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Abstract
This work explores a synchronization-like phenomenon induced by common noise for
continuous-time Markov jump processes given by chemical reaction networks. Based on
Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is
formulated in a two-step procedure, at first for the states of the embedded discrete-time
Markov chain and then for the augmented Markov chain including random jump times. We
uncover a time-shifted synchronization in the sense that—after some initial waiting time—
one trajectory exactly replicates another one with a certain time delay. Whether or not such a
synchronization behavior occurs depends on the combination of the initial states. We prove
this partial time-shifted synchronization for the special setting of a birth-death process by
analyzing the corresponding two-point motion of the embedded Markov chain and deter-
mine the structure of the associated random attractor. In this context, we also provide general
results on existence and form of random attractors for discrete-time, discrete-space random
dynamical systems.
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1 Introduction

Stochastic models of biochemical reaction dynamics are mostly based on the theory of
Markov processes [1, 26]. A central role play reaction jump processes which model a well-
mixed reaction system as a continuous-time Markov process on a discrete state space. The
state is given by the number of particles of each involved chemical species, and chemical
reactions are modeled as stochastic events which induce jumps in the system’s state that
occur after exponentially distributed sojourn times. The temporal evolution of the system’s
probability distribution is in this case characterized by the chemical master equation [13].
The well-known stochastic simulation algorithm, introduced by D. Gillespie in 1976, allows
to generate statistically exact realizations of such reaction-jump processes [12]. Besides such
reaction jump processes, there exist also modeling approaches using discrete-time Markov
chains [16, 19], stochastic differential equations (SDEs, concretely: the chemical Langevin
equation) or ordinary differential equations (ODEs) [14, 21, 22], which approximate the
dynamics on a macroscopic level in case of large population sizes, as well as hybrid model
recombinations for multiscale reaction systems [17, 27, 33, 37]. All these approaches for
describing and analyzing stochastic phenomena within biochemical or other types of applied
contexts have extensively been studied in the literature [2, 32, 34].

1.1 Background and RelatedWork

The counterpart to stochastic processes within dynamical system theory is given by random
dynamical systems (RDS). Here, the origin of uncertainties is considered somewhat differ-
ently. In simple terms, the system evolves according to deterministic maps which are chosen
randomly from a stochastic law. Formally speaking, an RDS (θ, ϕ) on a metric state space
X (endowed with its Borel σ -algebra B(X)) and discrete time set T = N0 or T = Z consists
of the following two components:

• A noise model given by a metric dynamical system (�,F,P, θ). By this we mean that
(�,F,P) is a probability space and θ := (θn)n∈T is a family of measurable maps θn :
� → � for which θn+m = θn ◦θm for all n,m ∈ T, andwhich is invariant with respect to

P (or, P is θ -invariant). This last statement means that θn∗P(·) := P

(
(θn)−1 (·)

)
= P(·)

for all n.
• A cocycle map ϕ : N0 × � × X → X, with (n, ω, x) �→ ϕn

ω(x), which is measurable
and satisfies the cocycle property over θ , that is for all x ∈ X, n,m ∈ N0, and ω ∈ �

ϕ0
ω(x) = x, ϕn+m

ω (x) = ϕn
θmω ◦ ϕm

ω (x). (1)

Notice that while the dynamics on the noise space � might be defined for both positive and
negative times, this does not need to be the case for the cocycle map ϕ which in our context
will only be defined for times on N0. For a comprehensive theoretical background of RDS
we refer to [3].

For a discrete-time system on a finite state space the maps are given by deterministic
transition matrices (containing only entries zero and one), and the expectation of the matrix-
valued random variable of transitions maps agrees with the stochastic transition matrix of
the corresponding Markov chain. The relation between such finite-state RDS and the related

123



Journal of Dynamics and Differential Equations

Markov chains has been studied in [35, 36]. Among other things, it has been found that a
given finite-state RDS induces a unique Markov chain, while one Markov chain might be
compatible with several RDS [36], as already discussed in a general context by Kifer [18]. In
this sense, the RDS formulation may be seen as a more refined model of stochastic dynamics
than the Markov chain: the former gives a precise description of the two-point motion,
comparing trajectories with different initial conditions but driven by the same noise allowing
for the analysis of random attractors [7], whereas the latter characterizes the statistics of the
one-point motion by means of the transition probabilities.

While RDS representations of Markov chains (discrete in space and time) or SDEs (con-
tinuous in space and time) (see e.g. [3]) have been studied in the literature, an analogous
investigation for continuous-time Markov processes on discrete state spaces is still missing.
In the present work, we do a first step in this direction by formulating random dynamical sys-
tems corresponding to reaction jump processes as special types of continuous-time Markov
processes. Our goal is to study questions of synchronization: Given the same noise realiza-
tion, will trajectories generated by Gillespie’s stochastic simulation algorithm approach each
other in the course of time after starting at different initial states? Once they coincide at a
certain time point, do they stay together forever? Our numerical experiments have shown
that two realizations of the reaction jump process with distinct starting points (but the same
driving noise) may actually resemble each other after some time period in the sense that one
of the trajectories appears to be a time-delayed replicate of the other. That is, after some
random initial “finding time”, the two process realizations start to wander through the same
sequence of states, with identical sojourn times in each of these states, but with a certain
time lag with respect to each other. Whether or not this type of trajectory replication happens
seems to depend in general on the combination of chosen initial states. By means of the
RDS presentation of the dynamics, we provide an analytical explanation for this intriguing
phenomenon of time-shifted synchronization and its dependency on the initial conditions.

1.2 Main Results

For our analysis, we use the fact that a (continuous-time) Markov jump process (X(t))t≥0

admits a discrete-time representation given by the augmented Markov chain [31] which
assigns to each discrete index n the random time Tn where the nth jump of the process occurs,
as well as the state Xn = X(Tn) entered by the process at this jump time. The random
sequence (Xn)n∈N0

of states, called embedded Markov chain, is a discrete-time Markov
process on a countable state space. In particular, we use an explicit recursive formula for this
Markov chainwhich immediately yields the cocycle of anRDS.We show that the time-shifted
synchronization observed for trajectories of a time-homogeneous reaction-jump process is
equivalent to the “normal" synchronization of the embeddedMarkov chain, for an appropriate
subset of initial conditions. Given that the jump rate constants are time-independent, also the
sojourn times within the states will agree once that the states do agree.

In more detail, we focus on two main examples, providing several general insights on
random attractors for discrete state spaces on the way: a standard birth-death process and the
Schlögl model [30] with their monostable and bistable structures, respectively, detecting sim-
ilarities and differences in the described synchronization behavior. We obtain the following
main results and insights:

• For the embedded Markov chain of general birth-death processes which admit a unique
stationary distribution,we prove partial synchronization (and, by that, partial time-shifted
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synchronization for the reaction jump process) in the sense that common-noise trajecto-
ries with starting states of the same parity join each other in finite time.

• For general RDS corresponding withMarkov chains, we relate different forms of random
attractors (Theorem 9) and give conditions for the existence of a (weak) random attractor
(Theorem 11). We verify these conditions for our examples (Proposition 6), prominently
using the existence of a unique stationary distribution.

• Wecharacterize the random attractor of the embedded chain of a birth-death jump process
admitting a stationary distribution as a pullback and forward attractor consisting of two
random points which form a random periodic orbit (Theorem 15). By that, we also find
the structure of the corresponding sample measures, also called statistical equilibria
(Proposition 16). In the particular case of the standard birth-death chain, these random
points are within distance 1 of each other, implying that initial states with different parity
lead eventually to oscillations around each other (Proposition 18 and Corollary 19).

• We illustrate numerical insights about the weak attractor of the embedded chain of the
Schlögl model, which has the same structure as the standard birth-death chain, apart from
the fact that the distance of the two random points is not 1, mirroring the bistability of
the model.

Except for the general insights on random attractors on countable state spaces (Sects. 4.1 and
4.2), most of our analytical results are, so far, restricted to the case of birth-death processes by
amonotonicity argument. However, the proof structure for these results maywell be extended
to more general chemical reaction networks, also with multiple reactants and corresponding
random periodic orbits.

Note that the works [16, 35, 36] mentioned earlier also deal with synchronization of RDSs
forMarkov chains, and in [16] even partial synchronization is considered. However, the latter
approach is focused on linear cocycles for random networks, using the theory of Lyapunov
exponents. Our proofs deploy an analysis of the two-point motion and its consequences for
the random attractor, and do not require a linear interpretation, being confronted with an
infinite state space. Note that Newman’s work on synchronization for RDS [28, 29] achieves
general equivalent conditions for synchronization to occur, which can typically be verified
via themaximal Lyapunov exponent when the state space is a smooth manifold. For the class
of examples considered in this work, the equivalence of these conditions, adjusted to the
problem of partial synchronization, will automatically appear in a straight-forward manner.

1.3 Structure of the Paper

The remainder of the paper is structured as follows. In Sect. 2, we introduce reaction jump
processes (Sect. 2.1), the corresponding augmented and embedded Markov chains and their
interpretations as random dynamical systems (Sects. 2.2 and 2.3), and their relationship with
realizations of the jump process (Sect. 2.4). Section 3 discusses the notions of synchro-
nization and partial synchronization for RDS in discrete time and discrete space (Sect. 3.1)
and contains the proof of partial synchronization for a general class of birth-death chains
(Sect. 3.2). Furthermore, the result is applied to the standard and the Schlögl birth-death
chain (Sect. 3.3). In Sect. 4, we discuss general properties of weak, pullback and forward
attractors for the discrete setting (Sect. 4.1), show a general result on the existence of weak
attractors including the setting of reaction problems (Sect. 4.2), and characterize the struc-
ture of these attractors for general birth-death chains as random periodic orbits (Sect. 4.3). In
Sect. 5 we discuss implications of our results for the two-point motions of the standard birth-
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death chain (Sect. 5.1) and the Schlögl chain (Sect. 5.2). Finally, we provide a conclusion
with outlook in Sect. 6.

2 Reaction Jump Processes and RandomDynamical Systems

In this section, we introduce the reaction network under consideration and formulate the
corresponding stochastic dynamics. At first, in Sect. 2.1, the pathwise formulation of the
reaction-jump process is given, including two exemplary reaction networks which will be
extensively studied in this work. The random dynamical systems of the related embedded and
augmented Markov chain will be formulated in Sects. 2.2 and 2.3, respectively. In Sect. 2.4,
the RDS of the augmented Markov chain will be reinterpreted as a continuous-time process.

2.1 The Reaction Jump Process

We consider the standard setting of well-mixed stochastic chemical reaction dynamics [34]:
There is a system of particles with L ∈ N different types/species S1, . . . ,SL . The particles
interact by K ∈ N chemical reactions R1, . . . ,RK given by

Rk :
L∑

l=1

slkSl →
L∑

l=1

s′
lkSl ,

where the stoichiometric coefficients skl , s′
lk are non-negative integers. The state of the system

is given by a vector x = (xl)l=1,...,L ∈ N
L
0 with xl counting the number of particles of

species Sl . Each reaction induces a jump in the state of the form x �→ x + νk , where
νk = (ν1k, . . . , νLk) ∈ Z

L is the state-change vector given by νlk := s′
kl − slk . Given a state

x , the reaction Rk takes place at rate αk(x), where αk : NL
0 → [0,∞) is the corresponding

propensity function.
The resulting (continuous-time) reaction jump process (RJP) onX = N

L
0 has the path-wise

representation

X(t) = X(0) +
K∑

k=1

Uk

(∫ t

0
αk(X(s))ds

)
νk, t ≥ 0, (2)

where Uk are independent unit-rate Poisson processes. This process (and equivalently a
more general Markov jump process) is fully characterized by the random jump times Tn ,
n = 1, 2, . . ., at which the jumps (here reactions) take place and the states Xn := X(Tn) that
are entered at the jump times, namely by

X(t) = Xn for Tn ≤ t < Tn+1, (3)

with T0 = 0 and X0 = X(0). That is, we can consider a division of the Markov jump
process into the process of jump times (Tn)n∈N0 with values in [0,∞) and the process of the
states (Xn)n∈N0 in X which is called the embedded Markov chain. The discrete-time process
(Xn, Tn)n∈N0 is called the augmented Markov chain [31].

The central method to generate statistically exact trajectories of the RJP (2) is given by
Gillespie’s stochastic simulation algorithm [15]. It is based on the insight that the waiting
times between reactions followexponential distributions, and the selection of the next reaction
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event is based on the relative rates of the reactions. More concretely,

Tn+1 = Tn + τ(Xn), (4)

Xn+1 = Xn + νκ(Xn), (5)

with T0 = 0, X0 = X(0), where τ(x) is an exponentially distributed random variable with
mean 1/

∑
j α j (x) and κ(x) ∈ {1, . . . , K } is a random variable with point probabilities

αk(x)/
∑K

l=1 αl(x) for k = 1, . . . , K . There exist different variants to generate the random
numbers τ(x) and κ(x) given the state x ∈ X of the system. In the following, we consider
the direct method [12], which draws independent, uniformly distributed random numbers
r , q ∼ U (0, 1) and sets

τ(x, r) = 1∑K
k=1 αk(x)

log

(
1

r

)
, (6)

while κ(x, q) is chosen to be the smallest integer satisfying

κ(x,q)∑
k=1

αk(x) > q
K∑

k=1

αk(x). (7)

Unlike approximate discrete-time simulation schemes with fixed step size, Gillespie’s algo-
rithm associates the iteration index n with the jump times that have variable distances.

Example 1 (Standard birth-death process) As a basic example which will be analyzed in
detail in Sects. 3.2 and 4.3 we consider the standard birth-death process of a single species
S given by K = 2 reactions

R1 : ∅ γ1−→ S, R2 : S γ2−→ ∅.

Here, γ1, γ2 > 0 are rate constants and the corresponding propensity functions are given by
the law of mass action as

α1(x) = γ1, α2(x) = γ2x .

The state space of the resulting jump process is given by X = N0. Consequently, also
the state-change vectors νk are actually scalar and given by ν1 = 1 and ν2 = −1. The
waiting time τ(x) until the next reaction takes place, given the actual state x , is exponentially
distributed with mean 1/(γ1 + γ2x). Then, reaction R1 takes place with probability γ1

γ1+γ2x

(corresponding to κ(x) = 1), while R2 takes place with probability γ2x
γ1+γ2x

(corresponding
to κ(x) = 2). In terms of the direct method, see (7), this may be realized by setting

κ(x, q) =
{
1 if q <

γ1
γ1+γ2x

,

2 otherwise
(8)

for q ∼ U (0, 1).
Under an appropriate scaling of the propensity functions α1 and α2, one may derive the

corresponding reaction rate equation governing the dynamics of the concentration C(t) =
XV (t)
V for the large volume limit V → ∞ (cf. [34]). This is an ordinary differential equation

(ODE), given by

dC(t)

dt
= −γ2C(t) + γ1, (9)
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Fig. 1 Solution of the reaction rate equation for a the birth-death process, see Eq. (9), and b the Schlögl model,
see Eq. (10), each for three different initial statesC(0). For (a), the rate constants are given by γ1 = 10, γ2 = 1,
and there is a globally attracting equilibrium at C∗ = γ1

γ2
= 10. In contrast, for (b) the rate constants are

γ1 = 6, γ2 = 3.5, γ3 = 0.4, γ4 = 0.0105 and there are two locally attracting equilibria at C∗
1 ≈ 2.2664 and

C∗
2 ≈ 26.2087, as well as an unstable equilibrium given by C∗

3 ≈ 9.6201

with globally attracting equilibrium at C∗ = γ1
γ2

for which the right-hand side of (9) is zero
(see Fig. 1a).

Example 2 (Schlögl model) The other main example of this work is the Schlögl model, a
chemical reaction network exhibiting bistability, cf. e.g. [9, 25, 30] and see Sect. 5.2 for a
detailed discussion. Again we only have one species S with the following reactions

R1 : ∅ γ1−→ S, R2 : S γ2−→ ∅,

R3 : 2S γ3−→ 3S, R4 : 3S γ4−→ 2S,

for rate constants γ1, γ2, γ3, γ4 > 0 and x ∈ N0. The corresponding standard mass action
propensities are given by

α1(x) = γ1, α2(x) = γ2x, ,
α3(x) = γ3x(x − 1), α4(x) = γ4x(x − 1)(x − 2),

and the state-change vectors are given by the scalars ν1, ν3 = 1 and ν2, ν4 = −1.
The corresponding reaction rate ODE is given by

dC(t)

dt
= −γ4C(t)3 + γ3C(t)2 − γ2C(t) + γ1, (10)

which—depending on the value of the reaction rates—may exhibit two stable equilibria
C∗
1 ,C

∗
2 and an unstable equilibrium C∗

3 (see Fig. 1b).

The two examples demonstrate two fundamentally different patterns in terms of the large-
volume behavior of the process: whereas in Example 1 the reaction rate equation has one
globally attracting equilibrium such that all trajectories synchronize to the same concen-
tration, in Example 2 there are two (locally) attracting equilibria separated by an unstable
equilibrium such that different ODE-trajectories may or may not synchronize depending on
their initial conditions, see Fig. 1.

This observation prompts interest in the synchronizing behavior of the underlying reaction
jump process: Given the same random numbers but different initial states, will the jump times
and states given by Eqs. (4)–(5) approach each other in the course of time? Can we observe
different synchronization behavior in Examples 1 and 2? To give a systematic answer to these
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questions,wewill analyze the reaction jumpprocess in terms of the correspondingRDSwhich
gives a natural approach to comparing trajectories with different initial conditions but driven
by the same noise realizations.

2.2 RDS Formulation of the EmbeddedMarkov Chain

At first, we formulate the setting of a RDS for the embedded Markov chain (Xn)n∈N0 , given
by Xn := X(Tn), as a discrete-time stochastic process. The noise space Q+ of the RDS is
chosen as

Q+ = {
q = (qn)n∈N0 : qn ∈ (0, 1)

}
.

We endow Q+ with the Borel σ -algebra σ(Q+) generated by its cylinder sets, and with the
infinite product probability measure P = λN0 , where λ denotes the Lebesgue measure on
(0, 1). On this probability space (Q+, σ (Q+),P) we define the shift map θ : Q+ → Q+
and its iterates by

θ(q0, q1, . . .) = (q1, q2, . . .), θn := θ ◦ · · · ◦ θ︸ ︷︷ ︸
n times

. (11)

Since θ is invariant with respect to P, the tuple (Q+, σ (Q+),P, (θn)n∈N0) constitutes our
underlying noise model. Throughout this work we will use interchangeably the short-hand
notation

P(S(q)) = P({q ∈ Q+ : S(q) holds}),
where S(q) is a q-dependent statement. For any q ∈ Q+, consider the transition map fq :
X → X defined by

fq(x) := x + νκ(x,q0), (12)

where f· takes a whole sequence q = (qn)n∈N0 as an input but only evaluates the first entry
of q , namely q0, in κ(x, ·) which determines the index of the reaction, see Eqs. (5) and (7),
where the latter defines the choice of the function κ(x, ·) for a given order of the reactions.
Therefore, fθnq(Xn) coincides with the right-hand side of the recursion (5). Given a fixed
order of the reactions, the transition map fq is unique. The RDS of the embedded Markov
chain (Xn)n∈N0 is given by the tuple (θ, ϕ) with the cocycle map ϕ : N0 × Q+ × X → X

defined by

ϕn
q (x) =

{
fθn−1q ◦ · · · ◦ fq(x) if n ≥ 1,

x if n = 0.
(13)

Noting that for any n ∈ N0 we have that θnq = (θ ◦ ... ◦ θ)q = (qn, qn+1, . . .) holds for the
shift map θ given in (11), it is straightforward to verify that the cocycle property (1) holds.

For each initial state x ∈ X and each q ∈ Q+ we obtain the sequence of states (xn)n∈N0 =(
ϕn
q (x)

)
n∈N0

from the random difference equation

xn+1 = fθnq(xn), n ∈ N0 and x0 = x ∈ X. (14)

Given an initial state x , we have the relation

P (Xn ∈ A | X0 = x) = P

(
ϕn
q (x) ∈ A

)
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for any A ∈ B(X).

Remark 1 (Dependence on simulation scheme) Note that by virtue of a fixed order of reaction
indices assumed for the direct method underlying the choice of the reaction index κ in Eq. (7),
the difference equation (5) defines our RDS in a unique way. Any permutation of the set of
reactions would lead to different values of κ and to a different RDS. Also applying other
versions of Gillespie’s algorithm (such as the first-reaction method [12]) would result in a
different RDS. However, statistically, these RDS will all be equivalent, and the results of this
work will not depend on the order of the reactions or the underlying simulation scheme. In
fact, our results depend exclusively on the (positive) recurrence properties of the associated
embedded Markov chain.

2.3 RDS Formulation of the AugmentedMarkov Chain

The RDS (θ, ϕ) introduced before captures only the states Xn entered by the reaction jump
process at the jump times Tn . In the following,we formulate anotherRDSwhich takes account
also of the jump times Tn by considering the augmented Markov chain (Xn, Tn)n∈N0 , see
Eqs. (4)–(5).

The state space of the augmentedMarkov chain is given byX×[0,∞)with the σ -algebra
given byP(X)⊗B([0,∞)), whereP(X) denotes the power set ofX. In analogy to fq defined
in (12), we consider for any r ∈ Q+ the mapping gr : X × [0,∞) → [0,∞) with

gr (x, t) := t + τ(x, r0) (15)

for τ given in (6), such that Tn+1 = gθnr (Xn, Tn) in (4). However, in contrast to fq , this
mapping depends on both variables t ∈ [0,∞) and x ∈ X. So, the corresponding cocycle
map has to depend on state and time, as well as on r ∈ Q+ and q ∈ Q+. Therefore, we
introduce the product noise space

�+ = Q+ × Q+ = {
ω = (ωn)n∈N0 : ωn = (qn, rn), qn, rn ∈ (0, 1)

}

endowed with the product σ -algebra σ(Q+) ⊗ σ(Q+) and the product measure P�+ =
λN0 ⊗ λN0 . By abusing the notation, the corresponding shift map θ acts on both entries of a
ω ∈ �+:

θω = θ(qn, rn)n∈N0 = (qn+1, rn+1)n∈N0 .

The transformation/time-one mapping for the augmented Markov chain is given by hω :
X × [0,∞) → X × [0,∞) with

hω(x, t) := ( fq(x), gr (x, t)), (16)

where fq and gr are given in (12) and (15). The cocycle map ψ : N0 × � ×X× [0,∞) →
X × [0,∞) is given by

ψn
ω(x, t) =

{
hθn−1ω ◦ · · · ◦ hω(x, t) if n ≥ 1,

(x, t) if n = 0,

and fulfills the cocycle property (1). We obtain

P�+
(
(Xn, Tn) ∈ A

∣∣ (X0, T0) = (x, t)
)

= P�+
(
ψn

ω(x, t) ∈ A
)
,

for A ∈ P(X) ⊗ B([0,∞)
)
and a given initial state x and starting time t .
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Fig. 2 Continuous-timeGillespie realizations (�t
ω(x0))t≥0 definedby (17) for the standard birth-death process

of Example 1, driven by the same noise ω and for two initial values with a even distance and b odd distance. In
(a), the orange trajectory seems to become a time-delayed copy of the blue one, while this is not the case in (b).
c Extract of (a), showing time-shifted synchronization from time index n0 = 19 on, where both realizations
reach the state x = 8. For the process starting in x0 = 5 this happens at time Tsyn = (ψ

n0
ω (5, 0))2 ≈ 1.395,

while for the other realization the time point is given by T ′
syn = (ψ

n0
ω (15, 0))2 ≈ 1.064. I.e., the time-shift is

R := Tsyn − T ′
syn ≈ 0.331 for these initial states. The rate constants are chosen as γ1 = 10, γ2 = 1 (Color

figure online)

We note that the first component ofψn
ω coincideswith the cocyclemapϕn

q of the embedded
Markov chain, i.e. we have

(
ψn

ω(x, t)
)
1 = ϕn

q (x) for ϕn
q given in (13) and qn = (ωn)1, while

the second component
(
ψn

ω(x, t)
)
2 referring to the timepoints cannot be considered separately

as a cocycle.

2.4 Continuous-Time Process Realizations

By means of the RDS (θ, ψ) of the augmented Markov chain, we can introduce a version of
the continuous-time Markov jump process (X(t))t≥0 by defining the map

�t
ω(x) := ϕn

q (x) for (ψn
ω(x, 0))2 ≤ t < (ψn+1

ω (x, 0))2 (17)

and ω = (q, r). For a fixed ω and an initial state x0 this gives us a continuous-time process
realization (�t

ω(x0))t≥0 of the Markov jump process (X(t))t≥0 starting in X(0) = x0, see
also the piecewise definition in Eq. (3). We refer to the realization (17) of the reaction jump
process as a Gillespie realization. This is helpful for illustrating the dynamics: In Fig. 2,
common noise realizations of the standard birth-death process from Example 1 are depicted
for different initial states x0 �= y0. As we can see, the two realizations seem to approach each
other—with a certain time-delay—given that the difference x0 − y0 of the initial states is
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even (see Fig. 2a), while this is not the case for an odd difference x0 − y0 (see Fig. 2b). This
observation motivates to formulate and analyze the synchronization behavior of random
dynamical systems for the reaction systems under consideration, which we will do in the
following section.

Importantly,we note that themap� = �t
ω(x), as given in (17), does not satisfy the cocycle

property and, hence, the continuous-time Markov jump process is itself not an RDS in this
formulation. The easiest way to observe this is that there are instances of �t

ω(x0) = �t
ω(y0)

but �t+s
ω (x0) �= �t+s

ω (y0) for some t, s > 0, x0 �= y0. This is due to the fact that �t
ω(x0)

is implicitly defined via the discrete-time RDS of the augmented Markov chain. Here, the
continuous time-index t ≥ 0 stands in contrast with the discrete index of the noise terms
(wn)n∈N0 .

We additionally emphasize that our construction demonstrates an intriguing lack of com-
mutativity in the following sense: theMarkov jump process admits a version that corresponds
to the augmented Markov chain which directly induces an RDS. This RDS can be related
back to the original process via (17) giving a version of the Markov jump process which,
however, does not satisfy the cocycle property and is therefore not part of a continuous-time
RDS itself. In summary, the RDS structure lies in the space-time version of the reaction rate
process, revealing also relevant information about this process as wewill see in the following.

3 Synchronization of Reaction Jump Processes

In the following, we introduce the terms synchronization and partial synchronization for the
random dynamical systems under consideration. We analyze the synchronizing properties of
the birth-death process given in Example 1 as well as of the Schlögl model of Example 2.

3.1 General Formulation

Analogously to [16], we say that an RDS (θ, ϕ) on X = N
L
0 is synchronizing in S ⊂ X (or,

simply, synchronizing when S = X) if for every two different initial states x, y ∈ S and
P-a.e. q ∈ Q+ there exists a number n0 ≡ n0(x, y, q) ∈ N0 such that

ϕn0
q (x) = ϕn0

q (y). (18)

It follows from the cocycle property that if (18) holds for some n0 ∈ N, it is true for any
other n ≥ n0. We say that the RDS (θ, ϕ) is partially synchronizing if there exists a partition
ξ = {W0, . . . ,Wp−1}, p ∈ N, p ≥ 2, of X such that (θ, ϕ) is synchronizing in each Wi ∈ ξ .
A much general definition is given in [16], where the partition ξ may depend on q ∈ Q+. In
this paper, however, we only work with partitions independent of the noise.

For a fixed q ∈ Q+ and two different initial states x, y ∈ X the process(
ϕn
q (x), ϕn

q (y)
)
n∈N0

in the product space X2 is called the two-point motion. Let � denote

the diagonal in X2, i.e.

� := {
(x, y) ∈ X

2 : x = y
}
. (19)

Hence the RDS is synchronizing if and only if the two-point motion reaches the diagonal �
at a time index n0(x, y, q), P-a.s.

Remark 2 Since X is discrete, in order to show that an RDS (θ, ϕ) is synchronizing in S it
suffices to show that for any two initial states x, y ∈ S there is a full probability measurable
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set Qx,y in which (18) holds. Indeed, for each x, y ∈ X consider the measurable sets

Qx,y =
∞⋃
n=1

{
q ∈ Q+ : ϕn

q (x) = ϕn
q (y)

}

and assume that P(Qx,y) = 1. We can thus take QS = ⋂
x,y∈S Qx,y and (18) holds for

every x, y ∈ X and q ∈ QS, where P(QS) = 1. Furthermore, if an RDS is partially syn-
chronizing then for each Wi ∈ ξ we consider the corresponding sets QWi . By considering

Q̂ = ⋂p−1
i=0 QWi , we can always assume without loss of generality that the set is the same

for each element of the partition.

Time-Shifted Synchronization

Let us now discuss an implication of the synchronization of the embedded chain. Let
(xn)n∈N0 = (ϕn

q (x))n∈N0 and (yn)n∈N0 = (ϕn
q (y))n∈N0 be two trajectories of the embed-

ded Markov chain under the same noise realization q ∈ Q+. Recall that the jump times Tn
are given by the maps (ψn

ω(x, t))2. Considering the sojourn times �Tn := Tn − Tn−1 for
n ≥ 1, it follows from the recursion (4)–(5) that, in fact, they depend only on the embedded
chain and the noise realization. Hence, for n ≥ 1, �Tn can be represented as

τ nω(x) := (ψn
ω(x, t))2 − (ψn−1

ω (x, t))2,

by abusing the notation τ nω(x) = τ(ϕn
q (x), rn) as given in (6). Note that while (ψn

ω(x, t))2
depends on the initial time t , the difference τ nω(x) no longer explicitly depends on t . Then,
the map

ψ̂n
ω(x, t) :=

(
ϕn
q (x), τ nω(x)

)
(20)

satisfies the cocycle property over θ . Assume that (xn)n∈N0 and (yn)n∈N0 synchronize, so
that for all n ≥ n0 := n0(x, y, q) we have that xn = yn . This implies in particular that the
soujourn times satisfy τ nω(x) = τ nω(y) for all n ≥ n0. In other words, we have that the RDS
inducing the embedded chain (Xn)n∈N0 synchronizes if and only if the RDS realization of
the chain (Xn,�Tn)n∈N0 synchronizes. For simplicity, we refer to (Xn,�Tn)n∈N0 , where the
times Tn are replaced by the sojourn times �Tn , also as an augmented Markov chain, since
here the state space is again augmented by a time component.

The synchronization of the embedded/augmented chains inherits a corresponding inter-
pretation for the Gillespie realization in the following sense.

Definition 1 We say that the Gillespie realization �t
ω, cf. (17), exhibits time-shifted syn-

chronization if its associated RDS ψ̂n
ω for the augmented Markov chain (Xn,�Tn)n∈N0

synchronizes.

Definition 1 translates as follows: for every two different initial states x, y ∈ X, an initial
time t ∈ [0,∞) and P�+ -a.e. ω ∈ �+ there exists a number n0 := n0(x, y, t, ω) ∈ N0 such
that {

ϕn
q (x) = ϕn

q (y)

τ nω(x) = τ nω(y)
for all n ≥ n0. (21)

Furthermore, if (21) holds for all x, y in each component of a partition of X we analogously
speak of partial time-shifted synchronization. See also Fig. 3 for an overview of the termi-
nology. We emphasize that the time-shifted synchronization is, by definition, an effect of
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Fig. 3 Overview for the concept of time-shifted synchronization introduced in Definition 1. The map � is
defined in (17) and refers to the Gillespie realization. The RDS (ϕ, τ ) is defined in (20), where ϕ refers to the
states and τ to the soujourn times

the proposed augmented Markov chain and therefore of Gillespie’s algorithm. These asso-
ciate noise with jump times and not with the real time axis (which is also the reason for the
map � not to fulfill the cocyle property). The common noise thereby acts on different time
intervals. It is possible that different versions or algorithmic implementations of the jump
process might exhibit synchronization in the classical sense, or perhaps not even time-shifted
synchronization at all.

As a consequence of the discussion above, for analyzing the synchronization properties
of the augmented Markov chain (and with it the time-shifted synchronization properties
of the realization �t

ω) it suffices to consider the corresponding embedded Markov chain.
We proceed by analyzing the synchronization properties for the case of general birth-death
processes. Both the standard birth-death process fromExample 1 and the Schlögl model from
Example 2 are special cases of this general setting for birth-death processes.

3.2 Partial Synchronization of Strict Birth-Death Chains

Let us consider a fixed RDS representation of a general class of birth-death chains (Xn)n∈N0

on X = N0 given by a random map as described in the subsection above, i.e.

fq(x) =
{
x + 1, q0 ∈ Ax ,

x − 1, otherwise,

where Ax is a measurable set for each x ∈ X such that P(Ax ) = P (X1 = x + 1 | X0 = x).
We refer to birth-death chains of this type as strict birth-death chains, since stagnation at each
time step is not allowed. Notice that the embedded chain of any birth-death jump process
falls into this category. It is straightforward to check that if x, y ∈ N0 are two numbers of
the same parity such that x ≤ y, then ϕn

q (x) ≤ ϕn
q (y) for all n ∈ N0 and q ∈ Q+. From

this monotonicity property we obtain the following general result, for which we recall that
a Markov chain is recurrent if for any initial condition y the probability of returning to y in
finite time is positive.

Lemma 2 Let (Xn)n∈N0 be any recurrent strict birth-death chain. Then, for any RDS rep-
resentation as given above the system partially synchronizes, with partition ξ = {W0,W1}
where W0 = {0, 2, 4, . . .} and W1 = {1, 3, 5, . . .}.

Proof Let x, y ∈ Wi for i = 0, 1 such that x ≤ y. By the monotonicity property, we have
that ϕn

q (x) ≤ ϕn
q (y) for all n ∈ N0 and q ∈ Q+. Let

n(x, y; q) := min
{
n ≥ 0 : ϕn

q (x) = ϕn
q (y)

}
.
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Observe that ifϕn
q (y) = 0 for some n ∈ N, thenϕn−1

q (x) = ϕn−1
q (y) = 1 due tomonotonicity

and because they must have the same parity for all n. Therefore,

n(x, y; q) ≤ m0(y; q) := min{n ≥ 0 : ϕn
q (y) = 0}.

Since the chain is recurrent,m0(y; q) < ∞ is finite for all y ∈ N0 P-a.s., and so is n(x, y; q).
��

Remark 3 We note that the partial synchronization (here with splitting into W0 and W1)
is a special feature of strict birth-death chains which, per definitions, entails jumps in each
iteration step. Stagnation is not possible (in the sense that the diagonal entries of the associated
transition matrix are zero), such that even and odd cannot mix up. Hence, we here consider a
specific subcase of possible synchronization patterns for generalMarkov chains. In particular,
the partition {W0,W1} is independent of ω.

Lemma 2 states that whenever x, y ∈ Wi (i = 0, 1) we have for almost all q ∈ Q+
that #ϕn

q ({x, y}) = 1 for all n sufficiently large, where #A denotes the cardinality of a set
A. More generally, for each finite (deterministic) set K ⊂ Wi we obtain that for almost all
q ∈ Q+ there is a n0(K , q) ∈ N such that #ϕn

q (K ) = 1 for all n ≥ n0(K , q). This almost
sure convergence implies the convergence in probability given by

lim
n→∞P

(
#ϕn

q (K ) ≥ 2
)

= 0. (22)

This last statement can be extended to finite random sets as defined in the following Defini-
tion 3. For this, let d : X × X → [0,∞) be the Euclidean distance on X and define

d(x, B) := inf
y∈B d(x, y) (23)

for non-empty sets B ⊂ X.

Definition 3 Let (Q, σ (Q),P) be an arbitrary probability space and X = N
L
0 . A mapping

K : Q → P(X), denoted as q �→ Kq , is a random set if the function q �→ d(x, Kq) is
measurable for each x ∈ X.

We say that a random set K : Q → P(X) is a finite random set if Kq is nonempty and
finite for every q ∈ Q. A finite random set in P(X) is contained in a deterministic finite set
with high probability as indicated in the next proposition.

Proposition 4 Let K : Q → P(X) be a finite random set. Then, for each ε > 0 there is a
finite set Fε ⊂ P(X) such that

P
(
Kq ⊂ Fε

) ≥ 1 − ε.

Proof The statement is a particular case of a more general setting, see [5, Proposition 3.15].
��

We can now generalize property (22) for strict birth-death chains and for arbitrary random
finite sets in the next Proposition.

Proposition 5 Consider the setting of a recurrent strict birth-death chain. Let K : Q+ →
P(N0) be a random finite set such that Kq ⊂ Wi P-a.s. for some i ∈ {0, 1}. Then #ϕn

q (Kq) →
1 in probability.
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Proof Since Kq is nonempty P-a.s., the set ϕn
q (Kq) has at least one element for all n ∈ N,

P-a.s. On the other hand, let ε > 0 be arbitrarily small and Fε ⊂ N0 a finite set as in
Proposition 4. Then,

P

(
#ϕn

q (Kq) ≥ 2
)

= P

(
#ϕn

q (Kq) ≥ 2 ∧ Kq ⊂ Fε

)
+ P

(
#ϕn

q (Kq) ≥ 2 ∧ Kq �⊂ Fε

)
.

Note that for any n ∈ N0,{
q ∈ Q+ : #ϕn

q (Kq) ≥ 2 ∧ Kq ⊂ Fε

}
⊂

{
q ∈ Q+ : #ϕn

q (Fε) ≥ 2
}

,

and thus we deduce together with Proposition 4 that

P

(
#ϕn

q (Kq) ≥ 2
)

≤ P

(
#ϕn

q (Fε) ≥ 2
)

+ ε.

Due to (22) and since ε was arbitrarily small we conclude that

lim
n→∞P

(
#ϕn

q (Kq) ≥ 2
)

= 0,

and the result follows. ��

3.3 Partial Synchronization for the Standard and the Schlögl Birth-Death Chains

We consider the corresponding embedded Markov chains of the processes defined in Exam-
ples 1 and2,whichwe call in the following standardbirth-death chain andSchlögl birth-death
chain, respectively. In particular, both of them are strict birth-death chains. For the standard
birth-death chain, its transition map fq : N0 → N0 can be chosen as

fq(x) =
{
x + 1 if q0 <

γ1
γ1+γ2x

,

x − 1 otherwise,

for q ∈ Q+, see Eq. (8) in Example 1. The transition maps for the Schlögl birth-death chain
can be obtained in a similar fashion. Different choices of fq are possible, defining an RDS
with the same statistics (in terms of its transition probabilities and stationary distribution),
see Remark 1.

Transition Probabilities

Let z be a variable which takes the values ν1 = 1 or ν2 = −1 of the corresponding state-
change vectors. For the transition probabilities of the RDS of the embedded Markov chain
we set

Pz(x) := P

(
ϕn+1
q (x0) = x + z

∣∣ ϕn
q (x0) = x

)
(24)

for an arbitrary state x ∈ N0 and an initial state x0 ∈ N. This probability is independent
of n since the process is time-homogeneous. The transition probabilities of the standard
birth-death chain are given by

P1(x) = γ1

γ1 + γ2x
, P−1(x) = γ2x

γ1 + γ2x
, (25)

see Example 1. Similarly, the transition probabilities for the Schlögl chain are

P1(x) = γ1 + γ3x(x − 1)

�(x)
, P−1(x) = γ2x + γ4x(x − 1)(x − 2)

�(x)
(26)
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for

�(x) := γ1 + γ3x(x − 1) + γ2x + γ4x(x − 1)(x − 2) (27)

and an arbitrary state x ≥ 0.
We proceed to show that both the standard and the Schlögl birth-death chains partially

synchronize. In order to use Lemma 2, we prove that both chains admit a unique stationary
distribution, and thus are positive recurrent, i.e. mean return times to any point are finite [8,
Theorem 6.5.6]. This is a stronger statement which will also be useful for our analysis in
Sect. 4.

Proposition 6 The standard birth-death chain admits a unique stationary distribution. There-
fore, the associated RDS (θ, ϕ) partially synchronizes.

Proof Recall that the transition probabilities for the embedded Markov chain for the birth-
death process are given in (25). From [8, p. 304], we know that the birth-death chain with
transition probabilities given by (25) admits a unique stationary distribution if and only if

ζ :=
∞∑
x=1

x−1∏
j=0

P1( j)

P−1( j + 1)
< ∞. (28)

Consider the transition probabilities (25), and for simplicity let α := γ2
γ1

> 0. Then,

ζ =
∞∑
x=1

x−1∏
j=0

1 + α( j + 1)

(1 + α j)α( j + 1)
=

∞∑
x=1

x−1∏
j=0

(
1 + α

1 + α j

)
· 1

α( j + 1)

≤
∞∑
x=1

x−1∏
j=0

(
1 + α

α

)
· 1

j + 1
=

∞∑
x=1

βx

x ! , (29)

where β = (1+α)/α. Recall that by Stirling’s approximation we have that x !/
(√

2πx( xe )x
)

→ 1 as x → ∞. Then, there exists N ∈ N such that for all x ≥ N we have

1

x ! <
2√

2πx
( x
e

)x . (30)

From (29) and (30), and assuming without loss of generality that N ≥ 2π , it follows that

ζ < S + √
2/π

∞∑
x=N

βx · 1√
x

( x
e

)x ≤ S + √
2/π

∞∑
x=N

(
eβ

x

)x

for S := ∑N−1
x=1 βx · 1

x ! . Hence, it suffices to show that
∑∞

x=N

(
eβ
x

)x
< ∞. Assume again

without loss of generality that N is big enough so that eβ
x < 1

e for all x ≥ N . Thus,

∞∑
x=N

(
eβ

x

)x

<

∞∑
x=N

e−x < ∞,

from which we finally deduce ζ < ∞. ��
Byusing a similar reasoningwe show that theSchlögl chain admits a stationary distribution

as well.
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Fig. 4 Gillespie realizations �t
ω(x0) given in (17) for the Schlögl model of Example 2, driven by the same

noise. Realizations for two initial values with a even distance and b odd distance. In (a), the orange trajectory
becomes a time-delayed copy of the blue one, just as in Fig. 2, while in (b), the trajectories clearly separate.
The rate constants are chosen as γ1 = 6, γ2 = 3.5, γ3 = 0.4, γ4 = 0.0105 (Color figure online)

Proposition 7 The Schlögl birth-death chain admits a unique stationary distribution. There-
fore, the associated RDS partially synchronizes.

Proof Analogously to Proposition 6, we show that the quantity ζ in (28) is finite. Indeed,

x−1∏
j=0

P1( j)

P−1( j + 1)
=

x−1∏
j=0

(
γ1 + γ3 j( j − 1)

γ2( j + 1) + γ4 j( j + 1)( j − 1)

)
·
(

�( j + 1)

�( j)

)

= 1

x !
x−1∏
j=0

(
γ1 + γ3 j( j − 1)

γ2 + γ4 j( j − 1)

)
·
(

�( j + 1)

�( j)

)

for �(x) given in (27). Both terms inside the product are bounded for all j ∈ N0. Thus, there
exists C > 0 such that

ζ ≤
∞∑
x=1

1

x !C
x < ∞.

The finiteness of the right-hand side follows from Stirling’s approximation similarly as in
Proposition 6. ��

As noted the end of Sect. 3.1, the partial synchronization of the RDS (θ, ϕ) for the
embedded Markov chain directly implies the partial time-shifted synchronization of the
corresponding Gillespie realizations, which can easily be seen from Eq. (4). Thus, the obser-
vations from Fig. 2 for the standard birth-death process can now be confirmed and clarified:
In Fig. 2a, we have x0 ∈ W0 for both initial states, such that time-shifted synchronization
as defined in Definition 1 is guarantied by Proposition 6, see Fig. 2c for a detailed look at
the dynamics. In contrast, the initial states chosen in Fig. 2b are not in the same set Wi , and
consequently, the trajectories do not synchronize. However, they are likely to stay close to
each other—a property that will be further investigated in Sect. 5.1.

In Fig. 4, two Gillespie realizations of the Schlögl model are shown. As in the standard
birth-death process, one can also observe a time-shifted synchronization when starting with
even distance as indicated by Proposition 7, see Fig. 4a. For an odd distance in the starting
points, see Fig. 4b, the separation of the trajectories is even more significant than in the
standard birth-death scenario.
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4 RandomAttractors of RDS Associated toMarkov Chains

In this section we introduce different notions of random attractors for an RDS, providing
insights into their relationships in the context of a discrete state space in Sect. 4.1. As a
matter of fact, we show in Sect. 4.2 that under very mild conditions an RDS induced by
the random difference equation (14) admits a weak attractor. The partial synchronization for
strict birth-death chains, which was proved in Lemma 2, will be useful to describe in full
detail the structure of its attractor and the related sample measures in Sect. 4.3.

4.1 General Properties of RandomAttractors in Discrete Time and Discrete Space

In this and the following section (Sect. 4.2) we consider a generalized setting as compared to
Sect. 2.2. Specifically, let (Q,F,P) be a probability space and let θ : Q → Q be an invertible
and P-ergodic map. Furthermore, for X = N

L
0 as before, let ϕ : N0 × Q × X → X be a

measurable cocycle (cf. property (1)) such that (θ, ϕ) is a random dynamical system. One of
the characteristics of random attractors is that of invariance as described in the following.

Definition 8 Given a RDS (θ, ϕ), we say that a random set A : Q → P(X) (recall Defini-
tion 3) is invariant (or ϕ-invariant) if

ϕn
q

(
Aq

) = Aθnq for all n ∈ N, P-a.s. (31)

Notice that without loss of generality, we can assume that (31) is satisfied everywhere by
restricting ourselves to the full probability set where this is true. Indeed, if (31) holds on a
measurable set Q̃ ⊂ Q, then Q̃ is θ -invariant and thus of full probability.

Remark 4 Since we deal with a discrete-time setting, condition (31) is fulfilled as soon as it
is satisfied for n = 1, that is ϕ1

q

(
Aq

) = Aθq P-a.s. Indeed, letQ1 ⊂ Q be a measurable set of
full probability such that (31) holds for n = 1. By the invariance of P under θ , we have that
P(Q1) = P(θ−1Q1) = 1. Consider then the full probability setQ2 = θ−1Q1 ∩Q1, which is
the set where (31) holds for n = 1, 2, and inductively for k ∈ N the setQk+1 = θ−1Qk ∩Qk

for which (31) is satisfied for all n ≤ k + 1. Hence, condition (31) holds on Q̃ := ⋂∞
n=1 Qn ,

and P(Q̃) = 1.

We give the notion of attraction in terms of the Hausdorff semi-distance for non-empty
sets

dist(A, B) = sup
x∈A

d(x, B), A, B ⊂ X,

where d(x, B) is given in (23). In general, an invariant compact random set A (i.e., Aq is
compact for all q ∈ Q) is called

(i) A (strong) forward attractor, if for each compact set B ⊂ X

lim
n→∞ dist

(
ϕn
q (B), Aθnq

)
= 0 P-a.s., (32)

(ii) A (strong) pullback attractor if for each compact set B ⊂ X

lim
n→∞ dist

(
ϕn

θ−nq(B), Aq

)
= 0 P-a.s.,

(iii) A weak attractor if for each compact set B ⊂ X

lim
n→∞ dist

(
ϕn
q (B), Aθnq

)
= 0 in probability, (33)
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cf. e.g. [7]. By the discrete nature of the state space, compact sets in X are simply finite sets.
Moreover, for any q ∈ Q and B ⊂ X,

lim
n→∞ dist

(
ϕn

θ−nq(B), Aq

)
= 0 iff ∃ N ≡ N (q, B) such that ∀n ≥ N , ϕn

θ−nq(B) ⊂ Aq .(34)

In a similar fashion, limn→∞ dist
(
ϕn
q (B), Aθnq

)
= 0 if and only if there exists N ≡ N (q, B)

such that ϕN
q (B) ⊂ AθN q . Here, the invariance of A guarantees that ϕn

q (B) ⊂ Aθnq for all
n ≥ N .

It is known that weak attractors are unique, in the sense that two weak attractors A and
Ã coincide P-a.s. [11, Lemma 1.3]. Observe also that in the weak sense “forward" and
“pullback" attraction are the same since θ is measure-preserving. In other words, A is a weak
attractor if and only if for each compact set B ⊂ X

lim
n→∞ dist

(
ϕn

θ−nq(B), Aq

)
= 0 in probability.

Since the state space is discrete it is straightforward to see that if the strong pullback
convergence holds for all point sets, i.e. for B = {x} where x ∈ X, then it also holds for any
finite B. Using the terminology from [6, 7], this would imply that strong point attractors are
equivalent to strong (set) attractors as defined above. Indeed, assuming that (34) holds for all
point sets B = {x}, where x ∈ K for a given finite set K , it also P-a.s. holds for B = K by
taking N (q, K ) = max {N (q, x) : x ∈ K }. In a similar spirit, we give equivalent conditions
for an invariant finite random set to be a weak attractor in the next theorem.

Theorem 9 Let A : Q → P(X) be an invariant finite random set. Then the following are
equivalent.

I. A is a weak attractor.
II. A is a forward attractor.
III. A is a forward point attractor, that is (32) is satisfied for all B = {x} with x ∈ X.
IV. A is a weak point attractor, that is (33) is satisfied for all B = {x} with x ∈ X.
V. A weakly attracts random finite sets, that is for any finite random set K : Q → P(X)

we have that

lim
n→∞ dist

(
ϕn
q (Kq), Aθnq

)
= 0 in probability.

Proof I implies II. Assume that A is a weak attractor. Take x ∈ X as an arbitrary initial

condition and consider the sets Qx
n :=

{
q ∈ Q : ϕn

q (x) ∈ Aθnq

}
. Since the state space is

discrete, we have

P(Qx
n) = 1 − P

(
d

(
ϕn
q (x), Aθnq

)
≥ r

)

for any r ∈ (0, 1]. From the convergence in probability to the attractor (cf. (33)) it follows
that for an arbitrary ε > 0 there exists N ≡ N (x, ε) such that P(Qx

n) ≥ 1− ε for all n ≥ N .
Furthermore, from the ϕ-invariance of A we know that Qx

n ⊂ Qx
n+1 for all n ∈ N.

Let Qx := ⋃
n∈N Qx

n =
{
q ∈ Q : limn→∞ d

(
ϕn
q (x), Aθnq

)
= 0

}
. Notice that for any

n ≥ N

P(Qx ) ≥ P(Qx
n) ≥ 1 − ε,
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and since ε was arbitrarily small we have that P(Qx ) = 1. Now, we set

QB :=
⋂
x∈B

Qx =
{
q ∈ Q : lim

n→∞ d
(
ϕn
q (x), Aθnq

)
= 0 ∀x ∈ B

}
.

As B is finite, we have

QB =
{
q ∈ Q : lim

n→∞ dist
(
ϕn
q (B), Aθnq

)
= 0

}
,

and, using P(Qx ) = 1 for all x , we get P(QB) = 1 meaning that A is a forward attractor
(cf. (32)).
II implies III. This follows directly by taking B = {x}.
III implies IV. This statement is true from the fact that convergence a.s. implies convergence
in probability.
IV implies I. Assume that (33) holds for B = {x} for any x ∈ X, which is equivalent to

lim
n→∞P

(
ϕn
q (x) /∈ Aθnq

)
= 0.

Let K = {x1, . . . , xm} ⊂ X for some m ∈ N. Since for any n ∈ N

{
q : dist(ϕn

q (K ), Aθnq) ≥ 1
}

=
m⋃
i=1

{
q : ϕn

q (xi ) /∈ Aθnq

}
,

it follows that

lim
n→∞P

(
dist(ϕn

q (K ), Aθnq) ≥ 1
)

≤
m∑
i=1

lim
n→∞P

(
ϕn
q (xi ) /∈ Aθnq

)
= 0,

and the claim follows.
I if and only if V. Clearly, V implies I, since for each finite set B ⊂ X one can take Kq = B
for all q . Conversely, if K is a finite random set and ε > 0 an arbitrarily small constant,
consider Fε > 0 as given in Proposition 4 so that

P
(
Kq ⊂ Fε

) ≥ 1 − ε. (35)

Note that for any n,m ∈ N we have that

P

(
ϕn
q (Kq) �⊂ Aθn q

)
= P

(
ϕn
q (Kq) �⊂ Aθn q ∧ Kq ⊂ Fε

)

+P

(
ϕn
q (Kq) �⊂ Aθn q ∧ Kq �⊂ Fε

)
.

Hence, it follows from (35) and the observation
{
ϕn
q (Kq) �⊂ Aθn q ∧ Kq ⊂ Fε

}
⊂

{
ϕn
q (Fε) �⊂ Aθn q

}
,

that for each ε > 0 there is m ∈ N such that

P

(
ϕn
q (Kq) �⊂ Aθn q

)
≤ P

(
ϕn
q (Fε) �⊂ Aθn q

)
+ ε.

Since Fε is deterministic and finite, statement I implies P
(
ϕn
q (Fε) �⊂ Aθn q

)
→ 0 for n →

∞. As ε was arbitrarily small, this implies P
(
ϕn
q (Kq) �⊂ Aθn q

)
→ 0 for n → ∞. ��
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Remark 5 Note that, by virtue of this theorem, weak set attractors and weak point attractors
are the same for this discrete-time and discrete-space setting. Hence, the weak set attractor
being a random point almost surely is equivalent to the weak point attractor having this
property. In particular, this implies that the distinction between synchronization and weak
synchronization defined via an attractor being a singleton, as done in [11], is not necessary
here. In addition, note that, again by Theorem 9, our definition of synchronization (Sect. 3.1)
coincides with the one in [11], if an attractor exists (under extension of Q+ to Q).

Due to their invariance and their attractivity, it becomes relevant to understand the dynam-
ics within the attractors. In particular, the attractor for strict birth-death chains admits a
periodic behavior, as we see later in Theorem 15.

Definition 10 A random set A : Q → P(X) is a random periodic orbit of period M for the
RDS (θ, ϕ) if for P-a.e. q ∈ Q, Aq = {a0(q), . . . , aM−1(q)} such that

ϕ1
q(ai (q)) = ai+1( mod M)(θq) for i = 0, . . . , M − 1.

Clearly a random periodic orbit is in particular ϕ-invariant. Furthermore, we say that A :
Q → P(X) is a (weak) attracting random periodic orbit if it is a random periodic orbit and a
weak attractor. Note that this can be seen as a discrete-time analogue to the continuous-time
oriented definition of a random periodic solution [38] and its generalization [10].

4.2 Existence ofWeak Attractors

In this subsection we provide general conditions for an RDS as given in the previous section
to admit a weak attractor. For this purpose, we combine [7, Thm. 10] on the existence of
a weak attractor with properties of the stationary distribution (in case of its existence) for
Markov chains on countable state spaces (cf. [8, Chapter 6]).

Theorem 11 Consider an RDS (θ, ϕ) onX, as defined in Sect. 4.1, and assume that for every
x ∈ X the set ϕ1

Q(x) := {ϕ1
q(x) : q ∈ Q} ⊂ X is finite, and that the Markov chain associated

to (θ, ϕ) is irreducible and recurrent. If it admits a stationary distribution, then the RDS
admits a weak attractor.

Proof In order to prove the theorem we use the following (in fact, equivalent) criterion for
the existence of a weak attractor from [7, Thm. 10]: For every ε > 0 there exists a compact
set Cε ⊂ X such that for every compact set K ⊂ X there is a n0 ∈ N so that for all n ≥ n0

P

(
ϕn
q (K ) ⊂ Cε

)
≥ 1 − ε.

Recall that a recurrent state x ∈ Xhas period � ≥ 1 if � is the greatest commondenominator
of the set

{
n ≥ 1 : P (

ϕn
ω(x) = x

)
> 0

}
.

Since the chain is irreducible, every state has the same period. Moreover, the state space
admits a cyclic decomposition given as X = W0 ∪ W1 ∪ · · · ∪ W�−1, where for x ∈ Wi and
i ∈ {0, 1, . . . , � − 1}

P

(
ϕ1
q(x) ∈ Wj

)
=

{
1 if j = i + 1 (mod �),

0 otherwise
,
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and the �-step process
(
ϕ�n
q (x)

)
n∈N0

is aperiodic and irreducible in eachWi (see for instance

[8, Lemma 6.7.1]). Denote by ρ the unique stationary distribution of the system and let ε be
arbitrarily small. Consider zε ∈ N large enough such that

max
0,1,...�−1

ρ
(
(X \ Cε) ∩ Wi )

)

ρ(Wi )
<

ε

2
(36)

for the set Cε := {0, 1, 2, . . . zε}L .
Step 1. For each i = 0, . . . , �−1, the �-step process

(
ϕ�n
q (x)

)
n∈N0

starting in x ∈ Wi admits

a unique stationary distribution ρ̃i supported on Wi .
For i = 0, . . . , � − 1 and A ⊂ X set

ρ̃i (A) := ρ(A ∩ Wi )

ρ(Wi )
. (37)

Then, for any n ∈ N we have

∞∑
x=0

P

(
ϕ�n
q (x) ∈ A

)
· ρ̃i (x) = 1

ρ(Wi )

∑
x∈Wi

P

(
ϕ�n
q (x) ∈ A

)
· ρ(x) =

(∗)= 1

ρ(Wi )

∑
x∈Wi

P

(
ϕ�n
q (x) ∈ A ∩ Wi

)
· ρ(x) =

= 1

ρ(Wi )

∞∑
x=0

P

(
ϕ�n
q (x) ∈ A ∩ Wi

)
· ρ(x)

= ρ(A ∩ Wi )

ρ(Wi )
= ρ̃i (A),

which implies that ρ̃i is a stationary distribution of (ϕ�n
q (x))n∈N0 on Wi . In (∗) we used the

fact that P
(
ϕ�n
q (x0) = y

)
= 0 ∀x0 ∈ Wi , y /∈ Wi . As the �-step process is irreducible in

each Wi , the stationary distribution is unique (see [8, Theorem 6.5.5]).
Step 2. Let x ∈ X and ε > 0 be given as before. Then, there exists n1 = n1(x) ∈ N such

that P
(
ϕ�n
q (x) /∈ Cε

)
< ε for all n ≥ n1.

Consider x ∈ Wi for any i ∈ {0, . . . , � − 1}. Since the �-step process
(
ϕ�n
q (x)

)
n∈N0

is irreducible and admits a stationary distribution on Wi , it is positive recurrent on Wi .

Furthermore, since it is aperiodic in Wi , convergence P

(
ϕ�n
q (x) ∈ ·

)
→ ρ̃i in total varia-

tion holds as n → ∞, see [8, Theorem 6.6.4]. This implies in particular the convergence

P

(
ϕ�n
q (x) /∈ Cε

)
→ ρ̃i (X\Cε). Hence, there exists n1 = n1(x) ∈ N such that for any

n ≥ n1 we obtain

P

(
ϕ�n
q (x) /∈ Cε

)
< ρ̃i (X \ Cε) + ε

2
(37)= ρ

(
(X \ Cε) ∩ Wi

)

ρ(Wi )
+ ε

2

(36)
< ε. (38)

Step 3. Let x ∈ X be an arbitrary initial condition. Then, there exists n2 = n2(x) ∈ N such
that for all n ≥ n2 we have P(ϕn

q (x) /∈ Cε) < ε.
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Since ϕ1
Q(x) is assumed to be finite, also ϕr

Q(x) :=
{
ϕr
q(x) : q ∈ Q

}
is finite for any

r ∈ N0. Let n = k� + r for some k ∈ N0 and r ∈ {0, 1, . . . , � − 1}. Note that

P

(
ϕ�k+r
q (x) /∈ Cε

)
=

∑
y∈ϕr

Q(x)

P

(
ϕ�k
q (y) /∈ Cε

)
· P

(
ϕr
q(x) = y

)
.

Let n1(y) be given from Step 2 above, and choose k ≥ max{n1(y) : y ∈ ϕr
Q(x)}. Then

P

(
ϕ�k+r
q (x) /∈ Cε

) (38)
< ε ·

∑
y∈ϕr

Q(x)

P

(
ϕr
q(x) = y

)
= ε.

So, the claim followsby takingn2(x) := max
{
� · n1(y) : y ∈ ϕr

Q(x), r ∈ {0, 1, . . . , � − 1}}.
Step 4. For each K ⊂ N0 compact (i.e. finite) there exists n0 = n0(K ) ∈ N such that

P

(
ϕn
q (x) > z

)
< ε for all n ≥ n0 and x ∈ K .

Notice that Step 3 assures that the claim holds when K = {x} for any x ∈ N0. If we
consider any finite set K = {x1, x2, . . . , xl}, then the result follows by taking n0(K ) =
maxi=1,...,l n2(xi ). ��

4.3 Random Periodic Orbit of Positive Recurrent Strict Birth-Death Chains

Recall that the concept of a random attractor as introduced earlier only makes sense when
considering an invertible dynamical system on the noise space. However, in the RDS formu-
lation of the embedded Markov chain (see Sect. 2.2), the shift map is not invertible since for
q0 �= q̃0 we have that

θ(q0, q1, q2, . . .) = θ(q̃0, q1, q2) = (q1, q2, . . .).

We can come around this inconvenience by redefining our noise space as

Q := {q = (qn)n∈Z : qn ∈ (0, 1)},
endowed with its Borel σ -algebra σ(Q) and the bi-infinite product measure λZ. We redefine
the shift map as

θq = θ(qn)n∈Z = (qn+1)n∈Z

such that (θ−nq)i = qi−n , while the cocycle map ϕ remains the same, see (13). Note that
the synchronization results in Sect. 3 transfer immediately to the invertible setting since they
have been formulated independently from the past. By abuse of notation, we will from now
on use P = λZ.

Note that, by virtue of Theorem 11, the existence of the weak attractor can be derived
purely by Markov chain arguments and is expected to occur in a large class of RDS derived
from reaction jump processes via the embedded Markov chain approach. For instance, since
chemical reaction networks are defined via a finite set of reactions, ϕ1

Q(x) is always finite for
any x ∈ X. In particular, using Theorem 11 the following corollary is a direct consequence
of Propositions 6 and 7.

Corollary 12 For the standard and Schlögl birth-death chains, anyRDS representation admits
a weak attractor.
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4.3.1 Weak Attraction

In this subsection we provide a full characterization of the weak random attractor of strict
birth-death chains. We investigate the structure of the weak attractor by formulating Propo-
sition 13 and Corollary 14 as preparatory work for Sect. 4.3.2, where we will show that the
weak attractor is in fact a strong pullback attractor consisting of two random points. The
crucial insight is the translation of the partial synchronization result from Lemma 2 into the
random periodic structure of the random attractor. Depending on the type of partition in such
a partial synchronization, the following analysis may well be understood as a blueprint for
various forms of augmentedMarkov chains with more complicated structure than birth-death
processes. However, for this section we always assume that a RDS representation (θ, ϕ) of
a strict birth-death chain is fixed.

Proposition 13 The weak attractor q �→ Aq of a positive recurrent strict birth-death chain
has two points on each fiber P-a.s., that is

P(#Aq = 2) = 1.

Moreover, Aq∩Wi �= ∅ for i = 0, 1P-a.s., whereW0 = {0, 2, 4, . . .} andW1 = {1, 3, 5, . . .}.
Proof We split the proof in two parts. We first show that Aq has at least two points P-a.s.,
and then we conclude that P(#Aq ≥ 3) = 0.
Step 1. Aq ∩ Wi �= ∅ for i = 0, 1 P-a.s.

For each x ∈ N0 consider the pullback limit

a+
x (q) := lim sup

n→∞
ϕ2n

θ−2nq(x).

Let (n j )
∞
j=0 be a strictly increasing sequence of natural numbers such that ϕ

2n j

θ
−2n j q

(x) →
a+
x (q) for j → ∞. Since Aq is a weak attractor we have

lim
j→∞P

(
d

(
ϕ
2n j

θ
−2n j q

(x), Aq

)
≥ 1

)
= 0.

From the last limit we consider a subsequence n jk such that ϕ
2n jk

θ
−2n jk q

(x) ∈ Aq for all k ∈ N0

P-a.s. We conclude that a+
x (q) ∈ Aq for P-a.e. q , which in particular implies that a+

x < ∞
P-a.s. Furthermore, since a+

x (q) ∈ Wi if and only if x ∈ Wi , the claim follows by taking
x = 0, 1, for instance.
Step 2. P(#Aq ≥ 3) = 0.

Since θ is P-invariant, we have that for any n ∈ N

P(#Aq ≥ 3) = P
(
#Aθnq ≥ 3

) = P

(
#ϕn

q (Aq) ≥ 3
)

,

where the last equality follows by the invariance of Aq . We now partition

ϕn
q (Aq) = ϕn

q (Aq ∩ W0) ∪ ϕn
q (Aq ∩ W1).

Since it follows from Step 1 that for all n ∈ N and i ∈ {0, 1} the sets ϕn
q (Aq ∩ Wi ) contain

at least one element, we can combine these observations to give the bound

P(#Aq ≥ 3) ≤ P

(
#ϕn

q (Aq ∩ W0) ≥ 2
)

+ P

(
#ϕn

q (Aq ∩ W1) ≥ 2
)

.

By taking the limit n → ∞, Proposition 5 implies that the right-hand side tends to 0 by
taking K i

q = Aq ∩ Wi . The result follows. ��
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Corollary 14 For each x ∈ N0

ax (q) := lim
n→∞ ϕ2n

θ−2nq(x) (39)

exists P-a.s. Furthermore, for x, y ∈ Wi , i = 0, 1, we have that ax = ay P-a.s. Conversely,
if x ∈ W0 and y ∈ W1, then ax �= ay P-a.s.

Proof For each x ∈ N0 let

a−
x (q) := lim inf

n→∞ ϕ2n
θ−2nq(x).

Analogously to Step 1 in the proof of Proposition 13, we obtain a−
x (q) ∈ Aq for almost all

q ∈ Q. Since it has the same parity as a+
x (q) and #Aq ∩ Wi = 1, i = 0, 1, we conclude that

a+
x = a−

x holds with full probability and, hence, the limit ax ∈ Aq exists almost surely.
Using again that #Aq ∩ Wi = 1, i = 0, 1, we derive that ax and ay are identical (or

different, respectively) in a full measure set when x and y are of the same parity (or of
different parities, respectively). ��

4.3.2 Strong Pullback Attraction to a Random Periodic Orbit

We can now give a full characterization of the pullback attractor in the next theorem. We
already know fromProposition 13 andCorollary 14 that theweak attractor Aq consists almost
surely of the two distinct random points a0(q) and a1(q), as given in (39). Now, we identify
the strong pullback structure of this attractor.

Theorem 15 The weak attractor Aq = {a0(q), a1(q)} for a positive recurrent strict birth-
death chain

(i) is a random periodic orbit of period 2, and
(ii) is a pullback and a forward attractor.

Proof At first, we use the cocycle property in order to show item (i), that is

ϕ1
q(a0(q)) = a1(θq) and ϕ1

q(a1(q)) = a0(θq) (40)

is satisfied P-a.s. Indeed, let i = 0, 1, q ∈ Q be fixed. Then,

ϕ1
q(ai (q)) = lim

n→∞ ϕ2n+1
θ−2nq

(i) = lim
n→∞ ϕ2n

θ−2n◦θq

(
ϕ1
q(i)

)
= ai+1( mod 2)(θq),

where the last equality follows directly from Corollary 14 and the fact that ϕ1
q(i) ∈

Wi+1( mod 2).
In order to show (ii), let q ∈ Q. It follows from the definition (39) that, for any x ∈ Wi

with i = 0, 1, there exists N0 = N0(x) ∈ N0 such that for all n ≥ N0 we have ϕ2n
θ−2nq

(x) =
ai (q) ∈ A(q). On the other hand, by the cocycle property and (40) it follows that

lim
n→∞ ϕ2n+1

θ−2n−1(x) = lim
n→∞ ϕ1

θ−1q

(
ϕ2n

θ−2nθ−1q(x)
)

= ϕ1
θ−1q(ai (θ

−1q)) = ai+1( mod 2)(q).

Hence, there is N1 = N1(x) ∈ N such that for all n ≥ N1 we have that ϕ2n+1
θ−2n−1q

(x) ∈
A(q). Combining both parts, we obtain ϕn

θ−nq(x) ∈ A(q) for all n ≥ N (x) :=
max{2N0(x), 2N1(x) + 1}. Recall that point pullback attractors are (set) pullback attractors
due to the state space being discrete, and thus A is a pullback attractor. Owing to Theorem 9,
A is also a forward attractor. ��
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4.3.3 Sample Measures Supported on the Attractor

In this subsection we briefly describe the statistical importance of the attractor A in terms of
the invariant measure for the skew-product map � : Q × X → Q × X given by

�(q, x) := (θq, ϕq(x)).

Denoting by T ∗μ the push forward of a measure μ by a map T , i.e. T ∗μ(·) = μ(T−1(·)),
we adopt the classical definition of an invariant measure for the RDS (see e.g. [3, Definition
1.4.1]): A probability measure μ on Q × X is invariant for the random dynamical system
(θ, ϕ) if

(i) �∗
t μ = μ for all t ∈ N0 ,

(ii) the marginal of μ on Q is P, i.e. μ can be factorized uniquely into

μ(dq, x) = μq(x)P(dq),

where q �→ μq is the sample measure (or disintegration) on X, i.e., μq is almost surely
a probability measure on X and q �→ μq(B) is measurable for all B ⊂ X.

In particular note that, since P is given, the sample measures μq completely determine such
an invariant measure. A specific form of such invariant measures are Markov measures,
characterized by the sample measures being measurable with respect to the past: in our
setting, this means that the μq only depend on qn, n < 0 (cf. e.g. [24] or [20]).

The theory of random dynamical systems now gives us the following result on the unique
invariant measure for the RDS at hand, relating it to the stationary distribution of the Markov
chain:

Proposition 16 The RDS of positive recurrent strict birth-death chains possess a unique
invariant Markov measure with sample measures

μq = 1

2
δa0(q) + 1

2
δa1(q),

such that E[μq ] = ρ, where ρ is the unique stationary distribution from Proposition 6.

Proof By [6, Proposition 4.5], we know that there exists a Markov measure μ such that
μq(A(q)) = 1 almost surely, where A(q) = {a0(q), a1(q)} is the attractor from Theorem 15.
Its uniqueness and the fact that E[μq ] = ρ follow from the celebrated correspondence
theorem, also called Ledrappier-LeJan-Crauel Theorem (see [24, Proposition 1.2.3] for a
version that suffices for our situation and [20, Theorem 4.2.9] for the more general situation).

Using [23] (see also [11, Lemma 2.19]) we can directly infer that either μq = 1
2 δa0(q) +

1
2 δa1(q) almost surely or μq = δai (q) almost surely for i = 0 or i = 1 fixed. The latter case
can now be excluded by combining (40) and the invariance property (ϕn

q )∗μq = μθnq [20,
Proposition 1.3.27]. ��

5 Qualitative Features of the Two-Point Motion

In this section we present a comparison between the behavior of the two-point motion of
the standard birth-death chain and the Schlögl birth-death chain, referring to the embedded
Markov chains of the reaction systems given in Examples 1 and 2, respectively. As shown
in Theorem 15, both birth-death chains admit an attracting two-periodic orbit. Despite this
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Fig. 5 Two-point motion (ϕnq (x0), ϕ
n
q (y0))n∈N0 of the birth-death process from Example 1 with different

starting points (indicated by the red dots). The trajectory in (a) starts in (x0, y0) = (5, 15) with even distance
|x0− y0| = 10 and belongs to the realization shown in Fig. 2a. In (b), the trajectory starts in (x0, y0) = (6, 15)
with coordinates with odd distance |x0 − y0| = 9 and refers to Fig. 2b. In (a), the two-point motion quickly
ends up on the diagonal, in contrast to (b) where it ends up on the thick diagonal D defined in (41). The rate
constants set to γ1 = 10, γ2 = 1 (Color figure online)

topological similarity, we further distinguish their behavior in terms of an absorbing region
for the two-point motion, that is the random dynamics on X × X given by the cocycle map
(ϕn

q (x0), ϕn
q (y0))n∈N0 over the same two-sided sequence space (Q,B,P); see Fig. 5 for an

example of the dynamics of two different pairs of initial states for the standard birth-death
chain.

In particular, for the standard birth-death chain we conclude that the thick diagonal

D :=
{
(x, y) ∈ N

2
0 : y ∈ {x − 1, x, x + 1}

}
(41)

is forward invariant for the two-point motion, i.e.
(
ϕn
q (x), ϕn

q (y)
)

∈ D for all n ∈ N if

(x, y) ∈ D, and absorbing; see Fig. 6 for an illustration. On the other hand, for the Schlögl
chain we explore numerically the region in X × X where the realizations of the two-point
motion remain.

5.1 Two-Point Motion of the Standard Birth-Death Chain

Just as for the one-point motion (ϕn
q (x0))n∈N0 , we can also determine the transition prob-

abilities for the Markovian dynamics of the two-point motion
(
ϕn
q (x0), ϕn

q (y0)
)
n∈N0

. For

z1, z2 ∈ {1,−1} set

P(z1,z2)(x, y) := P

( (
ϕn+1
q (x0), ϕ

n+1
q (y0)

) = (x + z1, y + z2)
∣∣∣ (

ϕn
q (x0), ϕ

n
q (y0)

) = (x, y)
)
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Fig. 6 Schematic illustration for
the transitions of the two-point
motion for the birth-death
process. The thick diagonal D is
defined in (41), the level sets Id
are defined in (46). The arrows
indicate the directions in which
the two-point motion can move,
with the colors indicating the
values of the corresponding
probabilities as given in (42)–(45)

for any (x, y) ∈ N
2
0. Given (25) we can deduce that the transition probabilities are

P(1,1)(x, y) = min{P1(x), P1(y)}, (yellow) (42)

P(−1,1)(x, y) = max{0, P1(y) − P1(x)}, (red) (43)

P(1,−1)(x, y) = max{0, P1(x) − P1(y)}, (blue) (44)

P(−1,−1)(x, y) = 1 − max{P1(x), P1(y)}. (green) (45)

The colors refer to the transitions given by the arrows in Fig. 6. Since we have P(−1,1)(x, y) =
0 for x < y and P(1,−1)(x, y) = 0 for x > y, it follows immediately that the setD is forward-
invariant for the two-point motion.

First Hitting Time ofD

Wewill show that the absorbing setD is reachedby the two-pointmotion
(
ϕn
q (x0), ϕn

q (y0)
)
n∈N0

of the birth-death process almost surely in finite time regardless of the starting position. For-
mally speaking, by considering

τD(x0, y0, q) := inf
{
n ≥ 0 : (ϕn

q (x0), ϕ
n
q (y0)) ∈ D

}

as the first hitting time of the thick diagonal D, we show that

P
(
τD(x0, y0, q) < ∞) = 1

holds for all x0, y0 ∈ N0. To do so, we first define for a given d ∈ Z the level set

Id := {
(x, y) ∈ N

2
0 : x − y = d

}
(46)

and show in the following lemma that for d �= 0 a process starting in Id will almost surely
leave this set in finite time.

123



Journal of Dynamics and Differential Equations

Lemma 17 Let d ∈ Z \ {0} be given. Then, for each initial state (x0, y0) ∈ Id the two-point

motion
(
ϕn
q (x0), ϕn

q (y0)
)
n∈N0

of the standard birth-death chain exits Id P-a.s., i.e.,

P

(
(ϕn

q (x0), ϕ
n
q (y0)) ∈ Id ∀n ≥ 0

)
= 0 for all (x0, y0) ∈ Id .

Proof Without loss of generality we only consider the case in which d ≥ 1. For x ∈ N0

consider the state (x + d, x) ∈ Id and define

px := P

(
(ϕn

q (x + d), ϕn
q (x)) ∈ Id ∀n ≥ 0

)
.

as the probability for the two-point motion to stay forever on Id given that it starts in (x +
d, x) ∈ Id . By means of the law of total probability we have

px = P(1,1)(x + d, x) · px+1 + P(−1,−1)(x + d, x) · px−1

for x ≥ 1, where P(1,1)(x +d, x) = 1
1+α(x+d)

and P(−1,−1)(x +d, x) = αx
1+αx with α := γ2

γ1
,

see (42) and (45). From this we can deduce the second-order difference equation

px+2 = (1 + α(x + d + 1)) ·
(
px+1 − α(x + 1)

1 + α(x + 1)
px

)
(47)

for x ≥ 0. Moreover, for x = 0 we have p0 = P(1,1)(d, 0) · p1 such that
p1 = (1 + αd)p0. (48)

Since p1 is proportional to p0, it follows inductively from Eq. (47) that px is proportional
to p0 for all x ∈ N0. We prove by contradiction that the sequence (px )x∈N0 of probabilities
has to fulfill px = 0 for all x ∈ N0. Indeed, assume that p0 > 0. From (48) we obtain

p1 − p0 =
(
1 − 1

1 + αd

)
p1 = αdp0 > 0. (49)

On the other hand, it follows immediately from (47) that

px+2 − px+1 = α(x + d + 1)px+1 − α(x + 1) [1 + α(x + d + 1)]

1 + α(x + 1)
px .

Hence, by adding and subtracting α(x+1)[1+α(x+d+1)]
1+α(x+1) · px+1 we obtain

px+2 − px+1 = αd

1 + α(x + 1)
· px+1 + α(x + 1) [1 + α(x + d + 1)]

1 + α(x + 1)
· (px+1 − px )

≥ α(x + 1)

(
1 + αd

1 + α(x + 1)

)
(px+1 − px ).

Let ux := px+1 − px . Then, from the last inequality it follows that

ux+1 > α(x + 1)ux .

By iterating the above inequality it follows that

ux > αx−1 · x ! u0 x ∈ N.

Since u0 > 0, see (49), and since αx−1 · x ! → ∞ as x → ∞ for any α > 0, this implies
that ux → ∞. It then follows that px → ∞, which is a contradiction since px ∈ [0, 1]. In
conclusion, we obtain p0 = 0, and by proportionality, px = 0 for all x . Noticing that all
states in Id are of the form (x + d, x) for some x ∈ N0 completes the proof. ��
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Fig. 7 Stationary distributions of one- and two-point motion of the birth-death chain. a Stationary distribution
ρ of the one-point motion and b, c stationary distributions π� and πD\� of the two-point motion, respectively.

All stationary distributions are computed as the solution of their eigenvector equation ρT P = ρT for P the
corresponding transition matrix. γ1 = 10, γ2 = 1

By means of Lemma 17 we can now make the following central statement.

Proposition 18 For each (x, y) ∈ N
2
0, the two-point motion

(
ϕn
q (x0), ϕn

q (y0)
)
n∈N0

of the

standard birth-death chain reaches the thick diagonal D almost surely in finite time.

Proof Let (x0, y0) ∈ Id for a given d = x0 − y0 �= 0. According to Lemma 17, the two-

point motion
(
ϕn
q (x0), ϕn

q (y0)
)
n∈N0

almost surely escapes from Id in finite time. Given the

transition probabilities (42)–(45), it can only end up in Id−2 when d ≥ 1 or in Id+2 when
d ≤ −1. This happens a finite number of times until the process reaches D = I−1 ∪ I0 ∪ I1.

��
Figure 7 shows the stationary distribution of the one- and two-pointmotion for the standard

birth-death chain. The state space of the two-point motion splits up into a transient areaX2\D
and two communication classes � andD\� = I−1 ∪ I1 [4] where � is the diagonal given in
(19) and D is the thick diagonal defined in (41). The respective stationary distributions π�

and πD\� are plotted in Fig. 7b, c.
We translate Proposition 18 into a characteristic feature of the random periodic orbit for

the standard birth-death chain as given in the following statement.
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Corollary 19 The attracting random periodic orbit for the standard birth-death chain Aq =
{a0(q), a1(q)} is such that |a0(q) − a1(q)| = 1, P-a.s.

Proof Consider the sets

Qn :=
{
q ∈ Q : ϕ2k

θ−2kq(0) = a0(q), ϕ2k
θ−2kq(1) = a1(q) ∀k ≥ n

}
.

SinceQn ⊂ Qn+1 for all n ∈ N, and since P(
⋃

n∈N Qn) = 1, for each ε > 0 there is N such
that for all k ≥ N sufficiently large

P (|a0(q) − a1(q)| ≥ 2) ≤ P
({
q ∈ Q : |a0(q) − a1(q)| ≥ 2

} ∩ QN
) + ε

2

= P

(∣∣∣ϕ2k
θ−2kq(0) − ϕ2k

θ−2kq(1)
∣∣∣ ≥ 2

)
+ ε

2

= P

(∣∣∣ϕ2k
q (0) − ϕ2k

q (1)
∣∣∣ ≥ 2

)
+ ε

2
< ε,

for k sufficiently large, due to Proposition 18. Since ε was arbitrarily small, the result follows.
��

Remark 6 In fact, wemake the following observations for positive recurrent strict birth-death
chains. Recall from Proposition 16 their invariant sample measures μq = 1

2 δa0(q) + 1
2 δa1(q)

Then it is easy to see that μ̄ := E[μq × μq ] is a stationary distribution for the two-point
motion (see e.g. [4]). In our case, we have μ̄(�) = 1

2 and μ̄(X2 \ �) = 1
2 . In particular, we

may write μ̄ = 1
2 μ̄� + 1

2 μ̄X2\�, where

μ̄� := 1

2
E[δa0(q) × δa0(q)] + 1

2
E[δa1(q) × δa1(q)]

is invariant for the two-point motion starting with even distance between the coordinates of
the initial state and

μ̄X2\� := 1

2
E[δa0(q) × δa1(q)] + 1

2
E[δa1(q) × δa0(q)]

is invariant for the two-point motion starting with odd distance between the coordinates of
the initial state. Note from Fig. 7 that for the standard birth-death chain these measure take
the form μ̄� = π� (b) and μ̄X2\� = πD\� (c).

5.2 Two-Point Motion of the Schlögl Birth-Death Chain

As opposed to the standard birth-death chain Fig. 8 shows two realizations of the two-point
motion for different initial states for the Schlögl birth-death chain. In this case, the thick
diagonal D is no longer absorbing, since in some region the transition probabilites of the
two-point motion are non-zero also for directions pointing away from the thick diagonal (see
Fig. 9).

The stationary distribution of the Schlögl birth-death chain is depicted in Fig. 10. While
Proposition 7 andTheorem15also guarantee partial synchronization for theSchlögl chain and
the existence of an attracting random 2-periodic orbit, respectively, numerical explorations
(cf. Fig. 8b) suggest that the distance of these two random points will not be one but larger;
maybe even depending on the random realization. We emphasize that this difference to
the standard birth-death chain in terms of the non-synchronizing trajectories reflects the
distinction between monostability (the thick diagonal in the two-point motion is absorbing)
and bistability (the thick diagonal in the two-point motion has repelling parts) as seen in
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Fig. 8 Two-pointmotion (ϕnq (x0), ϕ
n
q (y0))n∈N0 of theSchlögl birth-death chain fromExample 2with different

starting points (indicated by the red dots). The trajectory in (a) starts in (x0, y0) = (4, 10) with even distance
|x0 − y0| = 6 and belongs to the realization shown in Fig. 4a. In (b), the trajectory starts in (x0, y0) = (5, 10)
with odd distance |x0 − y0| = 5 and refers to Fig. 4b. In (a), the two-point motion quickly ends up on the
diagonal, in contrast to (b) where apparently the absorbing region is not straightforward to identify. The rate
constants set to γ1 = 6, γ2 = 3.5, γ3 = 0.4, γ4 = 0.0105 (Color figure online)

Fig. 9 Possible transitions to the
top left (red) and the bottom right
(blue) for the Schlögl birth-death
chain. Transitions parallel to the
diagonal are not displayed (Color
figure online)

the large-volume limiting ODEs (cf. Fig. 1). This fact is also mirrored by the respective
stationary distributions of the one- and two-point motion, as illustrated in Figs. 7 and 10
(cf. also Remark 6).

A detailed exploration of the absorbing region in the two-point motion for the Schlögl
chain is much more involved than in the standard birth-death chain and will be left for future
work.
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Fig. 10 Stationary distributions of one- and two-point motion of the Schlögl birth-death chain. a Stationary
distribution ρ of the one-point motion and b, c stationary distributions π� and πS of the two-point motion,
respectively. Here, the index S ⊂ X

2\� refers to the support of the stationary distribution for the two-point
motion starting with odd distance between the two coordinates x0, y0 of the initial state. d the same as (c)
only on a logarithmic scale. γ1 = 6, γ2 = 3.5, γ3 = 0.4, γ4 = 0.0105

6 Conclusion

We have introduced the phenomenon of (partial) time-shifted synchronization for reaction
jump processes, using their description via the augmented and embedded Markov chain
whose properties as a random dynamical system can be specified through the structure of
the corresponding random attractor. As a first example we have given a full proof of partial
synchronization for birth-death processes whose embedded chains are recurrent, finding also
that the random attractor of the embedded chain is a random periodic orbit of period 2 in
the case they are positive recurrent. In addition, we have shown that the two random points
forming the attractor always have distance 1 for the standard birth-death chain, implied
by the fact that the respective two-point motion is absorbed by the thick diagonal D. In
contrast, we have demonstrated numerically that for examples such as the Schlögl birth-death
chain the distance between the two random points may exhibit more complicated behaviour,
corresponding with a stationary distribution supported beyondD. A more detailed analyis of
this phenomenon is left for future work.
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Depending on the dimensionality of the system, i.e. the number of different species, or
for other types of reaction rates, e.g. Michaelis–Menten, we expect various forms of (partial)
synchronization and random periodic behavior for general reaction systems and leave it as
a research direction for the future to work towards a categorization of such processes and
their corresponding chains in terms of random dynamical systems theory. The main goal
of this paper has been to relate synchronization of the embedded Markov chain to time-
shifted synchronization of the trajectories of the continuous-time reaction jump process as
given by Gillespie’s algorithm and to give a first complete and rigorous description of a
simple class of examples, namely those with a birth-death chain as their embedded Markov
chain. The strategy of understanding the two-point motion, establishing the weak attractor
via a unique stationary distribution and then specifying the structure of the attractor and the
statistical equilibrium supported there, may well be generalizable. In particular, one may
consider time-shifted synchronization for general Markov jump processes, not necessarily
given by reaction networks, via the RDS description of the related space-timeMarkov chains.
Moreover, an intriguing point of more detailed investigation will concern the quantification
and statistics of the delay times found for time-shifted synchronization.

Furthermore, our work has brought up additional questions that remain open, to our
knowledge. Can one find an example coming from a chemical reaction network with no
(partial) synchronization at all, i.e. where each synchronization class is a singleton? May
one describe bifurcations of the attractor, for example in an easy model such as Schlögl’s,
via variation of the parameters? How are attractors of the described processes related to the
attractors of the corresponding volume-scaled systems, i.e. the Langevin SDEs or the reaction
rate ODEs? These approximate systems associate noise with real time rather than with jump
times of the underlying RJP and therefore might synchronize without time-shift. Assuming
that noise is a time-dependent factor, the latter situation may seem more realistic because
there raise doubts about whether the same noise affects two trajectories when the time-shifted
simulation commences, even though different time intervals have elapsed. In this sense, the
concept of time-shift might not be observable in real-world applications, while still being a
crucial feature of statistically exact numerical simulations of the RJP. In addition, one may
wonder if there could be an actual cocycle, constructed over an appropriate model of the
driving noise, which precisely matches the statistics of the continuous-time Markov jump
process. This leads to the interesting open question if there is a general way of finding RDS
versions of jump processes.

Additionally, from the RDS point of view it will also be intriguing to give general criteria
for weak attractors being (strong) pullback attractors in discrete state spaces. In summary,
we see this work as a first step towards a deeper structural understanding of reaction jump
processes viaRDS theory and, conversely, amotivation for a broader understandingof random
attractors within the dichotomy between the discrete and the continuous.
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