global attractor in one of these systems imply the existence of a global attractor in the
others? As presented in the next examples, we show that there is no relationship between the
existence of the attractors of these systems. When it exists, we will denote by A the global
attractor of (X , π), by Ã the global attractor of (X , π, M, I ) and by Â the discrete global
attractor of (X̂ , g).

Example 4.1 Consider the system of differential equations
{
x ′ = −x,

y′ = −y,

in X = R
2. In this simple example, A = {(0, 0)}.

(a) If M = ⋃
n∈N Mn with Mn = {(x, y) ∈ R

2 : x2 + y2 = n2}, n = 1, 2, . . ., and
I (x, y) = (

x(1 + 1
2n ), y(1 + 1

2n )
)
for (x, y) ∈ Mn , n = 1, 2, . . ., then the systems

(X , π, M, I ) and (X̂ , g) do not admit global attractors.
(b) If M = ⋃

n∈N Mn with Mn = {(x, y) ∈ R
2 : x2 + y2 = n2}, n = 1, 2, . . ., and

I (x, y) = ( x
2n ,

y
2n ) for all (x, y) ∈ Mn , n = 1, 2, . . .. Then Ã = A and X̂ = ∅.

(c) If M = R × {1} and I (x, 1) = (arctan(x), 2), x ∈ R. Then Â = {(0, 2)} and Ã =
{(0, y) : 1 < y ≤ 2} ∪ {(0, 0)}. Note that X̂ = I (M) = (−π

2 , π
2 ) × {2}. Moreover,

Ã = π([0, ln 2))Â ∪ A.
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Example 4.2 Consider the system x ′ = |x | in X = R. The semiflow {π(t) : t ∈ R+} is given
by

π(t)x =

⎧
⎪⎨

⎪⎩

xet , x > 0,

0, x = 0,

xe−t , x < 0.

There is no global attractor A since the solutions with positive initial data are not bounded.

(a) If M = N and I (n) = −1, n ∈ N, then X̂ = ∅ and Ã = [−1, 1).
(b) If M = N and I (n) = 1

2 , n ∈ N, then Ã = [0, 1) and Â = { 12 }.
(c) If M = N and I (n) = n + 1

2 , n ∈ N, then the systems (X , π, M, I ) and (X̂ , g) do not
admit global attractors.

Example 4.3 Consider the semiflow π(t) f = e−t f in X = L2([0, 1]) defined for all t ≥ 0.
Note thatA = {0}. Let h ∈ L2(�) be such that ‖h‖2

L2 = 2. IfM = {g ∈ L2(�) : ‖g‖2
L2 = 1}

and I (g) = h for all g ∈ M , then Â = X̂ = {h}. Here, the global attractor Ã does not exist
due to a lack of pre-compactness.

Example 4.4 Consider the semiflow π(t) f = et f in X = L2([0, 1]) defined for all t ≥ 0.
There is no global attractor A for this system. Let h ∈ L2(�) be such that ‖h‖2

L2 = 1
2 . If

M = {g ∈ L2(�) : ‖g‖2
L2 = 1} and I (g) = h for all g ∈ M , then Â = X̂ = {h}. The global

attractor Ã does not exist.

When the global attractors A and Ã exist, and A ∩ M = ∅, then the impulsive attractor
Ã contains A. This fact is shown in the next result.

Proposition 4.5 Assume that (X , π) has a global attractor A with A ∩ M = ∅ and
(X , π, M, I ) has a global attractor Ã satisfying I (M) ∩ M = ∅. Then A ⊂ Ã.

Proof Let x ∈ A. By Theorem 2.15 and Remark 2.16, there exists a bounded global solution
ϕ : R −→ X of π such that ϕ(0) = x . Using the invariance of A in (X , π), we obtain
ϕ(R) ⊂ A. Since A ∩ M = ∅, we also obtain ϕ(R) ∩ M = ∅. Therefore, for any s ∈ R and
t ≥ 0, we deduce

π̃(t)ϕ(s) = π(t)ϕ(s) = ϕ(t + s),

i.e., ϕ is a bounded global solution of π̃ through x . By Theorem 2.15, we conclude that
x ∈ Ã. ��

If A ∩ M �= ∅, then the result established in Proposition 4.5 can be not true. In fact,
consider the semiflow {π(t) : t ∈ R+} generated by the solutions of the system

{
θ ′ = 1,
r ′ = 1 − r ,

in X = {(r cos θ, r sin θ) ∈ R
2 : r ∈ [1, 2], θ ∈ [0, 2π ]}. Let M = {(x, 0) : x ∈ [1, 2]} and

I (x, 0) = (−x, 0) for 1 ≤ x ≤ 2. In this case, A = {(cos θ, sin θ) ∈ R
2 : θ ∈ [0, 2π]} and

Ã = {(cos θ, sin θ) ∈ R
2 : θ ∈ [π, 2π)}. Moreover, {(−1, 0)} = Â ⊂ Ã ⊂ A.

However, by defining the sets

Sx = {ϕ : R −→ X : ϕ is a bounded global solution of π through x}, x ∈ A,
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and

S = {x ∈ A : ϕ((−∞, 0]) ∩ M �= ∅ for every ϕ ∈ Sx },
we have A\S ⊂ Ã. This fact is presented next.

Proposition 4.6 Assume that (X , π) has a global attractorA and (X , π, M, I ) has a global
attractor Ã satisfying I (M) ∩ M = ∅. Then A\S ⊂ Ã.

Proof Let x ∈ A\S. Then there exists a bounded global solution ϕ : R −→ X of π such that
ϕ(0) = x (see Theorem 2.15 and Remark 2.16). Moreover, we know that ϕ((−∞, 0])∩M =
∅ because x /∈ S. In this way, define the function ψ : R −→ X by

ψ(t) =
{

ϕ(t), t < 0,

π̃(t)x, t ≥ 0.

Let s ∈ R and t ≥ 0 be given.

• If s < 0 and t + s ≤ 0, then

π̃(t)ψ(s) = π̃(t)ϕ(s) = π(t)ϕ(s) = ϕ(s + t) = ψ(s + t).

• If s < 0 and t + s > 0, then

ψ(t + s) =π̃(t + s)x = π̃(t + s)ϕ(0) = π̃(t + s)π(−s)ϕ(s)

= π̃(t + s)π̃(−s)ϕ(s) = π̃(t)ϕ(s) = π̃(t)ψ(s).

• If s ≥ 0, then

π̃(t)ψ(s) = π̃(t)π̃(s)x = π̃(t + s)x = ψ(t + s).

Thus, ψ is a bounded global solution of π̃ through x . It remains to check that ψ(R) is
bounded. The set {ψ(t) : t ≤ 0} is bounded since ϕ is a bounded global solution. Since
(X , π, M, I ) is dissipative, there exists tx > 0 such that {π̃(t)x : t ≥ tx } ⊂ B0, where B0

is the absorbing set. Finally, on the interval [0, tx ], there are 0 ≤ N < ∞ jump times. Since
π([0, t1])x, π([0, t2 − t1])x, . . . , π([0, tx − tN ])x are compact sets, where t1, . . . , tN are the
possible jump times, thenψ([0, tx )) is bounded. Hence,ψ(R) is bounded in X andψ defines
a bounded global solution of π̃ through x . Therefore, x ∈ Ã. ��

On the other hand, when the attractors Â and Ã exist, then the impulsive attractor Ã also
contains Â as shown in Proposition 4.7.

Proposition 4.7 Assume that (X , π, M, I ) satisfies conditions (H1)-(H3), it has a global
attractor Ã and (X̂ , g) has a discrete global attractor Â. Then Â ⊂ Ã.

Proof Let x ∈ Â. By Theorem 3.14, there exists a bounded discrete global solution ψ̂ : Z →
X̂ of g through x . Since

x = ψ̂(0) = gk(ψ̂(−k)) = π̃

⎛

⎝
k∑

j=1

φ(ψ̂(− j))

⎞

⎠ ψ̂(−k)

for all k ∈ N0, {ψ̂(−k)}k∈N ⊂ Â and Tk :=
k∑

j=1

φ(ψ̂(− j))
k→∞−→ ∞ (as condition (H) from

(H1) holds), we obtain

d(x, Ã) = d(π̃(Tk)ψ̂(−k), Ã)
k→∞−→ 0.
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Hence, x ∈ Ã. Using condition (H3), we obtain X̂ ∩ M = ∅. Hence, Â ⊂ Ã\M . ��
As a consequence of Propositions 4.5 and 4.7, we deduce the following result.

Corollary 4.8 Assume that (X , π) has a global attractor A with A ∩ M = ∅, (X , π, M, I )
satisfies (H1)-(H3) and admits a global attractor Ã, and (X̂ , g) has a discrete global attractor
Â. Then it holds Â ∪ A ⊂ Ã.

4.1 The Relation Ã = A ∪
( ⋃

a∈Â
�([0,�(a)))a

)
.

Throughout this subsection, we shall assume that conditions (H1)-(H3) hold. Let A be the
global attractor of (X , π) and Â be the discrete global attractor of (X̂ , g). Our aim in this
section is to prove that if A ∩ M = ∅, then the global attractor Ã exists and the attractors
A, Ã and Â are related by the equality

Ã = A ∪
⎛

⎝
⋃

a∈Â
π([0, φ(a)))a

⎞

⎠ .

For that, letA1 = ⋃

a∈Â
π([0, φ(a)))a. Before to present the existence result, we point out

in the next remark that if the attractors A, Ã and Â exist then A ∪ A1 ⊂ Ã.

Remark 4.9 (i) If the attractors Ã and Â exist, then A1 ⊂ Ã. Indeed, let x ∈ Â and r ∈
[0, φ(x)). We aim to construct a bounded global solution of π̃ through π(r)x . Since x ∈ Â,
it follows by Theorem 3.14 that there exists a bounded discrete global solution ψ̂ : Z −→ X
of g with ψ̂(0) = x . Now, consider the notations

t0 = 0, t1 = φ(x), x1 = π(t1)x, and x+
1 = I (x1).

For each n ≥ 1, let us define

tn+1 = tn + φ(x+
n ), xn+1 = π(tn+1 − tn)x

+
n and x+

n+1 = I (xn+1),

and, for each n ≤ −1, set

t−n = t−n+1 − φ(ψ̂(−n)).

Thus, define the map ψ1 : R −→ X by

ψ1(t) =
{

π(t − tn)ψ̂(n), t ∈ [tn, tn+1), n ≥ 0,

π(t − t−n)ψ̂(−n), t ∈ [t−n, t−n+1), n ≥ 1.

By construction, ψ1 is a global solution of π̃ through x (ψ1(0) = ψ̂(0) = x). Set T =
supx∈Â φ(x). Since conditions (H1)-(H3) hold, we have φ is continuous on the compact set

Â, consequently, T < ∞. Now, note that ψ1(R) ⊂ π([0, T ])Â, which implies that ψ1 is
bounded. Therefore, the map ψ : R −→ X defined by ψ(t) = ψ1(t + r) is a bounded global
solution of π̃ through π(r)x . Thus, by Theorem 2.15, A1 ⊂ Ã.

(i i) If the attractors A, Ã and Â exist and A ∩ M = ∅, then by the previous item (i) and
Proposition 4.5, A ∪ A1 ⊂ Ã.

In what follows, we exhibit some auxiliary results.
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Lemma 4.10 Assume that (X , π) admits a global attractorAwithA∩M = ∅. Let B ∈ B(X)

be such that φ(x) < ∞ for every x ∈ B. Then there exists K > 0, depending on B, such
that φ(x) ≤ K for all x ∈ B.

Proof Suppose that for each n ∈ N, there exists xn ∈ B such that φ(xn) > n. Since {xn}n∈N
is a bounded sequence, φ(xn) −→ +∞ and (X , π) is asymptotically compact (see Theorem
2.13 and Remark 2.16), we have {π(φ(xn))xn}n∈N admits a convergent subsequence, which
will be denoted by the same, with limit x . Note that x ∈ M as π(φ(xn))xn ∈ M , for every
n ∈ N. But, we also have x ∈ A. Thus, we conclude that x ∈ A∩M which is a contradiction.
Hence, φ is bounded on B. ��
Lemma 4.11 Assume that (X̂ , g) has a global attractor Â. Then

(i) A1 = ⋃

a∈Â
π([0, φ(a)])a is compact.

(i i) A1 is π̃-invariant.

Proof (i) Let {xn}n∈N be a sequence in A1 such that xn
n→∞−→ x . For each n ∈ N, there exist

an ∈ Â and tn ∈ [0, φ(an)) such that xn = π(tn)an . Since tn < φ(an) for every n ∈ N, Â is

compact and φ is continuous in Â, we may assume without loss of generality that tn
n→∞−→ t

and an
n→∞−→ a ∈ Â with t ≤ φ(a). Hence, x = π(t)a ∈ π([0, φ(a)])a with a ∈ Â.

Thus, the equality A1 = ⋃

a∈Â
π([0, φ(a)])a holds. Using again the compactness of Â and

the continuity of φ on Â, we conclude that A1 is compact.
(i i) First, let us prove that A1 is positively π̃ -invariant. Let a ∈ Â and s ∈ [0, φ(a)). We

will prove that π̃(t)π(s)a ∈ A1 for every t ≥ 0. For that, denote

t0 = 0, t1 = φ(π(s)a), a+
1 = g(a),

and for any integer n ≥ 1, tn+1 = tn + φ(a+
n ) and a+

n+1 = gn+1(a).
Given t ≥ 0, there exists n ∈ N0 such that t ∈ [tn, tn+1). Note that

π̃(t)π(s)a = π̃(t − tn)π̃(tn + s)a = π(t − tn)g
n(a).

Since gn(a) ∈ Â and t − tn < φ(gn(a)), we obtain π̃(t)π(s)a ∈ A1.
Now, let us prove that A1 is negatively π̃ -invariant. Let a ∈ Â, s ∈ [0, φ(a)) and fix

an arbitrary t ≥ 0. We need to prove that there exist x ∈ Â and r ∈ [0, φ(x)) such that
π̃(t)π(r)x = π(s)a. In fact, if t ≤ s, then take x = a and r = s − t . Thus, t < φ(a) − r =
φ(π(r)a) and

π̃(t)π(r)x = π(t)π(s − t)a = π(s)a.

However, if t > s, then by Theorem 3.14 there exists a bounded discrete global solution
ψ̂ : Z −→ X of g through a. Set an = ψ̂(n) for all n ∈ Z, and define t0 = 0, t−1 = −φ(a−1)

and t−n = t−n+1 − φ(a−n) for n > 2. There exists n ∈ N such that s − t ∈ [t−n, t−n+1).
Take x = a−n and r = s − t − t−n ≥ 0. Then

t = s + φ(a−1) + · · · + φ(a−n) − r

and

π̃(t)π(r)x = π̃(s)π̃(φ(a−1)) · · · π̃(φ(a−n+1))π̃(φ(a−n) − r)π(r)a−n

= · · · = π̃(s)π̃(φ(a−1))a−1 = π̃(s)a = π(s)a.

In conclusion, A1 is π̃ -invariant. ��
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Lemma 4.12 Assume that (X , π) admits a global attractorAwithA∩M = ∅ and (X̂ , g) has
a global attractor Â. Then A ∪ A1 is pre-compact, π̃ -invariant and A ∪ A1 = A ∪ A1\M.

Proof Since the global attractor A is compact and π̃ -invariant as A ∩ M = ∅, it follows by
Lemma 4.11 thatA∪A1 is pre-compact and π̃ -invariant. Moreover, by Lemma 4.11 we have
A1\M = A1, i.e., A ∪ A1 = A ∪ A1\M . ��
Lemma 4.13 Under the conditions of Lemma 4.12, assume also that (X , π, M, I ) is dis-
sipative and φ(x) < ∞ for all x ∈ I (M). Then A ∪ A1 π̃-attracts bounded sets from
X.

Proof Let B ∈ B(X). By dissipativeness, there exists an absorbing setB0 ⊂ X , consequently,
there exists TB ≥ 0 such that π̃(t)B ⊂ B0 for all t ≥ TB . Now, let us denote

B∞ := {x ∈ π̃(TB)B : φ(x) = ∞} and Bfin := {x ∈ π̃(TB)B : φ(x) < ∞}.
Clearly, both sets are bounded.

Let ε > 0 be arbitrary. Since π̃(t)x = π(t)x for every t ≥ 0 and every x ∈ B∞, and

dH (π(t)B∞,A)
t→∞−→ 0, there exists T1 = T1(B∞) ≥ 0 such that dH(π̃(t)B∞,A∪A1) < ε

for all t ≥ T1.
Now, we claim there exists T2 = T2(Bfin) ≥ 0 such that dH(π̃(t)Bfin,A ∪ A1) < ε for

all t ≥ T2. In fact, define the set

B1 = {π̃(φ(y))y : y ∈ Bfin}.
Since B1 ⊂ I (M)∩B0, it is bounded.Note that gn(B1) is bounded for every n ∈ N0 according
to its definition. By Lemma 4.10, for each n there exists Kn > 0 such that φ(y) ≤ Kn for
every y ∈ gn(B1). Moreover, there is K−1 > 0 such that φ(y) ≤ K−1 for every y ∈ Bfin.

Using the compactness of Â, the continuity of π and the continuity of φ on Â, we obtain:

(I) T := max{φ(a) : a ∈ Â} + 1 < ∞;
(II) there exists δ1 = δ1(ε) ∈ (0, 1) such that if s1, s2 ∈ [0, T ], y ∈ X , a ∈ Â, with

|s1 − s2| < δ1 and d(y, a) < δ1, then d(π(s1)y, π(s2)a) < ε;
(III) there exists δ2 = δ2(δ1) > 0 such that if y ∈ X , a ∈ Â with d(y, a) < δ2, then

|φ(y) − φ(a)| < δ1.

Take δ = 1
2 min{δ1(ε), δ2(δ1), ε}. Since dH(gn(B1), Â)

n→∞−→ 0, there exists N ∈ N such

that dH(gn(B1), Â) < δ whenever n ≥ N .
Besides, if t ≥ K−1 + K0 + · · · + KN , then every point in Bfin suffered at least N + 2

jump times under π̃ until time t . Thus, if t ≥ K−1 + K0 + · · · + KN and x ∈ Bfin, then

π̃(t)x = π(r)gn0(y), for some n0 ≥ N + 2, y ∈ B1 and 0 ≤ r < φ(gn0(y)).

Note that there exists a ∈ Â such that d(gn0(y), a) < δ.
Case 1: If r ≤ φ(a), then using (II) we obtain d(π(r)gn0(y), π(r)a) < ε.
Case 2: If r > φ(a), then φ(a) < r < φ(gn0(y)).By (III), we have |φ(gn0(y))−φ(a)| <

δ1. Thus, φ(a) < r < φ(gn0(y)) < φ(a) + δ1 < T which implies, by using (II), that
d(π(r)gn0(y), π(φ(a))a) < ε.

By taking T2 = K−1 + K0 + · · · + KN , we conclude that dH(π̃(t)Bfin,A ∪ A1) < ε for
all t ≥ T2.

In conclusion, dH(π̃(t)B,A ∪ A1) < ε for all t ≥ max{TB + T1, TB + T2}. Since ε > 0
is arbitrary, A ∪ A1 indeed π̃ -attracts bounded sets from X . ��
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As a consequence of the previous Lemmas 4.12 and 4.13, we may state the following
result.

Theorem 4.14 Under conditions (H1)-(H3), assume that (X , π) admits a global attractorA
withA∩M = ∅, (X̂ , g) has a global attractor Â, (X , π, M, I ) is dissipative and φ(x) < ∞
for all x ∈ I (M). Then (X , π, M, I ) admits a global attractor Ã given by

Ã = A ∪
⎛

⎝
⋃

a∈Â
π([0, φ(a)))a

⎞

⎠ .

Remark 4.15 Lemma 4.13 still holds if we replace the dissipativeness of (X , π, M, I ) by the
boundedness of I (M). Indeed, let B ∈ B(X) and define the bounded sets

B∞ = {x ∈ B : φ(x) = ∞} and Bfin = {x ∈ B : φ(x) < ∞}.
As in the proof of Lemma 4.13, given ε > 0, there exists T1 = T1(B∞) ≥ 0 such that
dH(π̃(t)B∞,A ∪ A1) < ε for all t ≥ T1.

For the set Bfin, we also define B1 = {π̃(φ(y))y : y ∈ Bfin}. But now, B1 and gn(B1) are
bounded since I (M) is assumed to be bounded. The rest of the proof is exactly the same as
in the proof of Lemma 4.13.

4.2 Existence of the Discrete Global Attractor Â

In this section,weprovide sufficient conditions for the existence of the discrete global attractor
Â when (X , π) and (X , π, M, I ) admit global attractors. We shall assume that conditions
(H1)-(H3) hold.

Let (X , π) be a semidynamical system with global attractor A and (X , π, M, I ) be the
associated impulsive dynamical system with global attractor Ã.

Lemma 4.16 Assume that A∩ M = ∅ and let ψ : R −→ X be a bounded global solution of

π̃ . If ψ has one jump time, then there exists a sequence of times {tn}n∈N with tn
n→∞−→ −∞

such that each tn is a jump time of ψ .

Proof Suppose to the contrary that there exists a jump time t∗ ∈ R ofψ such that there are no
jump times before t∗. Thus, let us define the set B = {ψ(t) : t ≤ t∗ − 1}, which is bounded.
Then

lim
t→∞ dH(π(t)B,A) = 0.

On the other hand, define the continuous map ϕ : R −→ X by

ϕ(t) =
{

ψ(t), t ≤ t∗ − 1,

π(t − (t∗ − 1))ψ(t∗ − 1), t ≥ t∗ − 1.

By construction ϕ is a bounded global solution of π , consequently, ϕ(R) ⊂ A. But we know
that ϕ(t∗) = π(1)ψ(t∗ − 1) ∈ M , because ψ has a jump time at t∗. Thus, ϕ(t∗) ∈ A ∩ M
which is a contradiction since A ∩ M = ∅. Hence, the result is proved. ��

In Theorem 4.17, we prove the existence of the discrete global attractor Â and we also
relate this attractor with Ã ∩ X̂ .
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Theorem 4.17 Assume that X̂ is a nonempty closed set. Then (X̂ , g) has a discrete global
attractor Â. In addition, if A ∩ M = ∅ then Â = Ã ∩ X̂ .

Proof First, let us prove that (X̂ , g) is dissipative. Indeed, since (X , π, M, I ) is dissipative,
there exists an absorbing set B0. Let B̂ ∈ B(X̂). There exists tB̂ ≥ 0 such that π̃(t)B̂ ⊂ B0

for all t ≥ tB̂ . Since B̂ ⊂ X̂ ⊂ I (M) and condition (H1) holds (hence, φ(w) ≥ ξ for all
w ∈ I (M)), one can obtain k0 ∈ N such that φ(x) + φ(x+

1 ) + . . . + φ(x+
k0

) ≥ tB̂ for all

x ∈ B̂. Thus,

gn(x) = π̃

⎛

⎝
n−1∑

j=0

φ(x+
j )

⎞

⎠ x ∈ B0 ∩ X̂ for all n ≥ k0 + 1 and x ∈ B̂.

Therefore, gn(B̂) ⊂ B0 ∩ X̂ for every n ≥ k0 + 1.
Now, let us prove that (X̂ , g) is asymptotically compact. Let {xk}k∈N be a bounded

sequence in X̂ and nk
k→∞−→ ∞. Note that

gnk (xk) = π̃

⎛

⎝
nk−1∑

j=0

φ((xk)
+
j )

⎞

⎠ xk, k ∈ N.

Sinceφ(w) ≥ ξ for allw ∈ I (M) (as condition (H1) holds) andnk
k→∞−→ ∞,wehaveT (xk) =

nk−1∑

j=0

φ((xk)
+
j )

k→∞−→ ∞. By the asymptotic compactness of (X , π, M, I ), we conclude that

{π̃(T (xk))xk}k∈N has a convergent subsequence. Therefore, {gnk (xk)}k∈N has a convergent
subsequence with limit in X̂ because it is closed.

By Theorem 3.11, (X̂ , g) has a global attractor Â.
Now, assume that A ∩ M = ∅. By Proposition 4.7, we have Â ⊂ Ã ∩ X̂ . On the other

hand, let x ∈ Ã∩ X̂ . By Theorem 2.15, there exists a bounded global solution ψ : R −→ X
of π̃ through x . Since x ∈ X̂ , we have φ(x+

j ) < ∞ for every j ∈ N0. Let t1 = φ(x) and
tn+1 = tn + φ(x+

n ), n ∈ N. By Lemma 4.16, there exists a sequence of times {t−n}n∈N with
t−n → −∞ as n → ∞ such that t−n are jump times of ψ and ψ(−t−1) = x . Set t0 = 0. By
construction, we obtain

ψ(t) = π(t − tn)ψ(tn)

for t ∈ [tn, tn+1) and n ∈ Z. Thus, ψ̂ : R → X̂ given by ψ̂(n) = ψ(tn) is a discrete global
solution of g through x . Hence, by Theorem 3.14, x ∈ Â and we conclude that Â = Ã ∩ X̂ .

��

5 Applications

5.1 An Integrate-and-Fire NeuronModel

Integrate-and-fire neuron models describe the behavior of a membrane potential u = u(t)
(leaky and current-clamped membrane) along with a dissipation constant γ and an applied
stimulus S = S(t). Such models can be represented by the following ordinary differential
equation

u′(t) = −γ u(t) + S(t) (5.1)
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with the additional condition

if u(t) = θ then u(t) is reset to value ur < θ. (5.2)

The membrane potential u(t) is charged through the excitation, S(t), and when it reaches the
threshold value θ , the neuron fires and it is reset to the rest potential ur , see [14]. Based on
[4], we assume that the excitation S > 0 is constant with S �= γ θ , γ > 0 and θ > 0. Define

M = {θ} and I (θ) = ur .

If [0,∞) � t �→ π(t)u0 ∈ R is the solution of (5.1) with initial condition u0 at t = 0, then
(R, π, M, I ) defines an impulsive dynamical system which describes the trajectories of the
system (5.1)-(5.2). Note that M is an impulsive set satisfying I (M) ∩ M = ∅. Since ur < θ

the condition (H) is satisfied. Moreover, it is not difficult to see that condition (T) also holds.
On one hand, the semiflow (R, π) without condition (5.2) admits a global attractor given

by A =
{
S
γ

}
.

On the other hand, if the excitation S is small, less than the threshold value θγ , it follows
that themembrane potentialu stabilizes to the value S

γ
, i.e., the global attractor of (R, π, M, I )

is given by

Ã =
{
S

γ

}

if θγ > S.

However, if the excitation S is sufficiently larger than the threshold value θγ , then the structure
of the attractor undergoes a significant change, meaning that the neuron is now capable of
producing action potentials. Indeed, note that φ((ur )

+
k ) < ∞ for all k ∈ N0, which implies

that

Â = {ur }.
The set

B0 = [ur , θ ] ∪
[
S

γ
− 1,

S

γ
+ 1

]

is an absorbing set, which implies that (R, π, M, I ) is dissipative. By Theorem 4.14, the
global attractor Ã of (R, π, M, I ) is given by

Ã = [ur , θ) ∪
{
S

γ

}

if θγ < S.

Remark 5.1 Assume that the integrate-and-fire neuronmodel is consider under several thresh-
old values θ1, . . . , θk , with θ1 < θ2 < . . . < θk , such that

if u(t) = θ j for some j ∈ {1, . . . , k} then u(t) is reset to value u j
r < θ j .

If u1r < θ1 < u2r < θ2 < . . . < u p
r < θp <

S

γ
< u p+1

r < θp+1 < . . . < ukr < θk then

Ã =
⎛

⎝
p⋃

j=1

[u j
r , θ j )

⎞

⎠ ∪
{
S

γ

}

.
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5.2 A Nonlinear Reaction–Diffusion Initial Boundary Value Problem

Consider the nonlinear reaction-diffusion initial boundary value problem
⎧
⎨

⎩

ut − �u = f (u) for (x, t) ∈ � × (0,∞),

u(x, t) = 0, for (x, t) ∈ ∂� × (0,∞),

u(x, 0) = u0(x), for x ∈ �,

(5.3)

where � is a bounded smooth domain of Rn (n ≥ 2) with smooth boundary and � is the
Laplace operator in �. The operator −� with the Dirichlet boundary conditions admits
an orthonormal complete sequence of eigenfunctions {ei }∞i=1 in L2(�) with corresponding

eigenvalues {λi }∞i=1 satisfying 0 < λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . ., λn
n→∞−→ ∞. The nonlinearity

f : R → R satisfies the conditions:

(a) | f (t) − f (s)| ≤ c|t − s|, for all t, s ∈ R, where c > 0;
(b) lim sup|s|→∞

f (s)
s < λ1.

For each u0 ∈ L2(�), there exists a unique solution u of (5.3) with u ∈ C([0,∞), L2(�))

such that the map u0 �→ u(t) is continuous in L2(�). Thus, the map π(t) : L2(�) → L2(�)

given by

π(t)u0 = u(t)

defines a semidynamical system (L2(�), π) on L2(�). Also, π(t) : L2(�) → L2(�) is a
compact operator for each t > 0. Let us consider the usual norm ‖ · ‖2 and the usual inner
product (·, ·) in L2(�). The reader may see [1, 2, 7, 16] for more details.

According to condition (b), there exist ε0 > 0 and R > 0 such that f (s)
s ≤ λ1 − ε0

whenever |s| > R. Thus, s f (s) ≤ (λ1 − ε0)s2 provided |s| > R. Also, there exists C > 0
such that |s f (s)| ≤ C for all s ∈ [−R, R]. Hence,

s f (s) ≤ (λ1 − ε0)s
2 + C for all s ∈ R.

According to the proof of [5, Lemma 4.14], we have

‖π(t)u0‖22 ≤ ‖u0‖22e−2ε0t + C |�|
ε0

(1 − e−2ε0t ), for all t ≥ 0. (5.4)

By (5.4), the semidynamical system (L2(�), π) is dissipative with absorbing set

B0 =
{

v ∈ L2(�) : ‖v‖2 ≤ ρ0C |�|
ε0

}

, ρ0 > 1.

Since π(t) : L2(�) → L2(�) is also compact, it follows by Lemma 2.10 and Remark 2.16
that (L2(�), π) is asymptotically compact. Now, according to Theorem 2.13 and Remark
2.16, we may state the following result.

Lemma 5.2 The semidynamical system (L2(�), π) admits a global attractor A.

Let r0 > max

{

1,
2ρ0C |�|

ε0

}

. Consider the set M = {v ∈ L2(�) : ‖v‖2 = r0} and the

function I : M → I (M) given by

I (v) = v + 3r0e1 for all v ∈ M .
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We recall that if u ∈ L2(�) then

u =
∞∑

i=1

αi (u)ei ,

where αi (u) = (u, ei ) is, for each i , the Fourier coefficient. The solution of the problem (5.3)
is given explicitly by the formula

π(t)u0 = u(t) =
∞∑

i=1

αi (t)ei ,

with αi (t) = αi (ui (t)) satisfying the ODE α′
i (t) + λiαi (t) = ( f (u(t)), ei ), i ∈ N.

Lemma 5.3 M is an impulsive set, I (M) is bounded and I (M) ∩ M = ∅.
Proof Clearly M is a closed set in L2(�). Let us verify that condition (2.1) holds. Let

� =
{

v ∈ L2(�) : ‖v‖2 >
C |�|
ε0

}

. According to (5.4), for every u ∈ �, there exists tu ≥ 0

such that π(t)u ∈ B0 for all t ≥ tu . Also, the map t �→ ‖π(t)u‖2 is strictly decreasing for
every t ≥ 0 such that π(t)u ∈ �. Thus, if u ∈ M then π((0,∞))u ∩ M = ∅. Hence, M is
an impulsive set.

On the other hand, let w ∈ I (M). Then there exists v ∈ M such that w = I (v) =
(α1(v) + 3r0)e1 +

∞∑
j=2

α j (v)e j . Thus,

‖w‖22 = (α1(v) + 3r0)
2 +

∞∑

j=2

α2
j (v) = ‖v‖22 + 9r20 + 6r0α1(v).

Since ‖v‖2 = r0, we obtain |α1(v)| ≤ r0. Then

4r20 ≤ ‖w‖22 ≤ 16r20 . (5.5)

This implies that I (M) is bounded and I (M) ∩ M = ∅. ��
Lemma 5.4 There exists K = K (| f (0)|, |�|, c,C, ε0) > 0 such that ( f (π(s)w), e j ) ≤
K (1 + r0), whenever w ∈ I (M), s ≥ 0 and j ∈ N.

Proof Let w ∈ I (M), j ∈ N and s ≥ 0 be arbitrary. By (5.5), we have ‖w‖2 ≤ 4r0. Then

( f (π(s)w), e j ) ≤ ‖ f (π(s)w)‖2
√|�| ≤ √|�|

(∫

�

(| f (0)| + c|π(s)w|)2dx
) 1

2

≤ | f (0)|√2|�| + √
2|�|c‖π(s)w‖2

(5.4)≤ | f (0)|√2|�| + √
2|�|c

(

‖w‖22 + C |�|
ε0

) 1
2

≤ K (1 + r0),

for some constant K > 0. ��
Lemma 5.5 The impulsive dynamical system (L2(�), π, M, I ) satisfies conditions (H) and
(T).
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Proof At first, let us show that condition (H) holds. Let w ∈ I (M). Then

w = I (v) = (α1(v) + 3r0)e1 +
∞∑

j=2

α j (v)e j ,

for some v ∈ M . Let t ≥ 0 be such that π(t)w ∈ M . Then

r20 = ‖π(t)w‖22 =
(

(α1(v) + 3r0)e
−λ1t +

∫ t

0
( f (π(s)w), e1)e

λ1(s−t)ds

)2

+
∞∑

j=2

(

α j (v)e−λ j t +
∫ t

0
( f (π(s)w), e j )e

λ j (s−t)ds

)2

.

Thus, using Lemma 5.4, we obtain

r0 ≥ |α1(v) + 3r0|e−λ1t −
∣
∣
∣
∣

∫ t

0
( f (π(s)w), e1)e

λ1(s−t)ds

∣
∣
∣
∣

≥ 2r0e
−λ1t − K (1 + r0)

(
1 − e−λ1t

λ1

)

,

that is, t ≥ 1
λ1

ln

(

1 + r0
r0+Kλ−1

1 (1+r0)

)

. Hence, φ(w) ≥ 1
λ1

ln

(

1 + r0
r0+Kλ−1

1 (1+r0)

)

for all

w ∈ I (M).
Now, let us show that condition (T) holds. Let v ∈ M , {wn}n∈N be a convergent sequence in

L2(�)with limitw, and t > 0 be such that ‖π(t)wn −v‖2 n→∞−→ 0. Let K = maxn∈N ‖wn‖2.
Take τ > t such that e−2ε0τ K 2 <

(ρ0−1)C |�|
ε0

. By using (5.4), we have the estimate

‖π(τ)wn‖22 ≤ ‖wn‖22e−2ε0τ + C |�|
ε0

≤ K 2e−2ε0τ + C |�|
ε0

< r20 , n ∈ N.

On the other hand, we have v = π(t)w, consequently,

r20 = ‖v‖22 = ‖π(t)w‖22 ≤ ‖w‖22 + C |�|
ε0

< ‖w‖22 + r20
2ρ0

.

Since ρ0 > 1, there exists n0 ∈ N such that r0 < ‖wn‖2 for all n ≥ n0.
Now, define the function �n : [0, τ ] → R by �n(s) = ‖π(s)wn‖2 − r0, s ∈ [0, τ ] and

n ∈ N. Note that

�n(0) > 0 > �n(τ ) for all n ≥ n0.

By continuity of �n , there exists rn ∈ [0, τ ] such that ‖π(rn)wn‖2 = r0, i.e., π(rn)wn ∈ M

whenever n ≥ n0. We may assume that rn
n→∞−→ r ∈ [0, τ ]. Thus, π(r)w ∈ M and, hence,

r = t as ‖w‖2 > r0 (by Lemma 5.3, the trajectory π+(w) = {π(t)w : t ≥ 0} cross

the impulsive set at most once). Taking αn = rn − t , n ≥ n0, we get αn
n→∞−→ 0 and

π(t + αn)wn = π(rn)wn ∈ M . ��
Theorem 5.6 The impulsive dynamical system (L2(�), π, M, I ) is dissipative and asymp-
totically compact. In addition, (L2(�), π, M, I ) admits a global attractor Ã.

Proof Since (L2(�), π) is dissipative and r0 < ‖π̃(t)w‖2 ≤ ‖w‖2 ≤ 4r0 for all w ∈ I (M)

and all t ≥ 0 (see (5.5)), it follows that (L2(�), π, M, I ) is dissipative with absorbing set
B0 = {v ∈ L2(�) : ‖v‖2 ≤ 4r0}. By Theorem 2.10, (L2(�), π, M, I ) is asymptotically
compact. Theorem 2.13 ensures the existence of the global attractor of (L2(�), π, M, I ). ��

123



Journal of Dynamics and Differential Equations

Since φ(v+
k ) < ∞ for all v ∈ I (M) and all k ∈ N0, we have L̂2(�) = I (M). The set

I (M) = {v + 3r0e1 : v ∈ M} is closed in L2(�) as M is closed. Also, A ∩ M = ∅. In this
way, according to Theorem 4.17, (L̂2(�), g) admits a discrete global attractor Â. This result
is stated next.

Theorem 5.7 The discrete dynamical system (L̂2(�), g) admits a discrete global attractor
Â which satisfies Â = Ã ∩ X̂ .

In the last result, we relate the global attractor Ã with the attractors A and Â.

Theorem 5.8 There holds

Ã = A ∪
⎛

⎝
⋃

a∈Â
π([0, φ(a)))a

⎞

⎠ .

Proof It is a consequence of Theorem 4.14. ��
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